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Abstract The aim of this paper is to show how to simply define paraconsistent
tableau systems by liberalization of construction of complete tableaus. The pre-
sented notions allow us to list all tableau inconsistencies that appear in a complete
tableau. Then we can easily choose these inconsistencies that are effects of inter-
actions between premises and a conclusion, simultaneously excluding other incon-
sistencies. A general technique we describe is presented here for the case of Propo-
sitional Logic, as the simplest one, but it can be easily extended to more complex
cases. In other words, a kind of paraconsistent consequence relation is being studied
here, and a simple tableau system is shown to exist that captures that consequence
relation.
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14.1 Introduction and Overview

In this article, we study some kind of paraconsistent consequence relation that is
determined by tableau system. That is why we start with some remarks on tableau
methods and a strategy we implement.

Usually, tableau methods are at the same time effective but rather intuitive and
nonformal. One of the many problems of this is that when we develop a tableau, we
can many times obtain the same expressions or apply rules to branches that contain
inconsistent expressions. It is a reason why a formal approach to tableau methods
that exclude such situations are studied.

Although we prepared a formal theory of tableaus [2] that prevents from a jeJune
wayof applicationof tableau rules—amongothers, they cannot be applied to branches
that contain inconsistent expressions—here we defined rules as blind. It means that
tableau inconsistencies that occur in tableaus do not stop developing of a given
tableau. We do not stop a proof, till we decompose all expressions. It is because
in the case of paraconsistent arguments we look for a special kind of inconsistency
that follows from incompatibility of premises and a negated conclusion. In order to
identify suitable inconsistencies in a tableau, we need to decompose all expressions
to the level of literals in such a way that it would give an answer to the question
whether there is a collision between premises and a negated conclusion or not.

In Sect. 14.3, we describe a mechanism of building such tableaus and choosing
suitable inconsistencies. In further parts, we analyze somemetatheoretical properties
of this proposal and a paraconsistent consequence relation that it captures.

In the article, we consider the simplest case, the case of Propositional Logic,
and its paraconsistent subrelation determined by described tableaus. This type of
approach can be applied to other logics, being generalized as long as tableau rules
are defined in the proposed style.

Finally, let us add that in our paper the tableau tools are treated as a fully syntac-
tical method of checking whether arguments are correct and—as a counterpart of a
consequence relation—defined semantically.

14.2 Basic Notions

In this part of paper, we remind some semantical notions and basic tableau notions
we need to formulate and prove facts about paraconsistent tableaus that define a
paraconsistent subrelation of the classical propositional consequence relation.
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14.2.1 Classical Propositional Consequence Relation

Let For be the set of all formulas build over the following alphabet: Var ∪ {¬,∧,∨,
→,↔}. Let V : For −→ {0, 1} be a valuation of formulas, so for any A, B ∈ For
the function V satisfies conditions:

• V (¬A) = 1 iff V (A) = 0
• V (A ∧ B) = 1 iff V (A) = 1 and V (B) = 1
• V (A ∨ B) = 1 iff V (A) = 1 or V (B) = 1
• V (A → B) iff V (A) = 0 or V (B) = 1
• V (A ↔ B) iff V (A) = V (B).

Let V be a set of all valuations of formulas. Having a set of formulas X and
a valuation V we say that X is true in V (in short: V (X) = 1) iff for all A ∈ X ,
V (A) = 1. If a set of formulas X is not true in V , we say that is false in V and write
V (X) = 0.

We define classical consequence relation |= on 2For × For in a standard way.
Hence, for any formula A and set of formulas X we say that A is a consequence of
X (in short: X |= A) iff ∀V ∈V(V (X) = 1 =⇒ V (A) = 1).

We say that a set of formulas X is inconsistent iff for any valuation V (X) =
0. Otherwise, we call X consistent.1 Now, by definition of classical consequence
relation |=, we have a conclusion that expresses a vulnerability of classical logic to
inconsistent sets of premises.

Corollary 14.2.1 Let X be an inconsistent set of formulas. Then X |= A, for all
A ∈ For.

Of course, no paraconsistent logic should have the above property.

14.2.2 Tableau System for Propositional Logic

In work [3] and especially in [2], we presented a formal theory of tableau systems for
a class of logics defined by some syntactical and semantical conditions.2 Hence, we
have precise tableau notions that incorporate standard, intuitive notions. The precise
notions (of a tableau rule and various kinds of branches, tableaus etc.) with a notion of
tableau system are necessary, when we generalize results, looking for some abstract
properties of tableau methods.

1We use a word inconsistent instead—for example—contradictory, since it enables us a direct
transition between semantical and tableau notions.
2We mean such logics that are logics of terms or propositions, and are two–valued.
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However, here we dealt with tableaus for Boolean language, so we just use well-
known intuitive tableau notions presented in many publications, for example in [1].
We remind them in turn giving a handful of nonformal but instructive definitions as
usually authors do.

We assume that a set of formulas X are t-inconsistent iff for some A ∈ For, X
contains A and ¬A. A set of formulas X is t-consistent iff X are not t-inconsistent.
By R we denote a set of all standard tableau rules for Boolean connectives. We have
nine rules in R: four positive rules (for ∧, ∨, →, ↔) and five negative (for ¬¬, ¬∧,
¬∨, ¬→, ¬↔).3

A root is a set that contains premises and a negation of conclusion. A branch is a
sequence of formulas that starts from a root. The rest of the branch contains results of
applying of rules to former formulas. A branch is complete iff all applicable tableau
rules were used.4 A branch is incomplete iff it is not complete. Branches can be also
closed or open. A branch is closed iff it contains t-incosistent set of formulas; it is
open iff is not closed.

Tableau can be treated as sets of branches with the same roots. Tableaus that
include all suitable and only complete branches are called complete. Complete
tableaus can be closed or open. A tableau is closed iff it is complete and all branches
that includes are closed; it is open iff is not closed.

Now, for any set of formulas X and a formula A, we define a tableau classical
consequence relation �, by putting:

Definition 14.2.2 X � A iff there exist a finite subset Y of X and a closed tableau
with a root Y ∪ {¬A}.

Of course, the relation � is fully determined by tableau rules of R. Therefore, by
〈For,�〉 we understand a tableau system determined by classical tableau rules R.
The tableau system defines Propositional Logic, since it is well-known that:

Fact 14.2.3 For all X ⊆ For, A ∈ For, X � A iff X |= A.

14.3 Paraconsistent Tableaus

As we said our aim is to define a paraconsistent tableau inference that defines some
paraconsistent subrelation of classical propositional consequence relation. However,
first we introduce some auxiliary notions.

3The rules modified a little in a manner that is good for our paraconsistent aim are presented in the
Sect. 14.3.
4Generally, we divide complete branches into open and closed ones, since in our formal theory of
tableau methods in [2] our aim is always to complete a branch, so a branch itself is just a technical
concept. At the same time an occurrence of a t-inconsistency completes a branch. In the paper we
change our point of view a bit: applying of rules is allowed as far as it is possible, ignoring any
t-inconsistency—later we will come back to the idea, when explaining exactly what we mean by
‘blind rules’ (exactly in the Sect. 14.3).
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Let N be the set of natural numbers—the set of indexes I = N ∪ {0}. We distin-
guish an index zero: 0 for conclusions of a given tableau proof.

Next, we define a set of formulas indexed by superscripts: For′ = {Ai : A ∈
For, i ∈ N}. The expressions from For′ will represent formulas from For in tableau
proofs. Notice that no formula in For′ has a superscript 0.

By the function • : For′ ∪ {A0 : A ∈ For} −→ N ∪ {0}, defined with the condi-
tion •(Ai ) = i , we can choose superscripts that occur in formulas For′ and of those
formulas that have a superscript 0.

Let X be a subset of For. By X (x)we mean such a non-empty subset of powerset
of For′ that for all Y ∈ X (x) and all A, B ∈ For the conditions are fulfilled:

1. A ∈ X iff for some i ∈ N, Ai ∈ Y
2. for any i, j ∈ N, if Ai , B j ∈ Y then one of the below holds:

(a) A �= B and i �= j
(b) A = B and i = j .

Of course, for a set of formulas X there are usually many sets satisfying X (x)–
conditions, so writing Y ∈ X (x) we mean some arbitrary, but fixed set from X (x)
that we take into consideration.

Now we give a notion of a particular kind of t-inconsistency. We mean an incon-
sistency that is a result of expressions with some fixed indexes. Surely, this notion
is based on a usual notion of inconsistency (defined here Sect. 14.2.2), so it is still
about a set of formulas that contains A and¬A, for some formula A, but additionally
both inconsistent formulas should have indexes of some kind. Formally, let i, j ∈ I

and X ⊆ For′ ∪ {A0 : A ∈ For}. X is t i, j -inconsistent iff for some A, B:

1. {A, B} ⊆ X
2. {A, B} is a t-inconsistent set of formulas
3. {•(A), •(B)} = {i, j}.

It is a particular kind of t-inconsistency, because it refers to some superscripts
omitting t-inconsistencies with other superscripts. Hence, a set Y of formulas with
superscripts can be t-inconsistent, but not t i, j -inconsistent, for some i, j ∈ I, since
no pair of t-inconsistent formulas in Y contains superscripts i, j . On the other hand,
the opposite relationship holds: if a set is t i, j -inconsistent, for some i, j ∈ I, it is also
just t-inconsistent.

Now, we reformulate the tableau rules of R. A new set of rules R′ is defined on
For′ ∪ {A0 : A ∈ For}. For all i ∈ I the schemas of new rules are as below:

R∧ : (A∧B)i

Ai ,Bi R∨ : (A∨B)i

Ai ||Bi R→ : (A→B)i

¬Ai ||Bi

R↔ : (A↔B)i

Ai ,Bi ||¬Ai ,¬Bi R¬¬ : ¬¬Ai

Ai R¬∧ : ¬(A∧B)i

¬Ai ||¬Bi

R¬∨ : ¬(A∨B)i

¬Ai ,¬Bi R¬ → : ¬(A→B)i

Ai ,¬Bi R¬ ↔ : ¬(A↔B)i

¬Ai ,Bi ||Ai ,¬Bi
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The tableau rules in R′ have such a property that they preserve superscripts. For
example, when we decompose a formula ¬¬p1 by rule for ¬¬, we obtain p1; if
we decompose a formula (p → q)0 by rule for →, we obtain on the left branch
¬p0 and on the right branch q0 etc. The technique allows us to trace a process of
decomposition of formulas and find out the origin of t-inconsistencies.

As we already said, we resign here from internal mechanism nested in rules
that blocks applying rules to branches including t-inconsistencies (it was one of
distinguishing features of our last works [2, 3]). Here, we want to develop branches
as long as it is possible in order to get all t-consistencies that a branch can generate.
Now it is clear why we call these rules ‘blind’—they just do not see that a branch is
closed, which normally is a sufficient fact to stop applying rules.

Moreover, we assume all definitions for tableaus for Propositional Logic—
obviously, now the notions depend on the new set of tableau rules R′. However,
we add one more definition for testing its properties.

Definition 14.3.1 Let Y ∈ X (x), for some X ⊆ For, and let B ∈ For. A tableau T
with a root Y ∪ {¬B0} is paraconsistently closed iff:

1. T is complete
2. for any branch b in T there is such index i ∈ •(Y ∪ {¬B0}) that a t i,0-inconsistent

set of formulas belongs to b.

Now, we explain the conditions in Definition 14.3.1 one by one. First, we have
some set of formulas X and a formula B that is supposed to follow from X . We do
not assume that X is a finite set, since by defining a suitable tableau consequence
relation, we will impose a constraint that there must exist a finite set as a root for
some complete and closed tableau (like in the case of classical tableau consequence
relation Definition 14.2.2), so below we give examples only for finite cases.

We take a set Y ∈ X (x), so Y has all and only formulas from X , each one with
a different index. We build a complete tableau with the root Y ∪ {¬B0}. Now, if on
any branch there is a t i,0-inconsistency, for some i ∈ •(Y ∪ {¬B0}), then the tableau
is paraconsistently closed. If for some branch there is no t i,0-inconsistency, for any
i ∈ •(Y ∪ {¬B0}), then the tableau is not paraconsistently closed.

Nowwe present few simple examples of paraconsistently closed tableaus (accord-
ing to our last Definition 14.3.1) for some key cases.

Example 14.3.1 Consider a set of premises X = {p ∧ ¬p} and a possible conclusion
q. We take a root {(p ∧ ¬p)1,¬q0} and draw a tableau.

{( p ∧ ¬p)1,¬q0}
p1

¬p1

As we see it is not a paraconsistently closed tableau. In some branch (there is of
course only one branch) there is no t i,0-inconsistency, for any index i . Admittedly,
we have a t-inconsistent set {p1,¬p1}, but with no index 0. The example shows
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that a consequence relation completely determined by the notion of paraconsistently
closed tableau Definition 14.3.1 is robust to unlimited ex falso quodlibet.

A positive point of the presented approach is also that we could sometimes infer a
conclusion from a logically invalid formula, if a formula that is a conclusion follows
from some part of it.

Example 14.3.2 Consider a set of premises X = {p ∧ ¬p} and a possible conclusion
p. We take a root {(p ∧ ¬p)1,¬p0} and draw a tableau.

{( p ∧ ¬p)1,¬p0}
p1

¬p1

As we see it is a paraconsistently closed tableau by Definition 14.3.1. In any
branch (there is of course only one branch) there is t i,0-inconsistency, for some
index i . Admittedly, we have a t-inconsistent set {p1,¬p0}. The example shows
that a consequence relation completely determined by the notion of paraconsistently
closed tableau Definition 14.3.1 enables to infer parts of a contradictory formula.

Another positive point of the presented approach is that we can of course infer
any classical tautology.

Example 14.3.3 Consider a set of premises X = ∅ and a possible conclusion p ∨
¬p. We take a root {¬(p ∨ ¬p)0} and draw a tableau.

{¬( p ∨ ¬p)0}
¬p0

¬¬p0

p0

As we see it is a paraconsistently closed tableau by Definition 14.3.1. In any
branch (there is of course only one branch) there is t i,0-inconsistency, for some
index i . Admittedly, we have a t-inconsistent set {p0,¬p0}. The example shows
that a consequence relation completely determined by the notion of paraconsistently
closed tableau Definition 14.3.1 enables to infer parts of a contradictory formula.

However, we have some objections. First of all, we can accept that from {p,¬p}
follows p and follows¬p, since some part of information in the set {p,¬p}must be
true (either {p} or {¬p})—clearly, the inference also holds according to theDefinition
14.3.1. But in the Example 14.3.2 we have an inference we do not accept, since a set
{p ∧ ¬p} cannot be true. One can say that sets {p ∧ ¬p} and {p,¬p} are classically
equivalent not because they are contradictory, but because in general sets {A ∧ B}
and {A, B} are classically equivalent, for any formulas A, B. Our point of view is
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that the set {p ∧ ¬p} is worthless. Contrary to the set {p,¬p} is not useless, if we do
not know whether p or ¬p, then we can suspend for a moment one of the premises
and use the classical consequence relation to a noncontradictory set {p} or {¬p}.

But themost striking fact and a fundamental weakness of that approach is pictured
in the next example.

Example 14.3.4 Consider a set of premises X = {(p ∧ ¬p) ∨ q)} and a possible
conclusion q. We take a root {((p ∧ ¬p) ∨ q))1,¬q0} and draw a tableau. The
tableau is complete, since all possible rules of decomposition were used.

{((p ∧ ¬p) ∨ q))1,¬q0}
(p ∧ ¬p)1

p1

¬p1

q1

It is a classically closed tableau, but—according to the Definition 14.3.1—it is
not a paraconsistently closed tableau, since on the left branch we do not have t1,0-
inconsistency, and as a consequence the condition 2 of Definition 14.3.1 is not sat-
isfied.

Since we cannot accept this situation, we propose a modification. This modifica-
tion brings another additional benefit. Refusing inferences from inconsistent sets of
premises, we can almost automatically define simple and intuitive semantics for the
new tableaus. Obviously, one can say that a fact we refuse, for example, the infer-
ence from {p ∧ ¬p} to p and simultaneously accept the inference from {p,¬p} to
p is a cost we pay for natural semantics, but we also include such cases like the
Example 14.3.4.

14.3.1 Paraconsistent Tableau Consequence Relation

Therefore we redefine the latter definition of paraconsistently closed tableau to cap-
ture some inferences we like, exclude some inferences we do not like, and at the
same time have intuitive semantics.

Definition 14.3.2 Let Y ∈ X (x), for some X ⊆ For, and let B ∈ For. A tableau T
with a root Y ∪ {¬B0} is paraconsistently closed iff:

1. T is complete
2. for any branch b in T there are such indexes i, j ∈ •(Y ∪ {¬B0}) that t i, j -

inconsistent set of formulas belongs to b.
3. there is a branch b in T that for any pair of indexes i, j ∈ •(Y ) no t i, j -inconsistent

set of formulas belongs to b.
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Now,we explain the conditions inDefinition 14.3.2 one by one. The first condition
is identical to that in Definition 14.3.1. A novelty are the remaining two conditions.

In the second condition it is said that for some i, j ∈ •(Y ∪ {¬B0}) in all branches
theremust be t i, j -inconsistent set of formulas. It means that at least on some branches
a t-inconsistency may not contain index 0, so we capture cases like in the Example
14.3.4.

The third condition says that in a paraconsistently tableau at least on one branch
there is no t-inconsistency generated on the ground of formulas from Y , whichmeans
that X is a consistent set of formulas itself. So although according to the former
definition for {p ∧ ¬p,¬p} we have a paraconsistently closed tableau (Example
14.3.3), according to the latter one we do not have, which is the most convincing.

Again we have some simple examples.

Example 14.3.5 We come back to Example 14.3.2. Consider a set of premises X =
{p ∧ ¬p} and a possible conclusion p. We take a root {(p ∧ ¬p)1,¬p0} and draw
a tableau.

{(p ∧ ¬p)1,¬p0}
p1

¬p1

As we see it is not a paraconsistently closed tableau according to Definition
14.3.2. On any branch (there is of course only one branch) there is t i,0-inconsistency.
Admittedly, we have a t-inconsistent set {p1,¬p0}. But there is no branch on which
for any pair of indexes i, j ∈ •({(p ∧ ¬p)1}) no t i, j -inconsistent set of formulas
belongs to b (so the condition 3 is not satisfied), since on all branches we have
t1,1-inconsistency—{p1,¬p1}.
Example 14.3.6 Consider a set of premises X = {p} and a possible conclusion p.
We take a root {p1,¬p0} and draw a tableau.

{p1,¬p0}
Aswe see it is a paraconsistently closed tableau according toDefinition 14.3.2. On

any branch (there is of course only one branch) there is t i,0-inconsistency.Admittedly,
we have a t-inconsistent set {p1,¬p0}. And there is a branch on which for any pair of
indexes i, j ∈ {p1} no t i, j -inconsistent set of formulas belongs to b (so the condition
3 is satisfied), since on the branch we do not have t1,1-inconsistency.

At the end we present an example, where the mentioned liberalization of rules
really works.

Example 14.3.7 Consider a set of premises X = {r, p ∧ ¬p} and a possible conclu-
sion r . We take a root {r1, (p ∧ ¬p)2,¬r0} and draw a tableau.

{r1, (p ∧ ¬p)2,¬r0}
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Classically, this is a closed and complete tableau, if we assume we cannot apply
tableau rules to inconsistent sets of premisses. There is only one branch and we have
t1,0-inconsistency on it. Moreover, on some branches there is no t i, j -inconsistency
for i, j ∈ •({r1, (p ∧ ¬p)2). So there it would seem like a paraconsistently closed
tableau. But it is not true, we can still make the branch longer and obtain some
interesting formulas as below:

{r1, (p ∧ ¬p)2,¬r0}
p2

¬p2

As we see now it is not a paraconsistently closed tableau according to Definition
14.3.2, because on all branches we have t i, j -inconsistency for i, j ∈ •({r1, (p ∧
¬p)2) and the last condition of definition is not satisfied. The tableau we get, because
we can apply tableau rules, even if we have t-inconsistencies. We should not worry
about this, since as we have already said we shall define a paraconsistent tableau
consequence relation in such a way that a formula A is a consequence of X iff for
some finite subset Y of X we have a paraconsistently closed tableau. So although the
example is not an example of paraconsistently closed tableau, from the premisses it
follows the conclusion, because we can built a paraconsistently tableau with {r}—a
finite subset of X .

{r1,¬r0}

Now, we have a conclusion that expresses a connection between usual, classical
tableaus, and paraconsistent tableaus.

Corollary 14.3.3 Let Y ∈ X (x), for some set of formulas X, and let B be a formula.
A tableau T1 with the root Y ∪ {¬B0} is paraconsistently closed iff

1. there is a complete and open tableau T2 with a root X
2. there is a closed tableau T3 with a root X ∪ {¬B}.
Proof The proof is by conditions 2 and 3 of the Definition 14.3.2. �

It means that we could replace Definition 14.3.2 by the statements 1 and 2 of
the Corollary 14.3.3 as definitional conditions. Theoretically, it would be simpler.
However, practically it is difficult to choose a suitable subset of premises that gen-
erates complete and open tableau, but with a negated conclusion generates a closed
tableau. In the presented approach, we consider all possible decompositions, tracking
superscripts, and kinds of t-inconsistencies that appear, and finally we can choose a
suitable and consistent set of premisses (if any exists) which on interaction with a
negated conclusion generates some t-inconsistencies.

Now, we can define a paraconsistent tableau consequence relation �′.

Definition 14.3.4 Let X ⊆ For and A ∈ For. X �′ A iff there exist a finite subset Y
of X and aparaconsistently closed tableauwith a root Z ∪ {¬A0}, for some Z ∈ Y (y).
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One example of how to pass from a unsuccessful tableau to a paraconsistently
closed one we give here.

Example 14.3.8 We consider a set of premisses X = {¬p ∨ q, r ∧ ¬r,¬q, } and a
conclusion ¬p. The question is whether X �′ ¬p?

The set X is a finite subset of X and the tableau with a root {(¬p ∨ q)1, (r ∧
¬r)2,¬q3,¬¬p0} is complete—all possible rules of decomposition were used.

{(¬p ∨ q)1, (r ∧ ¬r)2,¬q3,¬¬p0}
p0

r2

¬r2

¬p1 q1

The condition 1 and 2 of the Definition 14.3.2 are satisfied—the tableau is com-
plete and on all branches we have t i, j -inconsistency, for some i, j ∈ {1, 2, 3, 0}.
Unfortunately, the condition 3 of the Definition 14.3.2 is not satisfied, since on all
branches we have t i, j -inconsistency, for some i, j ∈ {1, 2, 3}.

Hence, it is not an example of a paraconsistently closed tableau, but it does not
mean that it is not X �′ ¬p. When we take into account a subset of X , the subset
Y = {¬p ∨ q,¬q, } we see that the conditions are fully satisfied. We can look at the
latter tableau or draw another one.

{(¬p ∨ q)1,¬q3,¬¬p0}
p0

¬p1 q1

The condition 1 and 2 of the Definition 14.3.2 are satisfied. Moreover at least on
onebranch—the left one—no t i, j -inconsistencywehave, for any i, j ∈ {1, 3}.Hence,
it is an example of a closed tableau and simultaneously a paraconsistently closed
tableau, and according to Definition 14.3.4 we have: {¬p ∨ q, r ∧ ¬r,¬q, } �′ ¬p.

A demanded fact is that the paraconsistent, tableau consequence relation �′ is a
proper subrelation of a classical tableau consequence relation �.

Corollary 14.3.5 �′⊂�.

Proof Let X �′ A, for some X ⊆ For and A ∈ For. Then by Definition 14.3.4,
there exist a finite subset Y of X and a paraconsistently closed tableau with a root
Z ∪ {¬A0}, for some Z ∈ Y (y).

By Corollary 14.3.3 there exist a finite subset Y of X and a closed tableau with a
root Y ∪ {¬A}. So, according to the Definition 14.2.2, X � A, and �′⊆�.
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On the other hand, we have an example of a closed tableau (Example 14.3.1),
that is not paraconsistently closed. Hence, by Definitions 14.2.2 and 14.3.4, we get
���′. �

Having the relation �′, we straightforwardly determine a paraconsistent tableau
system 〈For,�′〉 of a sublogic of Propositional Logic.

14.4 Semantics

As quick as there appears a question about semantics for 〈For,�′〉, we get a natural
answer. A natural and commonsense approach to the problem of paraconsistency in
Boolean language is to define a paraconsistent semantic relation of consequence by
a set of valuations V as follows:

Definition 14.4.1 For all X ⊆ For and A ∈ For, X |=′ A iff there is such Y ⊆ X
that Y is a consistent set of formulas and Y |= A.

Surely, the relation |=′ is identical to our relation �′.

Theorem 14.4.2 |=′ =�′.

Proof We take any X ⊆ For and A ∈ For.
First, we assume that X |=′ A. Then, byDefinition 14.4.1, there exists suchY ⊆ X

that Y is a consistent set of formulas, Y |= A and Y is finite—by compactness of |=.
By Fact 14.2.3 we have Y � A, so there is a closed tableau with a root Y ∪ {¬A}.
But because Y is a consistent set, so there is a complete and open tableau with a root
Y . As a consequence, by Corollary 14.3.3, a tableau with a root Z ∪ {¬A0}, for some
Z ∈ Y (y), is paraconsistently closed. Hence, by Definition 14.3.4, X �′ A.

Second, we assume that X �′ A. By Definition 14.3.4 there exist a finite subset Y
of X and aparaconsistently closed tableauwith a root Z ∪ {¬A0}, for some Z ∈ Y (y).
By Corollary 14.3.3 Y is consistent, since there is a complete and open tableau with a
root Y , and Y �′ A. Hence, Y � A, by Corollary 14.3.5, and Y |= A, by Fact 14.2.3.
As a consequence, since Y ⊆ X , Y is consistent and Y |= A, X |=′ A. �

By Theorem 14.4.2 and Corollary 14.3.5 we have some final conclusion:

Corollary 14.4.3 �′ =�∩ {〈X, A〉 : 〈X, A〉 ⊆ 2For × For, ∃Y ⊆ X, Y is consistent
and Y |= A}.

14.5 Further Applications

The presented mechanism can be used to other tableau systems/logics. Through a
formal theory of tableau systems [2], we should aim at a general theorem:
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if |==�, then |=′=�′
where |= and � are semantical and tableau consequence relations of a given logic,
while |=′ and �′ are their paraconsistent tableau counterparts.
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