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Foreword

This book constitutes the proceedings of the 5th World Congress of Paraconsistent
Logic, a kind of logic whose systematic development effectively began in the
middle of the twentieth century.

Loosely speaking, a paraconsistent system of logic can be defined as a system
that may be the underlying logic of inconsistent but nontrivial theories, i.e.,
inconsistent theories, in which there are sentences of their languages that are not
provable.

The systems of paraconsistent logic may be envisaged from two basic per-
spectives: (a) as rivals of classical logic, for instance, when inconsistent though
apparently nontrivial set theories are built as rivals of classical set theories and
(b) as systems complementary to classical logic, when, for example, a paracon-
sistent negation is present together with classical negation.

An important characteristic of paraconsistent logic is that it has found numerous
applications in philosophy, quantum mechanics, artificial intelligence, traffic con-
trol, medicine, economics, finances, and computing. So, we are in the presence of
an area of logic which opened up new research directions in philosophy, science,
and technology.

This volume is valuable not only due to the technical works it includes, but also
because it contributes to show the meaning of paraconsistent logic and its con-
nection with other domains of knowledge. It also testifies to how paraconsistent
logic is spreading around the world, the 5th edition of this congress having been
organized in India.

Florianópolis Newton C.A. da Costa
September 2015
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Preface

This book is a collection of papers presented at the 5th World Congress on
Paraconsistency, which was organized at the Indian Statistical Institute (ISI),
Kolkata, India, February 13–17, 2014.

A paraconsistent logic is a logic where there is a nonexplosive negation, i.e.,
from a proposition and its paraconsistent negation it is not necessarily possible to
deduce anything. The expression “paraconsistent logic” was coined in a discussion
between Newton da Costa and the Peruvian philosopher Francisco Miró Quesada.
This expression had a booming effect as recalled by da Costa:

Several years ago, I needed a convenient and meaningful denomination for a logic that did
not eliminate contradictions from the outset as being false, i.e., as absolutely unacceptable.
Miró Quesada helped me. On the one hand, it should be recalled that, by that time, all logics
unavoidably condemned contradictions. The new logic in which I worked faced too much
resistance, it was badly divulged, and those that got to know it were in general sceptics. By
that time I wrote to Miró Quesada, who saw the new logic with great enthusiasm,
requesting a name for it. I remember as it was today that he answered with three proposals:
it could be called metaconsistent, ultraconsistent or paraconsistent. After commenting on
these possible denominations, he stated that, from his viewpoint, he preferred the latter. The
term paraconsistent sounded splendid and I began to use it, suggesting that people inter-
ested on this logic did the same. Two or three months later, the miracle took place; the term
spread through the world, all the centres directly or indirectly related to logic, from northern
to southern hemisphere, began to employ it. I believe that few times in the history of
science (definitely in the history of logic) something similar has happened, for not only the
word run the whole world, but the very logic called by Miró Quesada “paraconsistent”
received a formidable push. It became one of the most discussed theories of logic of our
time. (da Costa, “La Filosofia de la Logica de Francisco Miró Quesada Cantuarias,” in
Logica, Razon y Humanismo, Lima, 1992, pp. 69–78.)

Previous world congresses on paraconsistency were organized in the following
locations:

• 1st Word Congress on Paraconsistency: Ghent, Belgium (1997)
• 2nd Word Congress on Paraconsistency: Juquehy, Brazil (2000)
• 3rd Word Congress on Paraconsistency: Toulouse, France (2003)
• 4th Word Congress on Paraconsistency: Melbourne, Australia (2008)
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In India, paraconsistent logic is still not very well known, but people do have
interest in the subject, and a few researchers have taken it quite seriously. In Indian
ancient methodology, there was “chatuskoti,” which had four corners of which one
was both “yes” and “no.” This implies that contradiction was not altogether
rejected. That is why it was decided to organize the 5th edition of the world
congress on paraconsistency in this country.

And to make paraconsistent logic better known in India, we decided to organize
tutorials during this event. Three tutorials were given, and they are included in the
first part of this book. The other parts of the books contain papers presented during
the event, and a few others are by people who were not able to come.

The event was nice and relaxing. The ISI is a charming place surrounded by
nature and with a convenient guest house. The people from ISI were enthusiastic
and animated to organize this event. The members of the local organizing ISI team
included Sisir Roy, Rana Barua, Probal Dasgupta, Kuntal Ghosh, and Guruprasad
Kar. Kuntal led the team in an efficient manner, supported by some local students,
who helped to make this event a success. One evening a beautiful cruise was
organized on the Ganga.

Jean-Yves Beziau
Mihir Chakraborty

Soma Dutta
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Chapter 1
Tutorial on Inconsistency-Adaptive Logics

Diderik Batens

Abstract This paper contains a concise introduction to a few central features of
inconsistency-adaptive logics. The focus is on the aim of the program, on logics that
may be useful with respect to applications, and on insights that are central for judging
the importance of the research goals and the adequacy of results. Given the nature
of adaptive logics, the paper may be read as a peculiar introduction to defeasible
reasoning.

Keywords Paraconsistent logic · Inconsistency-adaptive logic
Mathematics Subject Classication (2000) 03-01, 03B53, 03B60, 03A05

1.1 Introduction

By a logic I shall mean a function that assigns a consequence set to any premise set.
So where L is a language schema, with F as its set of formulas and W as its set
of closed formulas, a logic is a function ℘(W) → ℘(W). The standard predicative
language schema, viz. that of CL (classical logic), will be called Ls ; Fs its set of
formulas and Ws its set of closed formulas.

Adaptive logics are formal logics but are not deductive logics. They do not define
the meaning of logical symbols and are certainly not in the competition for the title
‘standard of deduction’—that is, for delineating deductively correct inferences from
incorrect inferences and from non-deductive inferences. To the contrary, adaptive
logics explicate reasoning processes that are typically not deductive, viz. defeasible
reasoning processes.

I am indebted to Mathieu Beirlaen for careful comments on a previous draft.

D. Batens (B)
Centre for Logic and Philosophy of Science, Ghent University,
Blandijnberg 2, 9000 Gent, Belgium
e-mail: Diderik.Batens@UGent.be

© Springer India 2015
J.-Y. Beziau et al. (eds.), New Directions in Paraconsistent Logic,
Springer Proceedings in Mathematics & Statistics 152,
DOI 10.1007/978-81-322-2719-9_1

3



4 D. Batens

Sometimes deductive logics are opposed to inductive logics. The expression
“inductive logic” may refer to constructions that proceed, for example in terms of
probabilities, as in Carnap’s work [31]. Where the expression refers to a logic in the
sense of the previous paragraph, inductive logics are a specific form of defeasible
reasoning, next to many others. Handling inconsistency as described in the present
paper is just one of them.1

A logic is formal iff its consequence relation is defined in terms of logical form.
Some people identify this with the Uniform Substitution rule,2 but that is a mistake
because Uniform Substitution defines just one way in which a logic may be formal.
Let me quickly spell out a different one. A language or language schema L will
comprise one or more sets of non-logical symbols, for example sentential letters,
predicative letters, letters for individual constants, etc. Consider all total functions
f that map every such set to itself. Extend f to formulas, f (A) being the result of
replacing every non-logical symbol ξ in A by f (ξ). A logic L is clearly formal iff
the following holds: A1, . . . , An �L B iff, for every such f , f (A1), . . . , f (An) �L

f (B).
Logics may obviously be presented in very different ways. Formal logics are usu-

ally presented as sets of rules, possibly combined with the somewhat special rules
that are called axioms (and axiom schemata). Apart from many types of ‘axiom-
atizations’, logics are standardly characterized by a semantics, which has a rather
different function. Deductive logics are typically Tarski logics. This means that they
are reflexive (� ⊆ CnL(�)),3 transitive (if � ⊆ CnL(�), then CnL(�) ⊆ CnL(�)),
and monotonic (CnL(�) ⊆ CnL(� ∪ �′) for all �′). Another interesting property,
which is required if a logic has to have static proofs,4 is compactness (if A ∈ CnL(�)

then there is a finite �′ ⊆ � such that A ∈ CnL(�′)).
This paper follows several conventions that I better spell out from the start. Clas-

sical logic, CL, will be taken as the standard of deduction. This is a purely pragmatic
decision, not a principled one. Next, all metalinguistic statements are meant in their
classical sense. More specifically, the metalinguistic negation will always be clas-
sical. So where I say that A is not a L-consequence of �, I rule out that A is a
L-consequence of �. Similarly, I shall use “false” in its classical sense; no statement
can be true as well as false in this sense. An inconsistent situation will be one in
which both A and ¬A are true, not one in which A is both true and false. There is a

1See, for example, [17] for many other real-life examples of reasoning forms for which there is no
positive test. The import of a positive test is discussed further in the text.
2Uniform Substitution is rule of propositional logic. Predicative classical logic is traditionally
axiomatized in terms of a finite set of rules and axiom schemata, rather than axioms. So no sub-
stitution rule is then required. Substitution rules in predicate logic have been studied [56] and the
outcome is very instructive.
3The L-consequence set of � is defined as CnL(�) =df {A | � �L A}.
4Just think about usual proofs. Every formula in the proof is a consequence of the premise set and
every proof may be extended into a longer proof by applications of the rules.
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rather deep divide between paraconsistent logicians on these matters. There are those
who claim that ‘the true logic’ is paraconsistent and that it should always be used, in
particular in its own metalanguage. Some of these even take it that classical negation
is not coherent, lacks sense and the like. Other paraconsistent logicians, with whom
I side, have no objections against the classical negation or against its occurrence in
the same language as a paraconsistent negation. This is related to the fact that they
are pluralists, either in general or with respect to contexts. They might argue, for
example, that consistent domains, like most paraconsistent logics themselves, are
more adequately described by CL than by a paraconsistent logic.

Awarningof a different kind is that thematerials discussed in the subsequent pages
have been studied at the predicative level. That I shall offer mainly propositional toy
examples has a pedagogical rationale.

The last general survey paper that I wrote on adaptive logics was [20]. Meanwhile
new results were and are being obtained, some of them are still unpublished. This
may be as expected, but one aspect needs to be mentioned from the start. Quite a
group of people have contributed to adaptive logics and have published in the field,
manymore than I shall mention below.While I was always eager to retain the unity of
the domain, not everyone attached the same value to unification. Such a situation was
obviously very useful to prevent that interesting things are left out of the picture—in
principle the aim is to integrate directly or under a translation all potentially realistic
first-order defeasible reasoning forms. As we shall see, this integrating frame is the
standard format. Little changes were introduced over the years in an attempt to make
it as embracing as possible. While most were improvements or clarifications, there
was one development that I now consider as misguided. In the end it resulted in the
systematic introduction of a set of new symbols to any language. These new symbols
had their CL-meaning, whence they were called classical. They were added even
if they duplicated existing symbols. In the second half of Sect. 1.11, I shall discuss
the idea of adding classical symbols and the reasons for not adding them any more
today.

The present paper is by no means a summary of all available results on adap-
tive logics. It merely provides an introduction to the central highlights. Moreover,
this paper is explicitly intended as an introduction to inconsistency-adaptive logics,
viz. adaptive logics that handle inconsistency. They concern compatibility, inductive
generalization, abduction, prioritized reasoning, the dynamics of discussions, belief
revision, abstract argumentation theory, deontic logic and so on. Most adaptive log-
ics in standard format are not inconsistency-adaptive and have no connection to
paraconsistency. Nevertheless, the present paper can also be read as an introduction
to adaptive logics in general, with special attention to handling inconsistency and
with illustrations from that domain. The reference section is not a bibliography of
inconsistency-adaptive logics.



6 D. Batens

1.2 The Original Problem

Consider a theory T that was intended as consistent and was given CL as its under-
lying logic: T = 〈�, CL〉, in which � is the set of non-logical axioms of T and
CnCL(�) is the set of theorems of T , often simply called T . Suppose, however, that
T turns out to be inconsistent. There are several well-documented examples of such
situation, both in mathematics (Newton’s infinitesimal calculus, Cantor’s set theory,
Frege’s set theory, …) and in the empirical sciences [30, 43, 44, 47, 51–53, 62].
Actually, it is not difficult to find more examples, especially in creative episodes, for
example in scientists’ notes.

What scientists do in such situations, is look for a consistent replacement for T .
As history teaches, however, they do not look for a consistent replacement from
scratch. To the contrary, they reason from T , trying to locate the problems in it.
This reasoning obviously cannot proceed in terms of CL because CL validates Ex
Falso Quodlibet: A,¬A �CL B. So the theory T , viz. its set of theorems CnCL(�)

is trivial; it contains each and every sentence of the language. If CL is the criterion,
all one can do is give up the theory and restart from scratch; but scientists do not do
so. The upshot is that one should reason about T in terms of a paraconsistent logic,
a logic that allows for non-trivial inconsistent theories. Note that any such logic has
a semantics that contains inconsistent models—models that verify inconsistent sets
of sentences.

It is useful to make a little excursion at this point because many people under-
estimate the difficulties arising in inconsistent situations. Time and again, people
argue that one should figure out where the inconsistency resides and next modify
the theory in such a way that the inconsistency disappears. They apparently think
that it is easy to separate the consistent parts of a theory from the inconsistencies.
Next, if they are very uninformed, they will think that one may choose one half
of the inconsistency (or inconsistencies) and add that to the consistent part. If they
are a bit better informed, they will realize that a conceptual shift may very well
be required, that the new consistent theory should only contain the important state-
ments from the consistent parts, or even a good approximation of them, and should
only contain an approximation of one of the ‘halves’ of the inconsistencies. What is
wrong with this reasoning, even with the sophisticated version, is that it is in general
impossible to identify the consistent parts of a predicative theory. There is no general
positive test for consistency. Being a consistent set of predicative statements is not
semi-decidable. The set of consistent subsets of a set of predicative statements is not
semi-recursive. So there is no systematic method, no Turing machine, that is able to
identify an arbitrary consistent set as consistent, independent of the number of steps
that one allows the Turing machine (or the person who applies the method) to take.
So the reasoning from an inconsistent theory can only be explicated in terms of a
paraconsistent logic.

Moving from CL to a paraconsistent logic has some drastic consequences. Not
only Ex Falso Quodlibet, but many other rules are invalidated. Which rules will
be invalidated will depend on the chosen paraconsistent logic. If one chooses a
compact Tarski logic inwhich negation is paraconsistent but inwhich all other logical
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symbols have the same meaning as in CL, then Disjunctive Syllogism and several
other rules are definitely invalidated. Incidentally, the weakest compact Tarski logic
in which negation is paraconsistent but not paracomplete5 and in which all other
logical symbols have their CL-meaning is CLuN, to which I return in Sect. 1.3.

Let us first have a look at Disjunctive Syllogism (or rather at one of its forms),
for example A ∨ B,¬A/B. Reasoning about the classical semantics one shows: if
A ∨ B and ¬A are true, then B is true. Here is one version of the reasoning.

1 A ∨ B and ¬A are true supposition
2 A ∨ B is true from 1
3 ¬A is true from 1
4 A is true or B is true from 2
5 A is false from 3
6 B is true from 4 and 5

Reasoning about the paraconsistent semantic leads to a very different result because
5 is not derivable from 3. Indeed, both A and ¬A may be true in a paraconsistent
model. If that is the case, however, then both A ∨ B and ¬A are true even if B is
false. So there are models in which A ∨ B and ¬A are true and B is false.

Remember that we were considering CLuN and paraconsistent extensions of it.
We have seen that Disjunctive Syllogism is invalid in CLuN. Moreover, as Addition
(in particular the variant A/A ∨ B) is valid, extending CLuN with Disjunctive Syl-
logism would make Ex Falso Quodlibet derivable, whence we would be back at CL.
Other CL-rules are also invalid in CLuN, but CLuN may be extended with them.
Double Negation is among those rules, for example the axiom ¬¬A ⊃ A and also
its converse. If A is false, ¬A is bound to be true, but ¬¬A may still be true also.
So some paraconsistent models verify ¬¬A and falsify A. Although ¬¬A ⊃ A is
invalid inCLuN, extendingCLuNwith it results in a paraconsistent logic. This holds
for many CL-theorems, for example ¬(¬A ∧ ¬B) ⊃ (A ∨ B). However, extending
CLuN with several such CL-theorems may again result in CL.

1.3 Paraconsistent Tarski Logics

The basic paraconsistent logicCLuN was already mentioned in the previous section.
It is obtained in two steps. First, full positive logic CL+ is retained. Next, for the
negation, Excluded Middle (� A ∨ ¬A, which is contextually equivalent to � (A ⊃
¬A) ⊃ ¬A) is retained, but Ex Falso Quodlibet is not.6 To avoid confusion, let

5A logic L is paracomplete (with respect to a negation ¬) iff some A may false together with its
negation ¬A; syntactically: iff there are �, A and B such that �, A �L B and �,¬A �L B, but
� �L B.
6In the context of CL+, Excluded Middle together with Ex Falso Quodlibet define the classical
negation.
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me characterize CLuN semantically. It is obtained from the CL-semantics by first
removing the clause for negation—the result of this removal is CL+—and next
adding “If vM(A) = 0, then vM(¬A) = . . .”7

That CLuN contains CL+ warrants that, for example, ¬p �CLuN q ⊃ (¬p ∧ q)

because A �CL+ B ⊃ (A ∧ B). This is because CL+ theorem schemata hold for all
formulas, formulas of the form¬A included. However,CL+ does not have any effect
within such formulas, in otherwordswithin the scopeof a negation symbol.As a result
of this, Replacement of Equivalents is invalid:�CLuN p ≡ (p ∧ p) and�CLuN ¬p ≡
¬p but �CLuN ¬p ≡ ¬(p ∧ p). For the same reason, Replacement of Identicals is
invalid: a = b �CLuN Pa ≡ Pb but a = b �CLuN ¬Pa ≡ ¬Pb. However, it is easy
to extend CLuN with Replacement of Identicals.

In the previous section, I referred several times to CLuN-models. The reader
may wonder what these models precisely look like. For all that was said until now,
the CLuN-semantics is indeterministic. Excluded Middle is retained, vM(¬A) = 1
whenever vM(A) = 0, but the converse obviously cannot hold because, if it did,
Ex Falso Quodlibet would be valid. It is not difficult to restore determinism and
the method is interesting because it can be applied rather generally. Two func-
tions play an important role in connection with models. The assignment v is part
of the model itself: M = 〈D, v〉.8 The assignment fixes the ‘meaning’ of non-logical
symbols. Next, the valuation vM fixes the ‘meaning’ of logical symbols. A decent
semantics presupposes a complexity ordering < which is such that if A < B, then
all non-logical symbols that occur in A also occur in B. If the semantics is deter-
ministic, the valuation function defines the valuation value vM(A) in terms of the
assignment function and in terms of valuation values vM(B1), …, vM(Bn) such that
B1 < A, …, Bn < A. So every valuation value vM(A) is a function of assignment
values of formulas B such that B < A and of non-logical symbols that occur in those
B. Actually, a deterministic semantics is the standard. If two models are identical
M = 〈D, v〉 = 〈D′, v′〉 = M ′, whence D = D′ and v = v′, then they better verify
the same formulas. If they do not, then we should describe a semantics in terms of
model variants rather than models. Nevertheless, indeterministic semantic systems
have been around for more than 30 years, never caused any confusion and were the
subject of several interesting systematic studies [3–6].

Theofficial deterministic semantics forCLuN is obtained from the indeterministic
one by replacing the clause “if vM(A) = 0, then vM(¬A) = 1” by

vM(¬A) = 1 iff vM(A) = 0 or v(¬A) = 1 .

Obviously, for this towork, v needs to assign a value to formulas of the form¬A. Note
that vM(¬A) is still not a function of vM(A) in the deterministic CLuN-semantics.
Determinism does not entail truth-functionality.

7So p ∧ ¬q �CL+ ¬q, ∀x¬Px �CL+ ¬Pa, and a = b, Px �CL+ Pb, but a = b,¬Px �CL+
¬Pb.
8Names and notation may obviously be different and the model may be more complex.
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A useful observation is the following. Precisely because, in the two-valued seman-
tics of paraconsistent logics, vM(¬A) is not a function of vM(A), the truth-value of
¬A depends on information not contained in the truth-value of A. Information of
this type must naturally be conveyed by the assignment v. Indeed, a model itself,
viz. M = 〈D, v〉, represents a possible situation (or possible state of the world, etc.),
whereas the valuation describes the conventions by which we define logical sym-
bols in order to build complex statements—formulas at the schematic level—that
enable us to describe the situation. So all information should obviously come from
the model itself—the situation, the world, or however you prefer to call it. Moreover,
in order to handle not only negation gluts, viz. inconsistencies, but gluts and gaps
with respect to any logical symbol, one better lets the assignment map every formula
of the language to the set of truth values {0, 1}.9

Incidentally, the view onmodels presented in the previous paragraph throws some
doubt on claims to the effect that classical negation is not a sensible logical operator,
among other things because it would be tonk-like. Unless a different approach to
logic and models is elaborated, such claims seem not to refer to the situation or
world, but to the way in which we handle language. If that is so, one wonders why
a modification to our logical operators (for example banning classical negation) is
more legitimate than modifying the way in which we handle language.10

As already suggested in the previous section, several CL-theorems (as well as
the corresponding rules) are lost in CLuN. Moreover, some of these are such that
if CLuN is extended with them, even separately, then Ex Falso Quodlibet is deriv-
able, whence we are back to CL, or Ex Falso Quodlibet Falsum (A,¬A � ¬B) is
derivable, whence we are back to something almost as explosive as CL. Disjunctive
Syllogism is such a rule. Other examples of such rules are (full) Contraposition,
Modus Tollens, Reductio ad Absurdum and Replacement of Equivalents. Let me
illustrate the matter for Modus Tollens. In view of A �CLuN B ⊃ A and reflexivity,
B ⊃ A,¬A ∈ CnCLuN({A,¬A}). So extending CLuN with Modus Tollens results
in A,¬A �CLuN ¬B in view of transitivity.

As was also suggested in the preceding section, some CL-theorems and CL-rules
are invalid in CLuN, but adding them (separately) to CLuN results in a richer para-
consistent logic. Among the striking examples are ¬¬A/A; de Morgan properties;
A,¬A � B for non-atomic A; Replacement of Identicals; and so on. Note that some
combinations of such CL-theorems and CL-rules still result in the validity of Ex
Falso Quodlibet or of Ex Falso Quodlibet Falsum.

9Take conjunction as an example. The clause allowing for gluts: vM (A ∧ B) = 1 iff (vM (A) = 1
and vM (B) = 1) or v(A ∧ B) = 1; the one allowing for gaps: vM (A ∧ B) = 1 iff (vM (A) = 1 and
vM (B) = 1) and v(A ∧ B) = 1; the one allowing for both: vM (A ∧ B) = v(A ∧ B).
10I heard the claim that restricting the formation rules of natural language so as to classify “this
sentence is false” as non-grammatical is illegitimate because the sentence is ‘perfect English’. I
also heard the claim that invalidating Disjunctive Syllogism is illegitimate because this reasoning
form is ‘perfectly sound’.
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It still seems useful tomention a result from an almost 35-year-old publication [8].
There is an infinity of logics between the propositional fragments of CLuN and CL.
These logics form a mesh. Some of them are maximally paraconsistent in that every
extension of them is either propositional CL or the trivial logic Tr, characterized by
� �Tr A, in other words CnTr(�) = W . Many propositional paraconsistent logics
have a place in this mesh—exceptions are extensions of CLuN that validate non-
CL-theorems like¬(A ⊃ ¬A).11 Other paraconsistent logics are fragments of logics
in this mesh, for example Priest’s LP, which has no detachable implication. Other
paraconsistent propositional logics are obviously not within the mesh, for example
relevant logics, modal paraconsistent logics, logics that display other gluts or gaps
and so on.

An example of a maximal paraconsistent logic is the propositional fragment
of a logic which is called CLuNs in Ghent because Schütte [59] was the first to
describe that propositional fragment. CLuNs, fragments of it and slight variants of
it were heavily studied and are known under many names [1, 2, 8, 25, 33, 35–
40, 57, 61]. CLuNs is obtained by extending CLuN with axiom schemas to ‘drive
negations inwards’ as well as with an axiom schema that restores Replacement of
Identicals: ¬¬A ≡ A, ¬(A ⊃ B) ≡ (A ∧ ¬B), ¬(A ∧ B) ≡ (¬A ∨ ¬B), ¬(A ∨
B) ≡ (¬A ∧ ¬B), ¬(A ≡ B) ≡ ((A ∨ B) ∧ (¬A ∨ ¬B)), ¬(∀α)A ≡ (∃α)¬A,
¬(∃α)A ≡ (∀α)¬A, and α = β ⊃ (A ⊃ B), in which B is obtained by replac-
ing in A an occurrence of α by β. CLuNs has a nice two-valued semantics and
several other semantic systems, among which a three-valued one, are adequate
for it. I refer the reader elsewhere [25] for this. Priest’s LP is obtained from
CLuNs by removing the axioms and semantic clauses for implication and equiv-
alence and defining the symbols in a non-detachable way: A ⊃ B =df ¬A ∨ B and
A ≡ B =df (A ⊃ B) ∧ (B ⊃ A).

Several paraconsistent logics having been described, we may now return to the
original problem and phrase things in a more precise way.

1.4 The Original Problem Revisited

We considered a T = 〈�, CL〉 that turned out inconsistent. T itself is obviously too
strong, viz. trivial, to offer a sensible view on ‘what T was intended to be’. But
we know a way to avoid triviality: replace CL by a paraconsistent logic. So let
us pick CLuN or any other paraconsistent Tarski logic. For nearly all sensible �,
T ′ = 〈�, CLuN〉 offers a non-trivial interpretation of ‘what T was intended to be’.
A little reflection reveals, however, that this T ′ is too weak.

A toy example will be helpful. Specify the� in T to be�1 = {p, q,¬p ∨ r,¬q ∨
s,¬q}. Note that � �CLuN s and � �CLuN r . However, there seems to be a clear dif-
ference between p and q. Intuitively speaking, �1 obviously requires that q behaves

11This formula is CL-equivalent to A but not CLuN-equivalent to it.
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inconsistently but does not require that p behaves inconsistently. However, and this
is interesting, CLuN leads to exactly the same insight. Indeed, �1 �CLuN q ∧ ¬q
whereas �1 �CLuN p but �1 �CLuN ¬p. Let us see whether something interesting
can be done with the help of this apparently interesting distinction.

As p and ¬p ∨ r are T -theorems, r was intended as a T -theorem. Similarly, as
q and ¬q ∨ s are T -theorems, s was intended as a T -theorem. However, s better be
not a T -theorem. Indeed, intuitively and by CLuN, q and ¬q ∨ A are T -theorems
for every A. So if, relying q, we obtain the conclusion s from ¬q ∨ s, then, by
exactly the same move we obtain the conclusion A from ¬q ∨ A. The justification
for deriving s justifies deriving every formula A because ¬q ∨ A is just as much a
CLuN consequence of�1 as is¬q ∨ s. In other words, this kind of reasoning leads to
triviality. The matter is very different in the case of r . Indeed, r can be a T -theorem.
Relying on p one obtains the conclusion r from¬p ∨ r and there is no other formula
of the form¬p ∨ A to which the samemove might sensibly be applied.12 A different
way to phrase the matter is by saying that applications of Disjunctive Syllogism of
which q is theminor result in triviality, but that applications of Disjunctive Syllogism
ofwhich p is theminor do not result in triviality. The reason for the difference is clear:
�1 requiresq to behave inconsistently, but does not require p to behave inconsistently.

One might take that the preceding paragraphs led to the following insight: what
was intended as aT -theoremand canbe retained as a T -theorem, should be retained as
a T -theorem. Alas, this will not do. Consider another toy example for the non-logical
axioms: �2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}. Clearly, r was intended as a
theorem and indeed it can be retained. However, then q, which was also intended as
a theorem, should by the same reasoning also be retained. Moreover, if q is retained,
then so is q ∨ A for every formula A. So, although s was also intended as a theorem,
it cannot be retained because, relying on ¬q we cannot only obtain s from q ∨ s, but
we can obtain every formula A from q ∨ A.

That may seem all right at first sight, but it is not. If you take a closer look at
�2, you will see that p and q are strictly on a par. The reasoning in the preceding
paragraph relied on the consistent behaviour of p to derive s and q and hence to
find out that q behaves inconsistently. However, one may just as well start off by
relying on the consistent behaviour of q to obtain s as well as p and hence to find out
that p behaves inconsistently. So the insight mentioned at the outset of the previous
paragraph should be corrected. Here is the correct version: what was intended as a
T -theorem and can be retained as a T -theorem in view of a systematic and formal
account, should be retained as a T -theorem. A little reflection on the part of the
reader will readily reveal that neither r nor s can be retained as consequences of �2,
but that u can be so retained.

What is the upshot? We want to replace T by a consistent theory. Obviously,
there is no point in pursuing a consistent replacement for a trivial theory—every

12As q is CLuN-derivable from the premises, so is ¬p ∨ q. However, relying on p to repeat the
move described in the text delivers a formula that was already derivable, viz. q. The same story may
be retold for every CLuN-consequence of �1 and each time the move will be harmless because
nothing new will come out of it.
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consistent theory is equally qualified. Moreover, T ′, in which CL is replaced by
CLuN will be non-trivial for most �, but is clearly too weak. However, for most
� one may strengthen T ′ by adding certain instances of applications of CL-rules
that are CLuN-invalid. These instances of applications may be added to T ′ in view
of the fact that a systematic distinction can be made between formulas that behave
consistently with respect to � and others that do not. In this way one obtains T “in
its full richness, except for the pernicious consequences of its inconsistency”; one
obtains an ‘interpretation’ of T that is as consistent as possible, and also as much as
possible in agreement with the intention behind T .

Of course the matter should still be made precise. This will be done in the next
section, but a central clue is the following:

¬A, A ∨ B �CLuN B but ¬A, A ∨ B �CLuN B ∨ (A ∧ ¬A) .

In view of this, one may consider formulas of the form A ∧ ¬A as false, unless
and until proven otherwise—unless it turns out that the premises do not permit to
consider them as false on systematic grounds. In the first toy example �1 requires
that q ∧ ¬q is true, but not that p ∧ ¬p is true:�1 �CLuN q ∧ ¬q whereas �1 �CLuN

p ∧ ¬p. Relying on the presumed falsehood of p ∧ ¬p, wemay take r to be true. The
second toy example shows that the matter is slightly more complicated: �2 �CLuN

(p ∧ ¬p) ∨ (p ∧ ¬p) whereas neither �2 �CLuN p ∧ ¬p nor �2 �CLuN p ∧ ¬p.
We shall deal with this in the next section.

In order to avoid circularity, it is essential to distinguish between CLuN-
consequences of a premise set anddefeasible consequences derived in viewofCLuN-
consequences. Which formulas behave consistently with respect to a given premise
set, will typically be decided in terms of the CLuN-consequences of �.

1.5 Dynamic Proofs

Dynamic proofs are a typical feature of adaptive logics. The logics were ‘discov-
ered’ in terms of the proofs. In the first paper written on the topic [10], not the first
published, only a rather clumsy semantics was available. The semantics for what
became later known as the Minimal Abnormality strategy was described in an article
[9] that was written 6 years later but published earlier. A decent semantics for the
Reliability strategy appears only in [12]. Dynamic proofs are also typical for adaptive
logics because nearly no other approaches to defeasible reasoning present proofs and
certainly not proofs that resemble Hilbert proofs. A theoretic account of static proofs
as well as dynamic proofs, which turn out to be a generalization of the former, is
published [21]; a more extensive account is available on the web [24, Sect. 4.7].

Let us, very naively, have a look at some examples of dynamic proofs. More
precise definitions follow in Sect. 1.7, but obtaining a clear and intuitive insight may
be more important for the reader. Let us start with a dynamic proof from �1. First
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have a look at stage 7 of the proof—a stage is a sequence of lines; think about stage
0 as the empty sequence and let the addition of a line to stage n result in stage n + 1.

1 p Prem ∅
2 q Prem ∅
3 ¬p ∨ r Prem ∅
4 ¬q ∨ s Prem ∅
5 ¬q Prem ∅
6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q}
So the premises were introduced and next two conditional steps were taken. Line 6
informs us that r is derivable on the condition that p ∧ ¬p is false and line 7 that
s is derivable on the condition that q ∧ ¬q is false. Incidentally, a line with a non-
empty condition corresponds nicely and directly with a line from a static proof—in
the present case a Hilbert-style CLuN-proof. The condition, �, of a line is always a
finite set of contradictions.Where a line of the dynamic proof contains a line at which
A is derived on the condition �, the corresponding static CLuN-proof contains a
line at which A ∨ ∨

(�) is derived—as expected,
∨

(�) is the disjunction of the
members of �. So in a sense stage 7 of this dynamic proof is nothing but a static
proof in disguise. Note that the rule applied at lines 6 and 7 is called RC (conditional
rule) because, as explained, a formula A ∨ ∨

(�) is CLuN-derivable from previous
members of the proof, but � is pushed into the condition.

The way in which dynamics is introduced appears from the continuation of the
proof. I do not repeat 1–5, which merely introduce the premises.

6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q} �
8 q ∧ ¬q 2, 5; RU ∅
At stage 8 of the proof, q ∧ ¬q is unconditionally derived, viz. at line 8. So the
supposition of line 7, viz. that {q ∧ ¬q} is false, cannot be upheld. As a result, line
7 is marked, which means that its formula is considered as not derived from the
premise set �1.13 Incidentally, the rule applied at line 8 is called RU (unconditional
rule) because (the formula of) 8 is a CLuN-consequence of (the formulas of) 2 and 5.

So the dynamics is controlled by marks. Which lines are marked or unmarked is
decided by a marking definition, which is typical for a strategy. More information
on this follows in Sect. 1.7. For now, it is important that the reader understands why
line 7 is marked and other lines are unmarked. As far as this specific proof stage is
concerned, nothing interesting happens when the proof is continued. No mark will
be removed or added to any of these 8 lines.14 Incidentally, the only line that might

13Do not read the “not derived” as “not derivable”. Indeed, a formula may be derivable in several
ways from the same premise set.
14A more accurate wording requires that one adds: in a proof from �1 that extends the present stage
8. Indeed, the logic we are considering is non-monotonic. So extending the premise set may result
in line 6 being marked.
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become marked is line 6. The formulas derived on lines with an empty condition
are CLuN-consequences of the premises. These are the stable consequences of the
premise set. The marks pertain to the supplementary, defeasible consequences of the
premise set.

How can I be so sure that the marks of lines 1–8 will not be changed in an
extension of the proof from �1? The example is propositional and propositional
CLuN is decidable in the same sense as propositional CL. It is easy enough to prove
that q ∧ ¬q is the only contradiction that is CLuN-derivable from �1.15 Beware. As
is the case for CL, only some fragments of CLuN are decidable. So arguing that
a predicative proof is stable with respect to certain lines will often be much more
complicated than in the present case.

Before we proceed, allow me to summarize that the two components governing
dynamic proofs are rules (of inference) and the marking definition. The rules are
applied at will by the people who devise the proof—if they are smart, they will follow
a certain heuristics. As we shall see, the marking definition operates independently
of any human intervention. In view of the stage of the proof, the marking definition
determines which lines are marked.

When we consider more examples, a little complication will catch our attention.
Here is a dynamic proof from �2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}.

1 ¬p PREM ∅
2 ¬q PREM ∅
3 p ∨ r PREM ∅
4 q ∨ s PREM ∅
5 ¬t PREM ∅
6 u ∨ t PREM ∅
7 p ∨ q PREM ∅
8 r 1, 3;RC {p ∧ ¬p} √
9 s 2, 4;RC {q ∧ ¬q} √
10 u 5, 6;RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7;RC ∅

At stage 10 of the proof—when the proof consists of lines 1–10 only—no line is
marked. At stage 11, however, lines 8 and 9 are both marked. Why is that? Line
11 gives us the information that either p or q behaves inconsistently on �2, but
does not inform us which of both behaves inconsistently. So a natural reaction is
to consider both p ∧ ¬p and q ∧ ¬q as unreliable. This is the reaction that agrees
with the Reliability strategy—we shall come across other strategies later. According
to the Reliability strategy a line is marked if one of the members of its condition
is unreliable. At this point in the paper, consider the unreliable formulas as the

15The reader might think that, as p is also a CLuN-consequence of �1, (p ∧ q) ∧ ¬(p ∧ q) is also
a CLuN-consequence of �1. This however is mistaken. ¬q �CLuN ¬(p ∧ q).
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disjuncts of the minimal disjunctions of contradictions. If the “minimal” was not
there, Addition would cause every contradiction to be unreliable as soon as one
contradiction is unreliable.

In both example proofs, some lines were unmarked at a stage and marked at a
later stage. The converse move is also possible, as is illustrated by a proof from
�3 = {(p ∧ q) ∧ t,¬p ∨ r,¬q ∨ s,¬p ∨ ¬q, t ⊃ ¬p}.
1 (p ∧ q) ∧ t PREM ∅
2 ¬p ∨ r PREM ∅
3 ¬q ∨ s PREM ∅
4 ¬p ∨ ¬q PREM ∅
5 t ⊃ ¬p PREM ∅
6 r 1, 2; RC {p ∧ ¬p} √
7 s 1, 3; RC {q ∧ ¬q} √
8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
Both lines 6 and 7 are marked at stage 8 because (p ∧ ¬p) ∨ (q ∧ ¬q) is a minimal
disjunction of contradictions that is derived at the stage. However, look what happens
if stage 9 looks as follows—I do not repeat 1–5.

6 r 1, 2; RC {p ∧ ¬p} √
7 s 1, 3; RC {q ∧ ¬q}
8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
9 p ∧ ¬p 1, 5; RU ∅
At stage 9 of this proof, (p ∧ ¬p) ∨ (q ∧ ¬q) is not a minimal disjunction of abnor-
malities because (the ‘one disjunct disjunction’) p ∧ ¬p was derived. We knew
already that either p ∧ ¬p or q ∧ ¬q was unreliable and now obtain the more spe-
cific information that it is actually p ∧ ¬p that is unreliable. So q ∧ ¬q is off the
hook, whence line 7 is unmarked. Stage 9 of this proof is stable: no mark will be
removed or added to lines 1–9 if the stage is extended. Actually, nothing interesting
happens in any such extension.

It is time to make the marking more precise. Dynamic proofs need to explicate the
dynamic reasoning. So, at the level of the proofs, the dynamics needs to be controlled.
The central features for this control are the conditions and the marking definition.
The way in which conditions are introduced should be clear by now—precise generic
rules follow in Sect. 1.7. However, how does one precisely figure out which lines are
marked?

Only some adaptive logics are inconsistency-adaptive. So allow me to use a
slightlymore general terminology. The formulas that occur in conditions of lines—in
the previous examples these were contradictions—are called abnormalities and � is
the usual name for the set of abnormalities.

A classical disjunction of abnormalities will be called a Dab-formula—it goes
without saying that a disjunction of formulas is always a disjunction of finitely
many formulas. I shall often write Dab(�) to refer to the classical disjunction of the
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members of a finite � ⊂ �. A Dab-formula that is derived in a proof stage by RU at
a line with condition ∅will be called a inferred Dab-formula of the proof stage. Note
that a Dab-formula introduced by Prem is not an inferred Dab-formula in the sense
of this definition. Dab(�) is a minimal inferred Dab-formula of a proof stage if it is
an inferred Dab-formula of the proof stage and there is no 	 ⊂ � such that Dab(	)

is an inferred Dab-formula of the proof stage. Where Dab(�1), . . . , Dab(�n) are
the minimal inferred Dab-formulas of stage s, the set of unreliable formulas of stage
s is Us(�) = �1 ∪ . . . ∪ �n . Where 	 is the condition of line i , line i is marked iff
	 ∩ Us(�) �= ∅. This is the marking definition for the Reliability strategy—every
strategy has its own marking definition.

Marks come and go. As they determine which formulas are considered as derived,
derivability seems to be unstable; it changes from stage to stage. Let this unstable
derivability be called derivability at a stage. Apart from it, we want a stable form
of derivability, which is called final derivability and is noted as � �CLuNr A. There
are several ways to define final derivability. At this point in my story, the following
seems most handy. If A is derived at an unmarked line i of a stage of a proof from
� and the stage is stable with respect to i—line i is not marked in any extension of
the stage—then A is finally derived from �.

Just as we wanted the stable entity called final derivability, we also want to have
some further entities that refer to what is CLuN-derivable from the premise set �

rather than referring to a stage of a proof from �.

Definition 1.1 Dab(�) is a minimal Dab-consequence of � iff � �CLuN Dab(�)

and, for all �′ ⊂ �, � �CLuN Dab(�′).

Definition 1.2 Where Dab(�1), . . . , Dab(�n) are the minimal Dab-consequences
of �, U (�) = �1 ∪ . . . ∪ �n .

The set U (�) is defined in view of the Reliability strategy. A very different set
will be introduced later in view of Minimal Abnormality.

The reader may expect a section on semantics at this point, but I shall only deal
with the semantics as defined by the standard format.

1.6 The Standard Format SF

There is a large diversity of adaptive logics. Every new adaptive logic requires that
one delineates its syntax (proof theory), its semantics (models), and, what is the hard
bit, its metatheory (study of properties of the system). This suggested the search for
a common structure for a large set of adaptive logics, if possible for all of them. The
idea was that the structure would take care of most of the work beforehand, that the
proof theory and semantics would be defined in terms of the common structure and
that the metatheoretic properties would be provable from the structure. The common
structure would be a function of certain parameters and specifying these would result
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in a specific adaptive logicwith all required features available. This common structure
is called the standard format.

An adaptive logic AL in Standard Format is defined as a triple comprising16:

• a lower limit logic LLL: a logic that has static proofs and contains classical dis-
junction,

• a set of abnormalities �, a set of formulas that share a (possibly restricted) logical
form or a union of such sets,

• a strategy (Reliability, Minimal Abnormality, …).

That the lower limit logic contains a classical disjunction means that one of the
logical symbols is implicitly or explicitly defined in such away that it has themeaning
of theCL-disjunction. Explaining the notion of static proofs goes beyond the scope of
the present paper, but the reader may for all useful purposes replace the requirement
by: a formal and compact Tarski logic.

“Abnormality” is a technical term, different adaptive logics require that differ-
ent formulas are seen as abnormalities. Only the abnormalities of corrective adap-
tive logics—those with LLL weaker than CL—are CL-falsehoods. In nearly all
inconsistency-adaptive logics, existentially closed contradictions are abnormalities.
Also other formulas may belong to the �, for example Universally closed contra-
dictions or formulas of the form A ∧ ¬(A ∨ B). Some examples of restricted and
unrestricted logical forms will be presented below.

Adaptive strategies will be discussed at some length later in this section.
If the lower limit logicLLL is extended with a set of rules or axioms that trivialize

abnormalities (and no other formulas), then one obtains a logic called the upper limit
logic ULL. Examples follow but it should be clear by now that, for all A ∈ � and
for all B ∈ W , A/B should be a derivable rule in ULL. As � is characterized by a
logical form, it is in possible to obtain ULL by extending LLL with a set of rules.

I shall suppose that a characteristic semantics ofLLL is available. This will enable
me to define the semantics of AL in terms of the standard format. The LLL-models
that verify nomember of� form a semantics forULL.17 A premise set that hasULL-
models is often called a normal premise set; it does not require that any abnormality
is true.

It is instructive to have a closer look at the difference between ULL and AL.
ULL extends LLL by validating some further rules of inference. AL extends LLL
by validating certain applications ofULL-rules. The point is easily illustrated in con-
nection to Disjunctive Syllogism.CL validates this rule, while in the (not yet precise)
toy examples of proofs from Sect. 1.5, some but not all applications of Disjunctive
Syllogism were sanctioned as correct. As those examples clarify, it depends on the
premises—or should one say on the content of the premises—which applications

16Names like LLL, AL, ALr, and ULL are used as generic names to define the standard format
and to study its features. The names refer to arbitrary logics that stand in a certain relation to each
other.
17Similarly for those models together with the trivial model—the model that verifies all formulas.
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turn out valid. In other words, adaptive logics display a form of content guidance.18

A different way of phrasing the matter is that CnAL(�) comes to CnLLL(�) extended
with what is derivable if as many abnormalities are false as the premises permit. This
phrase is obviously ambiguous, but strategies disambiguate it, as we shall see.

An important supposition on the language L of AL is that it contains a classical
disjunction. It may of course contain several disjunctions, but one of them should be
classical. In the sequel of this paper, the symbol ∨̂ will always refer to this disjunc-
tion.19 Similarly, ∼ will always refer to a classical negation. This is not supposed to
occur in every considered language schema.

As we already have seen in Sect. 1.5, we need ∨̂ for Dab-formulas—but see
Sect. 1.11 for an alternative. In Sect. 1.5, I also introduced inferred Dab-formulas
and minimal inferred Dab-formulas of a proof stage as well as the notation Dab(�).

Let us consider some examples of adaptive logics. Expressions ∃A will denote
the existential closure of A, viz. A preceded by an existential quantifier over every
variable free in A.

The adaptive logic CLuNm is defined by the following triple:

• lower limit logic: CLuN,
• set of abnormalities � = {∃(A ∧ ¬A) | A ∈ Fs}
• strategy: Minimal Abnormality.

The upper limit logic is CL, obtained by extending CLuN with, for example, the
axiom schema (A ∧ ¬A) ⊃ B.20 It is not difficult to prove that the CLuN-models
that verify no abnormality form a semantics of CL.

The logic CLuNsm is defined by:

• lower limit logic: CLuNs,
• set of abnormalities � = {∃(A ∧ ¬A) | A ∈ Fa

s }
• strategy: Minimal Abnormality,

in whichFa
s is the set of atomic (open and closed) formulas of Ls—atomic formulas

are those in which no logical symbols occur except possibly for identity=. The upper
limit logic isCL, obtained by extendingCLuNswith, for example, the axiom schema
(A ∧ ¬A) ⊃ B.21 Semantically: theCLuNs-models that verify no abnormality form
a CL-semantics.

18The notion played a rather central role in discussions on scientific heuristics. A very clear and
argued position was for example proposed by Dudley Shapere [60].
19This obviously does not mean that ∨̂ is a symbol of the language. It is a conventional name to
refer to a symbol of the language that has the meaning of classical disjunction. It may even refer
ambiguously: if there are several classical disjunctions, ∨̂ need not always refer to the same one.
20Axioms are suppose to be closed formulas. So A ∈ Ws . The idea is that CLuN-valid rules are
fully retained in the extension. One of these rules is: from � A(a) ⊃ B to derive � ∃x A(x) ⊃ B
provided a does not occur in B.
21The axiom schema may be restricted to A ∈ Wa

s , but there is no need to do so.



1 Tutorial on Inconsistency-Adaptive Logics 19

Some further examples are easy variants. CLuNr is like CLuNm, except that
Minimal Abnormality is replaced by Reliability. LPm is like CLuNsm except that
CLuNs is replaced by Priest’s LP—see Sect. 1.3 for the relation between CLuNs
and LP.

In these examples LLL or the strategy are varied. What about the difference
between the set of abnormalities of CLuNm as opposed to CLuNsm? In a sense this
is just a variation. Yet, if the �s are exchanged, the resulting variant of CLuNm is
still an inconsistency-adaptive logic, but its ULL is weaker than CL—a feature that
is difficult to justify with respect to applications. If the� are exchanged, the resulting
variant of CLuNsm is also still an inconsistency-adaptive logic, but it is a flip-flop
logic—see Sect. 1.12, where also more variation will be considered.

If an adaptive logic is in standard format, this fact (not specific properties of the
logic) provides it with:

• its proof theory,
• its semantics (models),
• most of its metatheory (including soundness and completeness).

So the standard format provides guidance in devising new adaptive logics. Moreover,
once a new adaptive logic is phrased in standard format, most of the hard work is
over.

1.7 SF: Proof Theory

As we already know, every adaptive logic requires a set of rules of inference and
a marking definition. The rules of inference are determined by LLL and �; the
marking definition is determined by � and by the strategy. We also know that the
dynamics of the proofs is controlled by attaching conditions (finite subsets of �) to
derived formulas, or, if you prefer, to lines at which formulas are derived. We also
have seen what is special about annotated dynamic proofs: their lines consist of four
rather than three elements: a number, a formula, a justification and a condition. The
rules govern the addition of lines, the marking definition determines for every line
i at every stage s of a proof whether i is unmarked or marked— this means that it
is respectively IN or OUT—in view of (i) the condition of i and (ii) the minimal
inferred Dab-formulas of stage s.

The rules of inference can be presented as three generic rules. Let� be the premise
set and let

A �

abbreviate that A occurs in the proof on the condition �.
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Prem If A ∈ �: … …
A ∅

RU If A1, . . . , An �LLL B: A1 �1

… …
An �n

B �1 ∪ . . . ∪ �n

RC If A1, . . . , An �LLL B ∨̂ Dab(	): A1 �1

… …
An �n

B �1 ∪ . . . ∪ �n ∪ 	

Only RC introduces new non-empty conditions (adds a non-empty set to the con-
ditions of the local premises). Prem introduces empty conditions and RU merely
carries conditions over and adds them up in a union.

Easy illustrations: RU may be applied in view of p, p ⊃ q �CLuN q; RC may
be applied in view of p,¬p ∨ q �CLuN q ∨̂ (p ∧ ¬p). In view of the formulation
of the antecedent of RU and RC, all rules are finitary—have a finite number of
local premises. This formulation does not in any way affect the adaptive logic AL
because LLL is a compact logic anyway. Incidentally, it is instructive to review the
toy examples in terms of the precise formulation of the rules.

Marking definitions proceed in terms of the minimal inferred Dab-formulas at the
proof stage.Where Dab(�1), . . . , Dab(�n) are the minimal inferred Dab-formulas
at stage s, Us(�) = �1 ∪ . . . ∪ �n .

Definition 1.3 Marking for Reliability: where � is the condition of line i , line i is
marked at stage s iff � ∩ Us(�) �= ∅.

The idea behind the definition consists of two steps. First, the minimal inferred
Dab-formulas of stage s of a proof from � provide, at stage s, the best available
estimate of the minimal Dab-consequences of�. So their disjuncts, which are abnor-
malities, cannot be safely considered as false. Next, the formula of a line can only
be considered as derived (by present insights) if the abnormalities in the condition
of the line can be considered as false. If they cannot, the line is marked.

However sensible this may sound, Minimal Abnormality offers a more refined
approach. A choice set of 
 = {�1,�2, . . .} is a set that contains one element out
of each member of 
. A minimal choice set of 
 is a choice set of 
 of which no
proper subset is a choice set of 
. Where Dab(�1), . . . , Dab(�n) are the minimal
inferred Dab-formulas of stage s, �s(�) is the set of the minimal choice sets of
{�1, . . . ,�n}.
Definition 1.4 Marking for Minimal Abnormality: where A is the formula and � is
the condition of line i , line i is marked at stage s iff (i) there is no ϕ ∈ �s(�) such
that ϕ ∩ � = ∅, or (ii) for some ϕ ∈ �s(�), there is no line at which A is derived
on a condition 	 for which ϕ ∩ 	 = ∅.
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The set�s(�) is the best estimate, at stage s, of�(�), which is the set of minimal
choice sets of the minimal Dab-consequences of �. The ϕ ∈ �(�) are the minimal
sets of abnormalities that are true if� is true. On theMinimal Abnormality strategy, a
formula A is an adaptive consequence of� iff A is a consequence for everyϕ ∈ �(�).
So, for every ϕ ∈ �(�), there should be a 	 such that A ∨̂ Dab(	) is a LLL-
consequence of � and all members of 	 can be false, viz. none of them is a member
of ϕ.

The difference between Minimal Abnormality and Reliability can be nicely
illustrated by means of a toy proof. Considering again �2 = {¬p,¬q, p ∨ r, q ∨
s,¬t, u ∨ t, p ∨ q}, let us continue the second proof from Sect. 1.5. The premise
lines 1–7 are not repeated.

8 r 1, 3;RC {p ∧ ¬p} √
9 s 1, 4;RC {q ∧ ¬q} √
10 u 5, 6;RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7;RC ∅
12 r ∨ s 8;RC {p ∧ ¬p}
13 r ∨ s 9;RC {q ∧ ¬q}

Obviously �13(�) = �11(�) = {{p ∧ ¬p}, {q ∧ ¬q}}. So, on the Minimal Abnor-
mality strategy, lines 12 and 13 are unmarked. Indeed, if p ∧ ¬p is the case and
q ∧ ¬q is not, then r ∨ s is in view of line 13. If q ∧ ¬q is the case and p ∧ ¬p
is not, then r ∨ s is in view of line 12. It follows that, on the Minimal Abnormality
strategy, r ∨ s is an adaptive consequence of�2. Thematter is very different for Reli-
ability. Indeed,U13(�) = {p ∧ ¬p, q ∧ ¬q}, whence lines 12 and 13 aremarked. As
the displayed proof stage is stable for both strategies and r ∨ s is notCLuN-derivable
from �2 on any other condition, �2 �CLuNm r ∨ s but � �CLuNr r ∨ s.

In Sect. 1.5, I delineated final derivability in terms of a stable proof stage. This is
not very handy as a general definition. Indeed, for some adaptive logics AL, premise
sets �, and formulas A, only infinite AL-proofs of A from � are stable [12, Sect. 7].
But one obviously cannot write down infinite proofs. For this reason, the official
definition of final derivability goes as follows.

Definition 1.5 A is finally derived from � at line i of a finite proof stage s iff (i) A
is the second element of line i , (ii) line i is not marked at stage s, and (iii) every
extension of the proof in which line i is marked may be further extended in such a
way that line i is unmarked.

Definition 1.6 � �AL A (A is finally AL-derivable from �) iff A is finally derived
at a line of a proof stage from �.

Establishing final derivability requires (i) a finite proof stage and (ii) a metatheo-
retic reasoning about extensions of the stage and extensions of these. Some comments
on these definitions follow in Sect. 1.10.
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1.8 SF: Semantics

The syntactic definition of minimal Dab-consequences of � was presented in
Definition 1.1. As this proceeds in terms of LLL and an adequate semantics of
this logic is supposed to be known, Dab(�) is a minimal Dab-consequence of � iff
� �LLL Dab(�) and, for all �′ ⊂ �, � �LLL Dab(�′).

Definition 1.7 Where M is a LLL-model, Ab(M) = {A ∈ � | M � A}.
Consider first adaptive logics ALr that follow the Reliability strategy. LetMLLL

�

be the set of LLL-models of �.

Definition 1.8 M ∈ Mr
� (M is a reliable model of �) iff M ∈ MLLL

� and Ab(M) ⊆
U (�).

So the reliable models of � are the models of � that verify at most reliable
abnormalities. Note that there are no reliable models, but only reliable models of a
set of formulas �. The same holds for adaptive models in general.

Definition 1.9 � �ALr A (A is an ALr-consequence of �) iff M � A for all M ∈
Mr

� .

So the ALr-semantics selects some LLL-models of � as ALr-models of �. The
selection depends on � and on the strategy.

For adaptive logics ALm that follow the Minimal Abnormality strategy, one may
proceed in a very different way.

Definition 1.10 M ∈ Mm
� (M is a minimally abnormal model of �) iff M ∈ MLLL

�

and no M ′ ∈ MLLL
� is such that Ab(M ′) ⊂ Ab(M).

Definition 1.11 � �ALm A (A is an ALm-consequence of �) iff M � A for all M ∈
Mm

� .

Lemma 1.14 below greatly clarifies the relation between the minimal abnormal
models and the marking definition for Minimal Abnormality.

Have a look at Fig. 1.1. For a normal premise set �, an adaptive logic simply
selects the upper limit models of �, and hence delivers the same consequence set
as the upper limit logic. Abnormal � have no ULL-models. Still, some exceptions
aside,22 adaptive logics select a proper subset of the set of LLL-models and hence
deliver a larger consequence set than LLL.

22The exception may be caused by the logic, which is then called a flip-flop, or by the premise
set—for example if the premise set comprises the formulas verified by a LLL-model.
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Abnormal Γ Normal Γ

Fig. 1.1 Comparison of Models

1.9 SF: Metatheory

What follows is a selection of theorems. They are selected in view of their importance
or in view of the insights they reveal in the context of the present introduction. They
are all provable from the standard format [20, 24]. This means that they are provable
from the common structure of all adaptive logics in standard format, independent of
further specific properties.

Theorem 1.12 � �ALr A iff � �LLL A ∨̂ Dab(�) and � ∩ U (�) = ∅ for a finite
� ⊂ �.

Corollary 1.13 � �ALr A iff � �ALr A. (Soundness and Completeness for Reliabil-
ity)

Lemma 1.14 M ∈ Mm
� iff M ∈ MLLL

� and Ab(M) ∈ �(�).

Theorem 1.15 � �ALm A iff � �ALm A. (Soundness and Completeness for Minimal
Abnormality)

Strong Reassurance, also called Stopperedness or Smoothness, refers to the fol-
lowing property: if a model of the premises is not selected, this is justified by the
fact that a selected model of the premises is less abnormal. If Strong Reassurance is
absent, there are infinite sequences of models of a certain� in which each member of
the sequence is less abnormal than its predecessor. This absence sometimes results
in very odd consequence sets [13].

Theorem 1.16 If M ∈ MLLL
� − Mm

� , then there is a M ′ ∈ Mm
� such that Ab(M ′) ⊂

Ab(M). (Strong Reassurance for Minimal Abnormality.)

Theorem 1.17 If M ∈ MLLL
� − Mr

� , then there is a M ′ ∈ Mr
� such that Ab(M ′) ⊂

Ab(M). (Strong Reassurance for Reliability.)
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All of the following theorems highlight important features of adaptive logics. The
reader may find some more fascinating than others. This will depend on the reader’s
familiarity with certain aspects of non-monotonic reasoning and of defeasible rea-
soning in general.

Theorem 1.18 Each of the following obtains:

1. Mm
� ⊆ Mr

� . Hence CnALr(�) ⊆ CnALm(�).
2. If A ∈ � − U (�), then M � A for all M ∈ Mr

� , whence ∼A ∈ CnALr(�) if ∼
is in L.

3. If Dab(�) is a minimal Dab-consequence of � and A ∈ �, then some M ∈ Mm
�

verifies A and falsifies all members (if any) of � − {A}.
4. Mm

� = Mm
CnALm (�) whence CnALm(�) = CnALm(CnALm(�)). (Fixed Point for Min-

imal Abnormality.)
5. Mr

� = Mr
CnALr (�) whence CnALr(�) = CnALr(CnALr(�)). (Fixed Point for Reli-

ability.)
6. For all � ⊆ �, Dab(�) ∈ CnAL(�) iff Dab(�) ∈ CnLLL(�). (Immunity.)
7. If �′ ⊆ CnAL(�) then CnAL(� ∪ �′) ⊆ CnAL(�). (Cautious Cut.)
8. If �′ ⊆ CnAL(�), and CnAL(�) ⊆ CnAL(� ∪ �′). (Cautious Monotonicity.)

Theorem 1.19 Each of the following obtains:

1. If � is normal, then MULL
� = Mm

� = Mr
� whence CnALr(�) = CnALm(�) =

CnULL(�).
2. If � is abnormal and MLLL

� �= ∅, then MULL
� ⊂ Mm

� and hence CnALr(�) ⊆
CnALm(�) ⊂ CnULL(�).

3. MULL
� ⊆ Mm

� ⊆ Mr
� ⊆ MLLL

� whence CnLLL(�) ⊆ CnALr(�) ⊆ CnALm(�) ⊆
CnULL(�).

4. Mr
� ⊂ MLLL

� iff � ∪ {A} is LLL-satisfiable for some A ∈ � − U (�).
5. CnLLL(�) ⊂ CnALr(�) iff Mr

� ⊂ MLLL
� .

6. Mm
� ⊂ MLLL

� iff there is a (possibly infinite) � ⊆ � such that � ∪ � is LLL-
satisfiable and there is no ϕ ∈ �� for which � ⊆ ϕ.

7. If there are A1, . . . , An ∈ � (n ≥ 1) such that � ∪ {A1, . . . , An} is LLL-satis-
fiable and, for every ϕ ∈ �� , {A1, . . . , An} � ϕ, then CnLLL(�) ⊂ CnALm(�).

8. CnALm(�) and CnALr(�) are non-trivial iff CnLLL(�) is non-trivial. (Reassur-
ance)

Theorem 1.20 If �′ ⊆ CnAL(�), then CnAL(� ∪ �′) = CnAL(�). (Cumulative In-
difference.)

Theorem 1.21 If � �AL A, then every AL-proof from � can be extended in such a
way that A is finally derived in it. (Proof Invariance)

Theorem 1.22 If �′ ∈ CnAL(�) and � ∈ CnAL(�′), then CnAL(�) = CnAL(�′).
(Equivalent Premise Sets)
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1.10 SF: Decidability Matters and a Philosophical
Comment

We have seen in Sect. 1.7 that final derivability is established by a finite proof stage
and a metatheoretic reasoning about extensions of the stage and extensions of these.
It is provable that, if � �AL A, then A is derived on an unmarked line i of an AL-
proof stage from � that is stable with respect to line i . The inconvenience is that the
stage may be infinite,23 whence Definition 1.5 is superior.

The need for a metatheoretic argument reveals an ambiguity in the notion of a
proof. On the one hand, there are proofs in the sense of constructions obtained by
correct applications of the rules of inference. On the other hand, a proof in the strong
sense establishes by itself that a certain formula is derivable from a certain premise
set. For compact Tarski logics, there are metatheoretic arguments that show that the
existence of a proof in the weak sense warrants the existence of a proof in the strong
sense—or that a proof in the weak sense constitutes a proof in the strong sense. For
adaptive logics that matter is more sophisticated, as we shall see.

Definition 1.5 has a nice game-theoretic interpretation, actually several related
such interpretations. As one might expect, the Proponent’s task is to establish the
proof, the Opponent’s task to defeat it. In the simplest variant, the first move is for
the Proponent who should produce a finite proof stage in which A is derived from
�, say at line i . The next move is for the Opponent, who should extend the proof
stage from � in such a way that i is marked. In the third move, the Proponent has to
further extend the result in such a way that line i is unmarked. The Proponent has
a winning strategy if, whatever the second move of the Opponent, the Proponent is
able to carry out the third move successfully. Please check that this literally follows
Definition 1.5.

For the propositional fragment (and for other decidable fragments of LLL), final
derivability from finite premise sets is decidable. For the full predicative logics,
however, there is not even a positive test. Nevertheless, even at the predicative level,
there are criteria for final derivability. Such criteriawere developed by severalmeans,
for example a ‘block analysis’ of proofs [11], specific tableau methods [27, 28], and
a specific prospective dynamics [16, 18, 71]. Some of these need some reworking
in view of the present standard format. The third approach results in the formulation
of proof procedures that provide a criterion. If the procedure stops, the state of the
proof reveals whether a certain formula is or is not finally derivable from the premise
set; however, it is also possible that the procedure does not stop.

What if no criterion applies?All one can do is act on present insights as revealed by
a proof at a stage. This leads to two questions. The first is whether the dynamics of the
proofs goes anywhere. In view of the block analysis of proofs (and of the connected
block semantics), the following can be established. A stage of a proof provides an
insight in the premises and every step of the proof can be either informative or non-
informative—this is defined in a precise way. If the step is informative, more insight

23Infinite stages can be extended by inserting lines in the sequence.



26 D. Batens

in the premises is gained; if the step is non-informative, no insight is gained but no
insight is lost either.

Sensible proofs contain only informative steps and it is not difficult to avoid
uninformative steps. There is, however, no guarantee on convergence because the
computational complexity of some adaptive consequence sets, viz. where the logic
follows the Minimal Abnormality strategy, is 1

1.
24 Let me be more explicit on

convergence. There is convergence with respect to the set of Dab-consequences of
the premise set. There is also convergence with respect to the set of minimal Dab-
consequences of the premise set �. Both sets are recursively enumerable. However,
there is no convergence with respect to final derivability from �. Suppose that A
is derived on a condition, respectively a set of conditions, that warrants its final
derivabilitywith respect toU (�), respectively�(�). As long as not all minimalDab-
consequences of � are derived, it is possible that the derivation of a non-minimal
Dab-consequence of � causes A not to be derived at the stage. Needless to say,
there is convergence with respect to final derivability whenever the set of minimal
Dab-consequences of � is finite.

If no criterion applies, there is, as announced, a second question: Does the
application context require final derivability? Not always. Reconsider the role of
inconsistency-adaptive logics with respect to (what I called) the original problem.
After certain abnormalities are located and perhaps some abnormalities are narrowed
down in view of personal constraints and the like—see Sect. 1.12—one may have
a clear idea for replacement and this may be sufficient to launch a hypothesis for a
replacement of the inconsistent theory. Several people may launch several hypothe-
ses, but the located problems will usually be common. Even if these are far from
complete, some of the launched hypotheses may be successful, for a while or forever.
A good example is Frege’s set theory. The Russell paradoxwas known and led to pro-
posals for replacements. Several of thesewere not shown to be inconsistent until now.
So, as far as we can tell, they are worthwhile proposals for consistent set theories.
Only after most of these proposals were formulated, the Curry paradox was discov-
ered. So the proposals were made without a full analysis of the inconsistencies in
Frege’s theory. A similar storymay be told, although perhaps less convincingly, about
Clausius’ removal of an inconsistency from thermodynamics. The aim of applica-
tions with respect to creative processes is to arrive at sensible hypothetical proposals
for consistent replacements. The means to reach this end is the analysis provided
by the inconsistency-adaptive logic(s). In that respect CnAL(�) is merely an ideal.
This ideal is studied in order to show that the applied mechanism is coherent and
conceptually sound. To the extent that our estimate of CnAL(�) is better, we may
arrive at better proposals. We know that, for some AL and �, the set CnAL(�) is
beyond our reach. All we can do is go by present insights and hope that they are not
too bad an estimate of the final consequence set. That’s life. The only alternatives
are dogmatic belief and gardening.

24It is ironic that the study of the computational complexity of adaptive logics started with a paper
arguing that they are too complex [41]. The philosophical complaints and misunderstandings in that
paper were answered in [26]; a mistaken theorem was corrected in [68]. Extremely interesting and
more detailed studies followed [54, 55].
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1.11 Variants to the Standard Format

The first versions of the standard format were published in [15, 17]. It soon became
clear that especially a universal formulation of the proof theory required the presence
of a classical disjunction. Other classical logical symbols also proved very useful. If
the abnormalities are contradictions or existentially closed contradictions, one better
has a classical conjunction around. Having classical negation around also turned out
attractive.

Let me illustrate the attractiveness of classical negation in terms of CLuNr—
the subsequent illustration may be adjusted to any inconsistency-adaptive logic
mentioned so far. If p ∧ ¬p /∈ U (�), then each of the following obtain: (i) if
¬p, p ∨ q ∈ CnCLuNr(�), then q ∈ CnCLuNr(�), (ii) if ¬p, q ⊃ p ∈ CnCLuNr(�),
then ¬q ∈ CnCLuNr(�), (iii) if ¬p ∈ CnCLuNr(�), then ¬(p ∧ q) ∈ CnCLuNr(�),
and so forth and so on. Suppose, however, that CLuN is extended with the classi-
cal negation ∼.25 As p ∧ ¬p /∈ U (�), we now obtain: if ¬p ∈ CnCLuNr(�), then
∼p ∈ CnCLuNr(�). Note, however, that this is a very basic step. Once we have
derived ∼p by the rule RC, all other steps follow by the rule RU. Indeed, in
the version of CLuN that contains a classical negation, (i) ∼p, p ∨ q �CLuN q,
(ii) ∼p, q ⊃ p �CLuN ¬q, (iii) ∼p �CLuN ¬(p ∧ q), and so forth and so on. So
once the classical negation of p is derived, there is no further need to apply RC. This
made classical negation quite interesting.

The situation became even more attractive when it turned out that, in certain
combinations of adaptive logics—like in CnAL2(CnAL1(�))—not all information
is carried over to the second logic unless CnAL1(�) contains a classical negation.
Moreover, the formulation of the standard format turned out more elegant if classical
connectives were around. I tried to avoid ∼ in Sect. 1.9—actually, ∼ only occurs in
Item 2 of Theorem 1.18. However, many transparent and clarifying statements may
be phrased as soon as classical negation is around. Just to mention one example:
CnALr(�) = CnLLL(� ∪ {∼A | A ∈ � − U (�)}). Note that, thanks to the presence
of ∼, this defines the ALr-consequences of � in terms of its LLL-consequences—
even U (�) is so defined. All this, and actually more, suggested the usefulness of
classical symbols in general and of classical negation in particular. Moreover, adding
the classical logical symbols (in a specific way) turned out to be easy and seemed
philosophically unobjectionable. Over the years, this led to the view that, given a
premise set � ⊆ W , it is advisable to formulate adaptive logics handling � in terms
of the extension of the native L with the classical symbols that do not belong to
L. In the interest of the elegance of the standard format, this was modified to: add
classical symbols, even when they duplicate symbols of L, and refer to them by
specific ‘checked’ logical symbols ¬̌, ∨̌, etc.26

25Stepwise: the language Ls of CLuN is extended with the symbol ∼ and CLuN is extended with
axioms or rules that give ∼ its classical meaning—for example the schemas A ⊃ (∼A ⊃ B) and
(A ⊃ ∼A) ⊃ ∼A.
26The classical symbols were actually superimposed on L: in the extended language, they never
occur within the scope of the original logical symbols of L.
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It later turned out that it was important to distinguish, with respect to proofs,
between (what is now called) Dab-formulas and inferred Dab-formulas.27 As the
added symbols were around anyway, the distinction was originally introduced in
terms of the checked disjunction ∨̌.

There are mainly three reasons why I described a standard format without
‘checked’ logical symbols. First, the introduction of those symbols is rather tire-
some. It requires a motivation and a lengthy and careful formulation. A standard
format with checked symbols is definitely more complicated than one without, and
one wonders whether the advantages of extending the language outweighs the com-
plication. Next, the addition of classical negation will definitely raise suspicion from
the side of dialetheists. So, as the addition is avoidable, it better is avoided—the
formulation of a logic should refrain from taking a philosophical stance. Finally, the
checked symbols led to confusion, for example to the mistaken claim that adaptive
logics are in a sense incomplete because not all semantic consequences would be
derivable from premise sets in which occur checked symbols [63, 64].28

All that we really need in the standard format is a classical disjunction, to which I
refer by ∨̂. The classical disjunction will occur in Dab-formulas and in disjunctions
like B ∨̂ Dab(	) in applications of RC. And even the requirement that a classical
disjunction should occur inLmaybedropped, aswe shall see after the next paragraph.

Do all adaptive logics that fit in the version of the standard format with added
classical symbols also fit in the version without such added symbols? Not quite.
However, the adaptive logics that do not belong to the standard format in the present
(actually restored original)29 version can be integrated by a single and simple strike.
We shall see so in Sect. 1.13.

The requirement that classical disjunction should be a symbol ofLmaybedropped
bymoving to amultiple-conclusion standard format. This fact was first seen and used
by Sergei Odintsov and Stanislav Speranski [55]; they formulated this version of the
standard format for propositional logics, but the generalization to predicative logics
is straightforward.

Where L is a logic, I shall write � �mc
L � to express that, according to L, one of

the members of � is true if all members of � are true. LLL should be specified to be
left compact as well as right compact; so if� �mc

L �, then there is a finite�′ ⊆ � and
a finite �′ ⊆ � such that �′ �mc

L �′. Next, the condition of the rule RC can now be
phrased as “If A1, . . . , An �mc

LLL {B} ∪ 	”, in which	 is a finite set as in the original
RC. The multiple-conclusion standard format is also handy and interesting from a
metatheoretic point of view. Remember the characterization of ALr in terms of LLL
phrased with the help of ∼: CnALr(�) = CnLLL(� ∪ {∼A | A ∈ � − U (�)}). This

27The distinction warrants that the reference to a finite proof stage in Definition 1.5 is all right.
28The mistake is caused by a confusion between symbols and concepts. If ∨̌ occurs in a premise,
and so in L, then ∨̌ is not a new symbol of the extended language. So one needs to extend the
language with another symbol, say ∨̃, and call that the checked disjunction.
29All that is new in the restored version is the notion of an inferred Dab-formula.
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can be phrased without classical negation inmultiple-conclusion terms:� �mc
ALr � iff

� �mc
LLL � ∪ (� − U (�)). Themultiple conclusion version of Theorem 1.12 follows

from this by right compactness.

1.12 Variation

As adaptive logics are not deductive logics but formal characterizations of methods,
a multiplicity of adaptive logics is required for every purpose. It is not up to the
logician to decree which methods a scientist should use. This choice is up to the user,
viz. the scientist, and perhaps to some extent to philosophers of science. The choice
cannot be justified in terms of logical features. It depends on what one learned about
how to learn (Shapere), and more precisely about learning within a specific domain.
So the logician should provide a multiplicity of adaptive logics. Variation may have
two sources. On the one hand, the logician should look at the facts, historical facts
most of the time. As the saying justly goes, the facts often outdo our phantasy. On
the other hand, the logician is well placed to devise a set of variations in terms of
features of the formal machinery.

Let us first have a look at LLL-variation. In principle, the lower limit logic can be
every formal paraconsistent logic that is reflexive, transitive,monotonic and compact,
for which there is a positive test, and that contains a classical disjunction—the latter is
not even required in view of the multiple-conclusion standard format. So a multitude
of potential lower limit logics is available. Logics between CLuN and CL (CLuNs,
da Costa’s Cn , …), fragments of the former, such as LP, all LFI that have a classical
disjunction, Jaśkowski’s D2,30 practically all relevant logics, etc. Each of these can
be combined with several � and with several strategies. Some LLL behave in an
unexpected way if they are combined with an unsuitable �. However, a suitable �

is usually easily located.
The set of abnormalities�may also be varied.Wehave already seen {∃(A ∧ ¬A) |

A ∈ Ws} as well as a restricted version {∃(A ∧ ¬A) | A ∈ Wa
s }, which is adequate

for CLuNs, LP, and similar logics. At first sight, not much room seems to be left
as the lower limit logic CLuN combined with � = {∃(A ∧ ¬A) | A ∈ Wa

s } results
in adaptive logics of which CL is not the upper limit, whereas the lower limit logic
CLuNs combined with� = {∃(A ∧ ¬A) | A ∈ Ws} results in a flip-flop logic—see
below.

And yet, some variation is known. One example is that the set of abnormalities
is extended as follows: � = {∃(A ∧ ¬A) | A ∈ Fs} ∪ {∀(A ∧ ¬A) | A ∈ Fs}. The
effect is rather transparent. Although ∀(A ∧ ¬A) �CLuN ∃(A ∧ ¬A), it makes a dif-
ference whether, next to minimizing ∃(A ∧ ¬A) one also minimizes ∀(A ∧ ¬A).
Again, this � is suitable for CLuN; for CLuNs one needs to replace Fs by Fa

s .
Other variations require symbols not in Ls—but CL-definable in Ls . A nice exam-
ple is the consistency operator from logics of formal inconsistency [32]. If LLL is a

30Adaptive versions of D2 and other Jaśkowski logics were extensively studied [48–50].
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compact such logic (and ∨̂ is present in its language schema), it may be combined
with {¬ ◦ A | A ∈ W}, possibly restricted to, for example, {¬ ◦ A | A ∈ Wa}. A few
more suitable sets of abnormalities for inconsistency-adaptive logics are known, but
it seems wiser to postpone their introduction for a few paragraphs.

So let us turn to variations to the strategy. Reliability and Minimal Abnormality
are the oldest and still central strategies. A few others are worth being mentioned.
The first strategy that comes to the mind of people new in the domain is the Simple
strategy.

Definition 1.23 Marking for Simple: where � is the condition of line i , line i is
marked at stage s iff some A ∈ � is an inferred Dab-formula of s.

This strategy is suitable iff, in view of properties ofLLL or of the specific premise
set �, every minimal Dab-consequence of � has only one disjunct and so is just an
abnormality. It is easily seen that, if this is the case, Reliability,MinimalAbnormality,
and Simple define the same adaptive logic. Where Simple is suitable, its semantics
is like that of Reliability or Minimal Abnormality—the semantics for those coincide
whenever Simple is suitable.

The Normal Selections Strategy was mainly developed in order to characterize
some non-monotonic logics known from the literature in terms of an adaptive logic—
see Sect. 1.13. The relationwithMinimal Abnormality is obvious in view of Sect. 1.8.

Definition 1.24 Marking for Normal Selections: where � is the condition of line i ,
line i is marked at stage s iff ϕ ∩ � = ∅ for all ϕ ∈ �s(�).

The following theorem shows that the computational complexity of adaptive log-
ics that follow the Normal Selections strategy is less complex than the definition
suggests.

Theorem 1.25 Where ALn is an adaptive logic following the Normal Selections
strategy, ALn-final consequence sets are identical to the final consequence sets
assigned by an adaptive logic AL1 that is exactly like ALn except that marking
is defined as follows:
where � is the condition of line i , line i is marked at stage s iff, for a 	 ⊆ �, Dab(	)

is an inferred Dab-formula of stage s.

Definition 1.26 � �ALn A iff, for some ϕ ∈ �(�), M � A for all M ∈ Mm
� with

Ab(M) = ϕ.

Some adaptive logics AL are called flip-flops. For normal premise sets �,
CnAL(�) = CnULL(�), which is as desired and holds for all adaptive logics. For
abnormal �—those that have no ULL-models—CnAL(�) = CnLLL(�), which is
usually not what one wants. As was explained in Sect. 1.4, a central aim of adaptive
logics is to isolate the abnormalities in abnormal � and to validate applications of
ULL-rules whenever no abnormality is involved. Flip-flops do this only in the crud-
est possible way. In the case of inconsistency-adaptive logics, for example, flip-flops
deliver the full CL-consequence set of normal � and nevertheless avoid triviality in
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the case of abnormal �. Unlikely as it may appear, there are application contexts in
which a flip-flop is precisely what one wants. For such cases, it is useful to have a
strategy around to define flip-flops.

Definition 1.27 Marking for Flip-Flops: where � is the condition of line i , line i is
marked at stage s iff � �= ∅ and there is at least one inferred Dab-formula of s.

The Blindness strategy handles abnormal premise sets as if they were normal.
Replacing the strategy of any of the aforementioned inconsistency-adaptive logics
by Blindness results in CL.

Definition 1.28 Marking for Blindness: mark no lines.

By varying the strategy, one may also define some logic-like entities. A first
example is the Single Selection Strategy. It consists in choosing a ϕ ∈ �s(�) and
in marking lines with condition � iff ϕ ∩ � = ∅. The result is not a logic because
there is an element of choice that is not specified in the premise set. There are several
ways in which the consequence set may be characterized in terms of an adaptive
logic. I mention the most obvious one. Let ALs have the same lower limit and set of
abnormalities as the logic-like object but the Simple strategy instead. The intended
consequence set is provably identical to CnALs(� ∪ ϕ).31

Another logic-like entity is defined by the All Selections Strategy. The entity is at
best logic-like because it maps premise sets to sets of consequence sets, rather than to
consequence sets: ℘(W) → ℘(℘(W)). Each of the consequence sets is associated
with a ϕ ∈ �(�). One also needs to associate a mark to each ϕ ∈ �(�). A line with
condition � is ϕ-marked iff � ∩ ϕ �= ∅.32

Leaving strategy variations, let us have a look at some more drastic ‘variants’. A
first variant comes in a sense to digging deeper in abnormalities. The point is that an
inconsistency like (p ∨ q) ∧ ¬(p ∨ q)may have several ‘causes’ and that the causes
themselves may be considered as abnormalities. The inconsistency (p ∨ q) ∧ ¬(p ∨
q)may be derivable from the premises because p ∧ ¬(p ∨ q) is derivable, or because
q ∧ ¬(p ∨ q) is derivable. It is also possible that neither of the two is derivable, but
that (p ∨ q) ∧ ¬(p ∨ q) still is. So this leaves us with three different sorts of (non-
independent) abnormalities rather than one.What is fascinating in this approach? Let
me explain in terms of Reliability. Even if (p ∨ q) ∧ ¬(p ∨ q) ∈ U (�), it is possible
that r is derivable on the condition {p ∧ ¬(p ∨ q)} and that p ∧ ¬(p ∨ q) /∈ U (�).
On the one hand this approach forms an �-variant. On the other hand, a net gain is
obtained if one applies this approach to, for example, CnCLuNm(�) rather than to �

itself. I refer to a published paper [22] for the precise (but rather lengthy) definition of
the new set of abnormalities. It is instructive to compare the new combined logic—
call it CLuNm

c —with the well studied CLuNm, CLuNsm, and LPm. I present one
example of a premise set in Table1.1. The consequence set of the combined logic

31The low computational complexity of the consequence set is rather artificial. We suppose that at
least one ϕ ∩ � = ∅ is given, but precisely locating a ϕ may be a very complex task.
32The logic-like entity has a rather limited application field. For some �, �(�) is not only infinite
but also uncountable.
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Table 1.1 Comparison for � = {p, ¬p ∨ q, ¬(p ∨ r), ¬¬p ⊃ s}
CLuNm CLuNm

c CLuNsm LPm

p p p p

¬p ¬p

¬¬p ¬¬p ¬¬p ¬¬p

¬r ¬r ¬r

q q

s s s

is rather fascinating. On the one hand, it extends the CLuNm-consequence set. On
the other hand, where a member of the CLuNsm-consequence set is absent (¬p in
the example), this results in a more interesting consequence (q in the example); an
inconsistency is avoided in order to obtain a different consequence.

A very different variant concerns the reduction of abnormalities in terms of plau-
sibilities or preferences. Suppose that A1, . . . , An ∈ � and that A1 ∨̂ · · · ∨̂ An is a
minimal inferred Dab-formula at stage s of a proof from �. One may have reasons
not to consider the n abnormalities Ai as equally affected, but to opt for or against
a specific abnormality Ai . Of course, the choice should be made defeasibly to avoid
triviality on the one hand and superfluous inconsistency on the other. So one will add
the premise ♦Ai or ♦¬Ai , in which ♦ functions as a plausibility operator. Abnor-
malities may be the formulas of the form♦A ∧ ∼A and those of the form♦∼A ∧ A.
So, for example, from ♦∼A one may derive ∼A on the condition {♦∼A ∧ A}. The
upshot will be that plausible statements will be defeasibly turned into full premises
and that Dab-formulas from the inconsistency-adaptive logic will be reduced. If
A1 ∨̂ · · · ∨̂ An is a minimal inferred Dab-formula at stage s and A1 came out of the
plausibility logic, then A2, . . . , An are off the hook. If, to the contrary,∼A1 came out
of the plausibility logic, then A2 ∨̂ · · · ∨̂ An is LLL-derivable and hence is a mini-
mal inferred Dab-formula. It is often more appropriate to have different degrees of
plausibility available: ♦A for very plausible, ♦♦B for a bit less plausible, and so on.
Technically speaking, one first adds the layers of plausibility statements—asmuch as
possible of themost plausible statements, next asmuch as possible of the second-most
plausible statements, and so on, and finally one applies the inconsistency-adaptive
logic. This approach to weeding out abnormalities was studied along with several
variants for expressing and handling plausibilities or preferences [19].

And now to a third type of variant, and again a completely different one: other
gluts, gaps, and ambiguities. Remember that, in the original problem, the aim was to
obtain minimally inconsistent theories that may serve as a starting point to devise a
consistent theory. Until now, I have followed the official line of thought: as the theory
under consideration is inconsistent, one has to replace CL by a paraconsistent logic.
This, however, is not the only way out. Inconsistencies may be seen as negation gluts:
the classical condition for¬A to be false is present (in that A is true), but nevertheless
¬A is true. Negation gaps may be understood in a similar way. Moreover, gluts as
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well as gaps with respect to other logical symbols may also be understood along the
same line. We are for example confronted with an existential gap if ∃x Px is false
although Pa is true. Furthermore, non-logical symbols may be ambiguous in that
different occurrences of the same symbol may have a different meaning, whence
different occurrences of the same formula may have different truth values. Sundry
gluts or gaps may be allowed, possibly along with ambiguities, in order to avoid
triviality; next, the gluts and gaps and ambiguities may be minimized in order to
interpret the premise set as much as possible in the way CL interprets it—the first
ambiguity-adaptive logics were devised by Guido Vanackere [65–67].

Thepremise set�4 = {p, r, (p ∨ q) ⊃ s, (p ∨ t) ⊃ ¬r, (p ∧ r) ⊃ ¬s, (p ∧ s) ⊃
t} may serve as an illustration. �4 has models (i) of logics that allow for negation
gluts, (ii) of logics that allow for negation gaps, (iii) of logics that allow for conjunc-
tion gaps as well as disjunction gaps, (iv) of logics that allow for implication gluts,
(v) of logics that allow for ambiguities in the non-logical symbols, and of course of
logics that allow for several of the mentioned gluts and gaps and ambiguities. Each
of these possibilities defines a different adaptive theory. Each of these theories is a
sensible solution of the original problem. So, again, a multiplicity of approaches is
available and this is as it should be. All those abnormalities surface as inconsistencies
when one applies CL to premise sets, but this does not mean that paraconsistency
is the only possible answer. The combinations lead up to adaptive zero logic CL∅m.
In this logic, all meaning is contextual. According to CL∅ nothing is derivable from
any premise set, not even the premises. Nevertheless, the adaptive CL∅m assigns to
normal premise sets the same consequence set as CL. Apart from its own interest,
CL∅m was shown to have an important heuristic value for determining which com-
binations of gaps or gluts or ambiguities lead to maximally normal interpretations
of a given premise set. A detailed study is available [7].

1.13 Integration

Once the standard formatwas described, it was not difficult to devisemany new logics
and this pragmatic attitude led to useful work. However, it is also important to unify
the domain of ‘defeasible logics’. It is important to find out whether all defeasible
logics can be subsumed under the same schema or, if that turns out impossible,
whether the number of schemas can be reduced. Needless to say, it cannot be settled
today which schemes have most unifying power. However, studying the unifying
power of adaptive logics seems sensible because there is a clear underlying concept.
This is why a lot of attention was given to integrating existing mechanisms into
adaptive logics. There is a book [63] that contains many relevant results and a list of
papers that I shall not add to the references.

As I see it, the aim should be to integrate the realistic and potentially realistic
defeasible reasoning forms. It goes without saying that truckloads of defeasible
mechanisms may be defined, especially in semantic terms. It goes equally without
saying that many of them cannot be integrated in any finite set of unifying schemas.
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This is as unimportant as it is obvious. Among the possible sources for potentially
realistic reasoning forms are (i) defeasible reasoning forms described by different
approaches, (ii) old and ‘unusual’ adaptive logics that are not in standard format,
(iii) new defeasible reasoning forms that are useful in view of the philosophy of
science, the philosophy of mathematics, and everyday reasoning.

Two examples of integration follow, one ‘external’ and one ‘internal’. The external
one concerns the Strong Consequence Relation devised by Nicholas Rescher [58].
Consider a version of CLuN with classical negation∼—the variant will not be given
a different name. Let �′ comprise the members of � with ¬ replaced by ∼ and let
�¬∼ = {¬∼A | A ∈ �′}. It was proven [14] that � �Strong A iff �¬∼ |=CLuNm A. So
the corrective consequence relation Strong is characterized by (the variant of) the
adaptive logic CLuNm under a translation. The characterization in adaptive terms
reveals at once a whole set of properties of the Strong consequence relation. It also
enables one to devise so-called direct proofs: adequate dynamic proofs that proceed
in the original language (with one negation symbol) [29].

By internal integration I mean that adaptive logics that are not in standard format
are characterized in terms of an adaptive logic in standard format. It may be shown,
for example, that adaptive logics following the Normal Selections strategy can be
characterized in terms of adaptive logics that follow the Minimal Abnormality strat-
egy. The example I shall use as an illustration here is the one promised in Sect. 1.11:
adaptive logics that fall under the standard format with checked logical symbols but
not under the standard format without, may (all and in one sweep) be characterized
in terms of adaptive logics that fall under the new standard format.

Let AL1 be the adaptive logic that requires integration because it requires the
presence of checked symbols whereas some (or even all) classical symbols are absent
from its native language. One simply proceeds as follows. First, the native languageL
ofAL1 is extended toL+ by superimposing ∨̂33 aswell as all other classical symbols.
Next, defineAL2 likeAL1 except thatAL2 is defined overL+. So,whatever classical
symbols were required for defining AL1 are available in the native language of AL2,
which is in the present standard format. Finally, defineCnAL(�) = CnAL+(�) ∩ W—
obviously no translation function is required, or rather, the translation function is such
that tr(A) = A. The reader should not be misled by this example. Here integration is
nearly obvious. In other cases, however, integrationmay require quite some ingenuity.

1.14 In Conclusion: Applications

From the very first ideas on,mymotivation for developing adaptive logicswas always
guided by the aim to handle sensible applications in a sensible way. Moreover, this
aim was to understand and explicate the actual defeasible reasoning. Attention for
models and for formal properties came only afterwards, as a means rather than as an
end.

33That is (i) W ⊆ W+ and (ii) if A, B ∈ W+, then (A ∨̂ B) ∈ W+.
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We have seen that the ‘original problem’ was to construct minimally abnormal
interpretations of mathematical or empirical theories that were intended as consis-
tent but turned out to be inconsistent. This was the central application context for
inconsistency-adaptive logics as well as for combinations of inconsistency-adaptive
logics with other adaptive logics.

In the previous paragraph, “theory” should not be taken too literally. There are
many cases in which one deals with inadvertently inconsistent premise sets the con-
tent of which is much more disparate than are the theorems of a theory. A nice
example is that inconsistency-adaptive logics allow one to incorporate the inconsis-
tent case in belief revision [34]. This broadens an existing approach, making room for
inconsistency. A similar move may be made with respect to many other approaches,
for example question evocation [45]. A different matter is that existing mechanisms
that are able to handle inconsistency have more attractive adaptive versions [46].

Graham Priest, who edited my oldest paper on the topic, was fascinated by the
application of adaptive logics to a very different problem. Inconsistency-adaptive
logics offer the possibility to understand most of classical reasoning and actually
to understand it as correct. Not as correct by logical standards, but as correct by
logical standards extended with the presumption that inconsistencies are false. For
dialetheists the presumption is justified by the low frequency of true inconsistencies.
That a person with so different a view on logic saw a use in inconsistency-adaptive
logics has been a great source of encouragement.

Recently, a very different type of application turned out to be fascinating. In view
of the limitative theorems in mathematics, (i) the axiomatic method is known to
have a rather limited scope and (ii) some of our present mathematical theories may
very well turn out to be inconsistent and hence, as their underlying logic is CL,
trivial. In view of each of these facts, it became attractive to phrase theories that
have an adaptive logic as their underlying logic. These theories, viz. their set of
theorems, are obviously not semi-recursive. That is precisely one of the advantages.
Notwithstanding their finitary rules and notwithstanding the simplicity of dynamic
proofs-at-a-stage, adaptive logics enable one to axiomatize 1

1-complex theories.
So although it is too complex, for either humans or Turing machines, to figure out
whether some formula is or is not a theorem of the theory, the theory at least defines
correctly a certain complex consequence set.34

With respect to the possible triviality of classicalmathematical theories, the advan-
tage of adaptive theories is similar. Well-wrought inconsistency-adaptive theories
display the following feature: if the classical theory is consistent, then the adaptive
theory defines exactly the same set of theorems; if the classical theory is inconsistent,

34Classical theories, which have CL as underlying logic, fail to define such a theory. Their conse-
quence relation is much less complex. If A is not a theorem of a classical theory, humans or Turing
machines may never find this out. However, if A is a theorem of the classical theory, humans or
Turing machines will find that out at a finite point in time. As this point may be two million years
from here, the point is slightly theoretical.
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it is trivial and so pointless, but the adaptive theory, which we may phrase today, will
still define a non-trivial consequence set that is ‘as close to’ the intended consequence
set ‘as is possible’.

Until now only a few adaptive theories have been formulated and studied [23, 69,
70], but the results seem fascinating.
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Chapter 2
Round Squares Are No Contradictions
(Tutorial on Negation Contradiction
and Opposition)

Jean-Yves Beziau

Abstract We investigate the notion of contradiction taking as a central point the idea
of a round square. After discussing the question of images of contradiction, related
to the contest Picturing Contradiction, we explain why from the point of view of the
theory of opposition, a round square is not a contradiction. We then draw a parallel
between different kinds of oppositions and different kinds of negations. We explain
why from this perspective, when we have a paraconsistent negation ¬, the formulas
p and ¬p cannot be considered as forming a contradiction. We finally introduce the
notions of paranormal negation and opposition which may catch the concept of a
round square.
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Paraconsistent logic helps to clarify the concepts of negation and contradiction.
On the one hand there are authors for whom contradictions play a quasi-mystical
role, used to explain nearly everything in the universe, on the other hand excellent
specialists think that contradiction is something unintelligible. Paraconsistent logic
not only is useful to demystify contradiction but contributes to calm anyone who is
afraid of it. Newton da Costa [33].
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Fig. 2.1 Round square (J)

2.1 Picturing Contradiction

What is a contradiction? Contradiction is a famous notion. But do we have an idea,
an image, or a definition of a contradiction? And what is the reality of contradiction,
if any? In this paper we will investigate this notion considering the round square
as a platform for developing a discussion about the trinity negation, contradiction,
opposition.

What is a round square? A simple reply to this answer is the following Fig. 2.1
But this is not very satisfactory because this image is just a juxtaposition of a

circle and a square. One may want to develop a logic of imagination considering ©
as a modal operator of imagination and taking as an axiom:

©A ∧ ©B → ©(A ∧ B)

But according to this logic of imagination, we can imagine lots of things.1 It is not the
same to imagine a man and a horse and a centaur, just compare classical mythology
and modern mythology (Fig. 2.2).

Maybe the following image is a better representation of a round square, closer to
the centaur construct, result of a blending (Fig. 2.3).
But according to standard plane geometry, this is indeed neither a square nor a circle.
At the 5th World Congress on Paraconsistency in Kolkata, India, February 13–17,
2014, we organized the contest Picturing Contradiction. We asked people from all
over the world to send us an image picturing contradiction. It was on the one hand a
way to promote the participation of all the people, even those who were not able to
come to Kolkata, and on the other hand a way to check if contradiction is not just a
mere flatus vocis, if there is really something behind this word.

We received few interesting images. At the end the one which won the prize was
entitled “Bridge to Nowhere,” submitted by Daniel Strack, Associate Professor of

1The logic of imagination is still a quite new and open field. A starting point was a paper by Ilkka
Niiniluoto in 1985 [44]; for a critical account of this paper see [30].
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Fig. 2.2 Centaur versus man on a horse

Fig. 2.3 Round square (B)

the University of Kitakyushu, Japan (Fig. 2.4).2 This is a juxtaposition of two objects
representing two opposite ideas which are melting in some way, closer therefore to
the second image of a round square above (but there the melting is purely material)
rather than the first one.

One of the main themes of this 5th edition of the World Congress on Paraconsis-
tency was quantum physics and we had chosen the Fig. 2.5 as a key image for the
event (see, in particular, the web site http://www.paraconsistency.org/). This a poetic
representation of the duality wave/particle. For the contest itself we chose the image
Fig. 2.6, representing this duality in a still metaphoric but more conceptual way.

According to Fig. 2.7, the same object appears both as a circle and as a square.
One could say that it is both a circle and as a square, from the point of view of
2-dimensional space. This figure corresponds to the spirit of the philosophy of David
Bohm who has used the distinction between 2-dimensional and 3-dimensional space
in various ways (see his book [26]), in particular to explain inseparability: a 3-
dimensional fish is projected into two 2-dimensional fishes whose interaction seems
difficult to understand at a the flat level.

2The president of the jury was Kuntal Ghosh, from the Indian Statistical Institute in Kolkata where
the event was taking place.

http://www.paraconsistency.org/
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Fig. 2.4 Bridge to nowhere

Fig. 2.5 Yemanjá playing
with particles

Fig. 2.6 A geometrical
metaphor for the duality
wave particle
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Fig. 2.7 David Bohm’s metaphor for inseparability

Niels Bohr also had some ideas corresponding to Fig. 2.6. He wrote: “A complete
elucidation of one and the same object may require diverse points of view which
defy a unique description [27].” For both Bohm and Bohr the duality wave/particle
can be interpreted as showing that reality is beyond wave and particle which are
just appearances of it. This can be developed either in a Platonic perspective or in
a Kantian perspective. The Kantian perspective has been emphasized by Bernard
d’Espagnat (see, e.g., [34]), winner of the Templeton prize in 2009, under which I
wrote a dissertation [3] at the Sorbonne in 1986 comparing Bohr, Heisenberg, and
Bohm’s views.3

In quantum physics we have a conceptual theory explaining reality but we do not
have images of this reality. From this perspective one can argue that reality is beyond
imagination, but that maybe our reason can catch it in some way. After developing
the so-called Bohr’s atom, inspired by the Rutherford’s atom, a figure of microscopic
reality establishing a parallel with macroscopic reality, Bohr rejected this approach
and developed complementarity. He liked to wear on his jacket a picture of the Tao
symbol. For him, this was not a picture of reality, but the symbol of his theory of
complementarity (Fig. 2.8).

On the other hand Fig. 2.9 represents a more cosmic vision of the Tao, related with
new age philosophy. It is not exactly clear what it means. The Tao can be interpreted
as an intrinsic link between two contradictory notions, metaphorically represented by
black and white. In Maoist philosophy, a blend of Marxism and Taosim, everything
is inherently contradictory. Contradiction is understood as the unity and struggle of
opposites and the lawof contradiction is considered as the fundamental lawgoverning
nature and society. The unity and identity of all things is viewed as temporary and
relative, while the struggle between opposites is considered as ceaseless and absolute
(cf. Mao’s 1937 essay On contradiction [43]). Such kind of theory, like the theory
of evolution, can easily be used to justify war and conflict. First it is important to
distinguish contradiction from conflict. Second we can consider that the world is
always changing without seeing contradiction or/and conflict as a driving force. For

3I had the opportunity at this time to meet and discuss with David Bohm in London. After that I
wrote a dissertation on Plato’s cave [4] and later on I developed the paraconsistent logic Z inspired
by Bohm’s ideas. About this logic, see [9], and about how it was conceived, see [10].
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Fig. 2.8 Rutherford’s atom versus the Tao of complementarity

Fig. 2.9 Taoist version of the universe

someone like Bergson contradiction is not the essence of reality but the result of the
incapacity of our thought to catch the flux of reality, see e.g. [2].

2.2 Contradiction and the Square of Opposition

A standard and traditional definition of contradiction can be found in the square of
opposition. Before entering into the details let us point out that we are using here the
expression square of opposition as a name for the theory of opposition. This theory
can be traced back to Aristotle, a no-square stage,4 and is continuing to develop up to
now, important stages in the development of this theory being the design of a square

4Larry Horn has, however, pointed out that even if we do not have a picture of the square of
opposition by Aristotle, the Stagyrite suggested such a picture—see [39].
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Fig. 2.10 Basic square of
opposition

by Apuleius and Boethius, and the hexagon of Blanché.5 This theory is not limited
to a particular instantiation of the square figure, nor to the figure of the square itself.
The backbone of this theory comprises three notions of opposition: contradiction,
contrariety, and subcontrariety.6

These three notions can be defined as follows: two propositions are said to be
contradictories iff they can neither be false, nor true together, contraries, iff they can
be false together, but not true together, subcontraries, iff they can be true together,
but not false together. These three notions of opposition can be applied directly or
indirectly to concepts and properties in an intensional or extensional way. We can
say that two concepts C and D are contradictories iff an object o cannot be at the
same time C and D but has to be C or D. Putting this into propositions: “o is C” and
“o is D” can neither be true nor false together. Extensionally speaking we can say
that the sets of C-objects and D-objects are complement sets, a binary partition of
the universe of objects. We can similarly adapt the two other notions of opposition,
i.e. contrariety and subcontrariety, to concepts.

One of the basic figures presenting some relations between these three notions of
opposition is the square represented by (Fig. 2.10). We have kept here the traditional
names for the four corners, but these corners can be interpreted in many different
ways: a variety of propositions and concepts, logical, metalogical, and of any field.
Since 2003 [7] we have introduced colors for the three oppositions: red for contra-
diction, blue for contrariety, green for subcontrariety.7 In black appears, besides the
three notions of opposition, the notion of subalternation.

When we have a pair of contradictory concepts, we can talk about a contradiction.
For example, in plane standard geometry a curved straight line is a contradiction. In
other words: an object cannot be both a curve and a straight line.

5The work of Blanché has been published in [23–25], about the hexagon see [12].
6Since 2007 we are organizing a world congress on the square of opposition. The first edition
happened in Montreux, the second in Corsica in 2010, the third in Beirut in 2013, the fourth in
the Vatican in 2014, the next one is projected to happen in Easter Island in 2016—see http://www.
square-of-opposition.org. Related publications are [11, 14, 18–22].
7These are the three primitive colors. The theory of opposition can also be applied to the theory of
colors, see in particular the hexagon of colors of Dany Jaspers [40].

http://www.square-of-opposition.org
http://www.square-of-opposition.org
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Figure2.11 is not more a curved line than Fig. 2.1 is a round circle, but it is a
juxtaposition of two images showing the contrast between the two concepts. The
figure shows that something cannot be at the same time a curve and a straight line.

In the school of Pythagoras, there was the idea to explain everything by a series
of pairs of concepts, considered as contradictory, listed in the Fig. 2.12.

What is interesting in this table is that the two sides of each pair are rather posi-
tive. One is not explicitly thought as the negation of the other, linguistically, and/or
conceptually (excepted finite/infinite). One could argue that the idea of “classical”
negation arose from that and not vice versa. Classical negation is perhaps an abstrac-
tion from a series of concrete contradictions. Plato, who had strongly been influenced
by the Pythagoreans, developed the method of dichotomy, a way of thinking dividing
everything in two. This method is strikingly presented in the dialogue The Sophist,
where it is used to catch the animal of the same name. Pythagoreans were consider-
ing mathematics as the most important science. For Plato there was a further step. It

Fig. 2.11 A curved straight line is a contradiction

Fig. 2.12 Pythagoras’ table
of opposites
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Fig. 2.13 A plane geometrical figure can be neither a square nor a circle

was Dialectics, a general methodology to think, reason and understand reality, the
dichotomic procedure being a typical example of this methodology. Funny enough
the word “dialectics” has been used later on by Hegel to denote something contrary
(we use this word here in the technical sense defined above) to Plato’s dialectics,
the idea being that beyond the thesis and the antithesis, there is the synthesis. The
table of opposites of Pythagoras is known in particular through Aristotle, but Aris-
totle went beyond the Pythagoro-Platonico dichotomy, long before Hegel and in a
different way. He promoted the notion of contrariety (see, e.g., [1]). This is why he is
considered as the father of the square of opposition. What is interesting in the square
theory is that the dichotomy truth and falsity generates a trichotomy of oppositions.

Let us now come back to our mascot, the round square. Is its status the same as
the curved line? No. From the point of view of standard plane geometry,8 a figure
can be neither a square nor a circle, for example, a triangle. Square and circle are
not contradictory concepts, but contrary concepts: something cannot be at the same
time a square and circle. A curved line is a true contradiction, a round square a fake
contradiction (Fig. 2.13).

One may find two ways to explain the semantical sliding justifying naming a
round square a contradiction, or qualifying it as such. The first justification is that
contradiction and contrariety are both of the same family which can be labeled the
incompatibility family: two propositions are incompatible if they cannot be true
together, two concepts are incompatible if they have nothing in common. Maybe
someone by saying that a round square is a contradiction has just in mind the notion
of incompatibility. The second justification would be that a circle is considered as a
typical representative of non-angular figures and a square as a typical representative
of angular figures. But if non-angular is understood aswith no angles at all, thiswould
notwork unlesswe define angular figures as figures having at least one angle.Angular
and non-angular are in fact rather considered as a contrary pair of opposites of the
same type as the famous pair which is at the the top of the square of quantification

8This context is important, not only to rule out other geometries—one may claim that a point is both
a straight and a curved line, so that a curved line is not a contradiction, but in standard geometry a
point is not a line—but also objects out of the scope of geometry, like an abstract concept such as
beauty. It is possible to say that beauty is neither a square nor a circle, but this is not necessarily a
convincing example to sustain that square and circle are not contradictory.
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(all vs. none). In this case the “non” of “non-angular” is understood as a contrary
negation (see next section).

These kinds of semantical slidings are quite common. Onemay consider that there
are part of the semantical process which is based on variations of meanings leading
sometimes to the situation where a word has at some stage a meaning opposite to
a previous one. These semantical slidings can be explained in different ways, for
example, by describing their mechanisms, a work which has been initiated by Bréal
himself in his original 1897 book Essai de sémantique—science des significations
[28], coining the word “sémantique” which has been later on increasingly popular.
But a description of a phenomenon does mean that the phenomenon is right even if
it is real. On the one hand one may want to justify some semantical variations with
a theory of meaning explaining that they are coherent, this is for example the line
of work developed by Larry Horn with the neo-Gricean notion of scalar implicature
[38]. Some people may also argue that these slidings have a interesting creative
aspect.9 But such slidings can be consciously or unconsciously used in a dangerous
way promoting confusion, this is common in advertisement and politics, part of the
most monstrous creatures of the zoo of fallacies.

2.3 Negation and Contradiction

The notion of contradiction according to the square of opposition does not directly
depend on the notion of negation, but only on the notions of truth and falsity. And we
can define negation from the notion of contradiction, saying that two contradictory
propositions or concepts are the negations of each other.

On the other hand it is also possible to define contradiction from negation, saying
that the two propositions p and¬p form a contradiction. If we consider that¬ is clas-
sical negation then this definition is equivalent to the square notion of contradiction.
One of the most classical definition of classical negation is based on truth and falsity:
p is true iff ¬p is false. In this definition truth and falsity are considered as forming
a dichotomy, the same dichotomy used to define the three notions of opposition of
the square of opposition.

In the same way that this dichotomy can be used to define three types of opposi-
tions, it can also be used to define three kinds of negations:

1. p is true iff ¬p is false
2. if p is true then ¬p is false, but not the converse
3. if p is false then ¬p is true, but not the converse

9André Breton promoted as a key feature of surrealist writing the idea of “carambolage sémantique”
[29]. But this is not the same as a “dérapage sémantique.” The idea is to create a poetic effect by
putting together opposed notions, leading to a sense of absurdity. Flaubert used systematically in his
masterpiece Bouvard et Pécuchet [35] a process qualified as “antithetic juxtaposition” consisting
of putting side by side two different opinions or theories. This was to show that human knowledge
is not really coherent.
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Note that these definitions are equivalent to the three following:

1. p and ¬p cannot be true together, cannot be false together
2. p and ¬p can be false together, but cannot be true together
3. p and ¬p can be true together, but cannot be false together

And this second formulation clearly shows that there is a one-to-one correspondence
between these three negations and the three oppositions of the square theory. To
emphasize this connection and also to avoid words proliferation we can call these
three negations:

1. contradictory negation
2. contrary negation
3. subcontrary negation

Let us apply these definitions to our mascot, the round square. If we have a
contradictory negation, we cannot say that a square is a non-circle, we need a contrary
negation and, yes, from this point of view a square can be considered as a non-circle
and a circle as a non-square.

Someone may want to defend the idea that a “real” or “true” negation must be
a contradictory negation. But what is the reality of negation, if any? One can claim
that the word “negation” is, or, has been, used in correspondence with an operator
behaving like a contradictory negation. This is ambiguous. Does this mean that the
contradictory negation of classical logic is a good description of the way we use the
word or that we should reason on the basis of such a negation? The ambiguity is also
present the other way round. If someone rejects the classical position, does this mean
that classical negation is not a good description of the way we are using negation in
natural language and thought or does this mean that we shall use another negation?

Let us emphasize that it is a bit artificial to claim that classical logic is natural.
Take the example of a classical non-cat. It is an abstract entity of which we do not
have a positive idea or image, because the objects which are non-cats is a class of het-
erogeneous objects (ranging from dogs to cars through numbers). At the end we can
produce an image only incorporating the abstract symbol of the cross (Fig. 2.14).10

On the other hand to say that classical negation is wrong, like Richard Routley,
who liked to claim that every morning before breakfast, seems exaggerated.11 Con-
tradictory negation is the product of abstraction and abstraction is a fundamental
power of human mind. The full strength of contradictory negation has to be recog-
nized, this negation is not something which has to be rejected, but which has to be
used with moderation. We do not support the idea that classical negation is the only
negation and that we cannot use the word “negation” for other operators. This does
not mean that we can use this word in an arbitrary way. We believe it is important to
give the right name to the right thing, not based on a purely descriptive perspective,
but by developing a theory which is, as any theory, relatively normative, keeping an

10For more discussion about the variety of symbolism, see [17].
11This was reported to me by Newton da Costa. He faced this phenomenon when visiting the
Australopithecus in his own country in the 1970s.



50 J.-Y. Beziau

Fig. 2.14 A non-cat is an abstract entity

equilibrium with description, the way the concept and the word are used. We defend
the idea that the three above negations deserve to be qualified as negations. This
is in particular coherent with the theory of the square of opposition. This is a also
coherent with the development of modern logic where intuitionistic negation, which
is a specific example of contrary negation, is called a “negation.”

And to use the same symbol, “¬,” for different negations corresponds to a natural
procedure of “abus de language” common in mathematics where the same symbol,
“0”, is used for different numbers having different properties, to keep trace to their
commonproperties. The idea of a perfect unambiguous language in science promoted
by Frege (see [36]) and some neopositivists seems absurd to us nowadays.

If wewant to put in the same bag contradictory and contrary negations, we can talk
about incompatible negations or negations of incompatibility, the definition being
that p and ¬p cannot be true together. Someone may claim that a negation should
be an incompatible negation that we have to exclude subcontrary negations. This is
a kind of neo-Aristotelian position, because the Stagyrite rejected subcontrariety as
an opposition. But there is a strong symmetry and duality between contrariety and
subcontrariety that is clearly revealed by the picture of the square. In modern logic, if
one admits a contrary negation, like intuitionistic negation, there is no good reasons
to reject its dual, which is a subcontrary negation, part of the family of paraconsistent
negations.

There are different ways of dualizing intuitionistic negation. I. Urbas presented
a dualization based on sequent calculus considering restriction of one formula on
the left instead as on the right [51]. I have myself worked on a dualization based
on modal interpretation which can be extended to other contrary negations, defined
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Fig. 2.15 Duality between
contrary and subcontrary
negations in modal logic

as “not possible,” ¬�, where ¬ is classical negation, following the interpretation of
intuitionistic negation in S4 by Gödel [37]. The dualization of ¬� is ¬�, which is a
subcontrary negation as illustrated by Fig. 2.15.12

2.4 Paraconsistent Logic and Contradiction

The starting point of paraconsistent logic is to reject the so-called law of explosion.13

It means that we have a negation ¬ and propositions p and q such that:

p,¬p � q

Considering a basic general Tarskian framework for consequence relation this is
equivalent as to say that there is a proposition p, such that p and ¬p can be true
together—see [13, 41].

According to the theory of opposition, p and ¬p do not therefore form a contra-
dictory pair. They are at best a subcontrary pair, and paraconsistent negation at best
a subcontrary negation. The place where there are contradictions is a logic with a
classical negation. If there are contradictions in a paraconsistent logic it is because
it is possible to define a classical negation within it, like in the paraconsistent logic
C1 of Newton da Costa [31].

If someone says that given a paraconsistent negation ¬, p and ¬p form a contra-
diction, she is changing the meaning of the word “contradiction,” giving it a meaning
opposite to the one it has in the theory of the square of opposition. The square is not a
sacred cow and we do not necessarily need to be very strict with the use of the words,
but bilateral exchange of meanings certainly leads to confusion: if someone calls a

12As explained in [11], not satisfied with this octagon, I split it in three stars that I put together in a
three-dimensional polyhedron of opposition which also perfectly reflects the duality and symmetry
between these two negations. Themultidimensional theory of opposition has been further developed
by Moretti [42], Smessaert [49] and Pélissier [45].
13For a detailed discussion about how to define a paraconsistent negation, see [5, 6].
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square a circle and a circle a square, she will be able to claim that a circle has four
corners and so on. Such claim may attract the attention, like many “tours de passe
passe,” but it is just a trick. G. Priest has gone somewhat in this direction, apparently
not aware himself at first of the confusion, because he has even used the standard
definitions of the square of opposition to claim that the negation of his system L P
was a real negation, by contrast to the negation of da Costa system C1 (see [8, 46–
48]). He has also introduced the word “dialetheia” to talk about a proposition p such
that p and ¬p can be true together. A dialetheia p is therefore not a contradiction
considering that p and ¬p do not form a contradictory pair.

To avoid any ambiguity it is better to call “paraconsistent” a formula such that
p and ¬p can be true together. A paraconsistent formula p and its paraconsistent
negation ¬p do not form a contradictory pair. And a paraconsistent formula is not
a trivial formula, a formula from which everything follows. On the contrary it is
a non trivial formula. From the point of view of a Tarskian consequence relation
this definition of trivial formula is the same as the definition of a formula having no
models, being always false.

Wittgenstein in the Tractatus [52] calls a trivial formula, a contradiction, by con-
trast to a tautology, a formula which is always true. In some sense it seems better to
use the word “antilogy” to talk about a trivial formula, because the abstract idea of
triviality does not depend on contradictory pair of formulas or/and on contradictory
negation.14 However, there is a relation and for Wittgenstein a typical example of a
trivial formula is the formula of classical logic p ∧ ¬p, which can be seen as a pair
of contradictory propositions. Tarski was at some point considering as an additional
axiom of the consequence operator theory, the existence of at least a trivial formula
(cf. Axiom 5 of [50]). Such kind of a formula is nowadays often singled out using
the symbol ⊥. What we know is that a trivial formula is related to negation. If we
have a classical implication →, the formula p → ⊥ has the bevahiour of a classical
negation. And if we have an intuitionistic implication →, the formula p → ⊥ has
the bevahior of an intuitionistic negation. But we may have a logic with a negation
and without a trivial formula, without contradiction, it is the case of the logic L P
which has a subcontrary negation.

To finish let us explain why there is a good reason not to identify paraconsistent
negation with subcontrary negation. This is because it is possible to have paracon-
sistent negations which are paranormal negations. A paranormal negation ¬ is a
negation such that p and ¬p can be true together and can be false together. Can we
really still talk about negation for such an operator? A positive reply to this question
is given by De Morgan logic, logic in which the four De Morgan laws hold as well
as double negation, but where we do not have explosion, nor the validity of the law

14At the metalevel, tautology and antilogy form a contrary pair, see the metalogical hexagon pre-
sented in [16].
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of excluded middle. A De Morgan negation seems to have enough properties to be
called a negation.15

Now can we say that two propositions p and q are opposite if p and q can both be
true and also can both be false? Yes if we put some additional properties correspond-
ing to De Morgan laws and double negation. Adopting this “loose” perspective, we
can defend the idea that a round square is a paranormal object. Because on the one
hand, as we have pointed out, something can be neither a square, nor a circle, for
example, a triangle and one the other hand something can appear as both a square
and a circle, as illustrated by Fig. 2.6. At the end this figure is not a good metaphor
for quantum physics, because a quanton may appear as a wave and as a particle, but
may not be something else, so a quanton is rather a subcontrary object.
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Abstract The aim of this text is to present the philosophical motivations for the
Logics of Formal Inconsistency (LFIs), along with some relevant technical results.
The text is divided into two main parts (besides a short introduction). In Sect. 3.2, we
present and discuss philosophical issues related to paraconsistency in general, and
especially to logics of formal inconsistency. We argue that there are two basic and
philosophically legitimate approaches to paraconsistency that depend on whether the
contradictions are understood ontologically or epistemologically.LFIs are suitable to
both options, but we emphasize the epistemological interpretation of contradictions.
The main argument depends on the duality between paraconsistency and paracom-
pleteness. In a few words, the idea is as follows: just as excluded middle may be
rejected by intuitionistic logic due to epistemological reasons, explosion may also
be rejected by paraconsistent logics due to epistemological reasons. In Sect. 3.3,
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3.1 Introduction

The aim of this text is to present the philosophical motivations for the Logics of
Formal Inconsistency (LFIs), along with some relevant technical results. The target
audience is mainly the philosopher and the logician interested in the philosophical
aspects of paraconsistency.1

In Sect. 3.2, On the philosophy of Logics of Formal Inconsistency, we present
and discuss philosophical issues related to paraconsistency in general, and espe-
cially to Logics of Formal Inconsistency. We argue that there are two basic and
philosophically legitimate approaches to paraconsistency that depend on whether
the contradictions are understood ontologically or epistemologically. LFIs are well
suited to both options, but we emphasize the epistemological interpretation of con-
tradictions. The main argument depends on the duality between paraconsistency and
paracompleteness. In a few words, the idea is as follows: just as excluded middle
may be rejected by intuitionistic logic due to epistemological reasons, explosionmay
also be rejected by paraconsistent logics due to epistemological reasons.

In Sect. 3.3, On the mathematics of Logics of Formal Inconsistency, some formal
systems and a few of their basic technical results are presented. These systems are
designed to fit the philosophical views presented in Sect. 3.2.

3.2 On the Philosophy of the Logics of Formal
Inconsistency

It is a fact that contradictions appear in a number of real-life contexts of reasoning.
Databases very often contain not only incomplete information but also conflicting
(i.e. contradictory) information.2 Since ancient Greece, paradoxes have intrigued
logicians and philosophers, and, more recently, mathematicians as well. Scientific
theories are another example of real situations in which contradictions seem to be
unavoidable. There are several scientific theories, however, successful in their areas
of knowledge that yield contradictions, either by themselves or when put together
with other successful theories Contradictions are problematic when the principle of
explosion holds:

1This paper corresponds, with some additions, to the tutorial on Logics of Formal Inconsistency
presented in the 5thWorld Congress on Paraconsistency that tookplace inKolkata, India, inFebruary
2014. Parts of this material have already appeared in other texts by the authors, and other parts are
already in print elsewhere [12, 13]. A much more detailed mathematical treatment can be found in
Carnielli and Coniglio [10] and Carnielli et al. [15].
2We do not use the term ‘information’ here in a strictly technical sense. We might say, in an
attempt not to define but rather to elucidate, that ‘information’ means any ‘amount of data’ that
can be expressed by a sentence (or proposition) in natural language. Accordingly, there may be
contradictory or conflicting information (in a sense to be clarified below), vague information, or
lack of information.



3 On the Philosophy and Mathematics of the Logics of Formal Inconsistency 59

A → (∼A → B).3

In this case, since anything follows from a contradiction, one may conclude anything
whatsoever. In order to deal rationally with contradictions, explosion cannot be valid
without restrictions, since triviality (that is, a circumstance such that everything
holds) is obviously unacceptable. Given that in classical logic explosion is a valid
principle of inference, the underlying logic of a contradictory context of reasoning
cannot be classical.

In a few words, paraconsistency is the study of logical systems in which the
presence of a contradiction does not imply triviality, that is, logical systems with a
non-explosive negation¬ such that a pair of propositions A and¬A does not (always)
trivialize the system. However, it is not only the syntactic and semantic properties
of these systems that are worth studying. Some questions arise that are perennial
philosophical problems. The question about the nature of contradictions accepted
by paraconsistent logics is where a good amount of the debate on the philosophical
significance of paraconsistency has been concentrated.

In philosophical terminology, we say that something is ontological when it has to
do with reality, the world in the widest sense, and that something is epistemological
when it has to dowith knowledge and the process of its acquisition.A central question
for paraconsistency is the following: Are the contradictions that paraconsistent logic
deals with ontological or epistemological? Do contradictions have to do with reality
proper? That is, is reality intrinsically contradictory, in the sense that we really need
some pairs of contradictory propositions in order to describe it correctly? Or do
contradictions have to do with knowledge and thought? Contradictions of the latter
kind would have their origin in our cognitive apparatus, in the failure of measuring
instruments, in the interactions of these instruments with phenomena, in operations
of thought, or even in simple mistakes that in principle could be corrected later on.
Note that in all of these cases the contradiction does not belong to reality properly
speaking.

The question about the nature of contradictions, in its turn, is related to another
central issue in philosophy of logic, namely the nature of logic itself. As a theory
of logical consequence, the task of logic is to formulate principles and methods for
establishing when a proposition A follows from a set of premises �. But a question
remains: What are the principles of logic about? Are they about language, thought,
or reality? That logic is normative is not contentious, but its normative character may
be combined both with an ontological and an epistemological approach.

The epistemological side of logic is present in thewidespread (but not unanimous)
characterization of logic as the study of laws of thought. This concept of logic, which
acknowledges an inherent relationship between logic and human rationality, has been
put aside since classical logic has acquired the status of the standard account of logical
consequence—for example, in the work of Frege, Russell, Tarski, Quine, and many
other influential logicians.

3The symbol ∼ will always denote the classical negation, while ¬ usually denotes a paraconsistent
negation but sometimes a paracomplete (e.g. intuitionistic) negation. The context will make it clear
in each case whether the negation is used in a paracomplete or paraconsistent sense.
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Classical logic is a very good account of the notion of truth preservation, but it
does not give a sustained account of rationality. This point shall not be developed
in detail here, but it is well known that some classically valid inferences are not
really applied in real-life contexts of reasoning, for example: from A, to conclude
that anything implies A; from A, to conclude the disjunction of A and anything; from
a contradiction, to conclude anything. The latter is the principle of explosion, and
of course it is not rational to conclude that 2 + 2 = 5 when we face some pair of
contradictory propositions. Nevertheless, from the point of view of preservation of
truth, given the classical meaning of sentential connectives, all the inferences above
are irreproachable.

We assume here a concept of logic according to which logic is not restricted to
the idea of truth preservation. Logical consequence is indeed the central notion of
logic, but the task of logic is to tell us which conclusions can be drawn from a given
set of premises, under certain conditions, in concrete situations of reasoning. We
shall see that sometimes it may be the case that it is not only truth that is at stake.4

Among the contexts of reasoning in which classical logic is not the most suitable
tool, two are especially important: contexts with ‘excess of information’ and ‘lack
of information’. The logics suited to such contexts are, respectively, paraconsistent
and paracomplete—in the former, explosion fails, in the latter excluded middle fails.

There are two basic approaches to paraconsistency. If some contradictions belong
to reality, since it is not the case that everything holds, we do need an account of
logical consequence that does not collapse in the face of a contradiction. On the other
hand, if contradictions are epistemological, we argue that the rejection of explosion
goes hand in hand with the rejection of excluded middle by intuitionistic logic. In
the latter case, the formal system has an epistemological character and combines a
descriptive with a normative approach.

This section is structured as follows. In Sect. 3.2.1 some basic concepts are pre-
sented in order to distinguish triviality from inconsistency. In addition, we make a
first presentation of Logics of Formal Inconsistency, distinguishing paraconsistency
and paracompleteness from the classical approach. In Sect. 3.2.2 we present a brief
historical digression on the origins of paraconsistency and the forerunners of Logics
of Formal Inconsistency. In Sect. 3.2.3 we examine the relationship between para-
consistency and the issue of the nature of logic. We argue that, like the rejection
of excluded middle by intuitionistic logic, the rejection of explosion may be under-
stood epistemologically. In Sect. 3.2.4 we discuss paraconsistency from the point of
view of the issue of the nature of contradictions, and consider whether they should
be understood ontologically or epistemologically. We argue that both positions are
philosophically legitimate. Finally, in Sect. 3.2.5, we show how the simultaneous
attribution of the value 0 to a pair of propositions A and ¬A may be interpreted as
conflicting evidence, not as truth and falsity of A.

4This idea has some consequences for Harman’s arguments (see [31]) against non-classical logics,
a point that we intend to develop elsewhere.
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3.2.1 A First Look at Logics of Formal Inconsistency

We have seen that paraconsistent logics are able to deal with contradictory scenarios
avoiding triviality by means of the rejection of the principle of explosion. Let us put
these ideas more precisely. A theory is a set of propositions5 closed under logical
consequence. Given a set of propositions � in the language of a given logic L, let
T = {A: � �L A} be the theory whose non-logical axioms are the propositions of �

and the underlying logic is L. Suppose the language of T has a negation ∼. We say
that T is:

Contradictory: if and only if there is a proposition A in the language of T such
that T proves A and T proves ∼A;

Trivial: if and only if for any proposition A in the language of T T proves A;

Explosive: if and only if T trivializes when exposed to a pair of contradictory
formulas—i.e.: for all A and B, T ∪ {A,∼A} � B.

In books of logic we find two different but classically equivalent notions of consis-
tency with respect to a deductive system S with a negation ∼. S is consistent if and
only if

i. There is a formula B such that �S B;
ii. There is no formula A such that �S A and �S ∼A.

What (i) says is that S is not trivial; and (ii) says that S is non-contradictory. In
classical logic both are provably equivalent. A theory whose underlying logic is
classical is contradictory if and only if it is trivial. But it is the case precisely because
such a theory is explosive, since the principle of explosion holds in classical logic.
It is clear, then, that it is contradictoriness together with explosiveness that implies
triviality. The obvious move in order to deal with contradictions is, thus, to reject
the unrestricted validity of the principle of explosion. This is a necessary condition
if we want a contradictory but not-trivial theory.

The first formalization of paraconsistent logic to appear in the literature is to
be found in [33]. In the beginning of the paper he presents three conditions that a
contradictory but nontrivial logic must attend:

1. It must be non-explosive;
2. It should be “rich enough to enable practical inference”;
3. It should have “an intuitive justification”.

The condition (1), as we have seen, is a necessary condition for any paraconsistent
system. We want to call attention to conditions (2) and (3). Indeed, the biggest chal-
lenge for a paraconsistentist is to devise a logical system compatible with what we
intuitively think should follow (or not follow) from what. This is the idea expressed
by the criteria (2) and (3) presented by Jáskowski. An intuitive and applicable notion

5Or sentences, if one prefers—here, we do not go into the distinction between sentences and
propositions.
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of logical consequence should be appropriate for describing and reconstructing real
contexts of reasoning. An intuitive meaning for the logical connectives—more pre-
cisely, for paraconsistent negation—should be an integral part of such account of
logical consequence. It follows that an intuitive interpretation of a paraconsistent
notion of logical consequence depends essentially on an intuitive interpretation of
negation.

For classical negation ∼ the following conditions hold:

1. A ∧ ∼A �
2. � A ∨ ∼A

According to (1), there is no model M such that A ∧ ∼A holds in M. (2) says that
for every model M, A ∨ ∼A holds in M. Now, given the definition of classical con-
sequence, A ∨ ∼A follows from anything, and anything follows from A ∧ ∼A.6 We
say that a negation is paracomplete if it disobeys (2), and that a negation is paracon-
sistent if it disobeys (1). From the point of view of rules of inference, the duality is
not between non-contradiction and excluded middle, but rather between explosion
and excluded middle. Notice that the notion of logical consequence has priority over
the notion of logical truth: the latter must be defined in terms of the former, not the
contrary. The principle of non-contradiction is usually taken as a claim that there
can be no contradictions in reality. But we may well understand the principle of
explosion as a stronger way of saying precisely the same thing: A and ∼A cannot
hold together, otherwise we get triviality. From the above considerations it is clear
that in order to give a counterexample to the principle of explosion we need a weaker
negation and a semantics in which there is a model M such that A and ¬A holds in
M (¬ is a paraconsistent negation) but for some B, B does not hold in M. Dually, a
paracomplete logic must have a model M such that both A and ¬A do not hold in M
(here, ¬ is a paracomplete negation).

A central feature of classical negation ∼ (but not of all negations, as we shall see)
is that it is a contradictory forming operator. This is due to its semantic clause,

M(∼A) = 1 iff M(A) = 0,

that, in turn, holds because both (1) and (2) above hold. Applied to a proposition A,
classical negation produces a proposition∼A such that A and∼A are contradictories
in the sense that they cannot receive simultaneously the value 0, nor simultaneously
the value 1. In classical logic the values 0 and 1 are understood, respectively, as
false and true, but in non-classical logics this does not need to be the case. It is not
necessary that a paracomplete logic takes a pair of formulas A and ¬A as both false,
nor that a paraconsistent logic takes them as both true.

Obviously, neither a paracomplete nor a paraconsistent negation is a contradictory
forming operator, and neither is a truth-functional operator, since the value of ¬A is
not unequivocally determined by the value of A. Now a question arises: Can we say
that such negations are really negations? Our answer is yes.

6For a more detailed explanation of the duality between paracompleteness and paraconsistency, see
Marcos [36].
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It should not be surprising that the meaning of a classical connective splits up
into some alternative meanings when its use in natural language and real-life argu-
ments is analyzed. Indeed, different meanings are sometimes attached to conditional,
disjunction, and conjunction, and the connectives so obtained are still called condi-
tional, disjunction, and conjunction, of course with some qualifications. What would
be the reason by which the same cannot occur with negation? In fact, both paracom-
plete and paraconsistent negations do occur in real life. An example of the former
is intuitionistic negation: it may be the case that we do have a classical proof of a
proposition A but have no constructive proof of A. From the constructive point of
view, we have neither A nor ¬A. On the other hand, sometimes it happens that we
have to deal simultaneously with conflicting information about A. In these cases, we
may have reasons to accept both A and ¬A, but we do not need to say that both
are true. Finally, the above considerations show that a paraconsistent negation is a
negation to the same extent that a paracomplete (including intuitionistic) negation is
a negation. Nevertheless, what is of major importance is that the question of whether
or not a paraconsistent negation may have an intuitive meaning has a positive answer.

Logics of Formal Inconsistency (from now on, LFIs) are a family of paraconsis-
tent logics that encompass the majority of paraconsistent systems developed within
the Brazilian tradition. In this section we present the basic ideas of LFIs without
going into the technical details (this will be done in Sect. 3.3 of this text). LFIs have
resources to express the notion of consistency inside the object language by means
of a sentential unary connective: ‘◦A’ means that A is consistent. As in any other
paraconsistent logic, explosion does not hold in LFIs. But it is handled in a way that
allows distinguishing between contradictions that can be accepted from those that
cannot. The point of this distinction is that no matter the nature of the contradic-
tions a paraconsistentist is willing to accept, there are contradictions that cannot be
accepted. In LFIs, negation is explosive only with respect to ‘consistent’ formulas:

A,¬A �L F I B, while ◦ A, A,¬A �L F I B.

An LFI is thus a logic that separates the propositions for which explosion holds
from those for which it does not hold. The former are marked with ◦. For this
reason, they are called gently explosive (more on this point in Sect. 3.3.1.1). In the
Cn hierarchy, introduced by da Costa [20], the so-called ‘well-behavedness’ of a
formula A, in the sense that it is not the case that A and ¬A hold, is also expressed
inside the object language. However, in C1, A◦ is an abbreviation of ¬(A ∧ ¬A),
which makes the ‘well-behavedness’ of a proposition A equivalent to saying that A
is non-contradictory.7

We may say that a first step in paraconsistency is the distinction between triviality
and contradictoriness. But there is a second step, namely the distinction between
consistency and non-contradictoriness. In LFIs the consistency connective ◦ is not
only primitive, but it is also not always logically equivalent to non-contradiction.

7Actually, da Costa has a hierarchy of systems, starting with the system C1, where A◦ is an abbre-
viation of ¬(A ∧ ¬A). A full hierarchy of calculi Cn , for n natural, is defined and studied in da
Costa [20].
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This is the most distinguishing feature of the Logics of Formal Inconsistency. Once
we break up the equivalence between ◦A and ¬(A ∧ ¬A), some very interesting
developments become available. Indeed, ◦A may express notions different from
consistency as freedom from contradiction.

3.2.2 A Very Brief Historical Digression: The Forerunners
of Logics of Formal Inconsistency

The advent of paraconsistency occurred more than a century ago. In 1910 the
Russian philosopher and psychologist Nicolai A. Vasiliev proposed the idea of a
non-Aristotelian logic, free of the laws of excluded middle and non-contradiction.
By analogy with the imaginary geometry of Lobachevsky, Vasiliev called his logic
‘imaginary’, meaning that it would hold in imaginary worlds. Despite publishing
between 1912–13 some conceptual papers on the subject, Vasiliev was not concerned
with formalizing his logic (cf. Gomes [28, pp. 307ff.]).

Jáskowski [33], trying to answer a question posed by Łukasiewicz, presented the
first formal system for a paraconsistent logic, called ‘discussive logic’. This system
is connected to modalities, and later on came to be regarded as a particular member
of the family of the Logics of Formal Inconsistency (cf. Carnielli [15, p. 22]).

Intending to study logical paradoxes from a formal perspective, Hállden [30]
proposed a ‘logic of nonsense’ by means of three-valued logical matrices, closely
related to the nonsense logic introduced in 1938 by the Russian logician A. Bochvar.
Since a third truth-value is distinguished, Hállden’s logic is paraconsistent, and it
can also be considered as one of the first paraconsistent formal systems presented in
the literature. In fact, like Jáskowski’s logic, it is also a member of the family of the
Logics of Formal Inconsistency.

Nelson [38] proposed an extension of positive intuitionistic logic with a new
connective for ‘constructible falsity’ or ‘strong negation’, intended to overcome
non-constructive features of intuitionistic negation. By eliminating the principle of
explosion from this system, Nelson [39] obtained a first-order paraconsistent logic,
although paraconsistency was not his primary concern (see Carnielli and Coniglio
[10]).

Paraconsistency also has some early links to Karl Popper’s falsificacionism. In
1954 (cf. Kapsner et al. [34]), Kalman Joseph Cohen, attending a suggestion of
his supervisor Karl Popper, submitted to the University of Oxford a thesis entitled
‘Alternative Systems of Logic’ in which he intended to develop a logic dual to
intuitionistic logic. In Cohen’s logic, the law of explosion is no longer valid, while
the law of excluded middle holds as a theorem. Cohen’s thesis, according to Kapsner
et al., escaped scholarly attention, having been only briefly mentioned in Popper’s
famous ‘Conjectures and Refutations’ [see [41], footnote 8, p. 321]. It did, however,
in some sense anticipate more recent work on dual-intuitionist logics (which, as
shown in Brunner and Carnielli [6], are paraconsistent).
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In da Costa [19] we find a discussion of the status of contradiction inmathematics,
introducing the Principle of Non-Trivialization, according to which nontriviality is
more important than non-contradiction. The idea is that any mathematical theory is
worth studying, provided it is not trivial. Although we do agree that mathematical
(and logical) nontrivial systems are worth studying, on the other hand, an account of
logical consequence needs a little bit more in order to be accepted as an account of
reasoning. In 1963 daCosta presented his famous hierarchy of paraconsistent systems
Cn (for n ≥ 1), constituting the broadest formal study of paraconsistency proposed
up to that time (cf. [20]). It is worth mentioning here what has been said by Newton
da Costa, in private conversation. If we remember correctly, it goes more or less as
follows: “As with the discovery of America, many people are said to have discovered
paraconsistent logic before my work. I can only say that, as with Columbus, nobody
has discovered paraconsistency after me, just as nobody discovered America after
Columbus.”

The Argentinian philosopher F. Asenjo introduced in 1966 a three-valued logic
as a formal framework for studying antinomies. His logic is essentially defined by
Kleene’s three-valued truth-tables for negation and conjunction,where the third truth-
value is distinguished. Asenjo’s logic is structurally the same as the Logic of Paradox,
presented in Priest [42], the essential difference being that in the latter there are two
designated truth-values, intuitively understood as true and both true and false (see
[4]).

From the 1970s on, after the Peruvian philosopher FranciscoMiroQuesada coined
the name ‘paraconsistent logic’ to encompass all these creations, several schools with
different aims and methods have spread out around the world.8

3.2.3 Paraconsistency and the Nature of Logic

A central question in philosophy of logic asks about the nature of logical principles,
and specifically whether these principles are about reality, thought, or language. We
find this issue, brought forth, either implicitly or explicitly, in a number of places.
In this section we shall discuss the relationship between paraconsistent logic and the
problem of the nature of logic.

Aristotle formulates three versions of the principle of non-contradiction, each one
corresponding to one of the aforementioned aspects of logic (more on this below).
Tugendhat and Wolf [45, Chap. 1] present the problem mainly from a historical
viewpoint, relating the three approaches (ontological, epistemological, and linguistic)
to periods in the history of philosophy—respectively ancient and medieval, modern,
and contemporary. Popper [41, pp. 206ff] presents the problemas follows. The central
question is whether the principles of logic are:

8See ‘Carta de Francisco Miro Quesada a Newton da Costa, 29.IX.1975’ in Gomes [28, p. 609].
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(I.a) laws of thought in the sense that they describe how we actually think;
(I.b) laws of thought in the sense that they are normative laws, i.e., laws that tell
us how we should think;
(II) the most general laws of nature, i.e., laws that apply to any kind of object;
(III) laws of certain descriptive languages.

There are three basic options, which are not mutually exclusive: the laws of logic
have (I) epistemological, (II) ontological, or (III) linguistic character. With respect to
(I), they may be (I.a) descriptive or (I.b) normative. These aspects may be combined.
Invariably, logic is taken as having a normative character, no matter whether it is
conceived primarily as having to do with language, thought, or reality. The point
of asking this question is not really to find a definitive answer. It is a perennial
philosophical question, which, however, helps us to clarify and understand important
aspects of paraconsistent logic.

We start with some remarks about the linguistic aspects of logic. According to
widespread opinion, a linguistic conception of logic has prevailed during the twen-
tieth century. From this perspective, logic has to do above all with the structure and
functioning of certain languages. We do not agree with this view. For us, logic is
primarily a theory about reality and thought.9 The linguistic aspect appears only
inasmuch as language is used in order to represent what is going on in reality and
in thought. Although the linguistic aspect of logic is related to epistemology (since
language and thought cannot be completely separated) and to ontology (by means of
semantics), we do not think that a linguistic conception of logic is going to helpmuch
in clarifying a problem that is central for us here, that of whether contradictions have
to do with reality or thought.

Aristotle, defending the principle of non-contradiction (PNC), makes it clear that
it is a principle about reality, language, and thought, but there is a consensus among
scholars that its main formulation is a claim about objects and properties: it cannot be
the case that the same property belongs and does not belong to the same object. Put
in this way, PNC is ontological in character. Like a general law of nature, space-time
phenomena cannot disobey PNC, nor can mathematical objects.

The epistemological aspects of logic became clear in the modern period. A
very illuminating passage can be found in the so-called Logic of Port-Royal (1662)
[3, p. 23], where we read that logic has three purposes:

The first is to assure us that we are using reason well.
The second is to reveal and explain more easily the errors or defects that can occur in mental
operations.
The third purpose is to make us better acquainted with the nature of the mind by reflecting
on its actions.

Notice how the passage above combines the normative character of logic with an
analysis of mind. This view of logic does not fit very well with the account of logical
consequence given by classical logic, but it has a lot to do with intuitionistic logic.

9A rejection of the linguistic conception of logic, and a defense of logic as a theory with ontological
and epistemological aspects, can be found in Chateaubriand [17, Introduction].
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Frege’s Begriffsschrift [24] had an important role in establishing classical logic
as the standard account of logical consequence. Although there is no semantics in
Frege’s work, it is well known that we find in the Begriffsschrift a complete and
correct system of first-order classical logic. At first sight, Frege’s approach is purely
proof-theoretical, but one should not draw the conclusion that his system has no
ontological commitments. We cannot lose sight of the fact that the idea of truth
preservation developed by Frege, although worked out syntactically, is constrained
by a realist notion of truth.

Frege had a realist concept of logic, according to which logic is independent of
language and mind. In fact, since he was a full-blooded platonist with respect to
mathematics, and his logicist project was to prove that arithmetic is a development
of logic, he had to be a logical realist. For Frege, the laws of logic are as objective as
mathematics, even though we may occasionally disobey them.10 Frege’s conception
of logic is very well suited to the idea of truth-preservation. He indeed famously
explains the task of logic as being ‘to discern the laws of truth’ [26], ormore precisely,
the laws of preservation of truth. Hence, it is not surprising that laws of logic cannot
be obtained from concrete reasoning practices. In other words, logic cannot have a
descriptive aspect, in the sense of (I.a) above.11 It is worth noting that Frege proves
the principle of explosion as a theorem of his system: it is proposition 36 of the
Begriffsschrift.

It is important to emphasize the contrast between Frege’s and Brouwer’s con-
ceptions of logic. This fact is especially relevant for our aims here because of the
duality between paracompleteness and paraconsistency pointed out in Sect. 3.2.1
above. From the point of view of classical logic, the rejection of excluded middle by
intuitionistic logic is like a mirror image of the rejection of explosion.

It is well known that for Brouwer mathematics is not a part of logic, as Frege
wanted to prove. Quite the contrary, logic is abstracted from mathematical reason-
ing. Mathematics is a product of the human mind, and mathematical proofs are
mental constructions that do not depend on language or logic. The role of logic
in mathematics is only to describe methodically the constructions carried out by
mathematicians.12 We may say that intuitionistic logic has been obtained through
an analysis of the functioning of mind in constructing mathematical proofs. To the
extent that intuitionistic logic intends to avoid improper uses of excluded middle,

10Cf. Frege [25, p. 13]: ‘they are boundary stones set in an eternal foundation, which our thought
can overflow, but never displace.’
11There is a sense in which for Frege laws of logic are descriptive: they describe reality, as well
as laws of physics and mathematics. But we say here that a logic is descriptive when it describes
reasoning.
12Brouwer [5, pp. 51, 73–74]: “Mathematics can deal with no other matter than that which it
has itself constructed. In the preceding pages it has been shown for the fundamental parts of
mathematics how they can be built up from units of perception. (...) The words of your mathematical
demonstration merely accompany a mathematical construction that is effected without words (...)
While thus mathematics is independent of logic, logic does depend upon mathematics.” A more
acessible presentation of the motivations for intuitionistic logic is to be found in Heyting [32,
Disputation].
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it is normative, but it is descriptive precisely in the sense that, according to Frege,
logic cannot be descriptive. Intuitionistic logic thus combines a descriptive with a
normative character.

The view according to which intuitionistic logic has an epistemological character
that contrasts with the ontological vein of classical logic is not new.13 Note how the
intuitionistic approach fits in well with the passage quoted above from logic of Port
Royal. Furthermore, even if one wants to insist on an anti-realist notion of truth, the
thesis that intuitionistic logic is not about truth properly speaking, but about mental
constructions, is in linewith the intuitionistic program as it was developed byHeyting
and Brouwer.

Now we may ask: Does intuitionistic logic give an account of truth preservation?
Our answer is in the negative: in our view, intuitionistic logic is not only about truth;
it is about truth and something else. We may say that it is about constructive truth in
the following sense: it is constrained by truth but it is not truth simpliciter; rather, it
is about truth achieved in a constructive way. The notion of constructive provability
is stronger than truth in the sense that if we have a constructive proof of A, we know
that A is true, but the converse may not hold. Accordingly, not only the failure of
excluded middle, but the whole enterprise of intuitionistic logic, may be seen from
an epistemological perspective.14

An analogous interpretation can be made with respect to contradictions in para-
consistent logics. While in intuitionistic logic (and paracomplete logics in general)
the failure of excluded middle may be seen as a kind of lack of information (no proof
of A, no proof of ¬A), the failure of explosion may be interpreted epistemologically
as excess of information (conflicting evidence both for A and for¬A, but no evidence
for B). The acceptance of contradictory propositions in some circumstances does not
need to mean that reality is contradictory. It may be considered a step in the process
of acquiring knowledge that, at least in principle, could be revised.

Suppose a context of reasoning such that there are some propositions well estab-
lished as true (or as false) and some others that have not been conclusively established
yet. Now, if among the latter there is a contradiction, one does not conclude that
2 + 2 = 5, but, rather, one takes a more careful stance with respect to the specific
contradictory proposition. On the other hand, the inferences allowed with respect to
propositions already established as true are normally applied. In fact, what does hap-
pen is that the principle of explosion is not unrestrictedly applied. The contradictory
propositions are still there, and it may happen that they are used in some inferences,
but they are not taken as true propositions.

By means of a non-explosive negation and the consistency operator ◦, an LFI
may formally represent this scenario. We will return to this point in more detail in

13See, for example, van Dalen [46, p. 225]: “two [logics] stand out as having a solid philosophical-
mathematical justification. On the one hand, classical logic with its ontological basis and on the
other hand intuitionistic logic with its epistemic motivation.”
14It is worth noting that Brouwer’s and Heyting’s attempts to identify truth with a notion of proof
have failed, as Raatikainen [44] shows, because the result is a concept of truth that goes against
some basic intuitions about truth.
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Sect. 3.2.5. For now, we want to emphasize that the sketch of a paraconsistent logic
in which contradictions are epistemologically understood as conflicting evidence,
and not as a pair of contradictory true propositions, is inspired by an analysis of
real situations of reasoning in which contradictions occur. The notion of evidence
is weaker than truth, in the sense that if we know that A is true, then there must be
some evidence for A, but the fact that there is evidence for A does not imply that A
is true. A paraconsistent logic may thus be obtained in a way analogous to the way
that intuitionistic logic has been obtained.

3.2.4 Paraconsistency and the Nature of Contradictions

We now turn to a discussion of paraconsistency from the perspective of the problem
of the nature of contradictions. The latter is a very old philosophical topic that
can be traced back to the beginnings of philosophy in ancient Greece, and, as we
have just seen, is closely related to the issue of the nature of logic. There is an
extensive discussion and defense of the principle of non-contradiction (PNC) in
Aristotle’s Metaphysics, book �.15 According to Aristotle, PNC is the most certain
of all principles and has no other principle prior to it. Although PNC is, strictly
speaking, indemonstrable, Aristotle presents arguments in defense of it. It is not in
fact a problem, since these arguments may be considered as elucidations or informal
explanations ofPNC, rather than demonstrations in the strict sense. InMetaphysics �

we find three versions ofPNC that correspond to the three aspects of logic mentioned
above, ontological, epistemological, and linguistic.We refer to themhere respectively
as PNC-O, PNC-E, and PNC-L.

I. PNC-O (1005b19–20) [S]uch a principle is the most certain of all; which princi-
ple this is, we proceed to say. It is, that the same attribute cannot at the same time
belong and not belong to the same subject in the same respect.

II. PNC-E (1005b28–30) If it is impossible that contrary attributes should belong
at the same time to the same subject (the usual qualifications must be presupposed
in this proposition too), and if an opinion which contradicts another is contrary
to it, obviously it is impossible for the same man at the same time to believe the
same thing to be and not to be.

III. PNC-L (1011b13–22) [T]he most indisputable of all beliefs is that contradic-
tory statements are not at the same time true (...) If, then, it is impossible to affirm
and deny truly at the same time, it is also impossible that contraries should belong
to a subject at the same time.

The point is that PCN-O is talking about objects and their properties, PCN-E
about beliefs, and PCN-L about propositions. These three versions are called by

15All passages from Aristotle referred to here are from [2].
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Łukasiewicz [35] ontological, psychological, and semantic.16 Łukasiewicz strongly
attacks Aristotle’s defense of PNC, and claims that the psychological (i.e. episte-
mological) version is simply false and that the ontological and the semantic (i.e.
linguistic) versions have not been proven at all. He ends the paper by saying that
Aristotle “might well have himself felt the weaknesses of his argument, and so he
announced his principle a final axiom, an unassailable dogma” [35, p. 509]. We
are not going to analyze Aristotle’s arguments here, nor Łukasiewicz’s criticisms in
detail. Rather, we are interested in the following question: What should be the case
in order to make true each one of the formulations of PNC? We will see that the
weaknesses of Aristotle’s arguments have a lot to reveal about contradictions.

The basic idea ofPNC-O corresponds to a theorem of first-order logic: ∀x¬(Px ∧
¬Px), i.e., the same property cannot both belong and not belong to the same object.
An object may have different properties at different moments of time, or from two
different perspectives, but obviously these cases do not qualify as counterexamples
for PNC (cf. Metaphysics, 1009b1 and 1010b10). PNC-O depends on an ontological
categorization of reality in terms of objects and properties. This categorization has
been central in philosophy and is present in logic since its beginnings.17 PNC-O
has an ontological vein even if one is not sympathetic to the notion of property. It
is enough to change ‘the object a has the property P’ to ‘the object a satisfies the
predicate P’. In any case, we are speaking in the broadest sense, which includes
objects in space-time as well as mathematical objects.

The linguistic formulation here called PNC-L, although talking about language,
also has an ontological vein because of the link between reality and the notion of
truth. If there is a claim that is to a large extent uncontentious about truth, it is that
if a proposition (or any other truth-bearer) is true, it is reality that makes it true;
or, in other words, truth is grounded in reality. Understood in this way, PNC-O and
PNC-L collapse, the only difference being that the former depends on the ontological
categorization in terms of objects and properties, while the latter depends on language
and an unqualified notion of truth. Note that Aristotle seems to conflate both, since
in passage III quoted above PNC-O is the conclusion of an argument whose premise
is PNC-L.

A violation of PNC-O would be an object a and a property P such that a has and
does not have P. Hence, in order to show that PNC-O is true, one needs to show
that there can be no such object. Now, this problem may be divided into two parts,
one related to mathematics, the other related to empirical sciences. With respect to
the former, a proof of PNC-O would be tantamount to showing that mathematics is
consistent. But this cannot be proven, even with respect to arithmetic. With respect
to the latter, there is an extensive literature on the occurrence of contradictions in
empirical theories (see, for example, da Costa and French [23, Chap. 5] and Meheus
[37]). However, up to the present day there is no indication that these contradictions

16This tripartite approach is also found in Gottlieb [29], where these three versions are called,
respectively, ontological, doxastic, and semantic.
17For example, the issue of particulars/universals, the Fregean distinction between object and func-
tion, and even Quine’s attacks to the notion of property.
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are due to the nature of reality or belong to the theories, which are nothing but
attempts to give a model of reality in order to predict its behavior. In other words,
there is no clear indication, far less a conclusive argument, that these contradictions
are ontological and not only epistemological.

The linguistic version of PNC is exactly the opposite of the dialetheist thesis as
it is presented by Priest and Berto [43]:

A dialetheia is a sentence, A, such that both it and its negation,¬A, are true (...) Dialetheism
is the view that there are dialetheias. (...) dialetheism amounts to the claim that there are true
contradictions.

Thus, a proof of PNC-L would be tantamount to a disproof of dialetheism. Although
dialetheism is far frombeing conclusively established as true, it has antecedents in the
history of philosophy and is legitimate from the philosophical point of view. Further,
if we accept that every proposition says something about something, a thesis that
has not been rejected by logical analysis in terms of arguments and functions, what
makes PNC-O true would also make PNC-L true, and vice versa. Our conclusion is
that neither PNC-O nor PNC-L has been conclusively established as a true principle.
And this is not because Aristotle’s arguments, or any other philosophical arguments
in defense of the two principles are not good. Rather, the point is that this issue
outstrips what can be done a priori by philosophy itself. It seems to be useless for
the philosopher to spend time trying to prove them.

Now we turn to PNC-E. As it stands, the principle says that the same person
cannot believe in two contradictory propositions. Here, the point is not how it could
be proved, because it really seems that there are sufficient reasons to suppose that
it has already been disproved. It is a fact that in various circumstances people have
contradictory beliefs. Even in the history of philosophy, as Łukasiewicz [35, p. 492]
remarks, “contradictions have been asserted at the same time with full awareness.”
Indeed, since there are philosophers, like Hegel and the contemporary dialetheists,
that defend the existence of contradictions in reality, this should be an adequate coun-
terexample to PNC-E. Furthermore, if we take a look at some contexts of reasoning,
we will find out that there are a number of situations in which one is justified in
believing both A and ¬A. Sometimes we have simultaneous evidence for A and for
¬A, which does not mean that we have to take both as true, but we may have to deal
simultaneously with both propositions. Nevertheless, the problem we have at hand
may be put more precisely. PNC-E is somewhat naive and does not go to the core
of the problem. The relevant question is whether the contradictions we find in real
situations of reasoning—databases, paradoxes, scientific theories—belong to reality
properly speaking, or have their origin in thought and/or in the process of acquiring
knowledge.

Now, let us see what lessons may be taken from all of this. It is a fact that contra-
dictions appear in several contexts of reasoning. Any philosophical attempt to give a
conclusive answer to the question of whether there are contradictions that correctly
describe reality is likely to be doomed to failure. However, the lack of such a conclu-
sive answer does not imply that it is not legitimate to devise a formal system in which
contradictions are interpreted as true. If there are some ontological contradictions,
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among the propositions that describe reality correctly we are going to find some
true contradictions. But of course reality is not trivial, so we need a logic in which
explosion does not hold. Therefore, if contradictions are ontological, a justification
for paraconsistency is straightforward.

Regarding epistemological contradictions, even if some contradictions belong to
reality, for sure it is not the case that every contradictionwe face is not epistemological
in the sense presented in Sect. 3.2. In general, conflicting information that is going
to be corrected later, including contradictory results of scientific theories, may be
taken as epistemological contradictions. It is perfectly legitimate, therefore, to devise
formal systems in which contradictions are understood either epistemologically or
ontologically. In the latter case, it may be that both A and ¬A are true; in the former,
we takeA and¬A asmeaning conflicting evidence about the truth-value of A. In both
cases, explosion does not hold without restrictions; in both cases, the development
of paraconsistent logics is line with the very nature of logic.

A philosophical justification for paraconsistent logics, and in particular for the
Logics of Formal Inconsistency, depends essentially on showing that they are more
than ‘mathematical structures’ with a language, a syntax, and a semantics, about
which several technical properties can be proved.Working on the technical properties
of formal systems helps us to understand various logical relations and properties of
language and a number of concepts that are philosophically relevant. However, in
order to justify a whole account of logical consequence it is necessary to show that
such an account is committedwith real situations of reasoning. From this perspective,
given a formal system, the key question is whether or not it provides an intuitive
account of what follows from what. Depending on the answer given, the logic at
stake acquires a ‘philosophical citizenship’.

In what follows, we show that Logics of Formal Inconsistency may be seen, on
the one hand, as an account of contexts of reasoning in which contradictions occur
because reality itself is contradictory, and, on the other hand, as an account of contexts
in which contradictions are provisional states that (at least in principle) are going
to be corrected later. LFIs are able to deal with contradictions, no matter whether
they are understood epistemologically or ontologically. We may work out formal
systems in which a contradiction means that there are propositions A and ¬A such
that both are true, as well as systems in which a contradiction is understood in a
weaker sense as simultaneous evidence that A and ¬A are true. In the latter case,
faithful to the idea that contradictions are not ontological, the system does not tolerate
a true contradiction—if it is the case that A and ¬A are both true, triviality obtains.

3.2.5 Epistemological Contradictions

In this section we present the basic ideas of a paraconsistent formal system in which
contradictions are understood epistemologically. From the viewpoint of a (semanti-
cal) intuitive interpretation, the duality between paraconsistency and paracomplete-
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ness may be understood as, respectively, ‘excess of information’ and ‘lack of infor-
mation’. Accordingly,

v(A ∧ ¬A) = 1 means that there is too much information about the truth value
of A,
v(A ∨ ¬A) = 0 means that there is too little information about the truth value
of A.

Intuitionistic logic is paracomplete. Its ‘lack of information’may be understood as the
absence of a constructive proof, not as falsity in the strict sense. This approach allows
a plausible and intuitive reading of Kripke models for intuitionistic logic. When a
stage attributes the value 0 both to A and to ¬A, this may be taken, respectively, as
‘A has not been proved yet’ and ‘¬A has not been proved yet’. Notice that if there
is a stage t1 in a model M such that M, t1 � A ∨ ¬A, it means that M, t1 � A and
M, t1 � ¬A. But the latter is the case only if in M there is a stage t2 ≥ t1 such that
M, t2 � A (remember that ¬A holds in a stage t if and only if for all t ′ ≥ t, t ′

� A).
We suggest that the stage t1 above may be intuitively interpreted as a scenario such
that there is too little information about A and about ¬A because both have not been
proved yet, so both A and ¬A receive the value 0.

In Sect. 3.2.3 we mentioned that the identification of the notion of constructive
proofwith truth yields some difficult problems, and referred the reader to Raatikainen
[44]. But it is easy to see some of these same problems with Kripke models if we
identify 1 and 0 with, respectively, true and false. It is awkward if one has found out
in stage t2 that A is true, A being a mathematical theorem, that the truth of A is not
transmitted to the past, to stage t1. Likewise, since the whole story is designed for
mathematical propositions, it is strange that in t1 we regard a proposition A false, but
that in a later stage t2, conceived as a later moment in time, A becomes true.

Now we turn to paraconsistent logic, the dual situation in which both A and ¬A
receive the value 1. This may be understood as the presence of simultaneous but
non-conclusive evidence that A is true and ¬A is true. ‘Evidence for A’ in the sense
proposed here are ‘reasons to believe in A’. One is justified in believing that A is true
inasmuch one has evidence available that A is true. But of course it may be that there
are also reasons for believing ¬A, and in this case the evidence is not conclusive.
The following passage from da Costa [21, pp. 9–10] helps to clarify what we mean
by evidence.

Let us suppose that we want to define an operational concept of negation (...)¬A, where A is
atomic, is to be true if, and only if, the clauses of an appropriate criterion c are fulfilled, clauses
that must be empirically testable (...) the samemust be valid for the atomic proposition A, for
the sake of coherence. Hence, there exists a criterion d for the truth of A. But clearly it may
happen that the criteria c and d be such that they entail, under certain critical circumstances,
the truth of both A and ¬A.

da Costa says that some ‘certain critical circumstances’, entail the truth and the falsity
of A. However, it seems to us that it would be perfectly reasonable at this point not to
draw the conclusion that A is both true and false. It is better to be more careful and
to take the contradiction as a provisional state, a kind of excessive information that
should, at least in principle, be eliminated by means of further investigation. Now,
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a counterexample for explosion is straightforward: we may have non-conclusive
evidence for both A and ¬A, but no evidence for B at all.

It is remarkable that there is a kind of duality between the notions of evidence and
constructive proof. They are, so to speak, respectively a ‘weaker truth’ and a ‘stronger
truth’. A constructive proof of A implies the truth of A, but the converse does not
hold. Inversely, if one knows the truth of A, it implies the presence of evidence for
A, but the converse does not hold.

We have thus given an intuitive interpretation for the paraconsistent negation that
justifies the invalidity of explosion. So far so good. However, we cannot yet express
that some proposition is true, because the notion of evidence is weaker than truth.
With the help of the consistency operator this problem can be solved. We propose
the following intuitive meaning for the consistency operator: ◦A means informally
that the truth-value of A has been conclusively established. Now we have resources
to express not only that there is evidence that A is true but also that A has been
established (by whatever means) as true: ◦A ∧ A. Notice that how the truth or falsity
of a proposition is going to be established is not a problem of logic. Truth comes
from outside the formal system. Let us see how we can express these ideas in a logic
of formal inconsistency.

3.3 On the Mathematics of the Logics of Formal
Inconsistency

3.3.1 mbC: A Minimal LFI

We start by presenting mbC, a basic LFI. This name stands for ‘a minimal logic
with the axiom bc1’, and ‘bc’ stands for ‘basic property of consistency’. mbC is an
extension of classical positive propositional logic (from now on, CPL+) enriched
with a non-explosive negation and a consistency operator, the unary operator ◦. mbC
is interesting because it has a minimal apparatus and several technical properties that
illustrate the main features of Logics of Formal Inconsistency. As we shall see, mbC:

i. permits us to define classical negation, and thus can be seen as an extension of
classical logic;

ii. permits recovering classical consequence by means of a derivability adjustment
theorem (DAT );

iii. distinguishes the consistency of a formula A from the non-contradiction of A,
i.e., ◦A and ¬(A ∧ ¬A) are not equivalent;

iv. is gently explosive in the sense that it tolerates some pairs of formulas A and
¬A, while it is explosive with respect to others;

v. has a sound and complete bivalued semantics.18

18A more comprehensive and detailed presentation of mbC can be found in Carnielli et al. [15].
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3.3.1.1 The Syntax of MbC

Let L1 be a language with a denumerable set of sentential letters {p1, p2, p3, . . .},
the set of connectives {◦,¬,∧,∨,→}, and parentheses. The consistency operator ◦
is a primitive symbol and ¬ is a non-explosive negation. The set of formulas of L1 is
obtained recursively in the usual way; and Roman capitals stand for meta-variables
for formulas of L1. The logic mbC is defined over the language L1 by the following
Hilbert system:

Axiom-schemas:
Ax. 1. A → (B → A)

Ax. 2. (A → (B → C)) → ((A → B) → (A → C))

Ax. 3. A → (B → (A ∧ B))

Ax. 4. (A ∧ B) → A
Ax. 5. (A ∧ B) → B
Ax. 6. A → (A ∨ B)

Ax. 7. B → (A ∨ B)

Ax. 8. (A → C) → ((B → C) → ((A ∨ B) → C))

Ax. 9. A ∨ (A → B)

Ax. 10. A ∨ ¬A
Ax. bc1. ◦A → (A → (¬A → B))

Inference rule: modus ponens.

Positive classical propositional logic, CPL+, is given by Axioms 1–9 plus modus
ponens.19 mbC is an extension of CPL+.20 Due to the Axiom bc1, mbC is gently
explosive21:

For some A and B:
A,¬A � B,
◦A, A � B,
◦A,¬A � B,
While for every A and B: ◦A, A,¬A � B

19An equivalent system is obtained by substituting Axiom 9 by Peirce’s Law, ((A → B) → A) →
A. Indeed, it is well known that Axioms 1 and 2 plus Peirce’s Law define positive implicative
classical logic.
20LFIs may also be obtained as extensions of positive intuitionistic propositional logic, IPL+,
the system given by Axioms 1–8 plus modus ponens. Different formal systems may be obtained
depending on the positive logic one starts with and the desired behavior of negation and the operator
◦. The inconsistency of a formula A may also be primitive, represented by •A, that may or may
not be equivalent to ¬ ◦ A (see details in Carnielli and Coniglio [10]). We have chosen here to
take CPL+ as a basis and mbC as the first LFI, because this allows for a simpler and more didactic
presentation, more suitable to the aims of this text.
21A precise characterization of the principle of gentle explosion is to be found in Carnielli et al.
[15, pp. 19–20].
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The idea, as we have seen, is that we should be able to separate the contradictions
that do not lead to explosion from those that do. The Axiom bc1 is also called the
gentle explosion law, because it is explosive only with respect to formulas marked
with ◦.

The definition of a derivation of A from a set of premises � (� �mbC A) is the
usual one: a finite sequence of formulas B1 . . . Bn such that A is Bn and each Bi ,
1 ≤ i ≤ n (that is, each line of the proof) is an axiom, a formula that belongs to �,
or a result of modus ponens. A theorem is a formula derived from the empty set of
premises. The logic mbC satisfies the following properties:

P1. Reflexivity: if A ∈ �, then � �mbC A;
P2. Monotonicity: if � �mbC B, then �, A �mbC B, for any A;
P3. Cut: if � �mbC A and �, A �mbC B, then �,� �mbC B;
P4. Deduction theorem: if �, A �mbC B, then � �mbC A → B;
P5. Compactness: if � �mbC A, then there is � ⊆ �, � finite, � �mbC A.

Since the properties P1, P2, and P3 hold, mbC is thus a standard logic (cf. Carnielli
et al. [15] p. 6). The propertiesP1,P2,P3, andP5 come directly from the definition of
� �mbC A. The deduction theorem comes from Axioms 1 and 2 plus modus ponens.
Since monotonicity holds, the converse of the deduction theorem also holds.

Classical logic may be recovered in mbC in two ways: by defining a negation that
has the properties of the classical negation and by means of a derivability adjustment
theorem (DAT ).

Fact 3.1 Classical negation is definable in mbC

Proof We define ⊥ := ◦A ∧ A ∧ ¬A and ∼A := A → ⊥. Now, we get explosion,
A → (∼A → B), as a theorem, in a few steps from bc1. From the Axiom 9 we get
excluded middle, A ∨ ∼A. Classical propositional logic CPL is obtained by Axioms
1–8 plus explosion, excluded middle and modus ponens. �

The general purpose of derivability adjustment theorems is to establish a rela-
tionship between two logics L1 and L2, in the sense of restoring inferences that
are lacking in one of them.22 The basic idea is that we have to ‘add some informa-
tion’ to the premises in order to restore the inferences that are lacking. DATs are
especially interesting because they show what is needed in order to restore classical
consequence in a paraconsistent scenario.

For the sake of stating precisely the DAT between mbC and CPL, we need to
take into account the difference between the respective languages. The first step
will be to translate one language into another. Let L2 be a language with the set of

22As far as we know, DATs were proposed for the first time by Diderik Batens, one of the main
researchers in the field of paraconsistency. His inconsistency-adaptive logics are a kind of para-
consistent logic that restricts the validity of the principle of explosion according to the information
available in some context. As we see the proposal of inconsistency-adaptive logics, they share with
the Logics of Formal Inconsistency the possibility of interpreting contradictions epistemologically.
However, an important difference is that in adaptive logics everything is supposed to be consistent
unless proven otherwise. LFIs, in contrast, do not presuppose consistency.
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connectives {∼,∨,∧,→}. Instead of a paraconsistent negation ¬, L2 has classical
negation∼.We present a simplified proof. A detailed proofmay be found in Carnielli
and Coniglio [10].

Fact 3.2 Let t be a mapping which replaces ∼ by ¬. Then, the following holds:
For all � and for all B, � ∪ {B} ⊆ L2, there is a �, � ⊆ L1 such that � �C P L B iff
t[�], ◦� �mbC t[B], where ◦� = {◦A : A ∈ �}.
Proof From left to right, suppose there is a derivation D of � �C P L B (in the lan-
guage L2 of CPL). If we simply change the classical negations ∼ to ¬, such a
derivation does not hold in mbC. We need to be concerned only with occurrences of
explosion. The relevant point is that some information has to be available in order to
reconstruct classical reasoning. An occurrence of a line

i. A → (∼A → B)

in the derivation D has to be substituted by the following lines, obtaining a derivation
D’:

i1. ◦ A
i2. ◦ A → (A → (¬A → B))

i3. A → (¬A → B).

From right to left, suppose there is a derivation D’ of t[�], ◦� �mbC t[B]. We get a
derivation D of � �C P L B just by deleting the occurrences of ◦ and changing ¬ to
∼. �

The reader should notice the difference between restoring classical consequence
by means of a definition of a classical negation inside mbC and by means of a DAT.
In the latter case, the central issue is the information that has to be available in
order to restore classical reasoning. In each occurrence of classical explosion, A →
(∼A → B), the information needed from the viewpoint of mbC is the consistency
of A, represented by ◦A.

3.3.1.2 A Semantics for mbC

The sentential connectives of classical logic are truth-functional. That means that
the truth-value of a molecular formula is functionally determined by its structure
and by the truth-values of its components, which reduce to the truth-values of the
atomic formulas. Truth-functionality as a property of the semantics of certain logics
is a mathematical rendering of the Principle of Compositionality, which says that the
meaning of a complex expression is functionally determined by the meanings of its
constituent expressions and the rules used to combine them. This principle is also
called Frege’s Principle, since it can be traced back to Frege.

The truth-value of molecular formulas may be determined by using the familiar
matrices (truth-tables) that any logic student is familiar with. These matrices have
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only two values (true and false, or 1 and 0) in the case of classical propositional
logic, but the idea can be generalized to any number of ‘truth-values’.

A logic can be ‘truth-functional’ even if it is characterized semantically by a finite,
or even by an infinite, number of ‘truth-values’. Indeed, in most many-valued logics
the ‘truth-value’ of a molecular formula is also functionally determined by the values
of the atomic formulas.

However, instead of talking about truth-values, it would be better to talk about
semantic values, since, as we have argued earlier, the values 0 and 1 attributed to
formulas do not need to be always interpreted as false and true. The point is that
we do not want to commit ourselves from the start to just the values true and false
attributed to formulas. We have argued in Sect. 3.2.5 that in intuitionistic logic the
value 1 attributed to A is better taken as an indication that a constructive proof of
A is available, and our suggestion with respect to (some) paraconsistent logics is to
interpret the value 1 as an indication that there is some evidence for the truth of A.

We will now try to put things in a more neutral and precise way. Let us say that
a semantics for a logic L is called matrix-functional (instead of truth-functional) if
the semantic value of a formula of L is functionally determined by means of a finite
matrix. This is the case for classical logic, but not for intuitionistic logic, as Gödel
[27] has proved, nor is the case for mbC.23

A non-matrix-functional semantics for paraconsistent logics was proposed by da
Costa and Alves [22]. There, we find a bivalued semantics for da Costa’s C1. The
semantic clause for a paraconsistent (but not paracomplete) negation has only ‘half’
of the clause for classical negation: if v(¬A) = 0, then v(A) = 1. The idea is that
it cannot be the case that A and ¬A receive simultaneously the value 0. But the
possibility is open for both to receive the value 1. This kind of semantics is described
by the so-called quasi-matrices. The quasi-matrix for negation is as follows:

A 0 1
¬A 1 0 1

It is clear that the semantic value of ¬A is not functionally determined by the
semantic value of A: when v(A) = 1, v(¬A) may be 1 or 0. For this reason, this
semantics is clearly nonfunctional (i.e., the semantic value of ¬A is not functionally
determined by the semantic value of A). In Carnielli et al. [15, pp. 38ff], we find a
bivalued semantics that is sound and complete for mbC, as described below:

Definition 3.3 An mbC-valuation is a function that assigns the values 0 and 1 to
formulas of the language L1, satisfying the following clauses:

(i) v(A ∧ B) = 1 if and only if v(A) = 1 and v(B) = 1;
(ii) v(A ∨ B) = 1 if and only if v(A) = 1 or v(B) = 1;

23In fact, not only mbC but all logics of the da Costa hierarchy Cn , and most LFIs, are not charac-
terizable by finite matrices (see Carnielli et al. [15, p. 74, Theorem 121]).
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(iii) v(A → B) = 1 if and only if v(A) = 0 or v(B) = 1;
(iv) v(¬A) = 0 implies v(A) = 1;
(v) v(◦A) = 1 implies v(A) = 0 or v(¬A) = 0.

We say that a valuation v is a model of a set � if and only if every proposition of �

receives the value 1 in v, and v is a model of a proposition A if and only if A receives
the value 1 in v.

The notion of logical consequence is defined as usual: a formula A is an mbC-
consequence of a set � (� �mbC A), if and only if for every valuation v, if v is a
model of �, then v is a model of A (if v � �, then v � A; when there is no risk of
ambiguity, we shall write simply � and �).

Notice that the clauses for∧,∨ and→ are exactly the same as in classical logic. By
clause (iv), the system is paraconsistent but not paracomplete, since excluded middle
(for paraconsistent negation) holds. We suggest that the values 0 and 1 are not to
be understood as (respectively) false and true, but rather as absence and presence of
evidence. Thus:

v(A) = 1 means ‘there is evidence that A is true’;
v(A) = 0 means ‘there is no evidence that A is true’;
v(¬A) = 1 means ‘there is evidence that A is false’;
v(¬A) = 0 means ‘there is no evidence that A is false’.

The samecounterexample invalidates explosion anddisjunctive syllogism:v(A) =
1, v(B) = 0 and v(¬A) = 1. Non-contradiction is also invalid: v(A) = v(¬A) = 1,
hence v(A ∧ ¬A) = 1, but v(¬(A ∧ ¬A)) may be 0. Due to clause (v), it may be
the case that v(A) = 1, v(¬A) = 0 (or vice versa) but v(◦A) = 0. In this valuation,
v(¬(A ∧ ¬A)) = 1, hence the non-equivalence between ◦A and ¬(A ∧ ¬A). Also,
due to clause (v), it is clear that mbC does not admit a trivial model, i.e., a model
such that v(A) = 1 for every formula A.

We would like to make some comments with respect to the validity of excluded
middle in mbC, given the intended interpretation in terms of evidence. Indeed, we
may have a situation such that there is no evidence at all, neither for the truth nor for
the falsity of a proposition A, but this cannot be represented in mbC. In fact, mbC
may be easily modified in order to be able to represent such a situation. On the other
hand, the validity of excluded middle may be justified when we by default attribute
evidence for ¬A when there is no evidence at all. This happens, for instance, in a
criminal investigation in which one starts considering everyone (in some group of
people) not guilty until proof to the contrary.

Whether excludedmiddle should bevalid from the start, or be recoveredonce some
information has been added may be seen as a methodological decision that depends
on the reasoning scenario we want to represent. However, the point we want to
emphasize is that the fact that inmbC ◦A and¬(A ∧ ¬A) are not logically equivalent
makes mbC suitable to represent the basic features of the intuitive interpretation of
contradiction as conflicting evidence.
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3.3.1.3 Soundness and Completeness

The present section shows that the axiomatic system is sound and complete with
respect to the bivalued semantics presented, that is, the relations �mbC and �mbC

coincide.

Theorem 3.4 Soundness: if � �mbC A, then � �mbC A

Proof In order to show that the system is sound we have to check that every axiom
is valid and that modus ponens preserves validity. This is an easy task, left as an
exercise for the reader. We illustrate the procedure with Axiom bc1 by means of the
quasi-matrix below:

A 0 1
B 0 1 0 1
¬A 1 1 0 1 0 1
◦A 0 1 0 1 0 1 0 0 1 0
¬A → B 0 0 1 1 1 1 0 1 1 1
A → (¬A → B) 1 1 1 1 1 1 0 1 1 1
◦A → (A → (¬A → B)) 1 1 1 1 1 1 1 1 1 1

We see that bc1 receives the value 1 in every mbC-valuation. �
In order to obtain completeness we shall first prove some auxiliary lemmas.

Definition 3.5 A set of propositions � is maximal with respect to A iff:

(i) � � A;
(ii) For any B /∈ �: � ∪ {B} � A

The idea is that � does not imply A, but the set obtained by ‘adding’ to � anything
outside it will entail A. We start by proving a Lindenbaum-style lemma.

Lemma 3.6 Given a set � and a formula A such that � � A, then there is a set �,
� ⊆ �, such that � is maximal with respect to A.

Proof The language L1 has a denumerable number of formulas that can be put in
a list: B0, B1, B2 . . .. We define a sequence of sets �i whose union is maximal with
respect to A.

�0 = �

�n+1 = �n ∪ {Bn}, if �n ∪ {Bn} � A
Otherwise, �n+1 = �n

Now, by taking the union of all �n: � = ⋃ {�n : n ≥ 0}, it remains to prove the
following:

� is maximal with respect to A.
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Indeed, we do this in three steps.
(i) for all n, �n � A. The proof is by induction on n, given the method of construction
of each �n .
(ii)� � A. Suppose� � A. Then there is a derivationD ofAwith premises in�.D is
a finite sequence of formulas of L1. The formulas that appear in the derivationDwere
in the list of formulas of L1 and have been added to some �n in the respective step
of the construction of the sequence of sets �0, �1, �2... Among these formulas, one
has the greatest index, k. This formula Ak has been added to the set �k , obtaining the
set �k+1. But �k+1 has not only Ak but also all formulas that appear in the derivation
D with index less than k. Therefore, �k+1 � A, which contradicts (i) above. Hence
there is no derivation D, and � � A. Notice that this proof depends essentially on
the fact that compactness (property P5) holds for mbC .
(iii) For any B /∈ � : � ∪ {B} � A. Suppose B /∈ �. B is in some position on the
list of formulas of L1, i.e., B = An for some n. B has not been ‘added’ to the set
�n because it would make A derivable. Hence, �n ∪ {B} � A. �n ⊆ �, so � ∪ {B}
� A. �

Lemma 3.7 If � is maximal with respect to A, then � is closed under derivability
(i.e., � � B iff B ∈ �)

Proof Suppose B /∈ �. From (iii) above, we get� ∪ {B} � A. Now suppose� � B.
So, by cut (property P3), � � A, which is impossible. Hence, � � B. The converse
is immediate, given reflexivity (property P1). �

Lemma 3.8 Let � be a set maximal with respect to some proposition A in mbC.
Then:

(i) (B ∧ C) ∈ � iff B ∈ � and C ∈ �;
(ii) (B ∨ C) ∈ � iff B ∈ � or C ∈ �;
(iii) (B → C) ∈ � iff B /∈ � or C ∈ �;
(iv) B /∈ � implies ¬B ∈ �;
(v) ◦B ∈ � implies B /∈ � or ¬B /∈ �.

Proof Item (i) depends on Axioms 3, 4, and 5; item (ii) depends on Axioms 6, 7, and
8; (iii) depends on Axioms 1, 9, and the deduction theorem; (iv) depends on Axiom
10; (v) depends on bc1. �

Corollary 3.9 Let � be a set maximal with respect to some proposition A. The
characteristic function of � defines an mbC-valuation.

Proof Define a function v : L1 −→ {0, 1} such that for any formula B, v(B) = 1 iff
B ∈ �. It is easy to see that the valuation v satisfies clauses (i)–(v) above. �

This is the crucial step in the proof. Up to this point we have dealt only with syntax.
Now, in obtaining a model for �, we have just related the syntax (i.e., the deductive
apparatus) and the semantics in such a way that the proof of completeness will follow
in a few steps.
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Theorem 3.10 Completeness: if � �mbC A, then � �mbC A

Proof Suppose � � A. Then there is a set � maximal with respect to A such that
� ⊆ �. So, � � A and A /∈ �. The characteristic function v of � is such that
v(A) = 0. Since v � � and � ⊆ �, it follows that v � �. But v � A, hence � � A.
By contraposition, completeness is readily established. �

3.3.2 Improving mbC: Towards a Logic of Evidence and
Truth

In mbC, we have seen some important features of LFIs. However, the system may
be improved in order to better express the intuitive interpretation of negation and the
operator ◦we have presented. This is achieved by the logic L ETK . This name stands
for ‘logic of evidence and truth based on CPL+’.

We have already remarked on the duality between paraconsistency and paracom-
pleteness. Now, in a way analogous to that by which we recover explosion with
respect to a formula A, in a paracomplete logic we may recover the validity of
excluded middle with respect to A:

Ax. bd1. ◦A → (A ∨ ¬A).

The semantic clause for the Axioms bc1 and bd1 is as follows:

(vi) if v(◦A) = 1, then [v(A) = 1 iff v(¬A) = 0].
If excluded middle holds for A, we say that A is determined. ‘bd’ stands for ‘basic
property of determinedness’. A system in which both bd1 and bc1 holds is thus
paracomplete and paraconsistent. It is better to call ◦, in this context, not a consistent
operator but rather a classicality operator, since◦A recovers classical truth conditions
with respect to A. But ◦A still may be informally understood as meaning that the
truth-value of A has been conclusively established. We want to emphasize here that
what makes possible these alternative readings of the operator ◦ is the fact that ◦A
may be independent of ¬(A ∧ ¬A).

Now, with bd1 and bc1, we have the resources to express the following situations:
no evidence at all, non-conclusive evidence, conflicting evidence, and conclusive
evidence (i.e., truth)—see the following table.

No evidence at all v(A) = 0, v(¬A) = 0, v(◦A) = 0
Non-conclusive evidence for the truth of A v(A) = 1, v(¬A) = 0, v(◦A) = 0
Non-conclusive evidence for the falsity of A v(A) = 0, v(¬A) = 1, v(◦A) = 0
Conflicting evidence v(A) = 1, v(¬A) = 1, v(◦A) = 0
Impossible valuation v(A) = 0, v(¬A) = 0, v(◦A) = 1
A Has been conclusively established as true v(A) = 1, v(¬A) = 0, v(◦A) = 1
A Has been conclusively established as false v(A) = 0, v(¬A) = 1, v(◦A) = 1
Impossible valuation v(A) = 1, v(¬A) = 1, v(◦A) = 1
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We now improve negation by adding the axiom schemas below, which fit the idea
of interpreting the values 0 and 1 as absence and presence of evidence. The logic
L ETK is thus obtained by adding to the CPL+ (Axioms 1–9) the Axioms 11–14
below, plus bc1 and bd1.

Ax. 11. A ↔ ¬¬A
Ax. 12. ¬(A ∧ B) ↔ (¬A ∨ ¬B)

Ax. 13. ¬(A ∨ B) ↔ (¬A ∧ ¬B)

Ax. 14. ¬(A → B) ↔ (A ∧ ¬B)

One central question for paraconsistent logicians is that of specifying a non-
explosive negation that still has enough properties to be called a negation. One way
to approach this problem is to list the properties of classical negation and check
whether or not each one of these properties fits the intuitive meaning we want to
represent by a non-explosive negation. If we do that, we find out that Axioms 11–14
are well suited to express the ideas of absence and presence of evidence. Let us
take a look at Axiom 12. It is reasonable to conclude that if there is some evidence
that a conjunction is false, that same evidence must be an evidence that one of the
conjuncts is false. On the other hand, if there is some evidence that A is false, that
same evidence must be evidence that A ∧ B is false, for any B. Analogous reasoning
applies for disjunction and implication.

3.3.2.1 A Semantics for L ETK

A bivalued semantics for L ETK is given by clauses (i)–(iii) of mbC (which give
classical truth conditions for ∧, ∨ and →), plus the following:

(vi) if v(◦A) = 1, then [v(A) = 1 if and only if v(¬A) = 0],
(vii) v(A) = 1 iff v(¬¬A) = 1,
(viii) v(¬(A ∧ B)) = 1 iff v(¬A) = 1 or v(¬B) = 1,
(ix) v(¬(A ∨ B)) = 1 iff v(¬A) = 1 and v(¬B) = 1,
(x) v(¬(A → B)) = 1 iff v(A) = 1 and v(¬B) = 1.

The logic L ETK can be proved without much trouble to be sound and complete
with respect to the semantics above. The proof needs only to extend Lemma 3.8 of
Sect. 3.3.1.3 to the new axioms, which can be done without difficulties. In L ETK ,
a DAT holds as in mbC and a classical negation is definable in the same way as in
mbC, thus L ETK may be also seen as an extension of propositional classical logic.
It is worth noting that according to the intuitive interpretation proposed, L ETK

like mbC does not tolerate true contradictions: indeed, a true contradiction yields
triviality, as in classical logic. If A is simultaneously true and false, this is expressed
by (◦A ∧ A) ∧ (◦A ∧ ¬A), that, in its turn, is equivalent to ◦A ∧ A ∧ ¬A, but the
latter formula is nothing but a bottom particle.
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3.3.3 The Logic Cila: Non-contradiction = Consistency

The logic Cila is equivalent (up to translations) to the system C1 of da Costa’s
hierarchy. Aside from some differences in the choice of axioms, in C1 A◦ is an
abbreviation of ¬(A ∧ ¬A), while in Cila the consistent operator ◦ is primitive.
However, inCila, differently frommbC and L ETK , ◦A and¬(A ∧ ¬A) are logically
equivalent.

Cila is well suited to interpret the values 0 and 1 as false and true. For this
reason, Cila is LFI suitable for representing true contradictions. Since Cila is gently
explosive, a distinction may be made between the contradictions that are explosive
and those that are not.

Cila is obtained over the language L1 as an extension of mbC. We add to the latter
the axiom-schemas below:

Ax. cf. ¬¬A → A
Ax. ci. ¬ ◦ A → (A ∧ ¬A)

Ax. cl. ¬(A ∧ ¬A) → ◦A
Ax. ca1. (◦A ∧ ◦B) → ◦(A ∧ B)

Ax. ca2. (◦A ∧ ◦B) → ◦(A ∨ B)

Ax. ca3. (◦A ∧ ◦B) → ◦(A → B)

The Axioms ci and cl, together with bc1, give us the equivalence between ◦A and
¬(A ∧ ¬A). In mbC and L ETK we had already that ◦A � ¬(A ∧ ¬A) and A ∧
¬A � ¬ ◦ A. Now we get the converse of both.

Instead of having ◦ as primitive, we may adopt an inconsistency operator • (‘•A’
means that A is inconsistent). Or we may define •A as ¬ ◦ A. In Cila, •A so defined
and A ∧ ¬A are logically equivalent. Indeed, in anLFI conceived to be able to express
true contradictions, ◦A should be logically equivalent to ¬(A ∧ ¬A), as well as •A
and A ∧ ¬A. The propagation of consistency holds in Cila, given by Axioms ca1 to
ca3. A classical negation is definable in Cila: ∼A := ◦A ∧ ¬A. Also, as well as in
mbC, there is a bottom particle: ⊥ := ◦A ∧ A ∧ ¬A. We leave as an exercise for the
reader the proof that �Cila (A → ⊥) ↔ (◦A ∧ ¬A).

3.3.3.1 A Semantics for Cila

A complete and correct semantics for Cila is given by the clauses (i)–(iv) of mbC
plus the following:

(xiii) v(◦A) = 1 iff v(A) = 0 or v(¬A) = 0
(xiv) v(¬¬A) = 1 implies v(A) = 1

A completeness proof for Cila is like that for mbC. We need only to complement
Lemma 3.8 of the completeness proof for mbC.
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3.3.3.2 The Equivalence Between Ci la and C1

The logic C1 is defined over the set of connectives {∧,∨,→,¬} in the following
way. First, we drop from Cila the Axioms 9 (namely A ∨ (A → B)), bc1, ci, cl, ca1,
ca2 and ca3. Then we define

A◦ := ¬(A ∧ ¬A)

and add the axioms below:

Ax. 12. B◦ → ((A → B) → ((A → ¬B) → ¬A))

Ax. 13. (A◦ ∧ B◦) → ((A ∧ B)◦ ∧ (A ∨ B)◦ ∧ (A → B)◦)

Since Axiom 9 is a theorem of C1, the latter may be seen as an extension of CPL+.
A remarkable difference between C1 and Cila is that the former recover classical

reasoning by means of the principle of non-contradiction, while the latter recover it
by means of principle of explosion, thus emphasizing the duality between explosion
and excluded middle. We leave as an exercise for the reader to show the equivalence
between C1 and Cila, proving bc1 in C1 and the Axiom 12 in Cila (changing in each
case the consistency operator).

3.4 Final Remarks

There is still a lot of work to be done in the field of Logics of Formal Inconsistency.
They are a relatively new subject in paraconsistent research, having appeared in the
literature for the first time in Carnielli and Marcos [11]. The unary operator ◦ (or
its counterpart in da Costa’s systems, ◦) initially had the purpose of representing in
the object language the metatheoretical notion of consistency. But the idea has been
further developed in such a way that it may receive alternative meanings. Aside from
freedom from contradiction, we have seen here two different ways of interpreting
◦A: (i) the truth value of A has been conclusively established; (ii) classical truth
conditions for negation hold for A. According to (i), ◦A says something about the
justification of A; according to (ii), ◦A recovers at once the validity of explosion
and excluded middle with respect to A, and may be called, instead of a consistent
operator, a classicality operator. Dually to logics in which explosion does not hold
but may be recovered, which we call Logics of Formal Inconsistency, logics in which
excluded middle does not hold but may be recovered are called Logics of Formal
Undeterminedness (see Marcos [36]). ‘Consistency’ and ‘determinedness’ may be
recovered together or one at a time, depending on the scenario we want to represent.

A first-order LFI, QmbC, has been investigated in full detail in Carnielli et al.
[16]. QmbC is an extension of mbC where quantifiers are added with appropriate
syntactical rules. A semantics is provided such that, as expected, there may be atomic
formulas Fa and ¬Fa such that both receive the value 1 without trivialization. A
first-order extension of L ETK will be presented elsewhere.
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It is a fact that paraconsistent logics have been gaining an increasingly important
place in contemporary philosophical debate. On the other hand, there is still some
resistance to recognizing their philosophical significance. As we have tried to show,
although the view that maintains that contradictions belong to reality is legitimate
and has antecedents in the history of philosophy, there is another way open, namely
that of understanding contradictions from the epistemological viewpoint. We have
argued that (and shown how) it can be done.

LFIs may be intuitively interpreted ontologically as well as epistemologically.We
have presented formal systems that are amenable to both interpretations. LFIs are
neutral with respect to the philosophical issues related to the nature of contradictions
and to the nature of paraconsistency. This is not because LFIs are not concerned with
an intuitive interpretation of formal systems, but rather because LFIs are appropriate
for expressing the two basic philosophical views with respect to contradictions, the
epistemological and the ontological.

There is another way to provide a semantics for LFIs, so-called possible-
translation semantics (see Carnielli and Coniglio [8] and Carnielli [7]). There are
also several applications of LFIs, such as in foundations of set theory (Carnielli and
Coniglio [9]), databases (Carnielli et al. [14]), fuzzy logic (Coniglio et al. [18]), auto-
matic theorem provers (Neto and Finger [40]), and quantum computation (Agudelo
and Carnielli [1]), among others.
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Abstract Three-valued matrices provide the simplest semantic framework for
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4.1 Introduction

It is well known that classical logic is not adequate for reasoning with inconsistent
information. One of the oldest and the most common approaches to overcome this
shortcoming of classical logic is to enrich the set of truth-values with a third ele-
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accepted logics that came out from this approach. However, it should be emphasized
that the scope of thematerial we present is limited according to the following criteria:

1. The languages that are considered in the sequel are propositional, as this is the
heart of every paraconsistent logic ever studied so far.

2. We confine ourselves to paraconsistent propositional logics, in which a proposi-
tional language is equipped with a structural and nontrivial Tarskian consequence
relation. In particular, no form of nonmonotonic reasoning is considered in this
paper.

3. We restrict ourselves here to logics which are based on truth-functional three-
valued semantics.1

The rest of the paper is organized as follows: In the next section, we review some
general definitions and basic concepts that are needed in the sequel. In Sect. 4.3, we
define in precise terms what paraconsistent logics are, and what additional properties
they expected to have. These properties are then investigated in the context of three-
valued matrices in Sect. 4.4. The most important logics that are induced by these
matrices are considered in Sect. 4.5, and corresponding proof systems are discussed
in Sect. 4.6.

4.2 Preliminaries

4.2.1 Propositional Logics

In what follows a propositional language with a set Atoms(L) = {P1, P2, . . .} of
atomic formulas is denoted by L and use p, q, r to vary over this set. The set of
the well-formed formulas of L is denoted by W(L) and ϕ,ψ,φ,σ will vary over
its elements. The set Atoms(ϕ) denotes the atomic formulas occurring in ϕ. Sets of
formulas in W(L) are called theories and are denoted by T or T ′. Finite theories are
denoted by � or �. Following the usual convention, we shall abbreviate T ∪ {ψ} by
T ,ψ. More generally, we shall write T , T ′ instead of T ∪ T ′. A rule in a language
L is a pair 〈�,ψ〉, where � ∪ {ψ} is a finite set of formulas in L. We shall henceforth
denote such a rule by �/ψ.

Definition 4.1 A (Tarskian) consequence relation for a language L (a tcr, for short)
is a binary relation � between theories in W(L) and formulas in W(L), satisfying
the following three conditions:

1When truth functionality is not required, further approaches based on nondeterministic seman-
tics [10] are available. They give rise to another brand of useful three-valued logics, which includes
many of the LFIs considered in [16]. We refer the reader to [12, 13] for further information on these
logics and references to related papers.
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Reflexivity: if ψ ∈ T then T � ψ.
Monotonicity: if T � ψ and T ⊆ T ′, then T ′ � ψ.
Transitivity (cut): if T � ψ and T ′,ψ � φ then T , T ′ � φ.

Let � be a tcr for L. We say that � is

• structural, if for every L-substitution θ and every T and ψ, if T � ψ then {θ(ϕ) |
ϕ ∈ T } � θ(ψ).

• nontrivial, if there exist some nonempty theory T and some formula ψ such that
T � ψ.

• finitary, if for every theory T and every formula ψ such that T � ψ there is a finite
theory � ⊆ T such that � � ψ.

Definition 4.2 A (propositional) logic is a pair L = 〈L,�L〉, such that L is a propo-
sitional language, and � is a structural and nontrivial2 consequence relation for L.
A logic 〈L,�L〉 is finitary if so is �L.

Definition 4.3 LetL = 〈L,�〉 be a logic, and let S be a set of rules inL. The finitary
L-closure CL(S) of S is inductively defined as follows:

• 〈θ(�), θ(ψ)〉 ∈ CL(S), whenever θ is a uniform L-substitution, � is a finite theory
in W(L), and either � � ψ or �/ψ ∈ S.

• If the pairs 〈�1,ϕ〉 and 〈�2 ∪ {ϕ},ψ〉 are both in CL(S), then so is the pair 〈�1 ∪
�2,ψ〉.
Next we define what an extension of a logic means.

Definition 4.4 Let L = 〈L,�〉 be a logic, and let S be a set of rules in L.
• A logic L′ = 〈L,�′〉 is an extension of L (in the same language) if � ⊆ �′. We
say that L′ is a proper extension of L, if � � �′.

• The extension of L by S is the pair L∗ = 〈L,�∗〉, where �∗ is the binary relation
between theories in W(L) and formulas in W(L), defined by: T �∗ ψ if there is
a finite � ⊆ T such that 〈�,ψ〉 ∈ CL(S).3

• Extending L by an axiom schema ϕ means extending it by the rule ∅/ϕ.

The usefulness of a logic strongly depends on the question that what kind of
connectives are available in it. Three particularly important types of connectives are
defined next.

2The condition of nontriviality is not always demanded in the literature, butwefind it very convenient
(and natural) to include it here.
3Note that L∗ is a propositional logic unless CL(S) contains all the pairs of finite theories inW(L)

and formulas in W(L). Moreover, L∗ is in that case the minimal extension of L such that � �∗ ϕ
whenever �/ϕ ∈ S.
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Definition 4.5 Let L = 〈L,�L〉 be a propositional logic.
• Abinary connective⊃ ofL is called an implication for L if the classical deduction
theorem holds for ⊃ and �L:

T ,ϕ �L ψ iff T �L ϕ ⊃ ψ.

• Abinary connective∧ ofL is called a conjunction for L if it satisfies the following
condition:

T �L ψ ∧ ϕ iff T �L ψ and T �L ϕ.

• A binary connective∨ ofL is called a disjunction for L if it satisfies the following
condition:

T ,ψ ∨ ϕ �L σ iff T ,ψ �L σ and T ,ϕ �L σ.

• We say that L is seminormal if it has (at least) one of the three basic connectives
defined above. We say that L is normal if it has all these three connectives.

The following lemma is easily verified:

Lemma 4.6 Let L = 〈L,�L〉 be a propositional logic.

1. If ⊃ is an implication for L then the following three conditions hold for every
ψ,ϕ ∈ W(L):

(a) ϕ,ϕ ⊃ ψ �L ψ
(b) �L ψ ⊃ ψ
(c) ψ �L ϕ ⊃ ψ

2. ∧ is a conjunction for L iff the following three conditions hold for every ψ,ϕ ∈
W(L):

(a) ψ ∧ ϕ �L ψ
(b) ψ ∧ ϕ �L ϕ
(c) ψ,ϕ �L ψ ∧ ϕ

3. If ∨ is a disjunction for L then the following three conditions hold for every
ψ,ϕ ∈ W(L):

(a) ψ �L ψ ∨ ϕ
(b) ϕ �L ψ ∨ ϕ
(c) ϕ ∨ ϕ �L ϕ

4.2.2 Many-Valued Matrices

The most standard semantic way of defining logics is by using the following type of
structures (see, e.g., [26, 30, 39]).
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Definition 4.7 A (multivalued) matrix for a languageL is a tripleM = 〈V,D,O〉,
where

• V is a nonempty set of truth-values,
• D is a nonempty proper subset of V , called the designated elements of V , and
• O is a function that associates an n-ary function �̃M : Vn → V with every n-ary
connective � of L.

Definition 4.8 Let M = 〈V,D,O〉 be a matrix for a language L, and let L ⊆ L′.
A matrix M′ = 〈V ′,D′,O′〉 for L′ is called an expansion of M to L′ if V = V ′,
D = D′, and O′(�) = O(�) for every connective � of L.

In what follows, the elements in V\D are denoted by D. The set D is used for
defining satisfiability and validity, as defined below:

Definition 4.9 Let M = 〈V,D,O〉 be a matrix for L.
• An M-valuation for L is a function ν :W(L)→V such that for every n-
ary connective � of L and every ψ1, . . . ,ψn ∈ W(L), ν(�(ψ1, . . . ,ψn)) = �̃M
(ν(ψ1), . . . , ν(ψn)). We denote the set of all the M-valuations by �M.

• A valuation ν ∈�M is an M-model of a formula ψ (alternatively, ν M-satisfies
ψ), if it belongs to the set modM(ψ) = {ν ∈ �M | ν(ψ) ∈ D}. The M-models
of a theory T are the elements of the set modM(T ) = ∩ψ∈T modM(ψ).

• A formula ψ is M-satisfiable if modM(ψ) �= ∅. A theory T is M-satisfiable if
modM(T ) �= ∅.

In the sequel, we shall sometimes omit the prefix “M” from the notions above. Also,
when it is clear from the context, we shall omit the subscript “M” in �̃M.

Definition 4.10 Given a matrix M, the consequence relation �M that is induced
by (or associated with) M, is defined by T �M ψ if modM(T ) ⊆ modM(ψ). We
denote by LM the pair 〈L,�M〉, where M is a matrix for L and �M is the conse-
quence relation induced by M.

Proposition 4.11 [36, 37] For every propositional language L and a finite matrix
M for L, LM = 〈L,�M〉 is a propositional logic. If M is finite, then �M is also
finitary.

We conclude this section with some simple, easily verified, results on the basic
connectives (Definition 4.5) in the context of matrix-based logics.

Definition 4.12 Let M = 〈V,D,O〉 be a matrix for a language L and let A ⊆ V .
• An n-ary connective � of L is called A-closed, if �̃(a1, . . . , an) ∈ A for every

a1, . . . , an ∈ A.
• An n-ary connective � of L is called A-limited, if for every a1, . . . , an ∈ V , if

�̃(a1, . . . , an) ∈ A then a1, . . . , an ∈ A.

Definition 4.13 Let M = 〈V,D,O〉 be a matrix for a language L.
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• A connective ∧ in L is called an M-conjunction if it is D-closed and D-limited,
i.e., for every a, b ∈ V , a ∧ b ∈ D iff a ∈ D and b ∈ D.

• A connective ∨ in L is called an M-disjunction if it is D-closed and D-limited,
i.e., for every a, b ∈ V , a ∨ b ∈ D iff a ∈ D or b ∈ D.

• A connective ⊃ in L is called an M-implication if for every a, b ∈ V , a⊃̃b ∈ D
iff either a /∈ D or b ∈ D.

Proposition 4.14 Let M = 〈V,D,O〉 be a matrix for a language L.

1. A connective of L is an M-conjunction iff it is a conjunction for LM.
2. A connective of L which is an M-disjunction is also a disjunction for LM.
3. A connective of L which is an M-implication is also an implication for LM.

Corollary 4.15 Let M = 〈V,D,O〉 be a matrix for a language L, and let M′ be
an expansion of M. Then

1. An M-conjunction (respectively: M-disjunction, M-implication) is also a con-
junction (respectively: disjunction, implication) of LM′ .

2. If M has either an M-conjunction, or an M-disjunction, or an M-implication,
then LM′ is seminormal. If M has all of them then LM′ is normal.

4.3 Paraconsistent Logics

In this section, we define in precise terms the notion of paraconsistency which is
used in this paper, as well some related desirable properties.

Definition 4.16 LetL be a language with a unary connective¬, and letL = 〈L,�L〉
be a logic for L.
• L is called pre-¬-paraconsistent if there are atoms p, q such that p,¬p �L q.
• L is called boldly pre-¬-paraconsistent if there are no formula σ and an atom

p /∈ Atoms(σ) such that p,¬p �L σ while �L σ.4

Since L is a logic, our definition of pre-¬-paraconsistency can easily be seen to be
equivalent to da-Costa’s definition of paraconsistency [19], which requires that there
would be a theory T and formulas ψ,ϕ in W(L) such that T �L ψ, T �L ¬ψ, but
T �L ϕ. Both of these definitions intend to capture the idea that a contradictory set of
premises should not entail every formula. However, talking about “contradictory set”
makes sense only if the underlying connective ¬ somehow represents a “negation”
operation. This is assured by the condition of “coherence with classical logic,” which
is defined next. Intuitively, this condition states that a logic that has such a connective
should not admit entailments that do not hold in classical logic.

4This is a variant of a notion from [16].
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Definition 4.17 Let L be a language with a unary connective ¬. A bivalent ¬-
interpretation for L is a function F that associates a two-valued truth-table with each
connective of L, such that F(¬) is the classical truth-table for negation. We denote
byMF the two-valued matrix forL induced by F, that is,MF = 〈{t, f }, {t}, F〉 (see
Definition 4.7).

Definition 4.18 Let L = 〈L,�〉 be a propositional logic where L contains a unary
connective ¬.

• Let F be a bivalent ¬-interpretation for L. L is F-contained in classical logic
if the following holds for every ϕ1, . . . ,ϕn,ψ ∈ W(L): if ϕ1, . . . ϕn �L ψ then
ϕ1, . . . ,ϕn �MF ψ.

• [3] L is ¬ -contained in classical logic, if it is F-contained in it for some bivalent
¬-interpretation F.

• L is¬-coherent with classical logic, if it has a seminormal fragment (Definition4.5)
which is ¬-contained in classical logic.

Definition 4.19 Let L = 〈L,�〉 be a propositional logic where L contains a unary
connective¬. We say that¬ is a negation ofL if L is¬-coherent with classical logic.

Note 4.20 If ¬ is a negation of L = 〈L,�L〉, then for every atom p it holds that
p �L ¬p and ¬p �L p.

Definition 4.21 LetL be a language with a unary connective¬, and letL = 〈L,�L〉
be a logic for L.
• L is called ¬-paraconsistent if it is pre-¬-paraconsistent and ¬ is a negation of L.
• L is called boldly ¬ -paraconsistent if it is boldly pre-¬-paraconsistent, and ¬ is
a negation of L.

Henceforth, we shall frequently omit the ¬ sign (if it is clear from the context),
and simply refer to (boldly) (pre-) paraconsistent logics.

Note 4.22 It should again be emphasized that our notion of paraconsistency has two
components. In addition to the usual demand that a formula and its negation do not
imply everything, we also demand that the “negation” connective under question can
indeed be taken to be a sort of negation.

Paraconsistent logics reject the principle of explosion (known as Ex Contradic-
tione Sequitur Quodlibet: T ,ψ,¬ψ � ϕ). Bold paraconsistency is a stronger version
of this property. An even stronger demand is to reject explosion in all circumstances:

Definition 4.23 A logic 〈L,�〉 is non-exploding if for every theory T such that
Atoms(T ) �= Atoms(L) there is a formula ψ such that T � ψ.

Note 4.24 Obviously, every non-exploding logic which is¬-coherent with classical
logic is boldly paraconsistent.
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There are many approaches to designing paraconsistent logics. One of the old-
est and best known is Newton da-Costa’s approach, which has led to the family
of Logics of Formal Inconsistency (LFIs) [16]. Now, already in the early stages
of investigating this topic, it has been acknowledged by da-Costa (and others) that
pre-paraconsistency by itself is not sufficient. Further properties that an “ideal” para-
consistent logic is expected to have are defined in [3]. In the rest of this section, we
briefly recall (with some improvements) these properties.

A. Reasonably Strong Language. Clearly, any logic (including paraconsistent ones)
should have a sufficiently expressive language. The seminormality requirement
(Definition 4.5) assures that in addition to negation, a useful paraconsistent logic
should provide natural counterparts for all classical connectives:

Proposition 4.25 Let L be a logic that is F-contained in classical logic for some F,
and let F(�) = �F. Then for every a, b ∈ {t, f } we have

1. If � is an implication for L, then a �F b = f if a = t and b = f , otherwise
a �F b = t .

2. If � is a conjunction for L, then a �F b = t if a = t and b = t , otherwise a �F b =
f .

3. If � is a disjunction for L, then a �F b = t if a = t or b = t , otherwise a �F b = f .

Proof Let F be a bivalent interpretation for which L is F-contained in classical logic.

1. Suppose that � is an implication for L, and let F(�) = �F. By Item (b) of
Lemma 4.6–1, �L p � p. Hence, �MF p � p, and so necessarily t �F t = f �F

f = t . Next, p �L q � q, and since � is an implication for L, �L p � (q � q).
Hence also �MF p � (q � q). Since f �F f = t , this implies that f �F t = t .
Finally, by Item (a) of Lemma4.6–1, p � q, p �L q. Hence, also p � q, p �MF q,
and so t �F f = f (otherwise ν(p) = t, ν(q) = f would be a counterexample).

2. Suppose that � is a conjunction for L, and let F(�) = �F. By Lemma 4.6–2,
p � q �L p and so also p � q �MF p. This implies that f �F t = f and f �F f =
f . Similarly, since p � q �L q, also p � q �MF q, and so t �F f = f . Finally, by
Lemma 4.6–2 again, p, q �L p � q and so p, q �MF p � q, which implies that
t �F t = t (otherwise, ν(p) = ν(q) = t would be a counterexample).

3. Suppose that � is a disjunction for L, and let F(�) = �F. By Lemma 4.6–
3, p �L p � q, and q �L p � q. Hence also p �MF p � q, and q �MF p � q,
implying that t �F t = t �F f = f �F t = t . Finally, by Item (c) of Lemma 4.6–
3 the assumption that � is a disjunction for L implies that p � p �L p, and so
p � p �MF p. It follows that f �F f = f (otherwise, ν(p) = f would be a coun-
terexample). �

Corollary 4.26 Let M = 〈V,D,O〉 be a matrix for L such that LM is F-contained
in classical logic.

1. If ∧ is an M-conjunction then F(∧) is the classical conjunction.
2. If ∨ is an M-disjunction then F(∨) is the classical disjunction.
3. If ⊃ is an M-implication then F(⊃) is the classical implication.
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Proof This follows from Propositions 4.25 and 4.14. �
Note 4.27 Let M be a martix for L such that LM is F-contained in classical logic.
Suppose that M has a connective � of L which is either an M-conjunction, an
M-disjunction, or anM-implication. The last corollary implies that any two-valued
function is then definable in terms of F(�) and F(¬). This shows the adequacy of
the expressive power of such matrices.

B. Maximal Paraconsistency. A common requirement from a paraconsistent logic,
which is already realized in da-Costa’s seminal paper [19], is to “retain as much of
classical logic as possible, while still allowing nontrivial inconsistent theories.” As
observed in [3, 4], this requirement has two different interpretations, corresponding
to the two aspects of this demand:

B-1. Absolute Maximal Paraconsistency. Intuitively, this means that by trying to
further extend the logic (without changing the language) we lose the property of
paraconsistency.

Definition 4.28 Let L = 〈L,�〉 be a ¬-paraconsistent logic

• We say that L is maximally paraconsistent, if every extension of L (in the sense
of Definition 4.4) whose set of theorems properly includes that of L, is not pre-
paraconsistent.

• We say that L is strongly maximal, if every proper extension of L (in the sense of
Definition 4.4) is not pre-paraconsistent.

B-2. Maximality Relative to Classical Logic. The intuitivemeaning of this property
is that the logic is so close to classical logic, that any attempt to further extend it
should necessarily end-up with classical logic.

Definition 4.29 Let F be a bivalent ¬-interpretation for a language L with a unary
connective ¬.

• An L-formula ψ is a classical F -tautology, if ψ is satisfied by every two-valued
valuation which respects all the truth-tables (of the form F(�)) that F assigns to
the connectives of L.

• A logic L = 〈L,�〉 is F-complete, if its set of theorems consists of all the classical
F-tautologies.

• A logic L is F-maximal relative to classical logic, if the following hold:

– L is F-contained in classical logic.
– If ψ is a classical F-tautology not provable in L, then by adding ψ to L as a new
axiom schema, an F-complete logic is obtained.

• A logic L is F -maximally paraconsistent relative to classical logic, if it is pre-
paraconsistent and F-maximal relative to classical logic.

Definition 4.30 Let L = 〈L,�〉 be a logic for a language with a unary connective
¬. We say that L ismaximally paraconsistent relative to classical logic if there exists
a bivalent ¬-interpretation F such that L is F-maximally paraconsistent relative to
classical logic.
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The two kinds of maximality are combined in the next definition.

Definition 4.31 We say that a seminormal finitary logic L is a fully maximal para-
consistent logic, if it is both maximally paraconsistent relative to classical logic and
strongly maximal.

4.4 Three-Valued Paraconsistent Matrices

We now turn to the three-valued case, and investigate paraconsistent logics induced
by three-valued matrices. We start with some general results.

Definition 4.32 Let L be a propositional language with a unary connective ¬. A
matrix M for L is (boldly, pre-) ¬ -paraconsistent if so is LM (see Definitions 4.16
and 4.21).

Proposition 4.33 Let M = 〈V,D,O〉 be a matrix for a language with ¬.

1. M is pre-paraconsistent iff there is an element � ∈ D, such that ¬̃� ∈ D.
2. If M is paraconsistent then there are three different elements t , f , and � in V

such that f = ¬̃t , f /∈ D, and {t, ¬̃ f,�, ¬̃�} ⊆ D.

Proof By its definition, M is pre-paraconsistent iff p,¬p �M q. Obviously, this
happens iff {p,¬p} has an M-model. The latter, in turn, is possible iff there is some
� ∈ D, such that ¬̃� ∈ D, as indicated in the first item of the proposition. For the
second item, we may assume without loss in generality that M is ¬-contained in
classical logic. We let F be a bivalent ¬-interpretation such that LM is F-contained
in classical logic. Since p,¬¬p �MF ¬p, also p,¬¬p �M ¬p, and so there is
some t ∈ D, such that ¬̃t /∈ D, while ¬̃¬̃t ∈ D. Let f = ¬̃t . Then t and f have the
required properties, and together with the first item we are done. �

Corollary 4.34 Any paraconsistent matrix is boldly paraconsistent.

Proof Suppose that M = 〈V,D,O〉 is a paraconsistent matrix, σ is a formula in
its language such that �M σ, and p is an atomic formula such that p /∈ Atoms(σ).
Then there is a valuation ν such that ν(σ) /∈ D. Let � be an element of V like in
the first item of Proposition 4.33. Define a valuation ν ′ by letting ν ′(p) = �, and
ν ′(q) = ν(q) for every atomic formula q �= p. Then ν ′(σ) = ν(σ) /∈ D. Hence ν ′ is
an M-model of {¬p, p} which is not an M-model of σ, and so {¬p, p} �M σ. It
follows that M is boldly paraconsistent. �

By the second item of Proposition 4.33, we have

Corollary 4.35 Every paraconsistent matrix has at least two designated elements,
and so no two-valued matrix can be paraconsistent.
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The last corollary vindicates the general wisdom that truth-functional semantics
of a reasonable paraconsistent logic should be based on at least three truth-values.
The structure of paraconsistent matrices with exactly three values is characterized
next.

Proposition 4.36 Let M be a three-valued paraconsistent matrix. Then M iso-
morphic to a matrix M′ = 〈V,D,O〉 in which V = {t, f,�}, D = {t,�}, ¬t = f ,
¬ f = t and ¬� ∈ D.

Proof By Proposition 4.33, we only need to show that ¬̃ f �= �. Assume for contra-
diction that ¬̃ f = �. This implies that ¬̃¬̃¬̃� = �, no matter whether ¬̃� = � or
¬̃� = t . This and the facts that D = {t,�} and ¬̃� ∈ D imply that p �M ¬¬¬p,
which contradicts the ¬-coherence of M with classical logic. �

In the rest of the paper, we assume that any three-valued paraconsistent matrix
has the form described in Proposition 4.36.

Next,we provide an effective necessary and sufficient criterion for checkingwhich
paraconsistent matrix is also non-exploding.

Proposition 4.37 Let M = 〈V,D,O〉 be a paraconsistent 3-valued matrix. Then
LM is non-exploding iff every connective � of M is {�}-closed (i.e., �̃(�, . . . ,�) =
�).

Proof Suppose that every connective of M is {�}-closed. Let T be a theory and q
an atomic formula such that q /∈ Atoms(T ). Let ν be an assignment in M such that
ν(p) = � for every p ∈ Atoms(T ), while ν(q) = f . Since every connective of M
is {�}-closed, ν(ϕ) = � for every ϕ ∈ T . Hence ν is a model of T which is not a
model of q. It follows that T ��M q.

For the converse, assume that there is an n-ary connective � of the language ofM
such that �̃ is not {�}-closed. Then S = {P1,¬P1,�(P1, . . . , P1),¬�(P1, . . . , P1)}
has no models in M, and so S �M ϕ for every ϕ. Hence LM is not
non-exploding. �

By Proposition 4.36, it follows that there are exactly two possible definitions for
negation connectives in three-valued paraconsistent matrices:

• Kleene’s negation [27], in which ¬̃t = f , ¬̃ f = t , ¬̃� = �, and
• Sette’s negation [35], in which ¬̃t = f , ¬̃ f = t , ¬̃� = t .

The other basic connectives are characterized by the following proposition.

Proposition 4.38 Let M = 〈V,D,O〉 be a paraconsistent three-valued matrix.

1. A connective ∧ is a conjunction for LM iff it is an M-conjunction.
2. A connective ∨ is a disjunction for LM iff it is an M-disjunction.
3. A connective ⊃ is an implication for LM iff it is an M-implication.

Proof In all cases, the “if” direction is shown in Proposition 4.14. Below we prove
the “only if” directions.
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1. Immediate from Proposition 4.14.
2. Assume that ∨ is a disjunction for LM. By Lemma 4.6–3, ϕ �LM ϕ ∨ ψ and

ψ �LM ϕ ∨ ψ. This implies that if either a ∈ D or b ∈ D then a ∨̃ b ∈ D. On the
other hand, Item (c) of Lemma 4.6–3 entails that ϕ ∨ ϕ �LM ϕ, implying that
f ∨̃ f = f . It follows that ∨ is an M-disjunction.

3. Assume that⊃ is an implication for LM. By Item (a) in Lemma 4.6–1, a⊃̃ f = f
for a ∈ D, by Item (b) of the same lemma f ⊃̃ f ∈ D, and by Item (c), b⊃̃a ∈ D
for a ∈ D. �

Corollary 4.39 If M is a paraconsistent three-valued matrix, then LM′ is para-
consistent for every expansion M′ of M. Moreover, if ⊃ (respectively, if ∨, ∧) is
an implication (respectively, a disjunction, conjunction) for LM, then it is also an
implication (respectively, a disjunction, conjunction) for LM′ .

Proof Immediate from Proposition 4.38 and Corollary 4.15. �

Corollary 4.40 If M is a paraconsistent three-valued matrix, then LM is semi-
normal.

Proof By definition of paraconsistency, if M is a paraconsistent then it has a para-
consistent seminormal fragment. Hence the claim follows from Corollary 4.39. �

We now give some general characterizations of logics which are induced by three-
valued paraconsistent matrices, with particular emphasis on those which are actually
¬-contained in classical logic (and not just ¬-coherent with it). Our first result is the
following:

Theorem 4.41 Let M = 〈V,D,O〉 be a 3-valued ¬-paraconsistent matrix for a
language L. If M is ¬-contained in classical logic then M is classically closed (i.e.,
{t, f }-closed).

Proof By Proposition 4.36, V = {t, f,�}, D = {t,�}, f = ¬̃t , t = ¬̃ f , and ¬̃� ∈
{t,�}. Therefore, we have two cases to consider.
¬̃M is Sette’s negation: Assume for contradiction thatM is not classically closed,

then ¬̃� = t and there is a connective � and a1, . . . , an ∈ {t, f } such that
�̃(a1, . . . , an) = �. For i = 1, . . . , n let ri = pi if ai = t and ri = ¬pi if ai =
f . Then, for every valuation ν ∈ �M, if ν(pi ) = t for every 1 ≤ i ≤ n then
ν(�(r1, . . . , rn)) = �. Let now S = {p1,¬¬p1, p2,¬¬p2, . . . pn,¬¬pn}. Then
v |=M S iff ν(p1) = · · · = ν(pn) = t . It follows that S �M �(r1, . . . , rn) and
S �M ¬ � (r1, . . . , rn). Since M is ¬-contained in classical logic, S �MF

�(r1, . . . , rn) and S �MF ¬ � (r1, . . . , rn) for some bivalent ¬-interpretation F
for L. This means that S is classically unsatisfiable, but this is false.

¬̃M is Kleene’s negation: First, we show that the fact that M is seminormal
(Corollary 4.40) entails in this case that it has an M-disjunction. We do this
by considering all the three possible cases.



4 Three-Valued Paraconsistent Propositional Logics 103

• Suppose thatLM has a disjunction connective∨. Then∨ is also anM-disjunction
by Proposition 4.38.

• Suppose that LM has a an M-implication ⊃. Then ⊃ is an M-implication by
Proposition 4.38. This easily implies that the connective ∨ defined by ϕ ∨ ψ =
(ϕ ⊃ ψ) ⊃ ψ is an M-disjunction.

• Suppose that LM has a conjunction ∧. Then ∧ is an M-conjunction by Proposi-
tion 4.38, and so we have (∗) a∧̃b = f iff either a = f or b = f .
First, we prove that t∧̃t = t . Assume otherwise. Then t∧̃t = � by (∗) above.
Hence, if ν ∈ �M then ν(¬(p ∧ p)) ∈ D in case ν(p) = t . By (∗) again,
this implies that ν(¬(p ∧ p)) ∈ D in case ν(p) ∈ {t, f }. On the other hand,
if ν(p) = � then ν(p) = ν(¬p), and so ν(¬(p ∧ p)) = ν(¬(p ∧ ¬p)). It fol-
lows that ¬(p ∧ ¬p) �M ¬(p ∧ p). Since M is ¬-contained in classical logic,
¬(p ∧ ¬p) �MF ¬(p ∧ p), which is false.
Next, we show that using ¬ and ∧, it is possible to define in L an M-disjunction
∨. We have two cases to consider:

– �∧̃� = t :
In this case we take ϕ ∨ ψ =D f ¬(¬(ϕ ∧ ϕ) ∧ ¬(ψ ∧ ψ)). The fact that t∧̃t =
�∧̃� = t and (*) easily imply that this formula has the required property.

– �∧̃� = �:
In this case we first let tϕ,ψ abbreviate¬(ϕ ∧ ¬ϕ ∧ ψ ∧ ¬ψ) (where association
of conjunction is taken to the right,). Then ν(tϕ,ψ) = � in case that ν(ϕ) =
ν(ψ) = �, and ν(tϕ,ψ) = t otherwise. Now, we take:

ϕ ∨ ψ =D f ¬(¬(tϕ,ψ ∧ ϕ ∧ tϕ,ψ) ∧ ¬(tϕ,ψ ∧ ψ ∧ tϕ,ψ)).

We show that this formula has in this case the required property:

* Suppose first that ν(ϕ) = ν(ψ) = f . Since for every x , x∧̃ f = f ∧̃x = f ,
we have that ν(tϕ,ψ ∧ ϕ ∧ tϕ,ψ) = ν(tϕ,ψ ∧ ψ ∧ tϕ,ψ) = f . Since ¬̃ f = t ,
t∧̃t = t , and ¬̃t = f , it follows that in this case ν(ϕ ∨ ψ) = f .

* Suppose thatν(ϕ) = t . Thenν(tϕ,ψ) = t . Since t∧̃t = t ,ν(tϕ,ψ ∧ ϕ ∧ tϕ,ψ)=
t . Again, since ¬̃t = f , f ∧̃x = f , and ¬̃ f = t , we conclude that in this case
ν(ϕ ∨ ψ) = t .

* Suppose that ν(ψ) = t . Then again ν(tϕ,ψ) = t . Like in the previous case,
this implies that ν(ϕ ∨ ψ) = t .

* Suppose that ν(ϕ) = ν(ψ) = �. Then ν(tϕ,ψ) = �. Since ¬̃� = � and
�∧̃� = �, ν(σ) = � for every sub-formula σ of ϕ ∨ ψ. Hence ν(ϕ ∨ ψ) =
� as well.

* Suppose that ν(ϕ) = f , ν(ψ) = �. Then ν(tϕ,ψ) = t , and so we haver that
ν(ϕ ∨ ψ) = ¬̃(t ∧̃ ¬̃((t ∧̃ �) ∧̃ t)). If (t ∧̃ �) ∧̃ t) = t (which is the case if
either t ∧̃ � = t or � ∧̃ t = t) then ν((ϕ ∨ ψ) = t , and if (t ∧̃ �) ∧̃ t) = �
(which is the case if t ∧̃ � = � ∧̃ t = �) then ν(ϕ ∨ ψ) = �. In both cases
we are done.

* The case where ν(ϕ) = � and ν(ψ) = f is similar to the previous case.
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We therefore have shown thatM has anM-disjunction.We show that this implies
that M is classically closed. Assume for contradiction that it is not, then there is a
connective � and elements a1, . . . , an ∈ {t, f }, such that �̃(a1, . . . , an) = �. For
i = 1, . . . , n let ri = pi if ai = t , ri = ¬pi if ai = f . Then for every ν ∈ �M, if
ν(pi ) = t for every 1 ≤ i ≤ n then ν(�(r1, . . . , rn)) = �̃(a1, . . . , an) = �. Hence
¬̃�̃(a1, . . . , an) is in {t,�}. These two facts imply:

p1, . . . , pn �M ¬p1 ∨ · · · ∨ ¬pn ∨ �(r1, . . . , rn)

p1, . . . , pn �M ¬p1 ∨ · · · ∨ ¬pn ∨ ¬ � (r1, . . . , rn)

Indeed, let ν be amodel of {p1, . . . , pn}. If ν(pi ) �= t for some i then ν(¬pi ) ∈ D,
and so ν is a model of the disjunctions on the right-hand sides. If ν(pi ) = t for all
i then ν is a model of both �̃(r1, . . . , rn) and ¬̃�̃(r1, . . . , rn), and so again ν is a
model of both right-hand sides. Now, since M is ¬-contained in classical logic,
Corollary 4.26 entails that the above two facts remain true if we replace �M by
�MF and interpret∨ and¬ as the classical disjunction and negation (respectively).
However, this is impossible for any two-valued interpretation of �. �
The next theorems characterize all the three-valued matrices which induce para-

consistent logics that are ¬-contained in classical logic and show how to construct
all such matrices which induce (semi)normal logics in a language that contains an
implication ⊃, a conjunction ∧, and a disjunction ∨.
Theorem 4.42 There are exactly 213 (8192) distinct normal paraconsistent logics in
the language LCL = {¬,∧,∨,⊃} which are ¬-contained in classical logic, induced
by three-valued matrices, and in which ⊃ is an implication, ∧—a conjunction, and
∨—a disjunction. The corresponding matrices are those that belong to the following
family 8Kb of matrices from [16]5 (where the notation “x � y” means that x and y
are two optional values):

∧̃ t f �
t t f t � �
f f f f
� t � � f t � �

∨̃ t f �
t t t t � �
f t f t � �
� t � � t � � t � �

⊃̃ t f �
t t f t � �
f t t t � �
� t � � f t � �

¬̃
t f
f t
� t � �

Proof That the matrices above indeed exhaust all the possible cases follows from
Propositions 4.36, 4.38, and Theorem 4.41. That all of them induce paraconsistent
logics which are ¬-contained in classical logic easily follows from Proposition 4.33

5In [16] the language is extended with a consistency operator ◦, defined by ◦̃t = t , ◦̃ f = t , and
◦̃� = f .
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(second part) and the fact that the {t, f }-reductions of the connectives yield bivalent
¬-interpretations. That they are all normal follows from Proposition 4.14.

It is also not difficult to show that all of the logics in 8Kb are indeed different. For
instance, suppose that �1 and �2 are two consequence relations induced by matrices
with different interpretations for a disjunction. Belowwe check the possible cases for
such different interpretations and show that in each case the logics that are obtained
are indeed different. First, note that by Theorem 4.41 and Corollary 4.26, the two
matrices coincide on a∨̃b whenever a ∈ {t, f } and b ∈ {t, f }. Now,
1. Suppose that �∨̃1� = � while �∨̃2� = t .

In this case p,¬p, q,¬q �1 ¬(p ∨ q), but this is not true for �2 (since in both
cases all the models of the right-hand side assign � to p and q).

2. Suppose that �∨̃1� = �∨̃2� ∈ {t,�} and that f ∨̃1� = � while f ∨̃2� = t .
Then q,¬q,¬(p ∨ q) �2 p (a model of the right-hand side must assign � to q,
and since f ∨̃2� = t it cannot assign f to p), while this is not true for �1 (a
counter-model in this case assigns f to p and � to q).

3. The remaining cases are dual to the ones in the previous cases. �

Theorem 4.43 Let M be a three-valued matrix for a language with a unary con-
nective ¬.

1. M induces a ¬-paraconsistent logic which is ¬-contained in classical logic iff
it is isomorphic to a matrix of the form 〈{t, f,�}, {t,�},O〉 which satisfies the
following conditions:

(a) It has as its interpretation of ¬ one of the two tables for ¬ given in
Theorem 4.42;

(b) It has a (possibly definable) connective whose interpretation is either one of
the 23 possible interpretations for conjunction (∧) given in Theorem 4.42,
or one of the 25 interpretations for disjunction (∨) given there, or one of the
24 interpretations for implication (⊃) given there;

(c) All its connectives are classically closed: �̃(a1, . . . , an) ∈ {t, f } for all
a1, . . . , an ∈ {t, f }.

2. M induces a ¬-paraconsistent logic iff it is isomorphic to a matrix of the form
〈{t, f,�}, {t,�},O〉 which satisfies Conditions (a) and (b) above.

3. M induces a normal ¬-paraconsistent logic which is ¬-contained in classical
logic iff it is isomorphic to a matrix of the form 〈{t, f,�}, {t,�},O〉 which sat-
isfies the following conditions:

(a) It has its interpretation of¬one of the two tables for¬given in Theorem 4.42;
(b) It has a (possibly definable) connective whose interpretation is one of the

23 possible interpretations for ∧ given in Theorem 4.42, and a connective
whose interpretation is one of the 25 interpretations for ∨ given there, and a
connective whose interpretation is one of the 24 interpretations for ⊃ given
there;

(c) All its connectives are classically closed (i.e., {t, f }-closed).
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Proof That the conditions in Parts 1 and 3 are necessary again follows from Propo-
sitions 4.36, 4.38, and Theorem 4.41. That they are sufficient again follows from
Proposition 4.33 (second part), the fact that the {t, f }-reductions of the connectives
yield bivalent ¬-interpretations and Proposition 4.14. Part 2 follows from Part 1 and
Corollary 4.39. �

Note 4.44 Although all the logics which are induced by the matrices in the family
8Kb are different from each other, some of them have the same expressive power.
For instance, consider any paraconsistent matrix for the language of {¬,⊃} in which
¬̃� = � and ⊃̃ is D’Ottaviano and da-Costa’s implication [19, 21], defined as fol-
lows:

a ⊃ b =
{

b if a �= f ,

t if a = f .

In this language, the formulas ¬(ϕ ⊃ ¬ψ) and ¬(ψ ⊃ ¬ϕ) define two different
conjunctions. Hence the corresponding matrices in the family 8Kb are equivalent in
their expressive power.

We conclude this sectionwith a theoremabout the desirablemaximal paraconsistency
properties (Sect. 4.3) that three-valued ¬-paraconsistent logics enjoy:

Theorem 4.45 Let M be a three-valued paraconsistent matrix. Then

1. LM is strongly maximal.
2. If M is ¬-contained in classical logic then it is also maximally paraconsistent

relative to classical logic (and so it is fully maximal).

Note 4.46 The first part of Theorem 4.45 is a generalization of [3, Theorem 2] (see
also [4, Theorem 3.2]) and the second part of the theorem is a generalization of [3,
Theorem 1]. In both cases, the proofs given below are similar to the ones given
in [3]. To keep this paper complete, we repeat those proofs and adjust them to the
more general case considered here.

Proof Let M be a three-valued paraconsistent matrix for a language L. To see the
first item of the theorem, note first that Theorem 4.43 implies thatM has a classically
closed binary connective � (from those listed in Theorem 4.42), which is either an
M-disjunction, or an M-conjunction, or an M-implication. Let �(p) be ¬p � p in
the first case, ¬(¬p � p) in the second one, and p � p in the third case. Then for all
ν ∈ �M, ν(�) = t if ν(p) �= �.

Now let 〈L,�〉 be a proper extension of LM by some set of rules. We show that
〈L,�〉 is not pre-paraconsistent. Let � be a finite theory and ψ a formula in L such
that � � ψ but � �M ψ. In particular, there is a valuation ν ∈ modM(�) such that
ν(ψ) = f . Consider the substitution θ, defined for every p ∈ Atoms(� ∪ {ψ}) by

θ(p) =
⎧
⎨

⎩

q0 if ν(p) = t ,
¬q0 if ν(p) = f ,
p0 if ν(p) = �,



4 Three-Valued Paraconsistent Propositional Logics 107

where p0 and q0 are two different atoms in L. Note that θ(�) and θ(ψ) con-
tain (at most) the variables p0, q0, and that for every valuation μ ∈ �M where
μ(p0) = � and μ(q0) = t it holds that μ(θ(φ)) = ν(φ) for every formula φ such
that Atoms({φ}) ⊆ Atoms(� ∪ {ψ}). Thus,

(�) any μ ∈ �M such that μ(p0) = � and μ(q0) = t is an M-model of θ(�) but not of
θ(ψ).

Now, consider the following two cases:

Case I There is a formula φ(p, q) (i.e., Atoms(φ) = {p, q}, where p �= q) such that
for every μ ∈ �M, μ(φ) �= � if μ(p) = μ(q) = �.
In this case, let tt = �(φ(p0, p0)). Note that μ(tt) = t for every μ ∈ �M such that
μ(p0) = �. Now, as � is structural, � � ψ implies that

θ(�) [tt/q0] � θ(ψ) [tt/q0]. (4.1)

Also, by the above property of tt and by (�), any μ ∈ �M for which μ(p0) = � is
a model of θ(�) [tt/q0] but does not M-satisfy θ(ψ) [tt/q0]. Thus,
• p0,¬p0 �M θ(γ) [tt/q0] for every γ ∈ �. As 〈L,�〉 is stronger than 〈L,�M〉,
this implies that

p0,¬p0 � θ(γ) [tt/q0] for every γ ∈ �. (4.2)

• The set {p0, ¬p0, θ(ψ)[tt/q0]} is not M-satisfiable, thus p0,¬p0, θ(ψ) [tt/q0]
�M q0. Again, as 〈L,�〉 is stronger than 〈L,�M〉, we have that

p0, ¬p0, θ(ψ) [tt/q0] � q0. (4.3)

By (4.1)–(4.3) p0,¬p0 � q0, thus 〈L,�〉 is not pre-paraconsistent.
Case II For every formula φ(p, q) and for every μ ∈ �M, if μ(p) = μ(q) = � then
μ(φ) = �.
Again, as � is structural, and since � � ψ,

θ(�) [�(q0)/q0] � θ(ψ) [�(q0)/q0]. (4.4)

In addition, (�) above entails that any valuation μ ∈ �M such that μ(p0) = � and
μ(q0) ∈ {t, f } is a model of θ(�) [�(q0)/q0] which is not a model of θ(ψ) [�(q0)/

q0]. Thus, the onlyM-model of {p0,¬p0, θ(ψ) [�(q0)/q0]} is the one in which both
of p0 andq0 are assigned thevalue�. It follows that p0,¬p0, θ(ψ) [�(q0)/q0]�M q0.
Thus,

p0,¬p0, θ(ψ) [�(q0)/q0] � q0. (4.5)

By using (�) again (for μ(q0) ∈ {t, f }) and the condition of Case II (for μ(q0) = �),
we have

p0,¬p0 � θ(γ) [�(q0)/q0] for every γ ∈ �. (4.6)
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Again, by (4.4)–(4.6) above we have that p0,¬p0 � q0, and so 〈L,�〉 is not pre-
paraconsistent in this case either.

For the second part of the theorem we need the following lemma.

Lemma 4.47 Let M be a paraconsistent three-valued matrix, and suppose that
there is some bivalent ¬-interpretation F such that LM is F-contained in classical
logic, but LM is not F-maximal relative to classical logic. Then M is classically
closed.

Proof The assumption about F implies that there is some classical F-tautology
(Definition 4.29) ψ0 which is not provable in LM, and by adding it as an axiom
to LM we get a logic L∗ that is not F-complete. Since LM is strongly maximal by
the first part of this theorem (and L∗ is an extension by a rule of LM), ϕ,¬ϕ �L∗ φ
for every ϕ,φ. It follows that

S∗,ϕ,¬ϕ �M φ for every ϕ,φ (4.7)

where S∗ is the set of all substitution instances of ψ0. Now, let σ be some classical F-
tautology not provable in L∗. So �L∗ σ, and so S∗

�M σ. Hence there is a valuation
ν ∈ �M which is a model of S∗, but ν(σ) = f . We show that there is no formula ψ
for which ν(ψ) = �. Assume for contradiction that this is not the case for some ψ.
Since ν is a model of S∗, it is also a model of S∗ ∪ {ψ,¬ψ}, and so it is a model of σ
by (4.7) above. This contradicts the fact that ν(σ) = f . It follows that ν(ψ) ∈ {t, f }
for all ψ. We show that this implies that all the operations of M are classically
closed. Let � be some n-ary connective of L and let a1, . . . , an ∈ {t, f }. For i =
1, . . . , n, define ϕi = Pi if ν(pi ) = ai , and ϕi = ¬Pi otherwise. Thus ν(ϕi ) = ai ,
and �̃(a1, . . . , an) = �̃(ν(ϕ1), . . . , ν(ϕn)) = ν(�(ϕ1, . . . ,ϕn)) ∈ {t, f }. �

Now we can show the second part of Theorem 4.45. The assumption that M
is ¬-contained in classical logic entails that it is F-contained in classical logic for
some F. If LM is F-maximal relative to classical logic, then we are done. Otherwise,
M is classically closed by Lemma 4.47, and so we can consider the bivalent ¬-
interpretation induced by M, defined by FM(�) = �̃M/{t, f }n (where n is the arity
of �, and �̃M/{t, f }n is the reduction of �̃M to {t, f }n). As the next lemma shows,
F must be identical to this interpretation.

Lemma 4.48 F = FM

Proof Suppose otherwise.Then there is some n-ary connective � of L such that
�̃/{t, f } = FM(�) �= F(�). Hence there are some elements a1, . . . , an ∈ {t, f } such
that �̃(a1, . . . , an) �= F(�)(a1, . . . , an). Because F and FM are both bivalent ¬-
interpretations, we may assume without loss of generality that F(�)(a1, . . . , an) = t
and �̃(a1, . . . , an) = f (otherwise we consider ¬� instead of �). Next, for i =
1, . . . , n we define ϕi = p if ai = t and ϕi = ¬p otherwise, thus p,�(ϕ1, . . . ,ϕn)

�M ¬p, while p,�(ϕ1, . . . ,ϕn) �MF ¬p (because ν(p) = t provides a counterex-
ample). This contradicts the F-containment of LM in classical logic. �
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Now, by the lemma above, LM is FM-contained in classical logic. We end by
showing that LM is FM-maximal relative to classical logic. The proof of this is
very similar to the proof of Lemma 4.47: Let ψ′ be a classical FM-tautology not
provable in LM, and let S ′∗ be the set of all of its substitution instances. Let L′∗ be
the logic obtained by adding ψ′ as a new axiom to LM. Then for every theory T we
have that T �L′∗ φ iff T ,S ′∗ �M φ. In particular, since LM is strongly maximal,
Condition (4.7) from the proof of Lemma 4.47 holds for S ′∗. Suppose for contradic-
tion that there is some classical FM-tautology σ not provable in L′∗. Since �L′∗ σ,
also S ′∗

�M σ. Hence, there is a valuation ν ∈ �M which is a model of S ′∗, but
ν(σ) = f . If there is some ψ such that ν(ψ) = �, then since ν is a model of S ′∗, it
is also a model of S ′∗ ∪ {ψ,¬ψ}, and so by (4.7) it is a model of σ, in contradiction
to the fact that ν(σ) = f . Otherwise, ν(ψ) ∈ {t, f } for all ψ, and so ν is an MFM -
valuation, which assigns f to σ. This contradicts the fact that �MFM σ. Hence, all
classical FM-tautologies are provable in L′∗, and so LM is FM-maximal relative to
classical logic. �

Note 4.49 Suppose that M is a three-valued paraconsistent matrix which is ¬-
contained in classical logic. Then any three-valued expansion of it which is obtained
by enriching the language ofMwith extra classically closed connectives necessarily
has the same properties (see Theorem 4.43). It follows that not only is LM fully
maximal, but so must be also all the logics induced by its expansions that are so
obtained.

4.5 The Most Important Paraconsistent Three-
Valued Logics

As shown in the previous section, there are exactly eight ways of defining conjunc-
tions in three-valued paraconsistent matrices. Of these eight operations, only four are
symmetric. Of these four, only two are {�}-closed, and to the best of our knowledge,
only three (including these two) have been seriously investigated in the literature. In
this section we examine in greater detail the properties of the most important (and
famous) three-valued paraconsistent logics that are based on these three symmetric
conjunctions and the two possible negations. Then in the next section, we shall show
that each of these logics has a corresponding cut-free Gentzen-type system, which
is very close to the classical one.

Our main criterion here for “importance” of three-valued paraconsistent matrices
is having a natural set of connectives that can be characterized by a combination of
potentially desirable properties. Themost important such property is of course {t, f }-
closure, which by Theorem 4.43 is equivalent to ¬-containment in classical logic.
Another important property is {�}-closure, which by Proposition 4.37 is equivalent
to being non-exploding. Other properties are introduced and used in the sequel.
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4.5.1 The Logic P1

Sette’s logic P1 = 〈LP1 ,�P1〉 [35] is induced by the matrix P1 = 〈{t, f,�}, {t,�},
{∧̃, ¬̃}〉,6 where the operations are defined as follows:

∧̃ t f �
t t f t
f f f f
� t f t

¬̃
t f
f t
� t

Proposition 4.50 P1 is boldly paraconsistent, normal, ¬-contained in classical
logic, and fully maximal.

Proof Define ψ ∨ φ = ¬(¬(ψ ∧ ψ) ∧ ¬(φ ∧ φ)) and ψ ⊃ φ = ¬((ψ ∧ ψ) ∧ ¬
(φ ∧ φ)). The corresponding interpretations are the following:

∨̃ t f �
t t t t
f t f t
� t t t

⊃̃ t f �
t t f t
f t t t
� t f t

Therefore, Item 3 of Theorem 4.43 implies that P1 is a normal paraconsistent
logic, which is ¬-contained in classical logic. The other properties follow from
Corollary 4.34 and Theorem 4.45. �

Note 4.51 As far as we know, P1 was the first paraconsistent logic for which a
maximality property has been stated and proved (in [35]). Therefore, it is frequently
referred to as “Sette maximal paraconsistent logic.” However, the results in Sect. 4.4
show that there is nothing special about P1 in this respect. Its maximality is just one
(out of thousands) instances of Theorem 4.45.

The next theorem characterizes the expressive power of the language of P1.

Theorem 4.52 A function g : {t, f,�}n → {t, f,�} is representable in LP1 iff its
range is {t, f }.
Proof Obviously, the condition is necessary. To show that it is also sufficient, define:

ψa(p) =
⎧
⎨

⎩

p ∧ ¬¬p if a = t
¬(p ∧ p) if a = f
p ∧ ¬p if a = �

It is easy to check that if ν is a valuation in P1, then ν |=P1 ψa(p) iff ν(p) = a. Now,
given a function g : {t, f,�}n → {t, f }, it is not difficult to see that g is represented in

6Note that in our notations P1 is also denoted LP1 .
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LP1 by the disjunction (as defined in the proof of Proposition 4.50) of all the formulas
of the form ψa1(P1) ∧ ψa2(P2) ∧ · · · ∧ ψan (Pn) such that g(a1, a2, . . . , an) = t (and
by the formula ¬¬P1 ∧ ¬P1 if no such a1, a2, . . . , an exist). �

Corollary 4.53 The connectives defined in the proof of Proposition 4.50 are the
only disjunction and implication definable in P1.

Proof This easily follows from Theorems 4.42 and 4.52. �

Note 4.54 As noted previously, the Logic P1 has all the desirable properties men-
tioned in the previous section. Nevertheless, P1 also has the following two severe
drawbacks:

• It is paraconsistent only with respect to atomic formulas (that is, for a nonatomic
formula ψ we have that ψ,¬ψ �P1 ϕ, since nonatomic formulas get only values
in {t, f }).

• The conjunction–negation combination does not always behave as expected, e.g.,
¬p �P1 ¬(p ∧ q).

The main source of these problematic features is the fact that Sette’s negation (which
is the negation used in P1) has the following drawbacks in comparison to Kleene’s
negation:

• It is explosive with respect to negated data: ¬ϕ,¬¬ϕ �P1 ψ for every ϕ, ψ.
• It is not right involutive: p �P1 ¬¬p.

These drawbacks should be the reason why P1 is (to the best of our knowledge) the
only three-valued paraconsistent logic considered in the literature whose negation
is Sette’s negation. Accordingly, all the other logics described in this section use
Kleene’s negation.

4.5.2 The Logic SRM ∼→

Another conjunction of the eight possible conjunctions listed in Sect. 4.4 has
(implicitly) been used by Sobociński in his three-valued matrix [38]. This is the
matrix A1 = 〈{t, f,�}, {t,�}, {⊗̃, ¬̃}〉 for the language IL = {¬,⊗} in which ¬̃
is Kleene’s negation, and ⊗̃ is Sobociński’s conjunction, defined below:

⊗̃ t f �
t t f t
f f f f
� t f �

¬̃
t f
f t
� �

We denote by SRM ∼→ (or SRMI1
∼→) the logic that is induced by A1.



112 O. Arieli and A. Avron

Note 4.55 The official language that was used in [38] (as well as in the literature
on relevance logic) is {¬,→}, and the interpretation of → there was the following
Sobociński’s implication:

a →S b =
⎧
⎨

⎩

� if a = b = �,
f if a = t and b �= t , or b = f and a �= f ,
t otherwise.

It is easy to see that a →S b = ¬̃(a ⊗̃ ¬̃b), while a ⊗̃ b = ¬̃(a →S ¬̃b). Hence, IL
and A1 are equivalent to Sobociński’s original language and matrix (respectively).

Note 4.56 It should be emphasized that SRM ∼→ is not identical to the logic intro-
duced by Sobociński in [38]. That logic has only been motivated by the matrix A1.
What Sobociński actually did in [38] is to axiomatize the set of valid formulas of A1

using a Hilbert-type systemwithModus Ponens for→ as the single rule of inference.
In other words: his system is only weakly complete forA1. Thus, one cannot derived
in it ϕ from ϕ ⊗ ψ, even though ϕ ⊗ ψ �SRM∼→

ϕ.7

The connective → of SRM ∼→ is not an implication for that logic (since ϕ →
(ψ → ϕ) is not valid in A1). Despite this we have

Proposition 4.57 SRM ∼→ is non-exploding, normal, ¬-contained in classical logic,
and fully maximal.

Proof Define ϕ ⊃ ψ = ϕ → (ϕ ⊗ ψ), where (as above) ϕ → ψ = ¬(ϕ ⊗ ¬ψ).
Then ⊃ has in A1 the following interpretation:

⊃̃ t f �
t t f t
f t t t
� t f �

It follows that ⊃ is an A1-implication. This implies that the connective ∨, defined
by ψ ∨ ϕ = (ψ ⊃ ϕ) ⊃ ϕ, is an A1-disjunction. Finally, ⊗ is an A1-conjunction.
Therefore, Item 3 of Theorem 4.43 implies that SRM ∼→ is a normal paraconsis-
tent logic which is ¬-contained in classical logic. The other properties follow from
Theorem 4.45 and Proposition 4.37. �

The following theorem characterizes the expressive power of the language of
SRM ∼→:

Theorem 4.58 [9] The connectives that are definable in the language of SRM ∼→ are
those that are both {�}-closed and {�}-limited (Definition 4.12).

Note that by the last theorem, it follows that Kleene’s conjunction (see next
section) is not definable in the language of SRM ∼→ (since Kleene’s conjunction
is not {�}-limited).

7Meyer has shown (see [1]) that Sobociński’s system induces the {¬,→,⊗}-fragment of the semi-
relevant logic RM.
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4.5.3 The Logic LP and Its Main Monotonic Expansions

The most popular conjunction used in three-valued paraconsistent logics and three-
valued logics in general is Kleene’s (strong) conjunction (see the truth-table below),
and the most basic paraconsistent logic which is based on it is Asenjo–Priest’s three-
valued logic LP [5, 31–33]. This is the logic induced by the three-valued matrix
LP = 〈{t, f,�}, {t,�}, {∧̃, ¬̃}〉,where the truth-tables for¬ and∧ are the following:

∧̃ t f �
t t f �
f f f f
� � f �

¬̃
t f
f t
� �

The matrix LP also has a disjunction, defined by ψ ∨ ϕ = ¬(¬ψ ∧ ¬ϕ). What is
obtained is one of the possible interpretations of disjunction given in Theorem 4.43:
the strong Kleene’s disjunction, whose truth-table is the following:

∨̃ t f �
t t t t
f t f �
� t � �

Note 4.59 A common way of defining and understanding the disjunction, conjunc-
tion, and negation of LP is with respect to total order≤t on {t, f,�}, in which t is the
maximal element and f is the minimal one. This order may be intuitively understood
as reflecting differences in the amount of truth that each element exhibits. Here, ∧̃
and ∨̃ are the meet and the join (respectively) of ≤t, and ¬̃ is order reversing with
respect to ≤t.

Next, we introduce the simplest expansions of LP: those that are obtained by
adding to its language the propositional constants which correspond to the truth-
values that are used. We shall denote by f the one for which ∀ν ∈ � ν(f) = f and
by � the constant for which ∀ν ∈ � ν(�) = �. (There is no need to consider also
a constant for t , because such a constant and f are definable in terms of each other
and ¬.)

Definition 4.60

• LPf is the logic induced by the expansion of the matrix LP to the language
{¬,∧,∨, f} (or just {¬,∧, f}).

• LP� is the logic induced by the expansion of the matrix LP to the language
{¬,∧,∨,�}.

• LPf,� is the logic induced by the expansion of the matrix LP to the language
{¬,∧,∨, f,�}
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Fig. 4.1 T HREE

For characterizing the expressive power of the languages of LP and its above
expansions, it is convenient to order the truth-values in a partial order ≤k that intu-
itively reflects differences in the amount of knowledge (or information) that the truth
values convey. According to this relation � is the maximal element, while neither of
the remaining truth-values is greater than the other. Therefore, 〈V,≤k〉 is an upper
semilattice. A Double-Hasse diagram representing the structure T HREE which is
induced by≤k and≤t (Note 4.59) is given in Fig. 4.1. In this diagram b is an immedi-
ate≤t-successor of a iff b is on the right-hand side of a, and there is an edge between
them; Similarly, b is an immediate ≤k-successor of a iff b is above a, and there is an
edge between them.8

Definition 4.61 A function g : {t, f,�}n → {t, f,�} is ≤k-monotonic if g
(a1, . . . , an) ≤k g(b1, . . . , bn) in case ai ≤k bi for every 1 ≤ i ≤ n.

Now we are able to characterize the expressive power of LP and its expansions:

Theorem 4.62 [8] Let g : {t, f,�}n → {t, f,�}.
1. g is representable in the language of LPf,� iff it is ≤k-monotonic.
2. g is representable in the language of LP� iff it is ≤k-monotonic and {�}-closed.
3. g is representable in the language of LPf iff it is ≤k-monotonic and classically

(i.e., {t, f }-) closed.
4. g is representable in the language of LP iff it is ≤k-monotonic, {�}-closed, and

classically closed.

Next we turn to themain properties of the four logics considered in Theorem 4.62.

Proposition 4.63

1. LP, LPf, LP�, and LP�,f are all boldly paraconsistent and strongly maximal
paraconsistent logics.

2. LP is ¬-contained in classical logic and fully maximal. The same is true for LPf

(but not for LP� or LP�,f).
3. LP is non-exploding. The same is true for LP�, but not for LPf or LP�,f.

8We refer to [2, 15, 23, 25] for further motivation and discussions on algebraic structures that
combine order relations about truth and knowledge.
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Proof Immediate from Corollary 4.34, Theorems 4.43, 4.45, 4.62, and Proposi-
tion 4.37. �

Perhaps the most remarkable property of LP (and LPf) is given in the next propo-
sition.

Proposition 4.64 [31] The tautologies of LP and LPf are the same as those of
classical logic in their languages: if ψ is a formula in the language of {¬,∧,∨}
({¬,∧,∨, f}) then �LP ψ (�LPf ψ) iff �MCL ψ, where MCL is the two-valued matrix
for classical logic.

Proof One direction is trivial. For the converse, suppose, e.g., that ν is an LP-
valuation (the proof in the case of LPf is similar). Let μ be the MCL -valuation such
that for every p ∈ Atoms,μ(p) = t iff ν(p) ∈ {t,�}. It is easy to prove by induction
on the complexity of ψ that if μ(ψ) = t then ν(ψ) ∈ {t,�}, and if μ(ψ) = f then
ν(ψ) ∈ { f,�}. It follows that if for every MCL -valuation μ it holds that μ(ψ) = t ,
then for every LP-valuation ν, ν(ψ) is designated. �

Note 4.65 Despite of having the same set of valid formulas, LP is paraconsistent,
while classical logic (in the language of {¬,∧,∨}) is not. The difference between
the two is due to their consequence relations.

The main drawback of LP and the other logics studied in this section is given in
the next proposition.

Proposition 4.66 [3] Suppose that M is a three-valued paraconsistent matrix which
has only ≤k-monotonic connectives. Then LM does not have an implication con-
nective.

Proof Suppose for contradiction that ⊃ is a definable implication for LM. By
Lemma 4.6 this implies that (i)�M p ⊃ p, and (ii) p, p ⊃ q �M q. Now, (i) entails
that ⊃̃( f, f ) ∈ {t,�}. Therefore it follows from the ≤k-monotonicity of ⊃ that
⊃̃(�, f ) ∈ {t,�}. This contradicts (ii), since it is refuted by any assignment ν such
that ν(p) = � and ν(q) = f . �

Corollary 4.67 The logics LP, LP�, LPf, and LPf,� are not normal, but only semi-
normal.

Proof Immediate from Corollary 4.40, Theorem 4.62, and Proposition 4.66. �

4.5.4 The Logics PAC (RM3) and Its Main Expansions

The most straightforward way to turn LP into a normal logic is to extend LP
by an implication connective. A natural candidate for this is D’Ottaviano and da-
Costa’s implication [19, 21], considered in Note 4.44. Because of its nice properties
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(to be presented below), this is the main implication connective (in the sense of
Definition 4.5) which has been used in three-valued paraconsistent logics. The logic
that is obtained by extending LP with ⊃ is called PAC (also known as RM3) [6, 7,
14, 20, 22, 34]. Thus, PAC is the logic which is induced by the three-valued matrix
PAC = 〈{t, f,�}, {t,�}, {∧̃, ∨̃, ⊃̃, ¬̃}〉, where ∧̃, ∨̃, and ¬̃ are like in LP, while ⊃̃
is given by the following truth-table:

⊃̃ t f �
t t f �
f t t t
� t f �

Note 4.68 Since a →̃S b = (a ⊃̃ b) ∧̃ (¬̃b ⊃̃ ¬̃a), while a ⊃̃ b = b ∨̃ (a →̃S b),
another way that leads to PAC is to extend A1, and with it SRM ∼→, with Kleene’s
conjunction (which, as indicated at the end of Sect. 4.5.2, is not definable in their
language).

Again, the simplest expansions of PAC are those that are obtained by adding to
its language the propositional constants � and f.

Definition 4.69

• J3 [20, 22] is the logic induced by the expansion of the matrixPAC to the language
{¬,∧,∨,⊃, f}.

• PAC� is the logic induced by the expansion of the matrix PAC to the language
{¬,∧,∨,⊃,�}.

• J�
3 is the logic induced by the expansion of the matrix PAC to the language

{¬,∧,∨,⊃, f,�}
Note 4.70 Instead of the propositional constant f it is common in the literature on
J3 to use as the extra connective the consistency operator ◦, whose interpretation ◦̃
is given by: ◦̃(t) = ◦̃( f ) = t , and ◦̃(�) = f . This does not make much difference,
since ◦̃(a) = (a ∧̃ ¬̃a) ⊃̃ f, while f = ◦̃(a) ∧̃ ¬̃◦̃(a). As a logic in the language of
{¬,∧,∨,⊃, ◦}, J3 is the strongest logic in the family of LFIs (Logics of Formal
Inconsistency, [16]) in this language. Recently, J3 and its weaker versions have also
been considered in the context of epistemic logics, where in [17, 18] it is shown that
these logics can be encoded in a simple fragment of the modal logic KD, containing
only modal formulas without nesting.

The following theorem characterizes the expressive power of the languages
of PAC and its expansions:

Theorem 4.71 [8] Let g : {t, f,�}n → {t, f,�}.
1. g is representable in the language of J�

3 .
2. g is representable in the language of J3 iff it is {t, f }-closed (i.e., iff it is classically

closed).
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3. g is representable in the language of PAC� iff it is {�}-closed.
4. g is representable in the language of PAC iff it is both {t, f }-closed and {�}-

closed.

Note 4.72 In [8] it is also shown that by adding to PAC any classically closed
connective not available in it, we get a matrix in which exactly the classically closed
connectives are available. Similarly, by adding to PAC any {�}-closed connective
not available in it, we get a matrix in which exactly the {�}-closed connectives are
available. It follows that there is no intermediate expansion of PAC between PAC
and J3, or between PAC and PAC�. From the results of [8], it also follows that there
is no intermediate expansion of J3 or PAC� between these logics and J�

3 .

The main properties of the four logics discussed above are considered next.

Proposition 4.73

1. PAC, J3, PAC�, and J�
3 are all normal, boldly paraconsistent, and strongly

maximal paraconsistent logics.
2. PAC and J3 are ¬-contained in classical logic and fully maximal. This is false

for PAC� and J�
3 .

3. PAC and PAC� are non-exploding. This is false for J3 and J�
3 .

Proof Follows fromCorollary 4.34, Theorems 4.71, 4.43, 4.45, andProposition 4.37.
�

Corollary 4.74

1. Every three-valued paraconsistent logic can be embedded in J�
3 .

2. J3 is the strongest three-valued paraconsistent logic which is ¬-contained in clas-
sical logic (i.e., every other logic with these properties, like P1, can be embedded
in it).

3. PAC� is the strongest three-valued paraconsistent logic which is non-exploding.
4. PAC is the strongest three-valued paraconsistent logic which is both ¬-contained

in classical logic and non-exploding.

Proof Immediate from Theorems 4.71 and 4.43, and from Propositions 4.73
and 4.37. �

4.5.5 The Logic PAC¬⊃

One more interesting paraconsistent three-valued logic is given by the {¬,⊃}-
fragment of PAC. We call this fragment PAC¬⊃, and it is the logic induced by the

matrix PAC¬⊃ = 〈{t, f,�}, {t,�}, {⊃̃, ¬̃}〉, where ⊃̃ and ¬̃ are like in PAC.
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Proposition 4.75 [6] The matrix PAC¬⊃ is (equivalent to) a proper expansion of A1.

Proof The matrix PAC¬⊃ is (equivalent to) an expansion of A1, since:

a ⊗̃ b = ¬̃(¬̃(a ⊃̃ ¬̃b) ⊃̃ (¬̃(¬̃b ⊃̃ a))).

The expansion is proper by Proposition 4.58 and by the fact that ⊃̃ is not {�}-
limited. �

Corollary 4.76 PAC¬⊃ is non-exploding, normal, ¬-contained in classical logic,

and fully maximal.

Proof The normality of PAC¬⊃ follows from Propositions 4.75, 4.57, and Corol-
lary 4.39. The other properties follow, as usual, from Theorems 4.43, 4.45, and
Proposition 4.37. �

Next, we characterize the expressive power of the language of PAC¬⊃.

Theorem 4.77 A function g : {t, f,�}n → {t, f,�} is representable in the lan-
guage of PAC¬⊃ iff it is {�}-closed, and there is 1 ≤ i ≤ n such that g(a1, . . . , an) =
� only if ai = �.

Proof For a formulaϕ in the language of {¬,⊃}, we defineϕ� recursively as follows:
p� = p if p is atomic, (¬ψ)� = ψ�, and (ϕ ⊃ ψ)� = ψ�. It is easy to verify that for
everyϕ,ϕ� is an atom such that ν(ϕ�) = �whenever ν is a valuation inPAC¬⊃ such
that ν(ϕ) = �. This easily implies that if g representable in the language of PAC¬⊃
then it satisfies the condition given above. Obviously, such g is also {�}-closed. This
prove the “only if” part of the proposition.

For the converse, let fn = ¬P1 ⊗ P1 ⊗ ¬P2 ⊗ P2 ⊗ · · · ⊗ ¬Pn ⊗ Pn . For a ∈
{t, f,�} we define:

ψa(p) =
⎧
⎨

⎩

¬p ⊃ fn if a = t,
p ⊃ fn if a = f,
p ⊗ ¬p if a = �.

It is easy to check that for every valuation ν such that ν(Pj ) �= � for some 1 ≤ j ≤
n, it holds that ν(ψa(p)) �= f iff ν(p) = a. Next, for a=(a1,. . ., an)∈{t, f,�}n

we let ψa = ψa1(P1) ⊗ · · · ⊗ ψan (Pn). Then for every valuation ν, ν(ψa) �= f iff
ν(Pi ) = ai for every 1 ≤ i ≤ n, or ν(Pi ) = � for every 1 ≤ i ≤ n.

Now, suppose that g : {t, f,�}n → {t, f,�} has the above two properties, and let
1 ≤ i ≤ n have the property that g(a1, . . . , an) = � only if ai = �. It is not difficult
to check that g is represented by the ⊗-conjunction of all the formulas which either
has the form ψa ⊃ fn where g(a) = f , or the form ψa ⊃ (Pi ⊃ Pi )where g(a) = �.
(Note that since g is {�}-closed, there is at least one formula of the latter form). �
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Fig. 4.2 Relative strength of some logics with Kleene’s negation

Corollary 4.78 PAC is a proper expansion of PAC¬⊃.

Proof This follows from the previous proposition and the fact that Kleene’s con-
junction does not satisfy the second condition given there. �

Figure4.2 shows the relative expressive power of six of the three-valued logics
with Kleene’s negation which are considered in this section (in the figure, if two
logics are connected, the lower one is the stronger).

4.6 Proof Systems

4.6.1 Gentzen-Type Systems

In this section, we provide an explicit and concise presentation of Gentzen-type
systems which correspond to the logics discussed in Sect. 4.5, as well as direct proofs
of their completeness and the admissibility of the cut rule in them.9 We start by
recalling the notions of derivation and provability in a Gentzen-type sequent calculi.
Below, we denote a sequent in a language L by s, or more explicitly by � ⇒ �,
where � and� are finite sets of formulas inL and⇒ is a new symbol, not used inL.
Definition 4.79 Let G be a Gentzen-type sequent calculus.

• A proof (or derivation) in G of a sequent s from a set S of sequents is a finite
sequence of sequents which ends with s, and every element in it either belongs to

9In [11] a general algorithm has been given for deriving sound and complete, cut-free Gentzen-type
systems for finite-valued logics which have sufficiently expressive languages. That algorithm in
fact works for all three-valued paraconsistent logics, but we shall not describe it here.
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Axioms: ψ ⇒ ψ

Structural Rules:

Weakening:
Γ ⇒ Δ

Γ,Γ′ ⇒ Δ,Δ′

Cut:
Γ1 ⇒ Δ1, ψ Γ2, ψ ⇒ Δ2

Γ1,Γ2 ⇒ Δ1,Δ2

Logical Rules:

[∧⇒]
Γ, ψ, ϕ ⇒ Δ

Γ, ψ ∧ ϕ ⇒ Δ
[⇒∧]

Γ ⇒ Δ, ψ Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ψ ∧ ϕ

[∨⇒]
Γ, ψ ⇒ Δ Γ, ϕ ⇒ Δ

Γ, ψ ∨ ϕ ⇒ Δ
[⇒∨]

Γ ⇒ Δ, ψ, ϕ

Γ ⇒ Δ, ψ ∨ ϕ

[⊃⇒]
Γ ⇒ ψ, Δ Γ, ϕ ⇒ Δ

Γ, ψ ⊃ ϕ ⇒ Δ
[⇒⊃]

Γ, ψ ⇒ ϕ, Δ
Γ ⇒ ψ ⊃ ϕ,Δ

Fig. 4.3 The proof system L K +

Axioms: ϕ ⇒ ϕ

Rules: All the rules of LK+, and the following rules for negation:
Γ, ϕ ⇒ Δ

Γ ⇒ Δ, ¬ϕ

Γ, ϕ ⇒ Δ, ψ

Γ, ¬(ϕ ⊃ ψ) ⇒ Δ
Γ ⇒ Δ, ϕ, ψ

Γ, ¬(ϕ ∨ ψ) ⇒ Δ

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ, ¬(ϕ ∧ ψ) ⇒ Δ
Γ ⇒ Δ, ¬ϕ

Γ, ¬¬ϕ ⇒ Δ

Fig. 4.4 The proof system GP1

S, or is an axiom of G, or is obtained from previous elements of the sequence by
one of the rules of G.

• We say that s follows from S in G (notation: S �G s), if there is a proof in G of s
from S.

• A sequent s is provable in G (notation: �G s), if it follows in G from the empty
set of sequents.

• The tcr �G induced by G is defined by T �G ϕ, if there exists a finite � such that
�G � ⇒ ϕ, and � consists only of elements of T .10

In what follows, Fig. 4.3 presents a well-known version of Gentzen’s proof system
L K + for positive classical logic [24], onwhich all theGentzen-type calculi presented
here are based. Figure4.4 describes a Gentzen-type system GP1 for Sette’s logic P1,

10Although the notation �G is overloaded in this definition, this should not cause any confusion in
what follows.
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Axioms: ϕ ⇒ ϕ ⇒ ¬ϕ, ϕ

Rules: All the rules of LK+, and the following rules for ¬, f, and �:

[¬¬⇒]
Γ, ϕ ⇒ Δ

Γ, ¬¬ϕ ⇒ Δ
[⇒¬¬]

Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ¬¬ϕ

[¬∧⇒]
Γ, ¬ϕ ⇒ Δ Γ,¬ψ ⇒ Δ

Γ, ¬(ϕ ∧ ψ) ⇒ Δ
[⇒¬∧]

Γ ⇒ Δ, ¬ϕ, ¬ψ

Γ ⇒ Δ, ¬(ϕ ∧ ψ)

[¬∨⇒]
Γ, ¬ϕ, ¬ψ ⇒ Δ

Γ, ¬(ϕ ∨ ψ) ⇒ Δ
[⇒¬∨]

Γ ⇒ Δ, ¬ϕ Γ ⇒ Δ, ¬ψ

Γ ⇒ Δ, ¬(ϕ ∨ ψ)

[¬⊃⇒]
Γ, ϕ,¬ψ ⇒ Δ

Γ, ¬(ϕ ⊃ ψ) ⇒ Δ
[⇒¬⊃]

Γ ⇒ ϕ, Δ Γ ⇒ ¬ψ, Δ
Γ ⇒ ¬(ϕ ⊃ ψ),Δ

[f⇒] Γ, f ⇒ [Δ ⇒¬f] Γ ⇒ Δ, ¬f

[⇒ �] Γ ⇒ Δ, �

[⇒¬�] Γ ⇒ Δ, ¬�

Fig. 4.5 The proof system GJ�
3

and Fig. 4.5 describes a Gentzen-type system GJ�
3
for J�

3 . A Gentzen-type system

GL for every L ∈ {LP, LPf, LP�, LPf,�, PAC, J3, PAC�, PAC¬⊃} is obtained from

GJ�
3
by deleting from it the irrelevant rules (e.g., the rules for ⊃ and f in the case of

LP�). Finally, Fig. 4.6 describes a Gentzen-type system GSRM∼→
for SRM ∼→ in the

primitive language of this logic.

Note 4.80 Here are some important remarks about the Gentzen-type systems pre-
sented in this section:

• The last four rules in Fig. 4.4 can be combined into one rule: Infer ¬ϕ, � ⇒ �

from � ⇒ �,ϕ (which is the rule [¬⇒], introducing negation on the left-hand
side, of Gentzen’s system L K for classical logic) with the constraint that the active
formula (ϕ) should not be atomic.

• It is possible to take as axioms of GJ�
3
only p ⇒ p, ¬p ⇒ ¬p, and ⇒ p,¬p,

where p is atomic (and the rules for f and �, which are really axioms). All other
instances of the axioms are then derivable using the logical rules of the system.
The same is true for GSRM∼→

and for the various fragments of GJ�
3
.

• The first rule for GP1 shown in Fig. 4.4 (which is also the rule [⇒¬] of L K ,
introducing negation on the right-hand sides of sequents) is valid for every logic
which is induced by a three-valued paraconsistent matrix, and the extra axioms of
GJ�

3
are derivable by it from the standard identity axioms. Therefore, we could have

included this rule in the definition of GJ�
3
instead of its new axioms (note that this

rule is derivable from these axioms using a cut). We prefer our official formulation
in Fig. 4.5, because all of its logical rules are invertible (see Lemma 4.88). This
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Axioms: Γ, ϕ ⇒ Δ, ϕ Γ ⇒ Δ, ϕ,¬ϕ

Rules: Exchange, Contraction, and the following logical rules:

Γ, ϕ ⇒ Δ
Γ, ¬¬ϕ ⇒ Δ

Γ ⇒ Δ, ϕ

Γ ⇒ Δ, ¬¬ϕ

Γ, ϕ, ψ ⇒ Δ
Γ, ϕ ⊗ ψ ⇒ Δ

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ⊗ ψ

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ Γ, ¬ϕ, ¬ψ ⇒ Δ
Γ, ¬(ϕ ⊗ ψ) ⇒ Δ

Γ, ϕ ⇒ Δ, ¬ψ Γ, ψ ⇒ Δ, ¬ϕ

Γ ⇒ Δ, ¬(ϕ ⊗ ψ)

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ¬ψ Γ, ¬ϕ, ψ ⇒ Δ
Γ, ϕ → ψ ⇒ Δ

Γ, ϕ ⇒ Δ, ψ Γ, ¬ψ ⇒ Δ, ¬ϕ

Γ ⇒ Δ, ϕ → ψ

Γ, ϕ,¬ψ ⇒ Δ
Γ, ¬(ϕ → ψ) ⇒ Δ

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ¬ψ

Γ ⇒ Δ, ¬(ϕ → ψ)

Fig. 4.6 The proof system GSRM∼→

is a very useful property in proof search and for other goals (as the proofs given
below show).

• Actually, we could have formulated GP1 too by using only invertible rules. This
can be done by adding to it the new axioms of GJ�

3
, and limiting the applications

of [⇒¬] to the case where the active formula is not atomic. Again, we can have
only p ⇒ p, ¬p ⇒ ¬p, and ⇒ p,¬p as axioms in these versions of the system,
where p is atomic.

Our next goal is to show the strong soundness and completeness of all these
Gentzen-type systems. Our first step toward this goal is to define the semantics of
sequents in the context of matrices.

Definition 4.81 Let M be a matrix for L and let ν ∈ �M.

• We say that ν is an M-model of a sequent � ⇒ �, or that ν M-satisfies � ⇒ �

(notation: ν |=M � ⇒ �) if ν �|=M ϕ for some ϕ in �, or ν |=M ψ for some ψ
in �.

• We say that a sequent s M-follows from a set S of sequents (notation: S �M s)
if every M-model of S is also an M-model of s.

• A sequent s is M-valid (notation: �M s) if ν |=M s for every ν ∈ �M (i.e., if
∅ �M s).

By Definition 4.81 and Proposition 4.36, we have

Proposition 4.82 Let M be a three-valued paraconsistent matrix, and let ν be an
assignment in M. Then ν |=M � ⇒ � (where � ⇒ � is a sequent in the language
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of M) iff either ν(ϕ) = f for some ϕ ∈ �, or ν(ψ) �= f (i.e., ν(ψ) ∈ {t,�}) for
some ψ ∈ �.

Note 4.83 It is easy to see that �M � ⇒ ψ iff � �M ψ.

Definition 4.84 Let L = LM be one of the logics discussed in Sect. 4.5, and let
GL be the corresponding Gentzen-type calculus. We say that GL is (strongly) sound
and complete for L if for every T and ψ it holds that T �GL ψ (Definition 4.79) iff
T �L ψ.

To show soundness and completeness of our various systems, we first need some
lemmas.

Lemma 4.85 Let M be a three-valued paraconsistent matrix, and let � ⇒ � be
a sequent which consists of literals (i.e., atomic formulas or negations of atomic
formulas).

1. �M � ⇒ � iff either � ∩ � �= ∅, or there is an atomic formula p such that
{p,¬p} ⊆ �, or f ∈ �, or ¬f ∈ �, or � ∈ �, or ¬� ∈ �.

2. If L is one of the logics discussed in Sect.4.5 and �L � ⇒ �, then �GL � ⇒ �.

Proof Suppose � and � consist only of literals.

1. FromProposition 4.36, it follows that if� and� satisfies one of the six conditions,
then �M � ⇒ �. Suppose now that � ⇒ � does not satisfy any of them. Define

ν(p) =
⎧
⎨

⎩

f if p ∈ �,

t if ¬p ∈ �,

� otherwise.

Then ν is well-defined, and ν �|=M � ⇒ �. Hence ��M � ⇒ � in this case.
2. This follows from the first part and the fact that every sequent which satisfies the

condition given in that part is obviously provable in GL (except in the case that
L = P1 such a sequent is simply an axiom of GL. In the case of P1 we use the
rule for introducing negation on the right). �

Lemma 4.86 Let L be one of the logics discussed in Sect.4.5, and let M be the
three-valued paraconsistent matrix which induces L. Then every logical rule of GL

is strongly sound for �M: if S is the set of premises of (an application of) such a
rule, and s is its conclusion, then S �M s.

Proof Easy. As an example, we show the case of the rule of GSRM∼→
for introducing

¬(ϕ ⊗ ψ) on the right. So assume that ν |=A1 �,ϕ ⇒ �,¬ψ and ν |=A1 �,ψ ⇒
�,¬ϕ. We show that ν |=A1 � ⇒ �,¬(ϕ ⊗ ψ). If ν |=A1 � ⇒ � we are done.
Otherwise,wehave that eitherν(ϕ) = f orν(ψ) �= t , and eitherν(ψ) = f orν(ϕ) �=
t . This gives us four possibilities, and it is easy to check that in all of them ν(ϕ ⊗ ψ) �=
t , i.e., ν(¬(ϕ ⊗ ψ)) �= f . �
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Lemma 4.87 Let L be one of the logics discussed in Sect.4.5. Then GL is strongly
sound for L.

Proof By Lemma 4.86 we need only to check that the axioms of GL are valid in L.
This is obvious. �

Lemma 4.88 Let L and M be like in Lemma 4.86, and let r be a logical rule of GL.
If r is not the rule of GP1 for introducing ¬ on the right, then r is strongly invertible
in �M: If sc is the conclusion of r and sp is any of its premises, then sc �M sp. This
is true also for every application of the exceptional rule in which the active formula
is not atomic (I.e., if ϕ is not atomic then � ⇒ �,¬ϕ �P1 ϕ, � ⇒ �).

Proof Again we do as an example the case in which r is the rule of GSRM∼→
for

introducing ¬(ϕ ⊗ ψ) on the right. So assume that ν |=A1 � ⇒ �,¬(ϕ ⊗ ψ). We
show, e.g., that ν |=A1 �,ψ ⇒ �,¬ϕ. If ν |=A1 � ⇒ � we are done. Otherwise
ν(¬(ϕ ⊗ ψ)) �= f , and so ν(ϕ ⊗ ψ) �= t . This implies that either ν(ϕ) = f , or
ν(ψ) = f , or ν(ϕ) = ν(ψ) = �, and so either ν(ψ) = f or ν(¬ϕ) �= f . In both
cases, we have that ν |=A1 �,ψ ⇒ �,¬ϕ.

As for the exceptional rule, suppose thatϕ is not atomic, and ν |=P1 � ⇒ �,¬ϕ.
We show that ν |=P1 ϕ, � ⇒ �. If ν |=P1 � ⇒ �we are done. Otherwise ν(¬ϕ) �=
f , and so ν(ϕ) ∈ { f,�}. Since ϕ is not atomic, ν(ϕ) �= �. It follows that ν(ϕ) = f ,
and so ν |=P1 ϕ, � ⇒ �. �

Lemma 4.89 Let L and M be like in Lemma 4.86, and let s be a sequent in the
language of L. If �M s then s has a cut-free proof in GL.

Proof It is easy to check that by applying the logical rules of GL backward, and
using Lemma 4.88, we can construct for every sequent s a finite set S(s) with the
following properties:

1. Each element of S(s) is a sequent which consists only of literals.
2. s �M s ′ for every element s ′ of S(s).
3. There is a cut-free proof of s from S(s).

Suppose now that �M s. By Lemma 4.88 and the second property of S(s) this
implies that �M s ′ for every element s ′ of S(s). By Lemma 4.85 and the first and
third properties of S(s) it follows that s has a cut-free proof in GL. �

Now we are ready to prove the two main results of this section.

Theorem 4.90 Let L be one of the logics discussed in Sect.4.5.

1. GL is sound and complete for L.
2. T �GL ψ iff T �L ψ.

Proof The first part is immediate from Lemmas 4.87 and 4.89; The second part
follows from the first part and the fact that by Proposition 4.11, L is finitary. �
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Inference Rule: [MP]
ψ ψ ⊃ ϕ

ϕ
Axioms:

[⊃1] ψ ⊃ ϕ ⊃ ψ
[⊃2] (ψ ⊃ ϕ ⊃ τ) ⊃ (ψ ⊃ ϕ) ⊃ (ψ ⊃ τ)
[⊃3] ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ
[∧⊃] ψ ∧ ϕ ⊃ ψ, ψ ∧ ϕ ⊃ ϕ
[⊃∧] ψ ⊃ ϕ ⊃ ψ ∧ ϕ
[⊃∨] ψ ⊃ ψ ∨ ϕ, ϕ ⊃ ψ ∨ ϕ
[∨⊃] (ψ ⊃ τ) ⊃ (ϕ ⊃ τ) ⊃ (ψ ∨ ϕ ⊃ τ)

Fig. 4.7 The proof system HCL+

Theorem 4.91 Let L be one of the logics discussed in Sect.4.5. Then GL admits
cut-elimination (i.e., every sequent that is provable in GL has a proof in which the
cut rule is not used).

Proof Suppose that �GL s. By Lemma 4.87, �L s. By Lemma 4.89 this implies that
s has a cut-free proof in GL. �

4.6.2 Hilbert-Type Systems

To complete the picture, in this final subsectionwe presentHilbert-type proof systems
with MP for ⊃ as the sole rule of inference for all the logics studied in Sect. 4.5 in
which ⊃ is a primitive connective.11 Again, these systems are based on some sound
and complete proof system of the same type for positive classical logic (CL+). Such
a system, denoted HCL+, is presented in Fig. 4.7.12

Definition 4.92 Figures4.8 and 4.9 contain Hilbert-type proof systems for the logic
P1 and the logics PAC and J3, respectively. Hilbert-type proof systems HPAC� and
HJ�

3
for the logics PAC� and J�

3 (respectively) are obtained by adding to HPAC and
HJ3 (respectively) the axioms � and ¬�. A Hilbert-type proof system HPAC¬⊃

for

PAC¬⊃ is obtained from HPAC by replacing [t] with either (¬ϕ ⊃ ϕ) ⊃ ϕ or (ψ ⊃
ϕ) ⊃ (¬ψ ⊃ ϕ) ⊃ ϕ, changing [⇒¬⊃] to ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ)), and deleting
all axioms that mention ∧ or ∨.

11Note that by Proposition 4.66, the four≤k -monotonic expansions ofLP (includingLP itself) have
no implication, and so they cannot have a corresponding Hilbert-type system of the above type. In
contrast, by Proposition 4.57 SRM ∼→ can be defined using such a system, but the resulting system
does not look very natural. A natural Hilbert-type system for SRM ∼→ in its primitive language (but
with two inference rules) can be found in [9].
12As usual, in the formulation of the axioms of the systems the association of nested implications
is taken to the right.
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Inference Rule: [MP]
ψ ψ ⊃ ϕ

ϕ

Axioms: The axioms of HCL+ and:
[t] ¬ψ ∨ ψ
[¬⊃⇒] (ϕ ⊃ ψ) ⊃ ¬(ϕ ⊃ ψ) ⊃ τ
[¬∨⇒] (ϕ ∨ ψ) ⊃ ¬(ϕ ∨ ψ) ⊃ τ
[¬∧⇒] (ϕ ∧ ψ) ⊃ ¬(ϕ ∧ ψ) ⊃ τ
[¬⇒] ¬ϕ ⊃ ¬¬ϕ ⊃ τ

Fig. 4.8 The proof system HP1

Inference Rule: [MP]
ψ ψ ⊃ ϕ

ϕ

Axioms of HPAC: The axioms of HCL+ and:
[t] ¬ψ ∨ ψ
[¬¬⇒] ¬¬ϕ ⊃ ϕ
[⇒¬¬] ϕ ⊃ ¬¬ϕ
[¬⊃⇒1] ¬(ϕ ⊃ ψ) ⊃ ϕ
[¬⊃⇒2] ¬(ϕ ⊃ ψ) ⊃ ¬ψ
[⇒¬⊃] (ϕ ∧ ¬ψ) ⊃ ¬(ϕ ⊃ ψ)
[¬∨⇒1] ¬(ϕ ∨ ψ) ⊃ ¬ϕ
[¬∨⇒2] ¬(ϕ ∨ ψ) ⊃ ¬ψ
[⇒¬∨] (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ)
[¬∧⇒] ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ)
[⇒¬ ∧1] ¬ϕ ⊃ ¬(ϕ ∧ ψ)
[⇒¬ ∧2] ¬ψ ⊃ ¬(ϕ ∧ ψ)

Axioms of HJ3 : The axioms of HPAC and:
[f⊃] f ⊃ ψ
[⊃ f] ψ ⊃ ¬f

Fig. 4.9 The proof systems HPAC and HJ3

Theorem 4.93 Let L ∈ {P1, PAC¬⊃, PAC, PAC�, J3, J�
3 }. Then �HL = �GL .

Proof Using cuts and the fact that �L K + ψ,ψ ⊃ ϕ ⇒ ϕ, it is easy to show by induc-
tion on length of proofs in HL that if � �HL ϕ (where � is finite) then � �GL ϕ.
All one needs to do is to show that �GL ϕ for every axiom ϕ of HL, and this is a
straightforward exercise. It immediately follows that �HL ⊆ �GL .

For the converse, it would be more convenient to use the versions of the Gentzen-
type systems which employ lists of formulas rather than finite sets,13 and to treat
each of the six logics separately.

L = PAC. In this case, it is easy to prove (either syntactically, using the cut-
elimination theorem forGPAC, or semantically, using the soundness theorem for it)

13In such a case we need also the structural rules of Permutation, Contraction, and Expansion that
assure that the underlying consequence relation remains the same.
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that a sequent s = ϕ1, . . . ,ϕn ⇒ ψ1, . . . ,ψm is provable in GPAC only if m > 0.
For each such sequent s we define a translation T rL(s) by T rL(s) = ϕ1 ∧ · · · ∧
ϕn ⊃ ψ1 ∨ · · · ∨ ψm (in particular:T rL(⇒ ψ1, . . . ,ψm) = ψ1 ∨ · · · ∨ ψm).Obvi-
ously, to show that �GL ⊆ �HL it suffices to prove that if �GL s then �HL T rL(s).
We prove this claim by induction on length of proofs in GL. This is a routine
(though tedious) induction, and here we shall do as examples three of the various
possible cases that should be considered.

• Suppose s is an axiom of the form ⇒ ¬ϕ,ϕ. Then T rL(s) is an instance of the
axiom [t] of L (= PAC).

• Suppose s is inferred from s1 and s2 using [⊃⇒]. Then there are formulasϕ,ψ, τ2,
and (perhaps) τ1 such that T rL(s) = τ1 ∧ (ϕ ⊃ ψ) ⊃ τ2, T rL(s1) = τ1 ⊃ τ2 ∨ ϕ,
and T rL(s2) = τ1 ∧ ψ ⊃ τ2 (the case where T rL(s) = (ϕ ⊃ ψ) ⊃ τ2, T rL(s1) =
τ2 ∨ ϕ, and T rL(s2) = ψ ⊃ τ2 is similar, but easier). By induction hypothesis,
�HL T rL(s1) and �HL T rL(s2). Now

P1 ⊃ P2 ∨ P3, P1 ∧ P4 ⊃ P2 �CL+ P1 ∧ (P3 ⊃ P4) ⊃ P2.

Since HC L+ is complete forCL+ and HL is an extension of HC L+, it follows (by
substituting τ1 for P1, τ2 for P2, ϕ for P3, and ψ for P4) that T rL(s1), T rL(s2) �HL

T rL(s). Hence �HL T rL(s).
• Suppose s is inferred from s1 using [¬⊃⇒]. Then there are formulas ϕ, ψ, τ2, and
(perhaps) τ1 such that T rL(s) = τ1 ∧ ¬(ϕ ⊃ ψ) ⊃ τ2, while T rL(s1) = τ1 ∧ ϕ ∧
¬ψ ⊃ τ2 (again the case where there is no τ1 is easier). By induction hypothesis,
�HL T rL(s1). Now

P5 ⊃ P3, P5 ⊃ P4, P1 ∧ P3 ∧ P4 ⊃ P2 �CL+ P1 ∧ P5 ⊃ P2.

Since HC L+ is complete for CL+ and HL is an extension of HC L+, it follows
(by substituting τ1 for P1, τ2 for P2, ϕ for P3, ¬ψ for P4, and ¬(ϕ ⊃ ψ) for P5)
that

¬(ϕ ⊃ ψ) ⊃ ϕ, ¬(ϕ ⊃ ψ) ⊃ ¬ψ, T rL(s1) �HL T rL(s).

Using the axioms [¬⊃⇒1] and [¬⊃⇒2] of HL, it follows from the induction
hypothesis for s1 that �HL T rL(s).

The proofs in the other cases are similar. One should only note that in some of the
cases (e.g., when s is inferred from s1 using weakening on the right) there are four
subcases to consider (rather than just two as in the cases handled above): that we
have both τ1 and τ2; that we have τ1 but not τ2; that we have τ2 but not τ1; and that
we have neither τ1 nor τ2.

L = PAC�. The proof in this case is very similar to that in the previous one, and
is left to the reader.

L = J3. The proof in this case is again similar to that in case of PAC. The main
difference is that now also sequents of the form � ⇒ may be proved in GL,
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and so the translation of sequents into formulas should be extended to these type
of sequents. This is done by letting T rL(ϕ1, . . . ,ϕn ⇒) be ϕ1 ∧ · · · ∧ ϕn ⊃ f.
Details are left to the reader.

L = J�
3 . The proof in this case is very similar to that in the case of J3, and is left

to the reader.
L = P1. The proof in this case is similar to the case L = J3, but instead of f we

use ¬P1 ∧ ¬¬P1 (say).
L = PAC¬⊃. This time there is another problem: ∧ and ∨ are not included in the

language of PAC¬⊃, and so we cannot employ the translation function that was

used in the case of PAC. However, we can use the facts that ϕ ∨ ψ is equivalent in
CL+ to (ϕ ⊃ ψ) ⊃ ψ and ϕ ∧ ψ ⊃ τ is equivalent in CL+ to ϕ ⊃ ψ ⊃ τ . With
the help of this fact we can transform the definition of T rPAC into an equivalent
(in CL+) definition in which ∧ and ∨ are not used:

T rPAC¬⊃
(ϕ1, . . . ,ϕn ⇒ ψ1, . . . ,ψm)

= ϕ1 ⊃ . . . ϕn ⊃ (. . . ((ψ1 ⊃ ψ2) ⊃ ψ2) ⊃ · · · ⊃ ψm) ⊃ ψm

With this definition, and using instead of HCL+ theHilbert-type system consisting
only of [MP], [⊃1], [⊃2], and [⊃3] (this proof system is sound and complete
with respect to the {⊃}-fragment of classical logic), one can proceed in a way
which is very similar to that used in the case L = PAC. �

Theorem 4.94 For every logic L ∈ {P1, PAC¬⊃, PAC, PAC�, J3, J�
3 }, the proof sys-

tem HL is strongly sound and complete for L, i.e., T �HL ψ iff T �L ψ for each
such L.

Proof This is a direct corollary of Theorems 4.93 and 4.90. �
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Chapter 5
Strong Three-Valued Paraconsistent Logics
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Abstract After describing the two formulations of the principle of non contradiction
in modern logic T � ¬(p ∧ ¬p) (NC) and T, p,¬p � q (EC) and explaining that
three-valued matrices can be used to easily prove their independence, we investigate
the possibilities to construct strong paraconsistent negations, i.e., for which neither
(NC) nor (EC) holds, using three-valued logical matrices.
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5.1 Introduction

A paraconsistent negation can roughly speaking be defined as a negation not obeying
the principle of non contradiction.1

In modern logic there are two main formulations of this principle:

(NC) T � ¬(p ∧ ¬p)
(EC) T, p,¬p � q

It is possible to have several readings or interpretations of these expressions,
depending on which framework we are working with. Here we consider that � is a

1For a general discussion about how a paraconisstent negation can be defined, see [7, 8].
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Tarksian structural consequence relation,2 T is any theory (set of formulas), p and
q any formulas. We work here with a language with only negation ¬, disjunction ∨,
and conjunction Û. We require conjunction and disjunction to behave classically, so
for us T, p,¬p � q is equivalent to T, p ∧ ¬p � q.

There are some paraconsistent negations for which neither (NC) nor (EC) is valid
like the paraconsistent logic C1 of Newton da Costa [11], but generally the emphasis
is put on the rejection of (EC), so that it is common to consider as paraconsistent
a negation not obeying (EC) but obeying (NC). It is not clear if it really makes
sense. We define here a strong paraconsistent negation as a paraconsistent negation
obeying neither (NC) nor (EC) and we systematically examine what kind of strong
paraconsistent negations can be constructed using three-valued matrices.

5.2 Independency of EC and NC and Basic Framework

We first present a simple but interesting result concerning three-valued matrices and
the two forms of the principle of noncontradiction. We consider an additional value
1
2 besides truth 1 and falsity 0 and we consider the following tables for negation and
conjunction:

¬
0 1
1
2

1
2

1 0

3-valued table M for Negation

∧ 0 1
2 1

0 0 0 1
1
2 0 1

2
1
2

1 0 1
2 1

3-valued table M for Conjunction
Then we have the following table:

p ¬p p ∧ ¬p ¬(p ∧ ¬p)
0 1 0 1
1
2

1
2

1
2

1
2

1 0 0 1

2This means that reflexivity, monotonicity, transitivity hold as well as substitution, see [17].
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Using the standard framework to define logical truth and consequence, if we
consider that 1

2 is undesignated, then (NC) is not valid, since ¬(p ∧ ¬p) can be
undesignated, but (EC) is valid, since p ∧ ¬p is always undesignated. Now if we
consider that 1

2 is designated we have exactly the reverse situation: (NC) is valid and
(EC) is not valid.

The two above tables therefore do not allow us to construct a strong paraconsistent
negation.

Remark Asenjo’s logic of antinomy [1] (probably the first three-valued paraconsis-
tent logic), da Costa/D’Ottaviano’s logic J3 [13] and Priest’s logic L P [20] have
the above tables for negation and conjunction and they are therefore not strong para-
consistent logics. J3 was originally presented with disjunction, not conjunction. The
presentation with conjunction can be found in Chap.9 of Epstein’s book [14].

These tables are the same as the one for Łukasiewicz’s logic L3 [18] and Kleene’s
logic K3 [16]. The difference is that in these logics 1

2 is considered as undesigned;
(NC) is therefore not valid but (EC) is valid. L3 and K3 are not strong paraconsistent
logics and they are in fact generally not considered as paraconsistent logic because
in modern logic paraconstistency has been defined on the basis of the rejection of
(EC).

Let us point out that the notation 1
2 suggests that the third value, whether it is

designed or undesigned, is in between 0 and 1 and that the table of∧ is built according
to the idea that the value of the conjunction is the smallest value of the two terms of
the conjunction based on the linear order 0, 1

2 , 1. Asenjo chose 0 for 1, 1 for 0 and
2 for 1

2 . This is rather confusing. In our paper on the history of truth-values [9], we
are discussing the question of ordering of truth-values.

Let us note that due to a general result we have presented in [6], Asenjo’s logic
of antinomy, J3 and L P are not algebraizable. This result states that a logic where
we do not have (EC) but where we have (NC) and the double negation law, is not
algebraizable.

In the present paper we show that it is possible to proceed in a different way. First
we need to set up a general framework we will work with.

It is not difficult to prove that ifwehave a third value any truth-table for conjunction
obeying the condition that the value of the conjunction is designated iff the two terms
of the conjunction are designated defines a classical conjunction, i.e., a conjunction
obeying the following three laws3:

(∧1) T, p ∧ q � p (∧2) T, p ∧ q � q (∧3) T, p, q � p ∧ q
Also if we have a disjunction defined by a truth-table according to which the

value of the disjunction is undesignated iff the two terms of the disjunction are
undesignated, then this disjunction is classical, i.e., it is a disjunction obeying the
following three laws4:

(∨1) If T, p � r and T, q � r then T, p ∨ q � r
(∨2) T, p � p ∨ q (∨3) T, q � p ∨ q

3We are working in abstract logic, not in proof theory, so we are not considering that these are rules.
4Same remark as in the previous footnote.
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We will call neo-classical tables for conjunction and disjunction obeying the
above conditions (note that these definitions work for all many-valued logics: three
or any number of values). These conditions can be represented by the following two
tables where + holds for designated and − holds for undesignated:

The result then goes as follows: Neo-classical tables for conjunction and disjunc-
tion define classical conjunction and disjunction.

In this work we will moreover consider only truth-tables which are conservative
extensions of the classical bivalent ones, that is to say the classical parts of those
truth-tables remain unchanged. We also require symmetry, i.e., ∧(x, y) = ∧(y, x)
and ∨(x, y) = ∨(y, x), for any truth-values x and y. Note however that the above
result does not depend on these additional conditions.

Let us now called a neo-classical truth-table for negation, a table as follows:

¬
− +
+ −

Neo-classical table for Negation

It is easy to show that a negation defined by a neo-classical table is necessarily
classical. This means that:

(RA) If T,¬p � q and T,¬p � ¬q then T � p
In this case (EC) holds—see [5] for the different laws for pure negation and their

interrelations. And if we have a classical conjunction, (NC) also holds.
Moreover if we have a (scheme of) formula s (for example, the conjunction of

two formulas: a ∧ b) such that v(s) is designated iff v(¬s) is undesignated, then we
have:

(RA-s) If T,¬s � q and T,¬s � ¬q then T � s
and therefore (NC-s) T � ¬(s ∧ ¬s) and (EC-s) T, s,¬s � p

In this case we say that s behaves classically.
To construct a 3-valued paraconsistent negation which obeys neither (NC) nor

(EC), based on the logic of classical conjunction and disjunction, we have to change
the above M-tables for negation and/or for conjunction. Furthermore we need a
table of negation which is not neo-classical (but we will consider only conservative
extensions of the truth-table of classical negation). And finally it is sufficient to have
tables for conjunction and disjunction which are neo-classical.
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The three-valuedparaconsistent logicswe are presenting here are part of the family
8K of logics described by João Marcos [19] (but we are not explicitly dealing with
implication). A recent systematic approach to paraconsistent three-valued logics
is the paper by Arielli and Avron [2] included in this volume. However, in both
cases the authors are not focusing on strong paraconsistent negations and are not
dealing explicitly with the two systems of three-valued paraconsistent logic we are
distinguishing here.

5.3 Changing the Standard 3-Valued Table for Negation

Let us first see what we can do by changing the table for negation. We will now use
k for the third value to stay neutral about its position in relation with 0 and 1. If we
choose the table:

¬
0 1
k 0
1 0

whether k is designated or undesignated, p ∧ ¬p is undesignated when the value of
p is k since 0 is undesignated (taking into consideration that the conjunction should
be defined by a neo-classical table). This can be represented by the following table
(where undesignated is represented by the sign −):

p ¬p p ∧ ¬p
0 1 0
k 0 −
1 0 0

Therefore (EC) holds, so ¬ is not a strong paraconsistent negation.
The other option is the following:

¬
0 1
k 1
1 0

If k is undesignated, then the value of p ∧ ¬p has to be k when the value of p is
k. The value of p ∧ ¬p is always undesigned, therefore (EC) holds and the value
of ¬(p ∧ ¬p) is always 1, therefore (NC) holds, so ¬ is not a strong paraconsistent
negation. This can be represented by the following table where we use the notation
k− to specify that k is undesignated:
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p ¬p p ∧ ¬p ¬(p ∧ ¬p)
0 1 0 1

k− 1 k− 1
1 0 0 1

We have therefore to consider that k is designated. We use the notation k+ and we
have the following table:

¬
0 1

k+ 1
1 0

We have then two options to define conjunction. The first option is described by
the following table where + denotes a designated value (k or 1) and where we use
the notation k+ to emphasize that k is designated (we apply here neo-classical and
symmetry conditions):

∧ 0 k+ 1
0 0 0 0

k+ 0 + k+
1 0 k+ 1

Note that if the designated value+ at the middle of this table is k+we have a similar
table as the table M for conjunction presented in the first section. Anyway in both
cases (+ being k+ or 1) we have:

p ¬p p ∧ ¬p ¬(p ∧ ¬p)
0 1 0 1

k+ 1 k+ 1
1 0 0 1

This shows that ¬(p ∧ ¬p) is always 1 and that (NC) holds, so ¬p is not a strong
paraconsistent negation.

The second option is described by the following table (we also apply here neo-
classical and symmetry conditions):

∧ 0 k+ 1
0 0 0 0

k+ 0 + 1
1 0 1 1
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We have then:

p ¬p p ∧ ¬p ¬(p ∧ ¬p)
0 1 0 1

k+ 1 1 0
1 0 0 1

This shows that neither (EC) nor (NC) holds, hence we have a strong paraconsistent
negation.

According to this table p ∧ ¬p behaves classically. Moreover the formula ¬p ∧
¬(p ∧ ¬p) behaves as a classical negation as shown by the following table:

p ¬p p ∧ ¬p ¬(p ∧ ¬p) ¬p ∧ ¬(p ∧ ¬p)
0 1 0 1 1

k+ 1 1 0 0
1 0 0 1 0

This is a similar phenomenon as in the paraconsistent logic C1 of Newton da Costa
[12].

In the above table for conjunction the designated value + can be interpreted as
k+ or 1, corresponding to the two following tables:

If we choose the left table, this means that the conjunction a ∧ b of any formulas a
and b behaves classically.

To minimize molecularization (molecular propositions behaving classically) it is
better to choose the right table. We will call L3A the 3-valued logic constructed
using this right table for conjunction and the modified table for negation.

Remark Sette’s logic P1 has the left table for conjunction (cf [21], p.12) and the
same truth-table for negation as discussed here (cf [21], p.7). Sette uses T0 for 1, T1

for k+, F for 0.

5.4 Not Changing the Standard 3-Valued Table for
Negation

Let us present again the M-table for negation, but using k instead of 1
2 to avoid any

speculation:
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¬
0 1
k k
1 0

If we consider that k is undesignated (we use the notation k−), then (EC) is valid as
shown by the following table:

p ¬p p ∧ ¬p
0 1 0

k− k− k−
1 0 0

We have therefore to choose k as designated (we use the notation k+):

¬
0 1

k+ k+
1 0

This generally what has been chosen by the people working in three-valued para-
consistent logic, but without changing the table for conjunction, which, as we have
seen in Sect. 5.2, necessarily leads to paraconsistent negations which are not strong.

First let us note that the table:

∧ 0 k+ 1
0 0 0 0

k+ 0 k+ +
1 0 + 1

together with the above table for negation lead to the following table:

p ¬p p ∧ ¬p ¬(p ∧ ¬p)
0 1 0 1

k+ k+ k+ k+
1 0 0 1

showing that (NC) is valid. So if we consider that the conjunction of two terms whose
both values are k+ is k+, we have no strong paraconsistent negation.
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We have therefore to choose the following situation:

∧ 0 k+ 1
0 0 0 0

k+ 0 1 +
1 0 + 1

Independently of the interpretation of +, we have:

p ¬p p ∧ ¬p ¬(p ∧ ¬p)
0 1 0 1

k+ k+ 1 0
1 0 0 1

showing that neither (NC) nor (EC) holds, a good situation for strong paraconsistent
negations. This table shows that, as in the previous section, p ∧ ¬p behaves classi-
cally. And the following table shows that ¬p ∧ ¬(p ∧ ¬p) behaves also here like a
classical negation.

p ¬p p ∧ ¬p ¬(p ∧ ¬p) ¬p ∧ ¬(p ∧ ¬p)
0 1 0 1 1

k+ k+ 1 0 0
1 0 0 1 0

We have then two options (respecting symmetry):

The option on the left leads to molecularization. We will call L3B the 3-valued logic
constructed using the right table for conjunction and the M-table for negation with
the third value as designated.

5.5 Two Interesting Strong 3-Valued Paraconsistent Logics

Let us present here the two 3-valued logics with a strong paraconsistent negation we
have selected, minimizing molecularization, one changing the standard M-table for
negation, the logic L3A, one not changing the standard M-table for negation, the
logic L3B, but in both cases changing the M-table for conjunction:
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In L3A and L3B it is possible to define a classical negation as ¬p ∧ ¬(p ∧ ¬p),
like in da Costa’s logic C1, therefore classical logic is translatable into these logics,
giving more examples of the translation’s paradox [15]. Also, as a consequence,
in these logics not every formula can be considered as a so-called “dialetheia” by
contrast to the three-valued logic L P (cf. [10]).

Let us note that the option L3B is better to avoid molecularization, since in L3A
we lost the third value when applying negation, which means that a negated formula
behaves classically. According to the truth-table for conjunction of L3A we can
interpret k+ as “super-true” that could be denoted by 2. If we consider the linear
order between 0, 1, 2, then this truth-table for conjunction respects the idea to take
the smallest value. The strategy of the smallest doesn’t work for the truth-table for
conjunction of L3B whether we interpret k+ as in-between or above. On the other
hand its truth-table for negation is quite normal. The case of the one of L3A is not
really clear, the negation transforming super-true into true.

Let us also point out that the law of double negation holds for L3B but not for
L3A, as shown by the following tables:

In L3A we have T,¬¬p � p but T, p � ¬¬p. For example a being an atomic
formula, we have a � ¬¬a.

But this does not mean that L3B is stronger than L3A. Because, due to molec-
ularization, in L3A we have ¬a,¬¬a � q, which is not the case in L3B. So L3A
and L3B are incomparable.

We will now develop a further comparative study of these two strong paraconsis-
tent logics introducing disjunction and studying De Morgan laws.
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5.6 Disjunction and De Morgan Laws

5.6.1 Law of Excluded Middle

Considering any neo-classical disjunction,we can see that the law of excludedmiddle
holds for both L3A and L3B:

We have used here neo-classical truth-tables for disjunction without specifying
the value of +. In the next subsections we will examine the best solutions to build
truth-tables of disjunction for these logics relatively to De Morgan laws

5.6.2 De Morgan Laws

We remember and label the four basic De Morgan laws in the following table:

D1a ¬(p ∧ q) � ¬p ∨ ¬q D1b ¬p ∨ ¬q � ¬(p ∧ q)
D2a ¬(p ∨ q) � ¬p ∧ ¬q D2b ¬p ∧ ¬q � ¬(p ∨ q)

De Morgan Laws

5.6.3 De Morgan Laws and Disjunction for L3A

Using the tables of conjunction and negation of L3A as well as the neo-classical
conditions for disjunction, we have the following table5:

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 1 0 1 1 1 ? +

k+ 0 1 1 0 1 1 1 ? +
k+ k+ 1 1 k+ 1 1 1 ? +
k+ 1 1 0 1 0 1 0 ? +
1 k+ 0 1 1 0 1 0 ? +

5Since we are working with truth-tables which are conservative extensions of the classical ones, we
omit the classical parts in all tables built to check De Morgan laws hereafter.
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In this table + is any designated value and ? is a value that depends on how we
construct the table for disjunction. We see that De Morgan Law D1b is not valid as
shown by the 4th and 5th lines of values of the table. On the other hand whatever
our choice for ? is, D1a will hold.

If wewant theDeMorgan Laws D2 to hold, we have to fill the penultimate column
as follows (remembering that the only undesignated value is 0):

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 1 0 1 1 1 + +

k+ 0 1 1 0 1 1 1 + +
k+ k+ 1 1 k+ 1 1 1 + +
k+ 1 1 0 1 0 1 0 0 +
1 k+ 0 1 1 0 1 0 0 +

Taking into consideration the table for negation, the two last columns should be as
follows:

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 1 0 1 1 1 1 k+

k+ 0 1 1 0 1 1 1 1 k+
k+ k+ 1 1 k+ 1 1 1 1 k+
k+ 1 1 0 1 0 1 0 0 1
1 k+ 0 1 1 0 1 0 0 1

The table for disjunction must therefore be as follows:

∨ 0 k+ 1
0 0 k+ 1

k+ k+ k+ 1
1 1 1 1

This is the standard table, the same as in L3, K3, Asenjo’s logic of antinomy, J3, LP.

5.6.4 De Morgan Laws and Disjunction for L3B

Using the tables of conjunction and negation of L3B as well as the neo-classical
conditions for disjunction, we have the following table:
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p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 k+ 0 1 + k+ ? +

k+ 0 k+ 1 0 1 + k+ ? +
k+ k+ k+ k+ 1 0 + 1 ? +
k+ 1 k+ 0 k+ k+ + 0 ? +
1 k+ 0 k+ k+ k+ + 0 ? +

In this table + is any designated value and ? is a value that depends on how we
construct the table for disjunction. We see that De Morgan law D1b is not valid as
shown by the 3rd line of values of the table. On the other hand whatever our choice
for ? is, D1a will hold.

If we want the DeMorgan laws D2 to hold, we have to fill the penultimate column
as follows (remembering that the only undesignated value is 0):

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 k+ 0 1 + k+ + +

k+ 0 k+ 1 0 1 + k+ + +
k+ k+ k+ k+ 1 0 + 1 + +
k+ 1 k+ 0 k+ k+ + 0 0 +
1 k+ 0 k+ k+ k+ + 0 0 +

Taking into consideration the table for negation, the two last columns should be as
follows:

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 k+ 0 1 + k+ k+ k+

k+ 0 k+ 1 0 1 + k+ k+ k+
k+ k+ k+ k+ 1 0 + 1 k+ k+
k+ 1 k+ 0 k+ k+ + 0 0 1
1 k+ 0 k+ k+ k+ + 0 0 1

The case is similar to L3A in the sense that we must have a standard truth-table for
disjunction:

∨ 0 k+ 1
0 0 k+ 1

k+ k+ k+ 1
1 1 1 1

So at the end the table for L3B is as follows:
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p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q ¬p ∧ ¬q ¬(p ∨ q) p ∨ q
0 k+ 1 k+ 0 1 1 k+ k+ k+

k+ 0 k+ 1 0 1 1 k+ k+ k+
k+ k+ k+ k+ 1 0 k+ 1 k+ k+
k+ 1 k+ 0 k+ k+ k+ 0 0 1
1 k+ 0 k+ k+ k+ k+ 0 0 1

5.6.5 De Morgan Laws and the Replacement Theorem

So at the end the situation of L3A and L3B is the same relatively to De Morgan
laws. The fact that the law D1b ¬p ∨ ¬q � ¬(p ∧ q) is not valid is not necessarily
surprising if we consider that in both L3A and L3B, we have � p ∨ ¬p but �

¬(p ∧ ¬p) and that through double negation and replacement we have from D1b,
p ∨ ¬p � ¬(¬p ∧ p).

However is the replacement theorem valid in L3A and L3B? We have no coun-
terexamples to provide here, but it is not difficult to prove that both L3A and L3B are
extensions of the paraconsistent logic C1 (even of the extension C1+ of C1 intro-
duced in [3], see also [4]) and I. Urbas has proven that there are no self-extensional
extensions of C1 (cf. [22]). We will develop this topic in a further paper.
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Chapter 6
An Approach to Paraconsistent Multivalued
Logic: Evaluation by Complex Truth Values

J. Nescolarde-Selva, J.L. Usó-Doménech and K. Alonso-Stenberg

Abstract The main purpose of the paper is to connect some kind of dialetheism
to the use of complex truth values, with new definitions of basic truth-functional
connectives that allow for p, \not p to both be true. ‘True’ is interpreted as |p| = 1,
‘False’ as |p| = 0; other values are dispensed with. New definitions of basic truth-
functional connectives then allow for “p and not p” to be true. A propositional
logic is discussed with the set of connectives including negation, conjunction, dis-
junction, implication, concordance, discordance, complementary, and equivalence.
The authors introduce truth values of propositions, which belong to a subset E , of an
uncountable semi-ring F and valuations of propositions, which can be obtained from
truth values with the help of a function V : E → [0, 1] satisfying simple properties.
Finally, a paraconsistent Boolean logic is introduced.

Keywords Circle of truth · Contradiction · Complex number · Denier · Logic
coordinations · Paraconsistency · Propositions · Truth values
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6.1 Introduction

The main objective of the authors is to establish a theory of truth value evalua-
tion for paraconsistent logics, unlike others who are in the literature (Asenjo [2];
Avron [3]; Belnap [4]; Bueno [5]; Carnielli et al. [7]; Dunn [10]; Tanaka et al. [20]),
with the goal of using that paraconsistent logic in analyzing ideological, mythical,
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religious, andmystic belief systems (Nescolarde-Selva and Usó-Doménech [11–14];
Usó-Doménech and Nescolarde-Selva [21]). The doctrine of coincidentia opposito-
rum, the interpenetration, interdependence, and unification of opposites has long
been one of the defining characteristics of mystical (as opposed to philosophical)
thought. Mystics of various persuasions generally held that such paradoxes are the
best means of expressing within language, truths about a whole that is sundered by
the very operation of language itself. Any effort, it is said, to analyze these paradoxes
and provide them with logical sense is doomed from the start because logic itself
rests upon assumptions, such as the principles PNC and PEM, that are violated by the
mystical ideas. The coincidentia oppositorum is a common trope in many religious
traditions, particularly those with a mystical or initiatory aspect.

In the current paradigm of consciousness, duality is perceived be a binary state
of mutual exclusion. One sees this notion reflected in human thought and language
where something must be “either X or Y”, but not “both X and Y”. A new para-
digm of consciousness is required that no longer operates in a “dualistic” notion
of “either/or”, but one that conveys a “holistic” notion of “both/and”. We currently
view duality as a disjunctive rather than a conjunctive aspect of being. The difference
between this dualistic and holistic paradigm of consciousness can be symbolically
expressed in the language of logic. Current dualistic paradigm of consciousness
X �= Y ; X ∪ Y (something is either X or Y ); a disjunctive exclusion. Emerging
holistic paradigm of consciousness X = Y ; X ∩ Y (something is both X and Y );
a conjunctive inclusion. This conceptual paradigm of viewing the world in such
an exclusionary and disjunctive dualistic state has been programmed into us by an
outdated Cartesian philosophical worldview and a Newtonian scientific view of the
universe. This modern paradigm of dualistic thought has been prevalent ever since
René Descartes proclaimed. That tradition clings to the principle of noncontradic-
tion, but understood as rejection of contradiction hereinafter abbreviated as RC.
Well, is any approach paraconsistent that rejects this same RC, i.e., admit that cer-
tain contradictions can be true (not necessarily all, of course). In particular, today is
paraconsistent a treatment of problems such as a philosophy of religion that accom-
modates certain antinomian assertions and in doing so, offered as underlying logic
to build theory, not classical logic is a logic of Aristotelian stamp, but one of the
denominated precisely paraconsistent logics.

It seems to us that the philosophy of paraconsistency can propose a concept of
modern rationality which will enable us to restore and gradually elaborate in never
ending self-criticism “the vision of the whole” as a coevolutionary unity of mankind
andNature. To the basics of this modern rationality would belong of the nonexclusive
relation between analytical and dialectical thinking, their developmental unity. The
desirable unifying can be conceived of in various ways. It follows from this paper
that we are skeptical about the proposal to unify analytical and dialectical thinking
through a kind of reduction of the latter to the first by applying the idea of paracon-
sistency. It would mean to reduce the whole to a part. What we propose is to conceive
analytical thinking as a part of and a derivative from something more complex and
more fundamental.
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Numerous paraconsistent logical calculi have been constructed which allow the
formula P ∧ ¬P to be true (derivable) under some special conditions and thus tol-
erate P ∧ ¬P without becoming trivial. To provide some grounds for this theory let
us take a look at Aristotle’s theory of contrariety from the point of view of modern
dialectic. This is detailed account of what Aristotle calls Antifasis is to be found in
Metaphysics Book 4. Aristotle’s examples of the four kinds of opposites are: double
and half, bad and good, blindness and sight, and he sits and he does not sit. Aristotle
was deeply interested in investigating the modes of opposition and their ontological
relevance in the early, middle, and late periods of his philosophizing. He ascribed
to the opposites an important role in almost all fields of reality, in Nature, in society
as well as in thought, but disagreed with that ontological overestimation of the role
of opposites, which he found in many preceding Greek thinkers. The second is his
misinterpretation of Heraclitus in the sense of Protagoras’ relativism hereby not only
the sophistic relativism, but also the Heraclitian anticipations of dialectical ontology.

Aristotle is right in insisting that the denial of this principle would lead to a kind
of total trivialization of human thinking and people would become prisoners of a
helpless tenet “which prevents a thing from being made definite by thought.” Now let
us compare three following allegedly synonymous formulations. Aristotle took all
three as stating the same principle and in different places mutually argues the truth
of each of them from the presupposed evidence of each of them.

1. “Contradictory propositions are not true simultaneously”. This statement is, as
already mentioned, acceptable and respected on the new ontology.

2. “Contradictories cannot be predicated at the same time”. This statement would
be unacceptable if interpreted in the following way: (in the European tradi-
tion translated as “contradictio”) is for Aristotle sometimes the conjunction of
two sentences (or statements, propositions) of which one affirms what the other
denies; sometimes either part of this conjunction; sometimes the negation of
any given subject, property, relation, action, etc. (e.g., man–not-man, changing–
unchanging).

3. “Contraries cannot at the same time belong to the same subject” if taken, as
Aristotle did, as a general principle valid for all entities.

These opposites are, for Heraclitus, to be taken in unity, as constituting in their
opposition and unity something identical. If sometimes in the dialectical tradition
Heraclitus’ position was characterized as claiming not only the unity, but even the
identity of opposites, never was the Leibnizian identity meant, allowing us to replace
one of the identical expressions and/or concepts by the other mutually and thus to
remove completely the opposition.

Some of the adherents of this trend in contemporary logic investigate explicitly
also its philosophical presuppositions and implications (Bueno [6]; Carnielli and
Marcos [8]). Among other problems, the question of the relationship between the
idea of paraconsistency and the traditional and/or contemporary forms of dialectical
thinking is being examined. It seems to us that in the philosophy of paraconsistency a
differentiation can be observed today. One of the tendencies, represented by Arruda
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(Arruda et al. [1]), da Costa (da Costa and Wolf [9]), Quesada [19] while assessing
highly important philosophical implications of the logic of paraconsistency, insists
upon the view that paraconsistency is closely linkedwith the theory of logical calculi.
The philosophizing logicians of this tendency give, as a rule, only modest hypothet-
ical accounts of the relationship between paraconsistency and dialectic. The other
tendency, represented by Priest [15–17]; Priest et al. [18], dares to defend vehemently
more radical and ambitious assumptions about the philosophical and scientific impli-
cations of paraconsistent logic, concerning not only the relation to dialectic, but also
the conception of rationality in general. Let us have a closer critical look at some
main claims of the philosophy of paraconsistency from a special point of view,
namely, from the point of view of secular (ontopraxeological) dialectic which aims
at elaborating a theory of modern rationality taking inspiration from Hegel’s critique
of Kant and Marx’s critique of Hegel. Needless to say, no simple reception of any
philosophy of the past is able to cope with our contemporary problems of ratio-
nality. References to Kant and Hegel remain mostly mere decoration. Priest’s use
of the calculus-oriented notion of inconsistency in his interpretation of the so-called
Kant/Hegel thesis about the inherently inconsistent Nature of human reason seems to
us to bemisleading. Supposingwe accept Kant’s argumentation in his “Transcenden-
tal Dialectics” as a justification of the statement that our thinking is in its very Nature
(apparently, but necessarily) inconsistent, then Hegel’s critique of Kant’s antinomies
should be taken as an attempt at a new consistency which corrects the antinomic
dialectic of (apparent, but necessary) inconsistency of human reason in a section of
its usage. The dictum of a unitary “Kant/Hegel thesis” hides this difference.

Following Priest, we will say that a logical system is paraconsistent, if and only
if its relation of logical consequence is not “explosive”, i.e., iff it is not the case
that for every formula P and Q, P and not-P entail Q; and we will say a system
is dialectical, iff it is paraconsistent and yields (or “endorses”) true contradictions,
named “dialetheias”. A paraconsistent system enables to model theories which in
spite of being (classically) inconsistent are not trivial, while a dialectical system
goes further, since it permits dialetheias, namely contradictions as true propositions.
Still following Priest, semantics of dialectical systems provide truth value gluts (its
worlds or setups are overdetermined); however, truth value gaps (opened by worlds
or setups which are underdetermined) are considered by Priest to be irrelevant or
even improper for dialectical systems. Besides that, sometimes the distinction is
drawn between weak and strong paraconsistency, the latter considered as equivalent
with dialectics. A reader of recent literature in this field may have an impression
that dialectics as strong paraconsistency is more a question of ontology than of
logic itself, namely that it states the existence of “inconsistent facts” (in our actual
world) which should verify dialetheias. One more introductory remark has to be put
here: in recent literature of paraconsistency there are no quite unanimous, among
paraconsistent logicians generally accepted distinction between paraconsistent and
dialectical logical systems. But it remains an open question whether semantically
paradoxes express any “inconsistent facts”.
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6.2 Contradiction and Deniers

Let F be an uncountable set whose algebraic structure is at least that of a semi-ring.
F is a semi-ring, a ring, or a group.

We lay the following definitions and fundamental axioms:

Axiom 1 Any proposition P has a truth value p, element of a set E which is a part,
not countable, and stable for multiplication of the set F .

Axiom 2 Any proposition P is endowed with a valuation v ∈ [0, 1] such that v =
V (p), V application of E on [0, 1] subject to the following conditions:

(1) V −1 (0) = 0
(2) V (p1 p2) = V (p1) V (p2)

being p1 and p2 two truth values.

Axiom 3 Truth value p∗ denotes the negation or contradiction of P denoted as ¬P
and V (p + p∗) = 1.

Let P i be n propositions, i = 1, 2, . . . , n of pi and p∗
i be the truth values of their

contradictories. Then

Definition 1 Acompoundproposition (or logical coordinationor logical expression)
of order n is a proposition whose truth value c is a function fn of pi and p∗

i .

c = fn
(

p1, p∗
1, p2, p∗

2, . . . , pn, p∗
n

)

fn values in F ; it determines a truth value if c ∈ E . The condition of existence of a
compound proposition defined by fn is c ∈ E , or what is equivalent, V (c) ∈ [0, 1].

Axiom 4 fn is a polynomial in which each index 1, 2, . . . , n must be at least once
and that all coefficients are equal to unity.

Definition 2 Let p + p∗ = u be. u is a denier of the proposition P if the following
three conditions are fulfilled:

(a) u ∈ E
(b) V (u) = 1; u unitary truth value (from Axiom3)
(c) u − p = p∗ ∈ E (from Axiom1)

Paraconsistent logic admits that the contradiction can be true. Then

v (P ∧ ¬P) = p (1 − p) = 1 ⇒ p − p2 − 1 = 0 ⇒ p2 − p + 1 = 0

This equation has no real roots but admits complex roots p = e±i π
3 . This is the result

which leads to develop a multivalued logic to complex truth values. The sum of truth
values being isomorphic to the vector of the plane, it is natural to relate the function V
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to the metric of the vector space R2.Wewill adopt as valuations the norms of vectors.
E is the set of complex numbers of modulus less or equal to 1 and the function V is
such that V (p) = |p|2 and it has satisfied Axiom2.

Let P be a proposition of fixed truth value p = |p| eiα. If p = 0, α is indetermi-
nate, we agree to take α = 0. According to Definition2, here a denier is a unitary
complex number u = eiθ such that |u − p| ≤ 1. Putting φ = θ − α (Fig. 6.1) this

inequality entails cosφ ≥ |p|
2 to be |φ| ≤ θ, θ =

∣
∣
∣arccos |p|

2

∣
∣
∣.

In summary

φ ∈ [−θ, θ] ; cos θ = |p|
2

; θ ∈
[π

3
,
π

2

]
(6.1)

Deniers u of P form a continuous set: the sector of the circle of truth (trigonometric
circle) of angle 2θ whose vector p is collinear to the bisector (Fig. 6.2).

A denier is determined by the angle θ. u(φ) is a bijective function. Contradictory
proposition ¬P provides, fixed p, a continuous set of truth values p∗ (φ) , p∗ =
|p∗| eiα∗

, and then

∣
∣p∗∣∣ ∈ [1 − |p| , 1] ; φ = 0 ⇔ ∣

∣p∗∣∣ = 1 − |p| ; φ = ±θ ⇔ ∣
∣p∗∣∣ = 1 (6.2)

Putting ω − α∗ = φ∗, φ = −θ ⇒ φ∗ = π − 2θ; φ = 0 ⇒ φ∗ = 0 ⇒ φ∗ = 2θ
− π; in summary:

φ∗ ∈ [2θ − π,π − 2θ] ⇒ φ − φ∗ ∈ [θ − π,π − θ] (6.3)

On the other hand, we have α∗ − α = φ − φ∗.

The truth contradiction v (P ∧ ¬P) = V |pp∗| = 1 requires |p| = 1 where θ = ±π
3

and also |p∗| = 1 where φ = ±π
3 and φ∗ = ± π

3 :

Fig. 6.1 Circle of truth
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Fig. 6.2 Location of deniers
U of P

Fig. 6.3 Solutions of P and
no P

φ − φ∗ = ±2π

3
= α∗ − α (6.4)

Solutions of v (P ∧ ¬P) = 1 are finally (Fig. 6.3): p = eiα, α any one; p∗ =
ei(α± 2π

3 ).
Multivalued logic with complex truth values is paraconsistent.
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Another characteristic of paraconsistent logic is that the negation of the negation
does not necessarily leads back to the original proposition as Hegel said. If u′ �=
u, v (¬¬P) = V

(
u′ − p∗) �= V (p); v (¬¬P) �= v (P).

6.3 Conditions

6.3.1 Condition 1

It is written |u1u2 − p1 p2| ≤ 1 with the above notation:

∣
∣ei(φ1+φ2) − |p1| |p2|

∣
∣ ≤ 1

Condition 1 back to:

cos (φ1 + φ2) ≥ |p1| |p2|
2

There is a continuous set of deniers u1 (φ1) and other deniers u2 (φ2) that satisfy
(e.g., φ1 + φ2 = 0). As well the ¬P1 ∨ ¬P2 incompatibility exists, provides p1 and
p2 fixed, on a continuous set of truth values u1u2 − p1 p2 and we have:

v (¬P1 ∨ ¬P2) = v (¬ (P1 ∧ P2))

Similarly, P1 ∨ P2 does exist, provided that

cos
(
φ∗
1 + φ∗

2

) ≥
∣
∣p∗

1

∣
∣
∣
∣p∗

2

∣
∣

2

satisfied, for example, if φ1 + φ2 = 0.
Similarly, the implication P1 ⇒ P2 on condition that

cos
(
φ∗
1 + φ∗

2

) ≥ |p1| |p2|
2

6.3.2 Condition 2

Posingα1 − α2 = α, that |p1 + p2| = ∣
∣|p1| eiα + |p2|2

∣
∣ it results that ∀p1 �= 0,∀p2

�= 0,
∣
∣α ≥ 2π

3

∣
∣ ⇒ |p1 + p2| ≤ 1; then |p1 + p2| > 1 ⇒ |α| < 2π

3 .
If |p1 + p2| > 1, which requires nonzero p1 and p2, complementarity P1�P2

does not exist and ¬P1�¬P2 must exist.
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Theorem 1 Can be found deniers u1 and u2, such that
∣
∣p∗

1 + p∗
2

∣
∣ ≤ 1

Proof Just for this inequation is satisfied that
∣
∣α∗

1 − α∗
2

∣
∣ ≥ 2π

3 . After (6.4)α
∗
1 − α∗

2 =
(
φ1 − φ∗

1

) − (
φ2 − φ∗

2

) + α.
Let 0 ≤ α = 2π

3 − β be. After (6.3) the maximum value of φ1 − φ∗
1 is π − θ1 > 0

and the one of − (
φ2 − φ∗

2

)
is π − θ2 > 0 and therefore:

sup
∣
∣α∗

1 − α∗
2

∣
∣ = 2π − (θ1 + θ2) + 2π

3
− β >

5π

3
− β

because θ1 + θ2 < π.
The result is sup

∣
∣α∗

1 − α∗
2

∣
∣ ≥ π since 0 ≤ β ≤ 2π

3 ; or sufficient condition is∣
∣α∗

1 − α∗
2

∣
∣ ≥ 2π

3 .
There is a continuous set of values of

∣
∣α∗

1 − α∗
2

∣
∣ and therefore of deniers u1 (φ1)

and u2 (φ2) which satisfy this condition. �

6.3.3 Condition 3

It is written
∣
∣p1 p2 + p∗

1 p∗
2

∣
∣ ≤ 1. As Condition 2, it is sufficient for it is fulfilled that

the angle of nonzero vectors p1 p2 and p∗
1 p∗

2 is≥ 2π
3 therefore

∣
∣α1 + α2 − (

α∗
1 + α∗

2

)∣
∣

≥ 2π
3 or else after (6.4) that:

∣
∣φ∗

1 − φ1 + φ∗
2 − φ2

∣
∣ ≥ 2π

3
(6.5)

or in according (6.3):

sup
∣
∣φ∗

1 − φ1 + φ∗
2 − φ2

∣
∣ = 2π − (θ1 + θ2) > π (6.6)

6.3.4 Condition 4

It is written
∣
∣p1 p∗

2 + p∗
1 p2

∣
∣ ≤ 1. Studied by the same method it proves to be satisfied

if (sufficient condition):

∣
∣φ1 − φ∗

1 + φ2 − φ∗
2

∣
∣ ≥ 2π

3
(6.7)

It is an inequation whose solution is the same of (6.5).
The result is that concordance P1 ⇔ P2 and discordance P1 � P2 can exist

together; then one is the negation of the other by denier u1u2.
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6.4 Propositional Strong Paraconsistent Algebra

Propositional algebra can be built on the set of complex truth values. Themain normal
binary propositions are the following:

1. Conjunction:
v (P1 ∧ P2) = |p1 p2|2 = |p1|2|p2|2 (6.8)

2. Incompatibility:
{

v (¬P1 ∧ ¬P2) = |u1u2 − p1 p2|2 = ∣
∣ei(φ1+φ2) − |p1| |p2|

∣
∣2

v (¬P1 ∨ ¬P2) = v (¬ (P1 ∧ P2)) , denier u1u2

(6.9)

3. Disjunction:
{

v (P1 ∨ P2) = |u2 p1 + u1 p2 − p1 p2|2 = ∣
∣|p1| eiφ2 + |p2| eφ1 − |p1| |p2|

∣
∣2

v (P1 ∨ P2) = v (¬ (¬P1 ∧ ¬P2)) , denier u1u2

(6.10)
4. Implication:

{
v (P1 ⇒ P2) = |u1u2 − p1 (u2 − p2)|2 = ∣

∣ei(φ1+φ2) − |p1|
(
eiφ2 − |p2|

)∣
∣2

v (P1 ∨ P2) = v (¬ (P1 ∧ ¬P2)) , denier u1u2

(6.11)
5. Concordance:

⎧
⎪⎨

⎪⎩

v (P1 ⇔ P2) = |u1u2 − u2 p1 − u1 p2 + 2p1 p2|2
= ∣

∣ei(φ1+φ2) − |p1| eiφ2 − |p2| eiφ1 + 2 |p1| |p2|
∣
∣2

v (P1 ⇔ P2) = v (¬ (P1 � P2)) , denier u1u2

(6.12)

6. Discordance:

⎧
⎪⎨

⎪⎩

v (P1 � P2) = |u2u1 + u1 p2 − 2p1 p2|2
= ∣

∣|p1| eiφ2 + |p2| eiφ1 − 2 |p1| |p2|
∣
∣2

v (P1 � P2) = v (¬ (P1 ⇔ P2)) , denier u1u2

(6.13)

7. Complementarity:

v (P1�P2) = |p1 + p2|2 = ∣
∣|p1| ei(α1−α2) + |p2|

∣
∣2 (6.14)

8. Inverse complementarity:

v (¬P1�¬P2) = |u1 + u2 − p1 − p2|2
= ∣

∣
(
eiφ1 − |p1|

)
ei(α1−α2) + eiφ2 − |p2|

∣
∣2

(6.15)
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Fig. 6.4 The geometric
representation

9. Equivalence:

v (P2℘ P1) = |p1 + u2 − p2|2 = ∣
∣|p1| ei(α1−α2) + eiφ2 − |p2|

∣
∣2 (6.16)

Here intervenes the angle α1 − α2 of vectors p1, p2.

Seek what deniers should be chosen so that if v (P1) = v (P2), that is to say, if
|p1| = |p2| = |p| ,α1 �= α2, we have: v (P2℘ P1) = 1 = v (P1℘ P2).

We then: v (P2℘ P1) = ∣
∣|p| (eiα − 1

) + eiφ2
∣
∣2 where α = α1 − α2. So that

v (P2℘ P1) = 1, the necessary and sufficient condition is:

sin
(α

2
− φ2

)
= |p| sin α

2
(6.17)

Similarly, for v (P1℘ P2) = 1 the necessary and sufficient condition is:

sin
(α

2
+ φ1

)
= |p| sin α

2
(6.18)

of which φ1 = φ2, φ2 solution of (6.17).
Figure. 6.4 shows the geometric representation.

6.4.1 Normal Propositions of Order N

1. Conjunction:

v (P1 ∧ P2 ∧ · · · ∧ Pn) = |p1 p2 . . . pn|2 (6.19)
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2. Incompatibility:

v (¬P1 ∨ ¬P2 ∨ · · · ∨ ¬Pn) = |u1u2 . . . un − p1 p2 . . . pn|2
v (¬P1 ∨ ¬P2 ∨ · · · ∨ ¬Pn) = v(P1 ∧ P2 ∧ · · · ∧ Pn)

(6.20)

3. Disjunction:

v (P1 ∨ P2 ∨ · · · ∨ Pn) = ∣
∣u1u2 . . . un − p∗

1 p∗
2 . . . p∗

n

∣
∣2

v (P1 ∨ P2 ∨ · · · ∨ Pn) = v (¬P1 ∧ ¬P2 ∧ · · · ∧ ¬Pn)
(6.21)

4. Complementarity:

v (P1�P2� . . . �Pn) = |p1 + p2 + · · · + pn|2 (6.22)

5. Inverse complementarity:

v (¬P1�¬P2� . . . �¬Pn) = |u1 + u2 + · · · + un − (p1 + p2 + · · · + pn)|2

(6.23)

6.5 Paraconsistent Boolean Logic

It is the Boolean reduction of strong paraconsistent logic; modules of complex truth
values there can be only 0 or 1. The circle of truth is there reduced to its center and its
circumference.AlthoughBoolean, this logic differs radically from the classical logic:
it remains paraconsistent. The contradiction can be true there. We may have verified
all the normal binary propositions that the propositional algebra of the paraconsistent
Boolean logic contains well beyond the classical logic as a special case.

Since v (P) = 0 ⇒ v (¬P) = 1, p∗ indeterminate, and v (P ∧ ¬P) = 0.
Since v (P) = 1 ⇒ θ = ±π

3 . Since |p∗| must be Boolean φ can only take two
values:

φ = 0 ⇔ v (¬P) = 0 ⇒ v (P ∧ ¬P) = 0

φ = ±π

3
⇔ v (¬P) = 1 ⇒ v (P ∧ ¬P) = 1

(6.24)

It has always: φ∗ = −φ ⇒ α∗ − α = 2φ.

1. Conjunction: The truth table of the conjunction is identical to that of classical
logic.
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Table 6.1 Truth table of
disjunction P1 ∨ P2

P1

P2 1 0

1 1/0∗ 1

0 1 0

2. Disjunction: From (6.10), it is false if v (P1) = v (P2) = 0 and true if v (P1) = 0
and v (P2) = 1 or if v (P1) = 1 and v (P2) = 0.
Condition 1 is written cos

(
φ∗
1 + φ∗

2

) ≥ 1
2 ;φ∗ = −φ thus the disjunction exists only

if φ1 + φ2 = − π
3 , 0, π

3 ; we have: v (P1 ∨ P2) = ∣
∣eiφ2 + eiφ1 − 1

∣
∣ then:

v (P1) = v (P2) = 1 ⇒

⎧
⎪⎨

⎪⎩

v (P1 ∨ P2) = 0 i f φ1 = ±π

3
, φ2 = ±π

3

v (P1 ∨ P2) = 1 i f φ1 + φ2 = ±π

3
, or φ1 = φ2 = 0

(6.25)
Hence the truth table of disjunction (Table6.1):

Not conform evaluation to the classical logic is indicated by ∗.
It coincides with that of classical logic, in case v (P1) = v (P2) = 1, it is chosen

φ1 and φ2 such that φ1φ2 = 0.

3. Implication: From (6.11) it is true if ∀p2, v (P1) = 0. If v (P1) = v (P2) = 1 the
condition of existence is cos (φ1 − φ2) ≥ 1

2 ; such as v (P1 ⇒ P2) =
∣
∣ei(φ1+φ2) − eiφ2 + 1

∣
∣2, were v (P1 ⇒ P2) = 1 in all cases permitted by the condition

of existence except where φ1 = φ2 = ± π
3 for which v (P1 ⇒ P2) = 0. If v (P1) =

1 and v (P2) = 0 were v (P1 ⇒ P2) = ∣
∣eiφ1 − 1

∣
∣ ; v (P1 ⇒ P2) = 0 if φ1 = 0, v

(P1 ⇒ P2) = 1 if φ1 = ± π
3 .

Hence the truth table of implication (Table6.2):
It coincides with that of classical logic if one rejects the case v (P1) = v (P2) = 1

the choice φ1 = φ2 = ± π
3 and the case v (P1) = 1 and v (P2) = 0 the choice φ1 =

±π
3 .
These rejections are required to conduct a rigorous deduction in paraconsistent

Boolean logic: the fundamental articulation of the deduction is indeed true implica-
tion denoted ⇒, that if P1 is true requires true P2.

Table 6.2 Truth table of
implication P1 ⇒ P2

P1

P2 1 0

1 1/0∗ 1

0 0/1∗ 1
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Table 6.3 Truth table of
concordance P1 ⇔ P2

P1

P2 1 0

1 1 0/1∗

0 0/1∗ 1

4. Concordance: From (6.12) it is true if v (P1) = v (P2) = 0. If v (P1) = 1 and
v (P2) = 0 then v(P1 ⇔ P2) = ∣

∣eiφ1 − 1
∣
∣2 therefore v(P1 ⇔ P2) = 0 if v(P1 ⇔

P2) = 1φ1 = 0 and v(P1 ⇔ P2) = 0 ifφ1 = ± π
3 ; same if v (P1) = 0 and v (P2) = 1

we have v(P1 ⇔ P2) = 0 if φ2 = 0 and v(P1 ⇔ P2) = 1 if φ2 = ± π
3 . If v (P1) =

v (P2) = 1 the concordance does not exist when φ1 = ± π
3 ,φ2 = ± π

3 , but it is true
in all other cases.
Hence the truth table of concordance (Table6.3):

It coincides with that of the equivalence of classical logic if when v (P1) = 1 and
v (P2) = 0 is chosen, φ1 = 0 andwhen v (P1) = 0 and v (P2) = 1 is chosen, φ2 = 0.

Importantly, to conduct a rigorous reasoning with these choices, the concordance
becomes identical to the deductive equivalence.

6.6 Reflections

The intention of the authors in carrying out this study is not to conclude this approx-
imation to a paraconsistent logic. As we have already explained in the first part,
the objective of this research is to provide a coherent response to the contradictions
observed in mystical and mythical belief systems, specifically to the problem of
coincidentia oppositorum, which can be observed in the works of Nicholas de Cusa,
in the Hebrew Kabbalah, in the works of Jung or to a somewhat lesser extent in
J. Derrida. The authors are developing a multivalued paraconsistent logic called NR
logic (Numinous-Religious logic), where for purposes of the bipolar proposition P
and no−P are attributed a truth value called K and that p = |β| e±α π

3 ; ∣
∣β ∈ [

0, 1
e

]∣
∣

and p ∈ [0, 1] being 0 the absolute falsehood and 1 the absolute truth. Modulus
|β| ∈ [

0, 1
e

]
defines the P truth value and complex part e±iα π

3 defines the ¬P pole,
being α the ¬P truth value. ¬P truth value α only can take values α ∈ [

0, 3i
π

]
or

α ∈ [− 3i
π
, 0

]
. Therefore,¬P truth values only can take values between

[− 3i
π
, 0

]
and

[
0, 3i

π

]
. Values between

[− 3i
π
, 0

]
will denominate right−¬P truth values and values

between
[
0, 3i

π

]
will denominate left−¬P truth values.
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The argument concerning belief systems may be circumvented if one claims that
ordinary belief is not deductively closed. That is, at least, controversial, but an ideal
reasoner should aspire to closure. Considering the case of a paraconsistent system
being used as a metalanguage to analyze a belief system, it is also the task of para-
consistent logic to define paraconsistent contradictions, that is, contradictions that
are so threatening to this belief system that they really compromise rational inference
making within the belief system. This “bad” kind of inconsistency can be quantita-
tive (too many classic contradictions may be a sign that even paraconsistency cannot
save the belief system) or qualitative—that is, the classic contradiction in question is
so strong (for example, a proof that all statements of the belief system can be proved
both true and false) that it is also a paraconsistent contradiction, a contradiction that
even a paraconsistent logician cannot accept. This argument implies the idea that
the set of paraconsistent contradictions is a subset of the set of classic contradictions
and that is indeed a rather intuitive idea. But we cannot think of any conclusive
argument against the existence of a paraconsistent contradiction that is not a classic
contradiction, so this idea is only a plausible conjecture.

Paraconsistent logic was in some sense born of the realization that consistency, in
its classical sense, was not a good enough criterions to discriminate between good
and bad belief system, exactly because our actual reasoning is, it seems, much more
able to cope with inconsistent premises than classical logic. Indeed, it has become
a motto in many circles of nonclassical logic that classical logic simply is not an
accurate model of human rationality.

So as a minimum, paraconsistent approaches have shown that there are other
avenues to explore, there are other alternatives, other viable options, which can-
not be ruled out in principle as it used to from the Aristotelian perspective, which
has continued to dominate for so long, even among those who did not wish to see
themselves as Aristotelian.

Annex A. Truth Table of Principal Normal Binary
Propositions

Wewill represent in the following table a comparison between three logics: classical
(CL), quasi-paraconsistent (QPL), and strong paraconsistent (SPL) (Table6.4).



162 J. Nescolarde-Selva et al.

Table 6.4 Truth table of principal normal binary propositions

Notation Name CL truth values
p1, p2 ∈ {0, 1}

QPL truth values
p1, p2 ∈ [0, 1]

P1 ∧ P2 Conjunction p1 p2 p1 p2
¬P1 ∨ ¬P2 Incompatibility 1 − p1 p2 u1u2 − p1 p2
P1 ∨ P2 Disjunction p1 + p2 − p1 p2 u2 p1 + u1 p2 − p1 p2
P1 ⇒ P2 Implication 1 − p1 + p1 p2 u1u2 − p1 (u2 − p2)

P1 ⇔ P2 Concordance 1 − p1 − p2 + 2p1 p2 u1u2 −
(u2 p1 + u1 p2) +
2p1 p2

P1 � P2 Discordance p1 + p2 − 2p1 p2 u2 p1 + u1 p2 − 2p1 p2
P1�P2 Complementarity p1 + p2 p1 + p2
¬P1�¬P2 Inverse complementarity 2 − p1 − p2 u1 + u2 − p1 − p2
P2℘ P1 Equivalence 1 + p1 − p2 p1 + u2 − p2
P1℘ P2 Inverse equivalence 1 − p1 + p2 u1 − p1 + p2
Notation Name SPL truth values p1, p2 ∈ [0, 1]

P1 ∧ P2 Conjunction |p1|2|p2|2
¬P1 ∨ ¬P2 Incompatibility

∣
∣ei(φ1+φ2) − |p1| |p2|

∣
∣

P1 ∨ P2 Disjunction
∣
∣|p1| eiφ2 + |p2| eφ1 − |p1| |p2|

∣
∣2

P1 ⇒ P2 Implication
∣
∣ei(φ1+φ2) − |p1|

(
eiφ2 − |p2|

)∣
∣2

P1 ⇔ P2 Concordance
∣
∣ei(φ1+φ2) − |p1| eiφ2 − |p2| eiφ1 + 2 |p1| |p2|

∣
∣2

P1 � P2 Discordance
∣
∣|p1| eiφ2 + |p2| eiφ1 − 2 |p1| |p2|

∣
∣2

P1�P2 Complementarity
∣
∣|p1| ei(α1−α2) + |p2|

∣
∣2

¬P1�¬P2 Inverse complementarity
∣
∣
(
eiφ1 − |p1|

)
ei(α1−α2) + eiφ2 − |p2|

∣
∣2

P2℘ P1 Equivalence
∣
∣|p1| ei(α1−α2) + eiφ2 − |p2|

∣
∣2

P1℘ P2 Inverse equivalence
∣
∣|p2| ei(α1−α2) + eiφ1 − |p1|

∣
∣2
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A Paraconsistent Logic Obtained
from an Algebra-Valued Model
of Set Theory
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Abstract This paper presents a three-valued paraconsistent logic obtained from
some algebra-valued model of set theory. Soundness and completeness theorems are
established. The logic has been compared with other three-valued paraconsistent
logics.
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7.1 Introduction and Overview

The idea of Boolean-valued models V(B) where V is the standard class model
of classical set theory and B is any arbitrary but fixed complete Boolean algebra
was introduced in 1960s (cf. [2]). The motivation behind this construction was to
understand in a different way Cohen’s method of forcing [5] that is used to prove the
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consistency and independence results. Afterward, this kind of construction has come
into practice as an autonomous mathematical technique from the angle of generaliza-
tion ofV(B) and for some other reasons. As for example, we getHeyting-valued model
of Intuitionistic set theory [7] where the complete Boolean algebra is replaced by a
complete Heyting algebra, Orthomodular-valued model of Quantum set theory [12]
where the same is replaced by a complete orthomodular lattice. Generally speaking,
an A-valued model V(A) are models of all (or some) of the ZF-axioms where A is
the algebraic model for the underlying logic on which ZF-axioms are situated. For
instance, Boolean algebras are algebraic models of classical logic, Heyting algebras
are algebraic models of intuitionistic logic, and orthomodular lattices are algebraic
models for quantum logic. Accordingly, V(A) is called a model for classical set the-
ory, intuitionistic set theory, and quantum set theory when A is a Boolean algebra, a
Heyting algebra and an orthomodular lattice, respectively.

This paper may be considered as a part of a larger project of constructing a
paraconsistent set theory. As a step an algebra A is defined so that V(A) becomes a
model of someversion ofZF-axioms (cf. Sect. 7.2.1) [9]. This algebraA is sufficiently
general to give rise to some non-classical logics other than paraconsistent logics. In
this paper, we have chosen a three-valued matrix PS3 as an instance of the above-
mentioned algebra A. PS3 is shown to be a semantics of a paraconsistent logic. We
would like to mention some of the results obtained in [9] to justify the selection of
the particular algebra PS3 here. In fact, in this paper we shall discuss the reason for
the choice of the particular algebra PS3 and investigate the logical properties that
it represents. As another part of the mentioned bigger project, Tarafder investigated
some properties of ordinals in the model V(PS3) of some paraconsistent set theory
[13].

It should be focused that claiming an algebra to be the model of some logic means
that the logic should be sound and complete with respect to the semantics given in
the algebra. Thus in the algebra some elements need to be designated, that is, some 0-
ary operations have to be present. In the three cases mentioned above the designated
element is only the top element of the bounded lattice. There can be more than one
designated elements as will be in our case. An algebra with designated elements is
usually called a matrix in logic–literature.

This paper has been designed as follows. In the next section (viz. Sect. 7.2) the
requirements to the algebra shall be specified and a three-element matrix will be
identified for the purpose. Section7.3 will deal with the paraconsistent logic (in
Hilbert style axiomatic presentation) which is sound and complete with respect to the
matrix. In Sect. 7.4 some comparisons of the present logic with other paraconsistent
logics will be made. Section7.5 contains the concluding remarks. All the proofs are
given as an appendix.
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7.2 The Algebra for the Proposed Algebra-Valued Models

7.2.1 Algebraic Properties Required

Let us consider an algebra A = (A,∧,∨,⇒,∗ ) where (A,∧,∨) is a complete dis-
tributive lattice such that the following conditions are satisfied:

P1: x ∧ y ≤ z implies x ≤ y ⇒ z.
P2: y ≤ z implies x ⇒ y ≤ x ⇒ z.
P3: y ≤ z implies z ⇒ x ≤ y ⇒ x .
P4: (x ∧ y) ⇒ z = x ⇒ (y ⇒ z).

Let us construct V(A) in the same way as the Boolean-valued model construction
of classical set theory. Then extend the language of set theory by adding a constant
corresponding to every element of V(A). Following the standard way (cf. [2]), every
formula of the extended language of set theory is associated with a value of A by the
mapping [[.]] as follows:
for any u, v in V(A),

[[u ∈ v]] =
∨

x∈dom(v)

(v(x) ∧ [[x = u]])

[[u = v]] =
∧

x∈dom(u)

(u(x) ⇒ [[x ∈ v]]) ∧
∧

y∈dom(v)

(v(y) ⇒ [[y ∈ u]]).

Now for any well-formed formulas σ and τ we define

[[σ ∧ τ ]] = [[σ]] ∧ [[τ ]]
[[σ ∨ τ ]] = [[σ]] ∨ [[τ ]]

[[σ → τ ]] = [[σ]] ⇒ [[τ ]]
[[¬σ]] = [[σ]]∗

for any formula ϕ(x) with one free variable x ,

[[∀xϕ(x)]] =
∧

u∈V(A)

[[ϕ(u)]]

[[∃xϕ(x)]] =
∨

u∈V(A)

[[ϕ(u)]]

A formula ϕ will be called valid in V(A) iff [[ϕ]] ∈ D, where D is the designated set
of A. It is well known for a Boolean-valued model or Heyting-valued model that for
any formulaϕ(x)with one free variable and any constant u of the extended language,
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[[∀x(x ∈ u) → ϕ(x)]] =
∧

x∈dom(u)

(u(x) ⇒ [[ϕ(x)]]). (BQϕ)

But BQϕ does not hold generally in V(A). A formula ϕ will be called a negation-
free formula (NFF) if no subformula of it contains the unary connective ¬. In [9]
it is proved that if BQϕ holds in V(A) for each negation-free formula ϕ then the
ZF-axioms Extensionality, Pairing, Infinity, Union, and Powerset are valid in V(A).
Moreover, under the same conditions NFF-Separation and NFF-Replacement are
also valid inV(A) where NFF-Separation andNFF-Replacement means, respectively,
the Separation and Replacement axiom schemas only for negation-free formulas.

It should be clear that although a negation operator is present in the algebra it
did not play any role so far. Now, in order to incorporate the paraconsistency factor,
negation comes into the picture. It is known that the key feature of paraconsistency
lies in the non-approval of the law of explosion ({ϕ,¬ϕ} � ψ for all well-formed
formulas ϕ,ψ) which is present in the classical as well as intuitionistic logics. So
paraconsistency is characterized by the fact that there are well-formed formulas ϕ
and ψ such that

{ϕ,¬ϕ} � ψ. (Par)

The reflection of (Par) in the algebra should be as follows: while both ϕ and ¬ϕ
receive some designated values, ψ does not. The algebra (A,∧,∨,⇒) is to be
enhanced with a ∗ so as to fulfill the above condition. Can we find such a matrix? The
two-element lattice cannot be a good choice since for satisfying properties P1, P2,
P3, and P4 the truth table of ⇒ has either to be the same as the two-valued Boolean
implication table or it becomes degenerated. So we look into a three-element lattice.

7.2.2 The Three-Valued Matrix PS3

In this section, we introduce a three-valued matrix PS3 = 〈{1, 1/2, 0},∧,∨,⇒,∗ 〉
having the following truth tables:

∧ 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1
1/2 1 1/2 1/2
0 1 1/2 0

⇒ 1 1/2 0
1 1 1 0
1/2 1 1 0
0 1 1 1

∗

1 0
1/2 1/2
0 1

and {1, 1/2} as the designated set.
PS3 is a complete distributive lattice relative to ∧,∨. It is easy to check that PS3

satisfies P1, P2, P3, and P4. By asserting values from 1/2 to ϕ and 0 to ψ one can
check that (Par) is satisfied. Moreover, in [9] it is proved that BQϕ holds in V(PS3)

for every negation-free formula ϕ.
This matrix is included in the collection of 213 three-valued matrices of the Logic

of Formal Inconsistencies (cf. [4]) after exclusion of the inconsistency operator “•”.
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For our purpose we do not need the operator for inconsistency which acts for inter-
nalizing inconsistencywithin the object language. Now it is important to explainwhy
we have chosen PS3. First of all ({1, 1/2, 0},∧,∨) has to be a complete distributive
lattice for which ∧ and ∨ have to be the operators minimum and maximum, respec-
tively. Second, for satisfying properties P1, P2, P3, and P4 the only possibilities for
the implication are given below:

⇒1 1 1/2 0
1 1 1 1
1/2 1 1 1
0 1 1 1

⇒2 1 1/2 0
1 0 0 0
1/2 0 0 0
0 0 0 0

⇒3 1 1/2 0
1 1 1/2 0
1/2 1 1 0
0 1 1 1

⇒4 1 1/2 0
1 1 1 0
1/2 1 1 0
0 1 1 1

The implications ⇒1 and ⇒2 cannot produce a reasonable logic as these two are
degenerated. The implication ⇒3 produces converse of P1 also which we do not
require. Besides, ⇒3 together with the above-mentioned operators ∧ and ∨ produce
the three-valued Heyting algebra. As a consequence we are interested in ⇒4 which
is the implication of PS3. Before fixing the truth table of ∗ it should be noticed, since
1 ⇒ 1/2 = 1 in the chosen truth table for ⇒, for getting Modus Ponens as a valid
rule in our system the designated set has to be fixed as {1, 1/2}. For the truth table of
∗ we can go for any of the following tables which can produce a paraconsistent logic
provided the designated set is fixed as {1, 1/2}.

∗
1

1 0
1/2 1/2
0 1

∗
2

1 0
1/2 1
0 1

∗
3

1 1/2
1/2 0
0 1

∗
4

1 0
1/2 1/2
0 1/2

∗
5

1 0
1/2 1
0 1/2

∗
6

1 1/2
1/2 0
0 1/2

We are interested in taking 1∗ = 0 and 0∗ = 1 so that it does not violate the third
criterion of Jaśkowski for being a paraconsistent logic (cf. Sect. 7.4). So we could
choose any one of ∗

1 and ∗
2. Since we want to have the rule of double negation, as

in many of the other well-known paraconsistent logics (shown in Sect. 7.4) the only
choice for ∗ is ∗

1. However, it may be mentioned that in [11] a three-valued paracon-
sistent logic G’3 having connectives ∧, ∨, ⇒ and ∗ has been intensively investigated
in which∧ and∨ are same as PS3 but⇒ and ∗ are taken as⇒3 and ∗

2, respectively. It
is to be noted that PS3 is a fixed, particular algebra of type (2, 2, 2, 1, 0, 0) or amatrix
that satisfies the conditions P1, P2, P3, P4, and (Par). V(PS3) will have all the desired
properties provided it can be made an algebraic model of some paraconsistent logic.

7.3 The Logic LPS3

In this section we introduce an axiom system for the propositional logicLPS3 having
the matrix PS3 as the three-valued semantics. The alphabet of LPS3 consists of
propositional letters p1, p2, . . .; logical connectives¬, ∧, ∨, →. The well-formed
formulas are constructed in the usual way.
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7.3.1 The Axiom System for LPS3

The following formulas are taken as the axioms for LPS3:
(Ax1) ϕ → (ψ → ϕ)

(Ax2) (ϕ → (ψ → γ)) → ((ϕ → ψ) → (ϕ → γ))

(Ax3) ϕ ∧ ψ → ϕ
(Ax4) ϕ ∧ ψ → ψ
(Ax5) ϕ → ϕ ∨ ψ
(Ax6) (ϕ → γ) ∧ (ψ → γ) → (ϕ ∨ ψ → γ)

(Ax7) (ϕ → ψ) ∧ (ϕ → γ) → (ϕ → ψ ∧ γ)

(Ax8) ϕ ↔ ¬¬ϕ
(Ax9) ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)

(Ax10) (ϕ ∧ ¬ϕ) → (¬(ψ → ϕ) → γ)

(Ax11) (ϕ → ψ) → (¬(ϕ → γ) → ψ)

(Ax12) (¬ϕ → ψ) → (¬(γ → ϕ) → ψ)

(Ax13) ⊥ → ϕ
(Ax14) (ϕ ∧ (ψ → ⊥)) → ¬(ϕ → ψ)

(Ax15) (ϕ ∧ (¬ϕ → ⊥)) ∨ (ϕ ∧ ¬ϕ) ∨ (¬ϕ ∧ (ϕ → ⊥))

where ϕ,ψ, γ are any well-formed formulas and⊥ is the abbreviation for¬(θ → θ)
for any arbitrary formula θ.

The rules for LPS3 are the following:

1. ϕ, ψ
ϕ∧ψ

2. ϕ, ϕ→ψ
ψ

Let � and |= be the syntactic and semantic consequence relations, respectively,
defined in the usual way with respect to the above-mentioned axiom system and the
matrix PS3. It will be proved that the above propositional axiom system is sound and
(weak)complete with respect to PS3.

7.3.2 Soundness

Theorem 7.3.1 For any formula ϕ and a set of formulas �, if � � ϕ then � |= ϕ.

Proof It is immediate that under any valuation the values of the axioms are either
1 or 1/2 and all the rules preserve designatedness of well-formed formulas. So the
theorem follows. �

7.3.3 Completeness

For the proof of completeness we need a few lemmas.

Lemma 7.3.2 For any formula ϕ, � ϕ → ϕ holds.
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Lemma 7.3.3 (Deduction Theorem) If � ∪ {ϕ} � ψ then � � ϕ → ψ.

Proof The proof is in the usual procedure by induction on the length of derivation
of ψ from � ∪ {ϕ}. �

Using the Deduction theorem one can prove the following lemma.

Lemma 7.3.4 For any formulas ϕ,ψ and γ the following formulas are theorems.

(i) (ϕ → ψ) → ((ϕ ∧ γ) → ψ)

(ii) (ϕ → ψ) → ((ψ → γ) → (ϕ → γ))

(iii) (ϕ → ψ) ∧ (ψ → γ) → (ϕ → γ)

Lemma 7.3.5 is the most important step to prove the completeness theorem.

Lemma 7.3.5 For any formula ϕ and a given valuation v with respect to PS3 let ϕ′
be defined by

ϕ′ =
⎧
⎨

⎩

ϕ ∧ (¬ϕ → ⊥) i f v(ϕ) = 1;
ϕ ∧ ¬ϕ i f v(ϕ) = 1/2;

¬ϕ ∧ (ϕ → ⊥) i f v(ϕ) = 0.

If pi1 , pi2 , . . . , pik are the propositional letters in ϕ then {p′
i1
, p′

i2
, . . . , p′

ik
} � ϕ′.

Proof The proof is obtained by Kalmer’s method by induction on the complexity of
ϕ. For the detail proof we refer Appendix A. �

Now we are in the position to prove the weak completeness theorem.

Theorem 7.3.6 (Completeness) For any formula ϕ, if |= ϕ then � ϕ.

Proof Let ϕ be a formula such that |= ϕ. Moreover, let pi1 , pi2 , . . . , pin be n propo-
sitional letters in ϕ. By the Lemma 7.3.5, for any arbitrarily fixed valuation we have
{p′

i1
, p′

i2
, . . . , p′

in
} � ϕ′. Since, |= ϕ, by the definition, ϕ′ is either ϕ ∧ (¬ϕ → ⊥)

or ϕ ∧ ¬ϕ. So in any case {p′
i1
, p′

i2
, . . . , p′

in
} � ϕ can be derived by Axiom 3 and

using M.P. Hence, deduction theorem gives

{p′
i1, p′

i2 , . . . , p′
in−1

} � p′
in

→ ϕ.

Now, since the valuation was arbitrary, we get

{p′
i1 , p′

i2 , . . . , p′
in−1

} � [pin ∧ (¬pin → ⊥)] → ϕ,

{p′
i1 , p′

i2 , . . . , p′
in−1

} � (pin ∧ ¬pin ) → ϕ

and {p′
i1 , p′

i2 , . . . , p′
in−1

} � [¬pin ∧ (pin → ⊥)] → ϕ.

Hence, the following derivation can be established:
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{p′
i1
, p′

i2
, . . . , p′

in−1
} �

1. [(pin ∧ (¬pin → ⊥)) → ϕ] ∧ [(pin ∧ ¬pin ) → ϕ]∧
[(¬pin ∧ (pin → ⊥)) → ϕ] Rule 1

2. [(pin ∧ (¬pin → ⊥)) ∨ (pin ∧ ¬pin )∨
(¬pin ∧ (pin → ⊥))] → ϕ Ax6

3. (pin ∧ (¬pin → ⊥)) ∨ (pin ∧ ¬pin ) ∨ (¬pin ∧ (pin → ⊥)) Ax15
4. ϕ M.P. 2, 3

Repeating this process for each of the remaining p′
i j

{ j = n − 1, n − 2, . . . , 1}
we get � ϕ.

Hence, the (weak) completeness theorem is proved. �

It is worthwhile to mention that another axiomatization of the matrix PS3 together
with an extra operator • can be found in [6]. But as described earlier we do not need
the logical operator • for our purpose. It can be proved that the •-less axioms cannot
form a complete axiom system for PS3. For the •-free fragment of this logic our
axioms give a •-free set of axioms.

7.4 LPS3 and Other Three-Valued Paraconsistent Logics

In this section, some important properties ofLPS3 will be discussed and comparisons
between LPS3 and some other well-known three-valued paraconsistent logics will
be pointed out with respect to some logical properties.

7.4.1 Maximality Relative to Classical Propositional Logic

Maximality is an important issue in the study of paraconsistent logics (cf. [1, 4]).

Definition 7.4.1 A logic L1 = 〈L ,�1〉 is said to be maximal relative to a logic
L2 = 〈L ,�2〉 iff
(i) �1 ϕ implies �2 ϕ for any ϕ, and
(ii) if �1 ϕ, �2 ϕ and �1 is enhanced to �′

1 by adding ϕ to the theorem set of L1 then
〈L ,�′

1〉 = 〈L ,�2〉.
Definition 7.4.1 is more demanding than what is there in [3]. The change is in the

condition (ii) of the Definition 7.4.1. In [3] the condition (i i) was taken as if �1 ϕ,
�2 ϕ and �1 is enhanced to �′

1 by adding ϕ to the theorem set of L1 then the set of
theorems in 〈L ,�′

1〉 is same as the set of theorems in 〈L ,�2〉.
The following theorem shows the relationship between LPS3 and the classical

propositional logic.
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Theorem 7.4.2 LPS3 is maximal relative to the classical propositional logic (CPL).

Proof The proof is given in Appendix B.

7.4.2 Comparison with Other Logics

The three-valued paraconsistent logics chosen for comparisons are G. Priest’s
Logic of Paradox (LP), Logic of Formal Inconsistency 1 (LFI1) and Logic of For-
mal Inconsistency 2 (LFI2) by W.A. Carnielli, J. Marcos, and S. de Amo,
I.M.L. D’Ottaviano’s logic (J3), The Logic RM3 by the Entailment school,
A. M. Sette’s three-valued paraconsistent logic P1 and C. Mortensen’s paracon-
sistent logic C0,2. Moreover, we will also make a comparison table with respect to
S. Jaśkowski’s and N. Da Costa’s criteria for paraconsistent logics.

In 1948 S. Jaśkowski proposed three conditions for a paraconsistent propositional
logic, and the simplified versions of which are as follows (cf. [8, 10]):

Jas1 the logic does not satisfy the implicational law of overfilling:

ϕ → (¬ϕ → ψ);

Jas2 the logic should be rich enough to enable practical inferences: it satisfies
modus ponens and the following formulas:

ϕ → ϕ,

(ϕ → ψ) → ((γ → ϕ) → (γ → ψ)),

(ϕ → (ψ → γ)) → (ψ → (ϕ → γ));

Jas3 it should have an intuitive justification: restriction to {0, 1} gives the classical
valuation.

Driven by some different motivations in 1963 Newton da Costa wanted to character-
ize paraconsistency by proposing a whole hierarchy of paraconsistent propositional
calculi, known as Cn, for 0 < n < ω. The following four conditions are the basic
requirements for this calculi (cf. [10]):

NdaC1 the law of non-contradiction, ¬(ϕ ∧ ¬ϕ), should not be a valid schema;
NdaC2 from the set of formulae, {ϕ,¬ϕ}, not all formulas should be derived in

general;
NdaC3 extensions to the predicate calculi (with or without equality) of these

propositional calculi are simple;
NdaC4 without violating NdaC1, the calculi should contain the most part of the

schemata and rules of the classical propositional calculus.
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We will first produce a comparison table below where the following abbreviations
are used:

• DN for � ¬¬ϕ ↔ ϕ.
• DM1 for � ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ).
• DM2 for � ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ).
• LEM for � ϕ ∨ ¬ϕ.
• C for � (¬ϕ → ¬ψ) → (ψ → ϕ).
• C1 for � (¬ϕ → ψ) → (¬ψ → ϕ).
• C2 for � (ϕ → ¬ψ) → (ψ → ¬ϕ).
• C3 for � (ϕ → ψ) → (¬ψ → ¬ϕ).
• HS for � (ϕ → ψ) ∧ (ψ → γ) → (ϕ → γ).
• MP for the rule Modus Ponens.
• DT for the Deduction Theorem.

(�)-mark indicates that the property holds and (x)-mark indicates that the property
does not hold in the corresponding logical system.

DN DM1 DM2 LEM C C1 C2 C3 HS MP DT
LPS3 � � � � x x x x � � �
LP � � � � � � � � x x �
LFI1 � � � � x x x x � � �
LFI2 � x x � x x x x � � �
J3 � � � � x x x x � � �
RM3 � � � � � � � � � � x
P1 x x x � x x x x � � �
C0,2 � x x � x x x x � � �

We also present the following comparison table with respect to Jas1, Jas2, Jas3,
NdaC1, and NdaC2.

Jas1 Jas2 Jas3 NdaC1 NdaC2
LPS3 � � � x �
LP x x � x �
LFI1 � � � x �
LFI2 � � � x �
J3 � � � x �
RM3 � � � x �
P1 � � � � �
C0,2 � � � � �

Note. All the observations for LP and C0,2 are semantical.
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7.4.3 Some Other Differences

This section shows some more differences between some of the aforesaid three-
valued logics and LPS3 which are not included in the comparison table.

Comparison with LFI1 and LFI2: From the tables we see that the entries for LPS3
and LFI1 are the same. In fact, though the structure for LFI1 contains an extra unary
operator • named as inconsistency, this structure and PS3 are interdefinable. But as
described earlier we do not need the logical operator • for our purpose. Second, with
respect to the ⇒ defined in PS3, conditions P1, P2, P3, and P4 are satisfied but not
with respect to the implication operator of the matrix for LFI1.

Some differences are marked in the table with LFI2. Another major difference
lies in the fact that the matrix for LFI2 does not form a lattice.

Comparison between LPS3 and RM3: The comparison table shows that there are
formulas which are theorems of RM3 but not ofLPS3, whereas the comparison tables
do not explain anything about the converse. But a simple observation shows that the
formulaϕ → (ψ → ϕ)which is one of the axioms ofLPS3 is not a theorem of RM3.

LPS3 and RM3 agree on the important fact that neither (ϕ → ψ) ↔ (¬ϕ ∨ ψ)

nor (ϕ → ψ) ↔ ¬(ϕ ∧ ¬ψ) is a theorem.

Comparison between LPS3 and P1: Like the three-valued semantics of LFI2 the
three-valued semantics of P1 also does not form a lattice which makes a difference
with PS3. The following interesting similarities and dissimilarities of these two logics
may also be noted.

• (ϕ → ψ) → (¬ϕ ∨ ψ) is a theorem in both.
• The reverse, (¬ϕ ∨ ψ) → (ϕ → ψ) is not a theorem in any of them.
• (ϕ → ψ) → ¬(ϕ ∧ ¬ψ) is a theorem of LPS3 but not a theorem in P1.
• But the reverse, ¬(ϕ ∧ ¬ψ) → (ϕ → ψ) is a theorem of P1 but not a theorem of

LPS3.

7.5 Conclusion

In the literature one can get several paraconsistent logics having algebraic semantics.
Some of them are mentioned in this paper. These logics and their algebraic semantics
were developed from various motivations. Our motivation is to construct models of
some paraconsistent set theories.

With respect to the algebraic properties discussed in Sect. 7.2 which are needed
for making an algebra-valued model of a paraconsistent set theory, the following
comparison with other paraconsistent logics is made. The algebras of the three-
valued semantics for LFI2, P1 and C0,2 are not lattices and for the others we make
the following comparison table.
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P1 P2 P3 P4
LPS3 � � � �
LP x � � �
LFI1 x � � �
J3 x � � �
RM3 x � � x

Note. The comparisons are made with respect to the corresponding three-valued
semantics of the respective logics

Thus PS3 differs from the other three-valued matrices mentioned here in forming
an algebraic structure suitable to construct some model of set theory within V with
an underlying paraconsistent logic. It is yet unknown whether other logics are suit-
able for this purpose. The full development of the corresponding predicate logic by
extending LPS3 is still pending.

Appendix A

Proof of the Lemma 7.3.5:
As it was indicated that the proof will be by induction on the complexity of ϕ. Let,
� = {p′

i1
, p′

i2
, . . . , p′

ik
}.

Basis step: It is obvious when the complexity is 0.

Induction hypothesis: Assume the lemma holds well for formulas with complexity
less than n.

Induction step: Let the complexity of ϕ be n.

Case 1: Let ϕ = ¬ψ.
Clearly, the complexity of ψ is less than n and the propositional letters in ψ are
exactly same as the propositional letters in ϕ.

Subcase 1.1: If v(ψ) = 1 then v(ϕ) = 0. Hence, by our construction,

ψ′ = ψ ∧ (¬ψ → ⊥) and ϕ′ = ¬ϕ ∧ (ϕ → ⊥).

Here we get

� �
1. ψ′ induction hypothesis
2. ψ Ax3 and M.P.
3. ¬ψ → ⊥ Ax4 and M.P.
4. ψ → ¬¬ψ Ax8
5. ¬¬ψ M.P. 2, 4
6. ¬ϕ ∧ (ϕ → ⊥) Rule 1 on 3 and 5
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Hence, in Subcase 1.1, � � ϕ′.
Subcase 1.2: If v(ψ) = 1/2 then v(ϕ) = 1/2. So by the construction,

ψ′ = ψ ∧ ¬ψ and ϕ′ = ϕ ∧ ¬ϕ.

So we have

� �
1. ψ′ induction hypothesis
2. ψ Ax3 and M.P.
3. ¬ψ Ax4 and M.P.
4. ψ → ¬¬ψ Ax8
5. ¬¬ψ M.P. 2, 4
6. ϕ ∧ ¬ϕ Rule 1 on 3 and 5

Hence, � � ϕ′ holds here.
Subcase 1.3: If v(ψ) = 0 then v(ϕ) = 1. Hence,

ψ′ = ¬ψ ∧ (ψ → ⊥) and ϕ′ = ϕ ∧ (¬ϕ → ⊥).

The following derivation can be made
� �

1. ψ′ induction hypothesis
2. ¬ψ Ax3 and M.P.
3. ψ → ⊥ Ax4 and M.P.
4. (¬¬ψ → ψ) → [(ψ → ⊥) → (¬¬ψ → ⊥)] Theorem 7.3.4(ii)
5. ¬¬ψ → ψ Ax8
6. (ψ → ⊥) → (¬¬ψ → ⊥) M.P. 4, 5
7. ¬¬ψ → ⊥ M.P. 3, 6
8. ϕ′ Rule 1 on 2, 7

Hence, in Case 1 we always get � � ϕ′.

Case 2: Let ϕ = ψ ∧ γ.
Obviously, both the complexities of ψ and γ are less than n and the sets of propo-
sitional letters in ϕ and ψ are proper subsets of {p′

i1
, p′

i2
, . . . , p′

ik
}, the set of propo-

sitional letters in ϕ. Hence, clearly by the induction hypothesis and monotonicity
property we get

� � ψ′ and � � γ′.

Subcase 2.1: If any one of v(ψ) and v(γ) is 0 then it can be proved � � ϕ′.
Without loss of generality, let v(ψ) = 0, then v(ϕ) = 0. Hence, we get the following:

ψ′ = ¬ψ ∧ (ψ → ⊥) and ϕ′ = ¬ϕ ∧ (ϕ → ⊥).
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Since � � ψ′,

� �
1. ¬ψ Ax3 and M.P.
2. ψ → ⊥ Ax4 and M.P.
3. ¬ψ → (¬ψ ∨ ¬γ) Ax5
4. ¬ψ ∨ ¬γ M.P. 1, 3
5. (¬ψ ∨ ¬γ) → ¬(ψ ∧ γ) Ax9
6. ¬(ψ ∧ γ) M.P. 4, 5
7. (ψ → ⊥) → (ψ ∧ γ → ⊥) Theorem 7.3.4(i)
8. ψ ∧ γ → ⊥ M.P. 2, 7
9. ϕ′ Rule 1 on 6, 8

Subcase 2.2: If v(ψ) = 1/2 and v(γ) = 1/2 then v(ϕ) = 1/2 also. So by the defini-
tion,

ψ′ = ψ ∧ ¬ψ, γ′ = γ ∧ ¬γ and ϕ′ = ϕ ∧ ¬ϕ.

Now for proving � � ϕ′, i.e., � � (ψ ∧ γ) ∧ ¬(ψ ∧ γ)we go through the follow-
ing derivation, using � � ψ′ and � � γ′.

� �
1. ψ Ax3 and M.P.
2. ¬ψ Ax4 and M.P.
3. γ Ax3 and M.P.
4. ψ ∧ γ Rule 1 on 1, 3
5. ¬ψ → (¬ψ ∨ ¬γ) Ax5
6. (¬ψ ∨ ¬γ) M.P. 2, 5
7. (¬ψ ∨ ¬γ) → ¬(ψ ∧ γ) Ax9
8. ¬(ψ ∧ γ) M.P. 6, 7
9. ϕ′ Rule 1 on 4, 8

Subcase 2.3: If v(ψ) = 1/2 and v(γ) = 1 then v(ϕ) = 1/2 also. Hence,

ψ′ = ψ ∧ ¬ψ, γ′ = γ ∧ (¬γ → ⊥) and ϕ′ = ϕ ∧ ¬ϕ.

Since � � ψ′ and � � γ′, using Axiom 1, 2 and rule M.P. we get

� � ψ, � � ¬ψ and � � γ.

Now following the same derivation as above we can prove � � ψ′.
Subcase 2.4: If v(ψ) = 1 and v(γ) = 1 then v(ϕ) = 1. Therefore, by our con-

struction,

ψ′ = ψ ∧ (¬ψ → ⊥), γ′ = γ ∧ (¬γ → ⊥) and ϕ′ = ϕ ∧ (¬ϕ → ⊥).

Sowe have to prove� � ϕ′, i.e.,� � (ψ ∧ γ) ∧ [¬(ψ ∧ γ) → ⊥]. The derivation
is as follows:

� �
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1. ψ Ax3 and M.P.
2. γ Ax3 and M.P.
3. ¬ψ → ⊥ Ax4 and M.P.
4. ¬γ → ⊥ Ax4 and M.P.
5. ψ ∧ γ Rule 1 on 1 and 2
6. (¬ψ → ⊥) ∧ (¬γ → ⊥) Rule 1 on 3 and 4
7. (¬ψ → ⊥) ∧ (¬γ → ⊥) → (¬ψ ∨ ¬γ → ⊥) Ax6
8. ¬ψ ∨ ¬γ → ⊥ M.P. 6, 7
9. ¬(ψ ∧ γ) → (¬ψ ∨ ¬γ) Ax9
10. [¬(ψ ∧ γ) → (¬ψ ∨ ¬γ)] →

[((¬ψ ∨ ¬γ) → ⊥) → (¬(ψ ∧ γ) → ⊥)] Theorem 7.3.4(ii)
11. ¬(ψ ∧ γ) → ⊥ M.P. repeatedly on 10, 9, 8
12. ϕ′ Rule 1 on 5, 11

Subcase 2.5: If v(ψ) = 1 and v(γ) = 1/2 then by the same derivation in Subcase
2.3 it can be proved � � ϕ′.

Hence, in Case 2 we can always prove � � ϕ′.

Case 3: Let ϕ = ψ ∨ γ.
Since ϕ ∨ ψ can be abbreviated as ¬(¬ϕ ∧ ¬ψ) therefore using Case 1 and Case 2,
� � ϕ′ can be proved in this case also.

Case 4: Let ϕ = ψ → γ.
Obviously, both the complexities of ψ and γ are less than n and the sets of propo-
sitional letters in ϕ and ψ are subsets of {p′

i1
, p′

i2
, . . . , p′

ik
}, the set of propositional

letters in ϕ. Hence, clearly by the induction hypothesis and monotonicity property
we get

� � ψ′ and � � γ′.

Subcase 4.1: If v(γ) = 1 then nomatter what v(ψ) is, v(ϕ) = 1 always. So we get
γ′ = γ ∧ (¬γ → ⊥) and ϕ′ = ϕ ∧ (¬ϕ → ⊥) = (ψ → γ) ∧ [¬(ψ → γ) → ⊥].

Now for proving � � ϕ′ we go through the following derivation:
� �

1. γ Ax3 and M.P.
2. ¬γ → ⊥ Ax4 and M.P.
3. γ → (ψ → γ) Ax1
4. ψ → γ M.P. 1, 3
5. (¬γ → ⊥) → [¬(ψ → γ) → ⊥] Ax12
6. ¬(ψ → γ) → ⊥ M.P. 2, 5
7. ϕ′ Rule 1 on 4, 6

Subcase 4.2: If v(γ) = 1/2 then always v(ϕ) = 1. Hence, by the definition,

γ′ = γ ∧ ¬γ and ϕ′ = ϕ ∧ (¬ϕ → ⊥) = (ψ → γ) ∧ [¬(ψ → γ) → ⊥].
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Hence, we get the following:
� �

1. γ ∧ ¬γ induction hypothesis
2. γ Ax3 and M.P.
3. γ → (ψ → γ) Ax1
4. ψ → γ M.P. 1, 2
5. (γ ∧ ¬γ) → [¬(ψ → γ) → ⊥] Ax10
6. ¬(ψ → γ) → ⊥ M.P. 1, 5
7. ϕ′ Rule 1 on 3, 6

Subcase 4.3: If v(γ) = 1/2 and v(ψ) = 0 then v(ϕ) = 1. So by the construction,

γ′ = ¬γ ∧ (γ → ⊥), ψ′ = ¬ψ ∧ (ψ → ⊥) and

ϕ′ = ϕ ∧ (¬ϕ → ⊥)

= (ψ → γ) ∧ [¬(ψ → γ) → ⊥].

Now the following derivation shows that � � ϕ′ holds in this subcase also.
� �

1. ψ → ⊥ Ax4 and M.P.
2. ⊥ → γ Ax13
3. (ψ → ⊥) → [(⊥ → γ) → (ψ → γ)] Theorem 7.3.4(ii)
4. (⊥ → γ) → (ψ → γ) M.P. 1, 3
5. ψ → γ M.P. 2, 4
6. (ψ → ⊥) → [¬(ψ → γ) → ⊥] Ax11
7. ¬(ψ → γ) → ⊥ M.P. 1, 6
8. ϕ′ Rule 1 on 5, 7

Subcase 4.4: If v(γ) = 0 and v(ψ) = 1 then v(ϕ) = 0. Therefore,

γ′ = ¬γ ∧ (γ → ⊥), ψ′ = ψ ∧ (¬ψ → ⊥) and

ϕ′ = ¬ϕ ∧ (ϕ → ⊥)

= ¬(ψ → γ) ∧ [(ψ → γ) → ⊥].

Deduction theorem will be used here for proving � � ϕ′. Since we know � � ψ′
and � � γ′

� ∪ {ψ → γ} �
1. ψ′ monotonicity
2. ψ Ax3 and M.P. with 1
3. γ′ monotonicity
4. γ → ⊥ Ax4 and M.P. with 3
5. ψ → γ assumption
6. γ M.P. 2, 5
7. ⊥ M.P. 4, 6
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Now applying Deduction theorem we get � � (ψ → γ) → ⊥.
Again for proving � � ¬(ψ → γ) we do the following derivation:

� �
1. ψ′ induction hypothesis
2. ψ Ax3 and M.P. with 1
3. γ′ induction hypothesis
4. γ → ⊥ Ax4 and M.P. with 3
5. ψ ∧ (γ → ⊥) Rule 1 on 2 and 4
6. ψ ∧ (γ → ⊥) → ¬(ψ → γ) Axiom 14
7. ¬(ψ → γ) M.P. 3, 4

Hence, again by Rule 1 it is derived � � ¬(ψ → γ) ∧ [(ψ → γ) → ⊥] i.e.,
� � ϕ′.

Subcase 4.5: If v(γ) = 0 and v(ψ) = 1/2 then v(ϕ) = 0. Therefore by definition,

γ′ = ¬γ ∧ (γ → ⊥), ψ′ = ψ ∧ ¬ψ and
ϕ′ = ¬ϕ ∧ (ϕ → ⊥) = ¬(ψ → γ) ∧ [(ψ → γ) → ⊥].

Since � � ψ′ and � � γ′, by Axiom 1, 2 and using M.P. we get

� � ψ and � � γ → ⊥.

Therefore, in this subcase � � ϕ′ can be proved by following the same steps used
in Subcase 4.4.

Hence, combining all the cases the Lemma 7.3.5 is proved. �

Appendix B

Proof of the theorem 7.4.2:
Lemma. First, we show that by adding any theorem of CPL (Classical Propositional
Logic) which is not a theorem ofLPS3, as an axiom schema inLPS3, all the theorems
of CPL can be proved.

Let ϕ(pi1 , pi2 , . . . , pin ) be a theorem of CPL but not a theorem of LPS3, where
pi1 , pi2 , . . . , pin are the propositional variables. Hence, for any valuation v from the
set of all formulas of LPS3 to PS3 for which

v(ϕ(pi1 , pi2 , . . . , pin )) = 0

there must exist some pil , 1 ≤ l ≤ n such that v(pil ) = 1/2. Now using this fact
without loss of generality we may assume that for any given valuation v we have
v(ϕ(pi1 , pi2 , . . . , pin )) = 0 iff v(pil ) = 1/2 for all l ∈ {1, . . . , n}. It is guaranteed by
the following fact: Suppose a formula ψ(pr1 , pr2 , . . . prt+1) is such that v(prl ) = 1/2
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for all l ∈ {1, . . . , t} but v(prt+1) �= 1/2. We then replace the propositional variable
prt+1

• by ¬(pr1 → pr1) if v(prt+1) = 0
• by (pr1 → pr1) if v(Prt+1) = 1

in the formula ψ(pr1 , pr2 , . . . prt+1) and therefore after replacing, the formula will
get the value 0 iff all its propositional variables take the value 1/2. In this way we
always get such a formula ϕ(pi1 , pi2 , . . . , pin ).

Let us now assume σ(pk1, pk2 , . . . , pkm ) be another arbitrarily chosen theorem of
CPL which is not a theorem of LPS3, where pk1, pk2 , . . . , pkm are the propositional
variables. It will be proved that σ(pk1, pk2 , . . . , pkm ) can be derived from the axiom
system of LPS3 if it is extended by the new axiom schema ϕ(pi1 , pi2 , . . . , pin ). Let
ϕ(pk j ) be the formula replacing each propositional variable of ϕ(pi1 , pi2 , . . . , pin )

by pk j , for all j ∈ {1, . . . , m}.

Claim: ϕ(pk1) ∧ ϕ(pk2) ∧ · · · ∧ ϕ(pkm ) → σ(pk1, pk2 , . . . , pkm ) is a theorem
of LPS3.

Proof of the claim. Let v be any valuation. Two cases could happen: either v(σ(pk1 ,

pk2 , . . . , pkm )) = 0 or v(σ(pk1, pk2 , . . . , pkm )) �= 0.
If v(σ(pk1 , pk2 , . . . , pkm )) = 0 and since σ(pk1, pk2 , . . . , pkm ) is a theorem of

CPL there must exist pk j such that v(pk j ) = 1/2 for some j ∈ {1, . . . , m}. Hence,
v(ϕ(pk j )) = 0 and therefore

v(ϕ(pk1) ∧ ϕ(pk2) ∧ · · · ∧ ϕ(pkm ) → σ(pk1, pk2 , . . . , pkm )) = 1.

Again if v(σ(pk1 , pk2 , . . . , pkm )) �= 0 then by the truth tables of PS3

v(ϕ(pk1) ∧ ϕ(pk2) ∧ · · · ∧ ϕ(pkm ) → σ(pk1, pk2 , . . . , pkm )) = 1.

Hence, for any valuation the formula

ϕ(pk1) ∧ ϕ(pk2) ∧ · · · ∧ ϕ(pkm ) → σ(pk1, pk2 , . . . , pkm )

always get the value 1. So by the completeness theorem of LPS3 the claim is proved.

Now let us extend the axiom system of LPS3 by including ϕ(pi1 , . . . , pin ) as
an axiom schema. Let this system be denoted by L

′PS3. Then by the Rule 1,
ϕ(pk1) ∧ ϕ(pk2) ∧ · · · ∧ ϕ(pkm ) is a theorem of L

′PS3. Now using M.P. we have
σ(pk1, pk2 , . . . , pkm ) as a theorem of the new system. Hence, the lemma is proved.

From this lemma it follows that for the enhanced system L
′PS3,

� �L′PS3 ϕ iff � �CPL ϕ. �
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Chapter 8
Two Consistent Many-Valued Logics
for Paraconsistent Phenomena

Esko Turunen and J. Tinguaro Rodríguez

Abstract In this reviewing paper, we recall the main results of our papers [24, 31]
where we introduced two paraconsistent semantics for Pavelka style fuzzy logic.
Each logic formula α is associated with a 2 × 2 matrix called evidence matrix. The
two semantics are consistent if they are seen from ‘outside’; the structure of the set of
the evidence matrices M is an MV-algebra and there is nothing paraconsistent there.
However, seen from ‘inside,’ that is, in the construction of a single evidence matrix
paraconsistency comes in, truth and falsehood are not each others complements and
there is also contradiction and lack of information (unknown) involved. Moreover,
we discuss the possible applications of the two logics in real-world phenomena.

Keywords Mathematical fuzzy logic · Paraconsistent logic · MV-algebra
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8.1 Introduction

Quoting from Stanford Encyclopedia of Philosophy [20] ‘The contemporary logical
orthodoxy has it that, from contradictory premises, anything can be inferred. To be
more precise, let |= be a relation of logical consequence, defined either semantically
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or proof theoretically. Call |= explosive if it validates {A,¬A} |= B for every A and
B (ex contradictione quodlibet). The contemporary orthodoxy, i.e., classical logic,
is explosive, but also some non-classical logics such as intuitionist logic and most
other standard logics are explosive. The major motivation behind paraconsistent
logic is to challenge this orthodoxy. A logical consequence relation, |=, is said to
be paraconsistent if it is not explosive. Thus, if |= is paraconsistent, then even if
we are in certain circumstances where the available information is inconsistent, the
inference relation does not explode into triviality. Thus, paraconsistent logic accom-
modates inconsistency in a sensible manner that treats inconsistent information as
informative.’

During the last decades, the application potential of paraconsistent logic has been
noted in many areas of science and technology; besides our own works, we refer
here to the following papers, and this list is not exhaustive [2, 7, 12, 14].

It should benoted that the concept of paraconsistent logic is not unique, rather there
is a number of different approaches. In Belnap’s paraconsistent logic [3], four possi-
ble values associatedwith atomic formulas α are interpreted astold only True,
told only False, both told True and told False, and neither
told True nor told False, respectively. However, we call them for sim-
plicity true, false, contradictory, and unknown: if there is evidence for
α and no evidence against α, then α obtains the value true and if there is no
evidence for α and evidence against α, then α obtains the value false. A value
contradictory corresponds to a situation where there is simultaneous evidence
forα and againstα and, finally,α is labeled by value unknown if there is no evidence
for α nor evidence against α. More formally, the values are associated with ordered
couples T = 〈1, 0〉, F = 〈0, 1〉, K = 〈1, 1〉, and U = 〈0, 0〉, respectively.

In [17, 19], a continuous valued extension of Belnap’s logic was studied. The
authors imposed reasonable conditions that this continuous valued extension should
obey and, after a careful analysis, they came to the conclusion that the graded values
are to be computed via

t (α) = min{a, 1 − b}, (8.1)

k(α) = max{a + b − 1, 0}, (8.2)

u(α) = max{1 − a − b, 0}, (8.3)

f (α) = min{1 − a, b}, (8.4)

where an ordered couple 〈a, b〉 ∈ [0, 1]2, called evidence couple, is given. The intu-
itive meaning of a and b is the degree of evidence for a statement α and against α,
respectively. Moreover, the set of 2 × 2 evidence matrices of the form

[
f (α) k(α)

u(α) t (α)

]
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is denoted by M. The values f (α), k(α), u(α), and t (α) are values on the real unit
interval [0, 1] such that f (α) + k(α) + u(α) + t (α) = 1. Their intuitive meaning is
f(α) = falsehood, k(α) = contradictory, u(α) = unknown, and t(α) = truth of the
statement α. In [19] it is shown how such a fuzzy version of Belnap’s logic can be
applied in preference modeling. In [30] we show how paraconsistency is related to
data mining.

We showed in [31] that, instead of a Boolean structure (suggested originally by
Öztürk and Tsoukiás), the valuation domain M should be equipped with a more
general algebraic structure called injective MV-algebra. The standard Łukasiewicz
algebra on the real unit interval is an example of an injective MV-algebra. This asso-
ciates fuzzy extensions of four valued paraconsistent logics with Pavelka style fuzzy
sentential logic [18], giving rise to concepts such as fuzzy set of axioms, provability
degree, degree of theoremhood, and evaluated proof. As a consequence a complete
truth calculus is obtained. Our basic observation in [31] was that the algebraic oper-
ations in (8.1)–(8.4) are expressible only by the Łukasiewicz t-norm and the corre-
sponding residuum, i.e., in the standard MV-algebra. This fact was implicitly shown
in the analysis done in [17, 19]. Thus, if we would start with some other t-norm con-
junction and involutive negation then the reasonable conditions a continuous valued
extension of paraconsistent logic should obey would cease to hold.

The present first author has generalized in [28] Pavelka’s ideas by introducing
a Pavelka style fuzzy sentential logic with truth values in an injective MV-algebra,
thus generalizing [0, 1]-valued logic. Injective MV-algebras L are complete when
seen as lattices; all suprema and infima exist in L, and L satisfies a certain divisibility
condition. Indeed, in [28] it is proved that Pavelka style fuzzy sentential logic is a
complete logic in the sense that if the truth value set forms an injectiveMV-algebraL,
then the set of a-tautologies and the set of a-provable formulas coincide for all a ∈ L .
For a complete description, see the textbook [29] Chap.3. Recently, the present first
author proved (cf. [32]) the most general semantic completeness theorem: Pavelka
style semantic completeness holds if and only if the set of truth values is a complete
(as a lattice) MV-algebra; thus, the divisibility condition of the truth value structure
is redundant.

As a consequence of the above results we now have that, given a set (of evi-
dence values) which is a complete MV-algebra, it is possible to transfer a complete
MV-structure to the set M, too. The corresponding paraconsistent sentential logic is
Pavelka style fuzzy logic with new semantics. Thus, a rich semantics and syntax is
available. For example, Łukasiewicz tautologies as well as intuitionistic tautologies
can be expressed in the framework of this logic. This follows by the fact that we have
two sorts of logical connectives conjunction, disjunction, implication, and negation
interpreted either by the monoidal operations

⊙
,
⊕

,−→,∗ or by the lattice opera-
tions∧,∨,⇒,∼, respectively (however, neither ∼ nor ∗ is a lattice complementation).
Besides, there are many other logical connectives available.

The association of many-valued Belnap’s logic and Pavelka sentential logic cru-
cially depends on the fact that the product of two complete MV-algebras (and thus
the set of evidence pairs) can also be naturally equipped with a completeMV-algebra
structure. In [24], we have shown how to develop a continuous paraconsistent logic

http://dx.doi.org/10.1007/978-81-322-2719-9_3
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on truth scales that cannot be viewed as the product of MV-algebras, but still having
a complete MV-algebra structure. In this sense, we focused on the study of possible
MV-algebra structures over the unit triangle

� = {(a, b) ∈ [0, 1]2; a + b ≤ 1},

thus introducing an approach to the study of the logical properties of this scale
different from but complementary to that of triangle algebras considered in [33]. The
intuitive idea here is that evidence for a formula α (the value a) and evidence against
α (the value b) are mutually restricted by the condition a + b ≤ 1, based on such an
idea a decision support system focused on a context in which incomplete as well as
conflicting information often appears is studied in [22].

Recall that � is usually equipped with a lattice structure through the partial
order≤t defined by x ≤t y iff x1 ≤ y1 and y2 ≤ x2, where x = 〈x1, x2〉, y = 〈y1, y2〉
are element of the unit triangle �. Furthermore, in [6] it is proven that the lattice
(�,≤t ) cannot be endowedwith anMV-algebra structure if we use t-norms (and thus
also t-conorms) as logical operators. Nevertheless, it does not mean that the set �
cannot be endowed with an MV-algebra structure at all. On the contrary, we proved
in [22] that different MV-algebra structures can be achieved for �, though then the
canonical order of such an MV-algebra cannot coincide with ≤t . The reason why it
is interesting to develop a paraconsistent logic on the unit triangle � is because it
is the natural valuation set that arises when evidence for several categories is com-
puted from the same data. Particularly, when two of these categories are regarded as
opposite, the presence of information for both categories can manifest a certain type
of inconsistency. The proposed paraconsistent logic on � is applied in this sense
in [24] in the context of disaster management for the development of a classifica-
tion methodology that allows considering some of the classes as opposite, a relevant
modeling choice in some application contexts.

In this review, we recall themain results of our papers [24, 31].Wewant to empha-
size that the two logics are consistent if they are seen from ‘outside’; the structure
of the set of the evidence matrices M is an MV-algebra and there is nothing para-
consistent there. However, seen from ‘inside’, the construction of a single evidence
matrix paraconsistency comes in. This justifies the name of the paper. Moreover, we
discuss possible applications of the two logics in real-world phenomena.

Finally, we wish to stress the following aspect. Dubois [8] published a critical
study on Belnap’s approach, to which our work is linked to. According to Dubois,
the main difficulty lies in the confusion between truth values and information states.
We emphasize that we study paraconsistent logic from a purely formal point of view
without any deeper philosophical interpretation.

This paper is organized as follows. In Sect. 8.2, we recall all the algebraic defini-
tions and properties of MV-algebras that are necessary to understand our approach.
In Sect. 8.3 we introduce evidence couples and evidence matrices, first on the unit
square and then on the unit triangle. In Sect. 8.4 we present a brief outline of the main
features of Pavelka logic. Then, we show how paraconsistent logic is associated with
it; some illustrative examples are also given. Section8.5 concludes the paper.
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8.2 Algebraic Preliminaries

We recall some basic definitions and properties of MV-algebras that are needed
to understand and justify our results; all detail can be found in [5, 29, 31]. An
MV-algebra L = 〈L ,⊕,∗ , 0〉 is a structure such that 〈L ,⊕, 0〉 is a commutative
monoid, i.e.,

x ⊕ y = y ⊕ x, (8.5)

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z, (8.6)

x ⊕ 0 = x (8.7)

holds for all elements x, y, z ∈ L and, moreover,

x∗∗ = x, (8.8)

x ⊕ 0∗ = 0∗, (8.9)

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x . (8.10)

Denote x � y = (x∗ ⊕ y∗)∗ and 1 = 0∗. Then 〈L ,�, 1〉 is another commutative
monoid and hence

x � y = y � x, (8.11)

x � (y � z) = (x � y) � z, (8.12)

x � 1 = x (8.13)

holds for all elements x, y, z ∈ L . It is obvious that x ⊕ y = (x∗ � y∗)∗, thus the
triple 〈⊕,∗ ,�〉 satisfiesDeMorgan laws.A partial order on the set L is introduced by

x ≤ y iff x∗ ⊕ y = 1 iff x � y∗ = 0. (8.14)

By setting

x ∨ y = (x∗ ⊕ y)∗ ⊕ y, (8.15)

x ∧ y = (x∗ ∨ y∗)∗[= (x∗ � y)∗ � y] (8.16)

for all x, y, z ∈ L the structure 〈L ,∧,∨〉 is a lattice. Moreover, x ∨ y = (x∗ ∧ y∗)∗
holds and therefore the triple 〈∧,∗ ,∨〉, too, satisfies the De Morgan laws. However,
the unary operation ∗ called complementation is not a lattice complementation. By
stipulating

x → y = x∗ ⊕ y (8.17)
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the structure 〈L ,≤ ∧,∨,�,→, 0, 1〉 is a residuated lattice with the bottom and top
elements 0, 1, respectively. In particular, a residuation

x � y ≤ z iff x ≤ y → z (8.18)

holds for all x, y, z ∈ L . The couple 〈�,→〉 is an adjoint couple. Notice that the
lattice operations on L can be expressed also via

x ∨ y = (x → y) → y, (8.19)

x ∧ y = x � (x → y). (8.20)

The standard example of an MV-algebra is the Łukasiewicz structure L, also called
standard MV-algebra; the underlying set is the real unit interval [0, 1] equipped with
the usual order and, for each x, y ∈ [0, 1],

x ⊕ y = min{x + y, 1}, (8.21)

x∗ = 1 − x . (8.22)

Moreover,

x � y = max{0, x + y − 1}, (8.23)

x ∨ y = max{x, y}, (8.24)

x ∧ y = min{x, y}, (8.25)

x → y = min{1, 1 − x + y}, (8.26)

x � y∗ = max{x − y, 0}. (8.27)

For any natural number m ≥ 2, a finite chain 0 < 1
m < · · · < m−1

m < 1 can be
equippedwithMV-algebra operations by defining n

m ⊕ k
m = min{ n+k

m , 1} and ( n
m )∗ =

m−n
m . Finally, a structure L ∩ Q with the Łukasiewicz operations is an example of a

countable MV-algebra called rational Łukasiewicz structure. All these examples are
linear MV-algebras, i.e. the corresponding order is a total order. Moreover, they are
MV-subalgebras of the structure L. A Boolean algebra is an MV-algebra such that
the monoidal operations ⊕, � and the lattice operations ∨, ∧ coincide, respectively.

An MV-algebra L is called complete if
∨{ai | i ∈ �}, ∧{ai | i ∈ �} ∈ L for any

subset {ai : i ∈ �} ⊆ L . Complete MV-algebras are infinitely distributive, that is,
they satisfy

x ∧
∨

i∈�

yi =
∨

i∈�

(x ∧ yi ), x ∨
∧

i∈�

yi =
∧

i∈�

(x ∨ yi ), (8.28)

for any x ∈ L , {yi | i ∈ �} ⊆ L . Thus, in a complete MV-algebra we can define
another adjoint couple 〈∧,⇒〉, where the operation ⇒ is defined via
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x ⇒ y =
∨

{z| x ∧ z ≤ y}. (8.29)

In particular, x∼ = x ⇒ 0 defines another complementation (called weak comple-
mentation) in complete MV-algebras. However, weak complementation needs not to
be lattice complementation. AHeyting algebra H is a bounded lattice such that for all
a, b ∈ H there is a greatest element x in H such thata ∧ x ≤ b. Thus, to any complete
MV-algebra 〈L ,⊕,∗ , 0〉 there is an associated Heyting algebra 〈L ,∧,⇒,∼ , 0, 1〉
with an adjoint couple 〈∧,⇒〉. In fact, even more is true; the structure is a Gödel
algebra, a prelinear Heyting algebra. The Łukasiewicz structure and all finite MV-
algebras are complete as well as the direct product of complete MV-algebras is a
complete MV-algebra. However, the rational Łukasiewicz structure is not complete.

In [31] following three propositions were proved.

Proposition 8.1 In an MV-algebra L the following holds for all x, y ∈ L:

(x � y) ∧ (x∗ � y∗) = 0, (8.30)

(x∗ ∧ y) ⊕ (x � y) ⊕ (x∗ � y∗) ⊕ (x ∧ y∗) = 1. (8.31)

Proposition 8.2 Assume x, y, a, b are elements of an MV-algebra L such that the
following system of equations holds:

(A)

⎧
⎪⎪⎨

⎪⎪⎩

x∗ ∧ y = a∗ ∧ b,

x � y = a � b,

x∗ � y∗ = a∗ � b∗,
x ∧ y∗ = a ∧ b∗.

Then x = a and y = b.

Proposition 8.3 Assume x, y are elements of an MV-algebra L such that

(B)

⎧
⎪⎪⎨

⎪⎪⎩

x∗ ∧ y = f,
x � y = k,

x∗ � y∗ = u,

x ∧ y∗ = t.

Then (C) x = t ⊕ k, y = f ⊕ k and (D) x = ( f ⊕ u)∗, y = (t ⊕ u)∗.

Propositions 8.2 and 8.3 put ordered couples 〈x, y〉 and values f, k, u, t defined
by (B) into a one-to-one correspondence.

8.3 Evidence Couples and Evidence Matrices

8.3.1 Evidence Couples on the Unit Square

Let L = 〈L ,⊕,∗ , 0〉 be anMV-algebra. The product set L × L can be equipped with
an MV-structure by setting
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〈a, b〉 ⊗ 〈c, d〉 = 〈a ⊕ c, b � d〉, (8.32)

〈a, b〉⊥ = 〈a∗, b∗〉, (8.33)

0 = 〈0, 1〉 (8.34)

for each ordered couple 〈a, b〉, 〈c, d〉 ∈ L × L . Indeed, the axioms (8.5)–(8.9) hold
trivially and, to prove that the axiom (8.10) holds, it is enough to realize that

(〈a, b〉⊥ ⊗ 〈c, d〉)⊥ ⊗ 〈c, d〉 = 〈a ∨ c, b ∧ d〉 = 〈c ∨ a, d ∧ b〉
= (〈c, d〉⊥ ⊗ 〈a, b〉)⊥ ⊗ 〈a, b〉.

It is routine to verify that the order on L × L is defined via

〈a, b〉 ≤ 〈c, d〉 if and only if a ≤ c, d ≤ b, (8.35)

the lattice operations by

〈a, b〉 ∨ 〈c, d〉 = 〈a ∨ c, b ∧ d〉, (8.36)

〈a, b〉 ∧ 〈c, d〉 = 〈a ∧ c, b ∨ d〉, (8.37)

and an adjoint couple 〈�, �→〉 by

〈a, b〉 � 〈c, d〉 = 〈a � c, b ⊕ d〉, (8.38)

〈a, b〉 �→ 〈c, d〉 = 〈a → c, (d → b)∗〉. (8.39)

Notice that a → c = a∗ ⊕ c and (d → b)∗ = (d∗ ⊕ b)∗ = d � b∗ = b∗ � d.

Definition 8.4 Given an MV-algebra L, denote the structure described via (8.32)–
(8.39) by LEC and call it the MV-algebra of evidence couples induced by L.

Definition 8.5 Given an MV-algebra L, denote

M =
{[

a∗ ∧ b a � b
a∗ � b∗ a ∧ b∗

]

|〈a, b〉 ∈ L × L

}

and call it the set of evidence matrices induced by evidence couples.

By Propositions 8.2 and 8.3 we have the following theorem:

Theorem 8.6 There is a one-to-one correspondence between L × L and M: if
A, B ∈ M are two evidence matrices induced by evidence couples 〈a, b〉 and 〈x, y〉,
respectively, then A = B if and only if a = x and b = y.

The MV-structure descends from LEC to M in a natural way: if A, B ∈ M are two
evidence matrices induced by evidence couples 〈a, b〉 and 〈x, y〉, respectively, then
the evidence couple 〈a ⊕ x, b � y〉 induces an evidence matrix
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C =
[

(a ⊕ x)∗ ∧ (b � y) (a ⊕ x) � (b � y)

(a ⊕ x)∗ � (b � y)∗ (a ⊕ x) ∧ (b � y)∗

]

.

Thus, we may define a binary operation
⊕

on M by

[
a∗ ∧ b a � b
a∗ � b∗ a ∧ b∗

] ⊕ [
x∗ ∧ y x � y
x∗ � y∗ x ∧ y∗

]

= C.

Similarly, if A ∈ M is an evidence matrix induced by an evidence couple 〈a, b〉, then
the evidence couple 〈a∗, b∗〉 induces an evidence matrix

A⊥ =
[

a ∧ b∗ a∗ � b∗
a � b a∗ ∧ b

]

.

In particular, the evidence couple 〈0, 1〉 induces the following evidence matrix:

F =
[

0∗ ∧ 1 0 � 1
0∗ � 1∗ 0 ∧ 1∗

]

=
[

1 0
0 0

]

.

Moreover, it is easy to verify that the evidence couples 〈1, 0〉, 〈1, 1〉, and 〈0, 0〉 induce
the following evidence matrices:

T =
[

0 0
0 1

]

, K =
[

0 1
0 0

]

, U =
[

0 0
1 0

]

,

respectively. In [31] we proved the following.

Theorem 8.7 Let L be an MV-algebra. The structure M = 〈M,
⊕

,⊥ , F〉 as defined
above is an MV-algebra (called the MV-algebra of evidence matrices).

Assume A =
[

a∗ ∧ b a � b
a∗ � b∗ a ∧ b∗

]

, B =
[

x∗ ∧ y x � y
x∗ � y∗ x ∧ y∗

]

∈ M

Then it is obvious that the lattice operations ∧, ∨, the monoidal operation
⊙

, and
the residual operation −→ are defined via

A ∧ B =
[

(a ∧ x)∗ ∧ (b ∨ y) (a ∧ x) � (b ∨ y)

(a ∧ x)∗ � (b ∨ y)∗ (a ∧ x) ∧ (b ∨ y)∗

]

,

A ∨ B =
[

(a ∨ x)∗ ∧ (b ∧ y) (a ∨ x) � (b ∧ y)

(a ∨ x)∗ � (b ∧ y)∗ (a ∨ x) ∧ (b ∧ y)∗

]

,
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A
⊙

B =
[

(a � x)∗ ∧ (b ⊕ y) (a � x) � (b ⊕ y)

(a � x)∗ � (b ⊕ y)∗ (a � x) ∧ (b ⊕ y)∗

]

,

A −→ B =
[

(a → x)∗ ∧ (y → b)∗ (a → x) � (y → b)∗
(a → x)∗ � (y → b) (a → x) ∧ (y → b)

]

.

If the original MV-algebra L is complete, then the structure M is a complete MV-
algebra, too, and suprema and infima are defined by evidence couples

∨

i∈�
{〈ai , bi 〉} = 〈

∨

i∈�
ai ,

∧

i∈�
bi 〉,

∧

i∈�
{〈ai , bi 〉} = 〈

∧

i∈�
ai ,

∨

i∈�
bi 〉.

Thus, we may define another residual operation ⇒ on M via

A ⇒ B =
[

(a ⇒ x)∗ ∧ (b∗ ⇒ y∗)∗ (a ⇒ x) � (b∗ ⇒ y∗)∗
(a ⇒ x)∗ � (b∗ ⇒ y∗) (a ⇒ x) ∧ (b∗ ⇒ y∗)

]

.

To verify this last claim, assume 〈a, b〉 ∧ 〈x, y〉 ≤ 〈c, d〉 in LEC , which is equiva-
lent to

a ∧ x ≤ c and d ≤ b ∨ y, that is,

a ≤ x ⇒ c and (b ∨ y)∗ = b∗ ∧ y∗ ≤ d∗, i.e.,

a ≤ x ⇒ c and b∗ ≤ y∗ ⇒ d∗, or equivalently,

a ≤ x ⇒ c and (y∗ ⇒ d∗)∗ ≤ b, i.e.,

〈a, b〉 ≤ 〈x ⇒ c, (y∗ ⇒ d∗)∗〉 in LEC . Therefore, if A is induced by 〈a, b〉 and B is
induced by 〈x, y〉 then the evidencematrix A ⇒ B is induced by the evidence couple
〈a ⇒ x, (b∗ ⇒ y∗)∗〉. In particular, the weak complementation � on M is defined via
A� = A ⇒ F and induced by

〈1, 0〉 if a = 0, b = 1, then A� = T,
〈0, 0〉 if a > 0, b = 1, then A� = U,
〈1, 1〉 if a = 0, b < 1, then A� = K,
〈0, 1〉 if a > 0, b < 1, then A� = F

The matrices F, T, K, U correspond to Belnap’s original values false, true, contra-
dictory, unknown, respectively.



8 Two Consistent Many-Valued Logics for Paraconsistent Phenomena 195

If in particular, the original MV-algebra L is the standard MV-algebra, then the
evidence couples 〈a, b〉 are points on the unit square [0, 1]2. In the next section
they will be points on the unit triangle � = {(a, b) ∈ [0, 1]2; a + b ≤ 1}, see the
following indicative figure.

Semantics 1

•

U

F K

T

�

�
〈a, b〉 ∈ [0, 1] × [0, 1]

Semantics 2

•

�

�

�
�

�
�

�
�

�
�

�
�

��
0 ≤ a + b ≤ 1

8.3.2 Evidence Couples on the Unit Triangle

It is important to notice that the reasoning above, leading to conclude that the set of
evidencematricesM can be endowedwith a completeMV-algebra structure, critically
depends on the fact that the set of evidence couplesLEC naturally presents a complete
MV-algebra structure when it is obtained as the product L × L of a complete MV-
algebra structure L = 〈L ,⊕,∗ , 0〉. Once LEC is equipped with the desired structure,
this is naturally transferred toM bymeans of the bijectivemapping that unequivocally
assigns evidence couples to evidence matrices and vice versa. Therefore, if the set
of evidence couples L EC (understood here as a general set of evidence couples
〈pro,con〉, not necessarily the unit square) cannot be considered as a product MV-
algebra, M does not necessarily present a complete MV-algebra structure, even when
it is obtained from L EC through a one-to-one correspondence. However, as shown
in [24], we can overcome this obstacle by transferring the structure to L EC from an
adequate complete MV-algebra. For instance, let us now consider evidence couples
on the unit triangle

� = {(a, b) ∈ [0, 1]2; a + b ≤ 1},

that is, let us take L EC = �. This approach is based on the idea that evidence for
(value a) and evidence against (value b) of a given statement α are not completely
independent of each other, but they are bound by the condition a + b ≤ 1. In [24] it
is shown that, similar to expressions (8.1)–(8.4), we can define another continuous
extension of Belnap’s logic through the formulas
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T (α) = max{a − b, 0}, (8.40)

F(α) = max{b − a, 0}, (8.41)

K (α) = 2min{a, b}, (8.42)

U (α) = 1 − (a + b), (8.43)

where now an evidence couple 〈a, b〉 ∈ � is given. It is easy to see that again
T + F + K + U = 1 holds for any 〈a, b〉 ∈ �, as well as that now the value
contradictory is associated with the pair K = 〈 12 , 1

2 〉.
Let us denote by M� the set of evidence matrices of the form

[
F(α) K (α)

U (α) T (α)

]

with 〈a, b〉 ∈ �. Note that the extension in (8.40)–(8.43) is also expressible in terms
of Łukasiewicz algebraic operations, since it holds that

[
F(α) K (α)

U (α) T (α)

]

=
[

a∗ � b (a ∧ b) ⊕ (a ∧ b)

a∗ � b∗ a � b∗

]

.

Moreover, the following two results presented in [24] show that there is a one-to-one
correspondence between evidence couples in � and evidence matrices in M�.

Proposition 8.8 Let v = 〈a, b〉and s = 〈c, d〉be two evidence couples in� such that

[
c∗ � d (c ∧ d) ⊕ (c ∧ d)

c∗ � d∗ c � d∗

]

=
[

a∗ � b (a ∧ b) ⊕ (a ∧ b)

a∗ � b∗ a � b∗

]

.

Then v = s, that is a = c and b = d.

Proposition 8.9 If an evidence matrix

[
F(α) K (α)

U (α) T (α)

]

=
[

a∗ � b (a ∧ b) ⊕ (a ∧ b)

a∗ � b∗ a � b∗

]

.

is given, then 〈a, b〉 = 〈T ⊕ 1
2 K , F ⊕ 1

2 K 〉 ∈ � is the evidence couple associated
to such a matrix.

Thus, at this point, in order to obtain a complete MV-algebra structure for M�, we
just need to endow the set of evidence couples, in this case the unit triangle �, with
a complete MV-algebra structure. However, it is obvious that we cannot obtain �
as the product of two MV-algebras. Therefore, we need to equip � with the desired
structure by means of a different argument. To this aim, the following general result
was proved in [24]:
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Theorem 8.10 Let L = 〈L ,⊕,∗ , 0〉 be a complete MV-algebra, and let H : L �

L EC be a bijective mapping, where L EC is a general set of evidence couples
〈pro,con〉, not necessarily the unit square. Then LEC = 〈L EC ,⊕EC ,∗EC , 0EC 〉
is a complete MV-algebra with the operations ⊕EC ,∗EC and the neutral element 0EC

defined for all v, w ∈ L EC as follows:

v ⊕EC w = H(H−1(v) ⊕ H−1(w)), (8.44)

v∗EC = H(H−1(v)∗), (8.45)

0EC = H(0). (8.46)

As a consequence of Theorem 8.10, any bijective mapping H between a complete
MV-algebra L = 〈L ,⊕,∗ , 0〉 and the unit triangle� defines a complete MV-algebra
structure onM�. Particularly, in [24] we studied theMV-algebra of evidencematrices
M� that results from considering L = [0, 1]2 (equipped with the complete MV-
algebra structure obtained through (8.32)–(8.39) as a product of the standard MV-
algebra) and the bijective mapping H : [0, 1]2 � � given by the expression

H(x) = 〈x1 − 1

2
(x1 ∧ x2), x2 − 1

2
(x1 ∧ x2)〉 (8.47)

with inverse H−1 : � � [0, 1]2 given by

H−1(v) = 〈v1 + (v1 ∧ v2), v2 + (v1 ∧ v2)〉 (8.48)

for all x = 〈x1, x2〉 ∈ [0, 1]2 and v = 〈v1, v2〉 ∈ �. Remarkably, the canonical partial
orders of � and M� as MV-algebras (obtained through expression (8.14)) show a
nice connection with the extension (8.40)–(8.43), as it was proven in [24] that for
any two evidence couples v1, v2 ∈ � and their associated evidence matrices

M1 =
[

F1 K1

U1 T1

]

, M2 =
[

F2 K2

U2 T2

]

∈ M�

it holds that

v1 ≤� v2 iff M1 ≤M� M2 iff

⎧
⎪⎨

⎪⎩

K1 ≤ K2 and U1 ≤ U2 if T1 = T2 = 0,

K1 ≥ K2 and U1 ≥ U2 if F1 = F2 = 0,

1 − U1 ≥ K2 and 1 − K1 ≤ U2 if T1 = F2 = 0.

Let us emphasize that, as proven in [6], the partial order≤� cannot coincide with the
partial order ≤t defined by x ≤t y iff x1 ≤ y1 and y2 ≤ x2, where x = 〈x1, x2〉, y =
〈y1, y2〉 are elements of the unit triangle �. That is, it is not possible to obtain the
order ≤t through formula (8.14) for any MV-algebra defined on the unit triangle �,
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in particular for any MV-algebra structure on � obtained by means of Theorem 8.10
with any base MV-algebra L and the bijective mapping H : [0, 1]2 � �.

At this respect, some authors have defined and studied the notion of triangle
algebra (cf. [33]), which discards the MV-algebra structure and analyzes the proper-
ties of the structure resulting from using t-norms as logical operations on the lattice
(�,≤�). In this sense, in [33] it is shown that triangle algebras retain some of the
main properties of MV-algebras, therefore constituting interesting structures for the
development of a formal logic on (�,≤t ). However, instead of studying possible
structures on the lattice (�,≤t ), the approach proposed in [24] enable studying
those lattices (�,≤�) compatible with an MV-algebra structure, therefore present-
ing a complementary approach to the study of the unit triangle � to that of triangle
algebras.

8.4 Paraconsistent Pavelka Style Fuzzy Logic

Now we recall Pavelka style fuzzy logic to be associated separately with the above
discussed two different paraconsistent semantics. For a comprehensive presentation
of complete MV-algebra valued Pavelka style sentential logic, see [29, 32].

8.4.1 Pavelka Style Fuzzy Sentential Logic

A standard approach in mathematical sentential logic is the following. After intro-
ducing atomic formulas, logical connectives and the set of well-formed formulas,
these formulas are semantically interpreted in suitable algebraic structures. In clas-
sical logic these structures are Boolean algebras, in Hájek’s Basic fuzzy logic [11],
for example, the suitable structures are standard BL-algebras. Tautologies of a logic
are those formulas that obtain the top value 1 in all interpretations in all suitable
algebraic structures; for this reason, tautologies are sometimes called 1-tautologies.
For example, tautologies in Basic fuzzy logic are exactly the formulas that obtain
value 1 in all interpretations in all standard BL-algebras. The next step in usual math-
ematical logic is to fix the axiom schemata and the rules of inference: a well-formed
formula is a theorem if it is either an axiom or obtained recursively from axioms
using finitely many times rules of inference. Completeness of the logic with respect
to some semantics means that tautologies and theorems coincide; Classical sentential
logic and Basic fuzzy sentential logic, for example, are complete logics with respect
to their algebraic semantics. For now on, the symbols F and T stand for language
and fuzzy theory, respectively.

In Pavelka style fuzzy sentential logic [18] the situation is somewhat different.
We start by fixing a set of truth values, in fact an algebraic structure. In Pavelka’s
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own approach this structure is the standard MV-algebra L on the real unit interval,
while in [32] the structure is a more general (but fixed!) complete MV-algebra L =
〈L ,⊕,∗ , 0〉.

Consider a zero-order language F with a set of infinitely many propositional
variables p, q, r, . . ., and a set of truth constants {a | a ∈ L } corresponding
to the elements in the set L . As proved in [11], if the set of truth values is the
whole real interval [0, 1] then it is enough to include truth constants corresponding
to rationals belonging to [0, 1]. In two-valued logic, truth constants correspond to
the truth constants ⊥ and �. Propositional variables and truth constants constitute
the set Fa of atomic formulas. The elementary logical connectives are implication
imp and conjunction and. The set of all well- formed formulas (wffs) is obtained
in the natural way: atomic formulas are wffs and if α, β are wffs, then α imp β,
α and β are wffs.

As shown in [29], we can introduce many other logical connectives by abbrevia-
tions, e.g., negation not α stands for (α imp 0), disjunction α or β stands for
not (not α and not β). Also, equivalence equiv and exclusive or xor
are possible. Moreover, the connectives weak implication imp , weak conjunction
and, weak disjunction or , weak negation non, weak equivalence equiv, and
weak exclusive or xor are available in this logic. We call the logical connectives
without bar Łukasiewicz connectives, and those with bar are Intuitionistic connec-
tives.

Semantics in Pavelka style fuzzy sentential logic is introduced in the following
way: any mapping v : Fa � L such that v(a) = a for all truth constants a can be
extended recursively into the whole F by setting v(α imp β) = v(α) → v(β) and
v(α and β) = v(α) � v(β). Such mappings v are called valuations. The degree
of tautology of a wff α is the infimum of all values v(α), that is,

Csem(α) =
∧

{v(α)| v is a valuation}.

We may fix some set T ⊆ F of wffs and make it fuzzy by associating each formula
α ∈ T with a value T(α) in L , and T(β) = 0 for wffs β not in T, and call the result
a fuzzy theory T. Then we consider valuations v such that T(α) ≤ v(α) for all wffs
α ∈ F. If such a valuation exists, then the fuzzy theory T is satisfiable. We say that
formulas α ∈ F such that T(α) �= 0 are the special axioms of the fuzzy theory T.
Then we consider values

Csem(T)(α) =
∧

{v(α)| v is a valuation, T satisfies v}.

The set of logical axioms, denoted by A, is composed by the following thirteen forms
of formulas (see p. 88 in [29] and also [32]).
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(Ax.1) α imp α,
(Ax.2) (α imp β) imp [(β imp γ ) imp (α imp γ )],
(Ax.3) (α1 imp β1) imp {(β2 imp α2) imp [(β1 imp β2) imp (α1 imp α2)]},
(Ax.4) α imp 1,
(Ax.5) 0 imp α,
(Ax.6) (α and notα) imp 0,
(Ax.7) a,
(Ax.8) α imp (β imp α),
(Ax.9) (1 imp α) imp α,
(Ax.10) [(α imp β) imp β] imp [(β imp α) imp α],
(Ax.11) (notα imp notβ) imp (β imp α),
(Ax.12) [α or (notα and β)] imp[(α imp β) imp β],
(Ax.13) a imp b.

All the axiom formulas δ in (Ax.1)–(Ax.6) and (Ax.8)–(Ax.12) are 1−tautologies,
that is Csem(δ) = 1, for axioms (Ax.7), Csem(a) = a ∈ L and for axioms (Ax.13),
Csem(a imp b) = a → b ∈ L . Notice that, corresponding to different (non-
isomorphic) complete MV-algebra valued fuzzy logics, the set of logical axioms
is not different except, of course, axioms (Ax.7) and (Ax.13).

A fuzzy rule of inference is a scheme

α1, . . . , αn , a1, . . . , an

rsyn(α1, . . . , αn) rsem(a1, . . . , an),

where the wffs α1, . . . , αn are premises and the wff rsyn(a1, . . . , an) is the conclu-
sion. The values a1, . . . , an and rsem(a1, . . . , an) ∈ L are the corresponding truth
values. The mappings rsem : Ln

� L are semi-continuous, i.e.,

rsem(a1, . . . ,
∨

i∈�
aki , . . . , an) =

∨

i∈�
rsem(a1, . . . , aki , . . . , an)

holds for all 1 ≤ k ≤ n. Moreover, the fuzzy rules are required to be sound in a sense
that

rsem(v(α1), . . . , v(αn)) ≤ v(rsyn(α1, . . . , αn))

holds for all valuations v. The following are examples of fuzzy rules of inference,
denoted by a set R:

Generalized Modus Ponens (GMP):

α, α imp β , a, b
β a � b

a–Consistency testing rules (a–CTR):

a , b
0 c

where a is a truth constant and c = 0 if b ≤ a and c = 1 elsewhere.
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a–Lifting rules (a–LR):
α , b

a imp α a → b

where a is an truth constant.
Rule of Bold Conjunction (RBC):

α, β , b
α and β a � b

Rule of Bold Disjunction (RBD):

α, β , b
α or β a ⊕ b

An R-proof w of a wff α in a fuzzy theory T is a finite sequence

α1 , a1
...

...

αm , am

where

(i) αm = α,
(ii) for each i , 1 ≤ i ≤ m, αi is a logical axiom, or is a special axiom, or there is

a fuzzy rule of inference in R and wff formulas αi1 , . . . , αin with i1, . . . , in < i
such that αi = rsyn(αi1 , . . . , αin ),

(iii) for each i , 1 ≤ i ≤ m, the value ai ∈ L is given by

ai =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a if αi is the axiom Ax.7
a → b if αi is the axiom Ax.13
1 if αi is some other logical axiom in the set A
T(αi ) if αi is a special axiom
rsem(ai1 , . . . , ain ) if αi = rsyn(αi1 , . . . , αin )

The value am is called the degree of the R-proof w. Since a wff α may have various
R-proofs with different degrees, we define the degree of deduction or provability
degree of a formula α to be the supremum of all such values, i.e.,

Csyn(T)(α) =
∨

{am | w is a R- proof for α in the fuzzy theory T}.
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A fuzzy theory T is consistent if Csem(T)(a) = a for all truth constants a. By Propo-
sition 94 in [29], any satisfiable fuzzy theory is consistent. Theorem 25 in [29] (see
also [32]) now states the completeness of Pavelka style fuzzy sentential logic:

If a fuzzy theory T is consistent, then Csem(T)(α) = Csyn(T)(α) for any wff α.

Thus, in Pavelka style fuzzy sentential logic we may talk about tautologies of a
degree a and theorems of a degree a for all truth values a ∈ L , and these concepts
coincide. Notice that the axiom schemata (Ax.1)–(Ax.13) and the set R of fuzzy rules
of inference are sufficient to guarantee the completeness theorem irrespective of the
choice of the complete MV-algebra.

This completeness result remains valid if we extend the language to contain intu-
itionistic connectives and or or . However, it does not hold if the language is
extended by the intuitionistic connectives imp or non.

8.4.2 Semantics of Paraconsistent Pavelka Logic

The above Pavelka style construction of fuzzy logic can be carried out in any com-
plete MV-algebra thus, in particular, in the complete MV-algebras M and M� of
evidence matrices as introduced in Sect. 8.3 from a complete MV-algebra L. Indeed,
semantics is introduced by associating to each atomic formula p an evidence couple
〈pro, con〉 or simply 〈a, b〉 ∈ L EC . The evidence couple 〈a, b〉 induces a unique
evidence matrix A ∈ M (or A ∈ M�) and therefore valuations are mappings v such
that v(p) = A for propositional variables and v(I) = I for truth constants (∈ M or
∈ M�). A valuation v is then extended recursively to whole F via

v(α imp β) = v(α) −→ v(β), v(α and β) = v(α)
⊙

v(β). (8.49)

Similar to the procedure in [29], Sect. 3.1, we can show that

v(α or β) = v(α)
⊕

v(β), v(notα) = [v(α)]⊥, (8.50)

v(α equiv β) = [v(α) −→ v(β)] ∧ [v(β) −→ v(α)], (8.51)

v(α xor β) = [v(α)
⊕

v(β)] ∧ [v(β) −→ v(α)⊥] ∧ [v(α) −→ v(β)⊥],
(8.52)

v(α and β) = v(α) ∧ v(β), v(α or β) = v(α) ∨ v(β), (8.53)

v(α imp β) = v(α) ⇒ v(β), v(notα) = v(α)∼, (8.54)

v(α equiv β) = [v(α) ⇒ v(β)] ∧ [v(β) ⇒ v(α)]. (8.55)
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Example 1. Evidence Couples and Evidence Matrices on the Unit Real Square.
Let L be the Łukasiewicz structure L. Assume α and β are associated with evidence
couples 〈0.8, 0.4〉, 〈0.7, 0.2〉 ∈ [0, 1]2, respectively. They induce the following evi-
dence matrices in M, where the corresponding values T, F, K , U related to formulas
α and β can be read.

v(α) =
[
0.2 0.2
0 0.6

]

, v(notα) =
[
0.6 0
0.2 0.2

]

v(β) =
[
0.2 0
0.1 0.7

]

, v(notβ) =
[
0.7 0.1
0 0.2

]

v(α and β) =
[
0.5 0.1
0 0.4

]

, v(α or β) =
[
0 0
0 1

]

( = T)

v(α imp β) =
[
0 0
0.1 0.9

]

, v(α imp not β) =
[
0.4 0
0.1 0.5

]

v(β imp α) =
[
0 0.2
0 0.8

]

, v(β imp not α) =
[
0.4 0
0.1 0.5

]

v(α equiv β) =
[
0.1 0.1
0 0.8

]

, v(α xor β) =
[
0.4 0
0.1 0.5

]

v(notα) =
[
1 0
0 0

]

, v(notβ) =
[
1 0
0 0

]

v(α and β) =
[
0.3 0.1
0 0.6

]

, v(α or β) =
[
0.2 0
0 0.8

]

v(α imp β) =
[
0 0
0.3 0.7

]

, v(β imp α) =
[
0 0.4
0 0.6

]

v(α equiv β) =
[
0.3 0.1
0 0.6

]

.

Example 2. Evidence Couples and Evidence Matrices on the Unit Real Triangle.
Assume nowα and β are associatedwith evidence couples 〈0.6, 0.2〉, 〈0.6, 0.1〉 ∈ �,
respectively. Then H−1(〈0.6, 0.2〉) = 〈0.8, 0.4〉 and H−1(〈0.6, 0.1〉) = 〈0.7, 0.2〉;
through the adequate translation of expressions (8.49)–(8.55) bymeans of themethod
provided in Theorem 8.10, the following evidence matrices on M� are obtained:
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v(α) =
[
0 0.4
0.2 0.4

]

, v(notα) =
[
0.4 0.2
0.4 0

]

v(β) =
[
0 0.2
0.3 0.5

]

, v(notβ) =
[
0.5 0.3
0.2 0

]

v(α and β) =
[
0.5 0.3
0.2 0

]

, v(α or β) =
[
0 0
0 1

]

( = T)

v(α imp β) =
[
0 0
0 1

]

, v(α imp notβ) =
[
0 0.4
0.5 0.1

]

v(β imp α) =
[
0 0.2
0 0.8

]

, v(β imp not α) =
[
0 0.4
0.5 0.1

]

v(α equiv β) =
[
0 0.2
0.1 0.7

]

, v(α xor β) =
[
0 0.4
0.5 0.1

]

v(notα) =
[
1 0
0 0

]

, v(notβ) =
[
1 0
0 0

]

v(α and β) =
[
0 0.4
0.3 0.3

]

, v(α or β) =
[
0 0.2
0.2 0.6

]

v(α imp β) =
[
0 0
0.3 0.7

]

, v(β imp α) =
[
0 0.4
0 0.6

]

v(α equiv β) =
[
0 0.4
0.3 0.3

]

. Example 2 ends here.

The obtained continuous valued paraconsistent logic is a complete logic in the
Pavelka sense. The logical axioms are the axiom schemata (Ax.1)–(Ax.13) and rules
of inference are the fuzzy rules of inference in the set R. Thus, we have a solid
syntax available and for example all the many-valued extensions of classical rules of
inference are available; 25 such rules are listed in [29]. For example, the following
are sound rules of inference.

Generalized Modus Tollendo Tollens (GMTT);

notβ, α imp β , A, B
notα A

⊙
B

Generalized Simplification Law 1 (GSL1);

α and β , A
α A
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Generalized Simplification Law 2 (GSL2);

α and β , A
β A

Generalized De Morgan Law 1 (GDeML1);

(not α) and (not β) , A
not (α or β) A

Generalized De Morgan Law 2 (GDML2);

not (α or β) , A
(non α) and (not β) A

To illustrate the use of these two paraconsistent logics and the differences between
them, we present two examples.

Example 3 First, consider a fuzzy theory T with the following four special axioms,
where the evidence couples are on the unit real square [0, 1]2.

Statement Formally Evidence
(1) If wages rise or prices rise there will be
inflation

(p or q) imp r 〈1, 0〉

(2) If there will be inflation, the Govern-
ment will stop it or people will suffer

r imp (s or t) 〈0.9, 0.1〉

(3) If people will suffer the Government
will lose popularity

t imp w 〈0.8, 0.1〉

(4) The Government will not stop inflation
and will not lose popularity

not s and notw 〈1, 0〉

We have interpreted the logical connectives or and and to be the Lukasiewicz
ones; however, they could be intuitionistic or and and too. Moreover, the inclu-
sive or connective could be the exclusive disjunction xor as well.

1◦ We show that T is satisfiable and therefore consistent. By Theorem 8.6 it is
enough to consider evidence couples; focus on the following:

Statement Atomic formula Evidence couple
Wages rise p 〈0.3, 0.8〉
Prices rise q 〈0, 1〉
There will be inflation r 〈0.3, 0.8〉
Government will stop inflation s 〈0, 1〉
People will suffer t 〈0.2, 0.9〉
Government will lose popularity w 〈0, 1〉
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By direct computation we realize that they lead to the same evidence couples as in the
fuzzy theory T. Indeed, for example the evidence for the first special axiom [(p or
q) imp r ] is (0.3 ⊕ 0) → 0.3 = 1 and evidence against the axiom [(p or q)

imp r ] is (0.8 � 1)∗ � 0.8 = 0, and similarly for the other axioms. Thus, T is
satisfiable and consistent.

2◦ What can be said on logical grounds about the claim wages will not rise, for-
mally expressed by not p? The above consideration on evidence couples associates
with (not p) an evidence couple 〈0.3, 0.8〉⊥ = 〈0.7, 0.2〉 and the corresponding
valuation v is given by the evidence matrix

v(not p) =
[
0.7∗ ∧ 0.2 0.7 � 0.2
0.7∗ � 0.2∗ 0.7 ∧ 0.2∗

]

=
[
0.2 0
0.1 0.7

]

,

and the degree of tautology of (not p) is less than or equal to v(not p).
3◦ We prove that the degree of tautology of the wff (not p) cannot be less that

v(not p), thus it is equal to v(not p). To this end consider the following R-proof:

(1) (p or q) imp r 〈1, 0〉 special axiom
(2) r imp (s or t) 〈0.9, 0.1〉 special axiom
(3) t imp w 〈0.8, 0.1〉 special axiom
(4) not s and notw 〈1, 0〉 special axiom
(5) notw 〈1, 0〉 (4), GS2
(6) not s 〈1, 0〉 (4), GS1
(7) not t 〈0.8, 0.1〉 (5), (3), GMTT
(8) not s and not t 〈0.8, 0.1〉 (6), (7), RBC
(9) not(s or t) 〈0.8, 0.1〉 (8), GDeML1
(10) not r 〈0.7, 0.2〉 (9), (2), GMTT
(11) not(p or q) 〈0.7, 0.2〉 (10), (1) GMTT
(12) not p and not q 〈0.7, 0.2〉 (11), GDeML2
(13) not p 〈0.7, 0.2〉 (12), GS1

4◦ By completeness of T we conclude

Csem(T)(not p) = Csyn(T)(not p) =
[
0.2 0
0.1 0.7

]

.

We interpret this result by saying that, from a logical point of view, the claim wages
will not rise is much more true (t (not p) = 0.7) than false ( f (not p) = 0.2), and
is not contradictory (k(not p) = 0) but lacks some information (u(not p) = 0.1).

Example 4Consider the fuzzy theory Twith the same four special axioms introduced
in Example 3, but with the difference that the evidence couples are on the unit real
triangle �. Assume also that the new evidence couples are given as follows.
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Statement Formally Evidence
(1) If wages rise or prices rise there will be
inflation

(p or q) imp r 〈1, 0〉

(2) If there will be inflation, the Govern-
ment will stop it or people will suffer

r imp (s or t) 〈0.85, 0.05〉

(3) If people will suffer the Government
will lose popularity

t imp w 〈0.75, 0.05〉

(4) The Government will not stop inflation
and will not lose popularity

not s and notw 〈1, 0〉

1◦ Again, it is easy to verify by direct computation that the fuzzy theory T is sat-
isfiable (and therefore consistent) when the following evidence couples are assigned
to the atomic formulas.

Statement Atomic formula Evidence couple
Wages rise p 〈0.15, 0.65〉
Prices rise q 〈0, 1〉
There will be inflation r 〈0.15, 0.65〉
Government will stop inflation s 〈0, 1〉
People will suffer t 〈0.1, 0.8〉
Government will lose popularity w 〈0, 1〉

For instance, the evidence couple for the first special axiom can be obtained as

H([H−1(〈0.15, 0.65〉) ⊕ H−1(〈0, 1〉)] � H−1(〈0.15, 0.65〉)) = H([〈0.3, 0.8〉 ⊕ 〈0, 1〉] � 〈0.3, 0.8〉)
= H(〈0.3, 0.8〉)
= 〈0.15, 0.65〉.

and similarly for the other three axioms.
2◦ Note that the statement not p is now associated with the evidence couple

〈0.15, 0.65〉∗� = H([H−1(〈0.15, 0.65〉⊥) = H(〈0.3, 0.8〉⊥) = H(〈0.7, 0.2〉) = 〈0.6, 0.1〉

and the corresponding valuation v is given by the evidence matrix

v(not p) =
[
0.6∗ � 0.1 2(0.6 ∧ 0.1)
0.6∗ � 0.1∗ 0.1∗ � 0.6

]

=
[
0 0.2
0.3 0.5

]

∈ M�,

thus, the degree of tautology of (not p) has to be less than or equal to v(not p).
2◦ In order to prove that the degree of tautology of the wff (not p) cannot be less

that v(not p), we conduct a similar R-proof as before::
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(1) (p or q) imp r 〈1, 0〉 special axiom
(2) r imp (s or t) 〈0.85, 0.05〉 special axiom
(3) t imp w 〈0.75, 0.05〉 special axiom
(4) not s and notw 〈1, 0〉 special axiom
(5) notw 〈1, 0〉 (4), GS2
(6) not s 〈1, 0〉 (4), GS1
(7) not t 〈0.75, 0.05〉 (5), (3), GMTT
(8) not s and not t 〈0.75, 0.05〉 (6), (7), RBC
(9) not(s or t) 〈0.75, 0.05〉 (8), GDeML1
(10) not r 〈0.6, 0.1〉 (9), (2), GMTT
(11) not(p or q) 〈0.6, 0.1〉 (10), (1) GMTT
(12) not p and not q 〈0.6, 0.1〉 (11), GDeML2
(13) not p 〈0.6, 0.1〉 (12), GS1

4◦ Then, by completeness of T if follows that

Csem(T)(not p) = Csyn(T)(not p) =
[
0 0.2
0.3 0.5

]

.

Now, we interpret this result in similar terms as before, i.e., the claim wages will not
rise is half-true (T (notp) = 0.5) and not false (F(notp) = 0), though some of
the available information is conflicting (K (notp) = 0.2) at the same time that we
lack some further pieces of information (U (notp) = 0.3).

8.5 Conclusion and Future Work

We have reviewed two Pavelka style fuzzy logical systems that make it possible
to handle and analyze information that is not consistent but still relevant to make
meaningful conclusions. In general, paraconsistent logic may constitute a valuable
tool for data mining and decision support, as it provides a formal language able to
address information lacks and inconsistencies, which are often found in many real-
life applications in which several sources of information have to be combined and
exploited. In this sense, the paraconsistent logic in the unit square, introduced through
formulae (8.1)–(8.4), has been found to be a particularly attractive tool to expand
the power and expressiveness of the GUHA data mining methodology (see [30]).
Similarly, also the proposed paraconsistent logic in the unit triangle, introduced
through formulae (8.40)–(8.43), has shown a quite promising performance in the
development of a decision support system focused on the initial assessment of the
consequences of natural disasters, a context inwhich incomplete aswell as conflicting
information often appears (see [22]). The introduction of a paraconsistent logic in
this context allows not only handling the low-quality information usually available
after disaster strikes, but also to introduce on the mathematical models some of the
requirements of the decision makers, as for instance worst-case scenario analysis.
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Moreover, following [23] some efforts are being placed on developing a general
classification methodology based on this last logic. Future works in this direction
will address the potential interest of paraconsistent logic for the development of
more sophisticated machine learning techniques, therefore pointing to close the gap
between computers and humans learning and reasoning abilities in the presence of
inconsistent information.
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Chapter 9
On Modal Logics Defining Jaśkowski-Like
Discussive Logics

Marek Nasieniewski and Andrzej Pietruszczak

Abstract The present paper concerns Jaśkowski-like discussive logics which arise
bymodification of Jaśkowski’s original translation of discussive conjunction. In each
case, we indicate the smallest modal logic defining a given Jaśkowski-like discussive
logic.

Keywords Modal logic · Jaśkowski logic D2 · Jaśkowski-like discussive logics ·
Minimal modal logics defining D2 · Minimal modal logics defining Jaśkowski-like
discussive logics · Jaśkowski’s problem
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9.1 Introduction

Jaśkowski’s discussive logic D2, [5, 6], has been formulated with the help of the
modal logic S5 as follows (see Sects. 9.2 and 9.3): A ∈ D2 iff �♦A•� ∈ S5, where
(−)• is a translation of discussive formulas into the modal language such that: the
function (−)• from the set of all discussive formulas Ford to the set of all modal
formulas Form such that:

1. (a)• = a, for any propositional variable a,
2. for all discussive formulas A, and B:

(a) (¬ A)• = �¬ A•�,
(b) (A ∨ B)• = �A• ∨ B•�,
(c) (A ∧d B)• = �A• ∧ ♦B•�,
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(d) (A →d B)• = �♦A• → B•�,
(e) (A ↔d B)• = �(♦A• → B•) ∧ ♦(♦B• → A•)�.

Thus, the key role in the definition of the logic D2 is played by the logic S5. There are
considered other modal logics that are also defining the same logic D2. In particular,
the smallest normal, regular, monotonic, congruential, cm-, rte-, and generally, the
smallest modal logic defining D2 were given (cf. [8, 9]).

In the literature, there are also considered translations that are determining other
Jaśkowski-like logics. In [4, 7] for example, instead of the original, right discussive
conjunction, the left discussive conjunction is treated as Jaśkowki’s one (the other
connectives are defined by the same conditions as in the case of the transformation
(−)•):

(A ∧d B)∗ = �♦A∗ ∧ B∗�.
In [3], it has been shown that the transformation (−)∗ yields a logic different from
D2. Ciuciura denotes the obtained logic by ‘D∗

2’. There are two other possibilities as
regards the internal translation of conjunction:

(A ∧d B)� = �A� ∧ B��.
(A ∧d B)× = �♦A× ∧ ♦B×�.

The question arises (which has been stated by João Marcos), what does it change if
we consider the weakest in the mentioned classes, modal logics that determine the
obtained logics, and in this paper we will give an answer to this question.

9.1.1 Meaning of Discussive Conjunctions

We can try to intuitively explain these new understandings of conjunction. For exam-
ple, while the original Jaśkowski’s conjunction can be understood as saying that two
assertions P and Q have been articulated by two participants during a discussion,
where the conjunctive statement has been made from the point of view of the first
of these participants (see for example [10]), the meaning stipulated by the function
(−)∗ could be seen as an expression of the point of view of the second participant.
On the other hand, the function (−)� can be justified to be a report that assertions
P andQ have been made by a single participant—it is an intuitive understanding of
classical conjunction considered in the context of the model of discussion (see [10]).
And finally, the last translation could be treated as a narration of participant who has
made none of two assertions.

9.2 Some Facts—Modal Logic

Modal language. As in [2], modal formulas are formed in the standard way from
propositional variables: ‘p’, ‘q’, ‘p0’, ‘p1’, ‘p2’, …; truth-value operators: ‘¬’,
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‘∨’, ‘∧’, ‘→’, and ‘↔’ (connectives of negation, disjunction, conjunction, material
implication, and material equivalence, respectively); modal connectives: ‘�’ and
‘♦’ (necessity and possibility operators); and brackets. By Form we denote the set
of modal formulas. Of course, the set Form includes the set of all classical formulas
(without ‘�’ and ‘♦’); let Taut be the set of all classical tautologies. Besides, for any
ϕ,ψ, χ ∈ Form, let χ [ϕ/ψ ] be any formula that results from χ by replacing none,
one or more than one occurrence of ϕ in χ , by ψ . Finally, let ψ[♦/¬ � ¬] denote a
result of replacing in ψ of none, one or more than one occurrence of any formula of
the form ♦ϕ, by ¬ �¬ ϕ.

For every ϕ ∈ Form let Sub(ϕ) be the set of all modal formulas being substi-
tution instances of ϕ. For any Φ ⊆ Form let Sub(Φ) �

⋃
ϕ∈Φ Sub(ϕ). We have

ψ ∈ Sub(ψ) and Φ ⊆ Sub(Φ). Moreover, we put ♦Φ � {ψ : ∃ϕ∈Φ ψ = �♦ϕ�} =
{�♦ϕ� : ϕ ∈ Φ}.
Modal logics. Modal logics are certain sets of formulas. As in [1], we define a modal
logic as any set L of modal formulas satisfying the following conditions:

• Taut ⊆ L,
• L includes the following set of formulas

{
�χ [¬� ¬ϕ/♦ϕ] ↔ χ� : ϕ, χ ∈ Form

}
. (rep�)

• L is closed under the following two rules: modus ponens for ‘→’:

ϕ ϕ → ψ

ψ
(mp)

and uniform substitution:
ϕ

sϕ
(sb)

where sϕ is the result of uniform substitution of formulas for propositional vari-
ables in ϕ.

By (sb), everymodal logic includes the setPL ofmodal formulas which are instances
of classical tautologies (i.e., instances of elements of Taut).

An element of a given logic is called its thesis. By (rep�), every modal logic has
the following thesis:

♦p ↔ ¬ �¬ p (df♦)

Chosen classes of logics. We say that a modal logic L is an rte-logic iff L is closed
under replacement of tautological equivalents, i.e., for any ϕ,ψ, χ ∈ Form

if �ϕ ↔ ψ� ∈ PL and χ ∈ L, then χ [ϕ/ψ ] ∈ L. (rte)
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Equivalently, a modal logic is an rte-logic iff it contains the following set

{
�χ [ϕ/ψ ] ↔ χ� : ϕ,ψ, χ ∈ Form and �ϕ ↔ ψ� ∈ PL

}
. (repPL)

Similarly as in the case of (rep�) also (repPL) is closed on (sb).

Remark 9.2.1 Apart from a possibility of replacing of ‘¬�¬’ by ‘♦’ valid for every
modal logic, in any thesis of any rte-logic we can replace one or more occurrences of
‘�¬’ (resp. ‘¬ �’, ‘¬ ♦¬’, ‘¬ ♦’, ‘♦¬’) by ‘¬♦’ (resp. ‘♦¬’,‘�’, ‘�¬’, ‘¬�’)
and vice versa. Thus, every rte-logic has the following thesis

�p ↔ ¬ ♦¬ p (df�)

Lemma 9.2.2 An rte-logic contains the following formula:

�(p ∧ q) ↔ (�p ∧ �q) (R)

iff it contains its dual form:

♦(p ∨ q) ↔ (♦p ∨ ♦q) (R
)

In [1] a modal logic is called classical modal (cm-logic for short) iff it is an
rte-logic which contains

�(p → q) → (�p → �q) (K)

and
�(p → p) (N)

Thus, every cm-logic contains the set �PL � {�τ : τ ∈ PL}.
We say that a modal logic is congruential iff it is closed under the congruence

rule
ϕ ↔ ψ

�ϕ ↔ �ψ
(cgr)

Equivalently, a modal logic is congruential iff it is closed under replacement

ϕ ↔ ψ

χ [ϕ/ψ ] ↔ χ
(rep)

Every congruential logic is an rte-logic.
We say that a modal logic is monotonic iff it is closed under the monotonicity

rule:
ϕ → ψ

�ϕ → �ψ
(mon)

Every monotonic logic is congruential.
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We say that a modal logic is regular iff it is closed under the regularity rule:

ϕ ∧ ψ → χ

�ϕ ∧ �ψ → �χ
(reg)

Equivalently, a modal logic is regular iff it contains the formula (K) and is closed
under (mon) iff it contains the formula (R) and is closed under (cgr).

A modal logic is normal iff it contains (K) and is closed under the necessitation
rule

ϕ

�ϕ
(nec)

Similarly, a modal logic is normal iff it contains (N) and (K), and it is closed under
the rule (cgr). Every normal logic is a cm-logic.

9.3 The Logics D2, D∗
2, D−

2 , and D∗∗
2

Discussive language. The logics D2, D∗
2, D−

2 , and D∗∗
2 are defined as certain sets

of discussive formulas. These formulas are formed in the standard way from propo-
sitional variables: ‘p’, ‘q’, ‘p0’, ‘p1’, ‘p2’, …; truth-value operators: ‘¬’ and ‘∨’
(negation and disjunction); discussive connectives: ‘∧d’, ‘→d’, ‘↔d’ (conjunction,
implication, and equivalence); and brackets. Let Ford be the set of all such expres-
sions.

Definition of discussive logic D2. As we mentioned in Sect. 9.1, the logic D2 is
formulated with the help of the modal logic S5 as follows:

D2 � { A ∈ Ford : �♦A•� ∈ S5 } ,

where (−)• is a translation given on p. 1, of discussive formulas into the modal
language. Of course, D2 is closed under uniform substitution of discussive formulas.
Moreover, D2 is closed under modus ponens for ‘→d’:

A, A →d B

B
(mpd)

because S5 is closed under the following rule:

♦ϕ, ♦(♦ϕ → ψ)

♦ψ
(RC)

Definitions of Jaśkowski-like logics. We already mentioned the logic D∗
2. Let us

now define it together with other two Jaśkowski-like discussive logics D−
2 and D∗∗

2
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as follows:

D∗
2 � { A ∈ Ford : �♦A∗� ∈ S5 } ,

D−
2 � { A ∈ Ford : �♦A�� ∈ S5 } ,

D∗∗
2 � { A ∈ Ford : �♦A×� ∈ S5 } ,

where (−)∗, (−)�, (−)× : Ford −→ Form and for any A, B ∈ Ford:

(c∗) (A ∧d B)∗ = �♦A∗ ∧ B∗�,
(e)∗ (A ↔d B)∗ = �♦(♦A∗ → B∗) ∧ (♦B∗ → A∗)�,
(c�) (A ∧d B)� = �A� ∧ B��,
(e)� (A ↔d B)� = �(♦A� → B�) ∧ (♦B� → A�)�.
(c×) (A ∧d B)× = �♦A× ∧ ♦B×�,
(e)× (A ↔d B)× = �♦(♦A× → B×) ∧ ♦(♦B× → A×)�,
and in the case of every considered above translation, conditions for other connectives
stay unchangedwith respect to the function (−)•. As amatter of fact all defined logics
differ only with respect to the condition for conjunction, because for any translation
$ ∈ {•, ∗,�,×}, for all A, B ∈ Ford we have: (A ↔d B)$ = ((A →d B) ∧d (B →d

A))$.

9.4 Modal Logics for D2, D∗
2, D−

2 , and D∗∗
2

It is known that aside from S5 there are also other modal logics that define D2. The
same holds for the other three discussive logics. In particular, there is a procedure
(see [8]) that for a given class of logics fulfilling rather natural conditions, gives as
an outcome a logic L which is minimal in the considered class among logics which
have the same as S5 theses beginning with ♦. The same procedure can be applied
for D∗

2, D−
2 and D∗∗

2 .
We say that a modal logic L defines D2 (resp. D∗

2, D−
2 , D∗∗

2 ) iff D2 = {A ∈ Ford :
�♦A•� ∈ L} (resp. D∗

2 = {A ∈ Ford : �♦A∗� ∈ L}, D−
2 = {A ∈ Ford : �♦A��

∈ L}, D∗∗
2 = {A ∈ Ford : �♦A×� ∈ L}).

We see that while expressing logic D2 we refer to modal logics which

have the same theses beginning with ‘♦’ as S5. (†)

Let S5� be the set of all these logics, i.e.,

L ∈ S5� iff ∀A∈Form ( �♦ϕ� ∈ L ⇐⇒ �♦ϕ� ∈ S5).

By the definition we see:

Fact 9.4.1 For any L ∈ S5�:

1. {�♦ϕ� : �♦ϕ� ∈ S5 } ⊆ L,
2. If L ∈ S5�, then L defines D2, D∗

2, D−
2 and D∗∗

2 .



9 On Modal Logics Defining Jaśkowski-Like Discussive Logics 219

Let us recall (see [8]) that rteS5M, cmS5M, eS5M, mS5M, rS5M and S5M are
respectively, the smallest rte-, cm-, congruential, monotonic, regular, and normal
logic in S5�. Thus, by Fact 9.4.1 each of them defines also logics D∗

2, D−
2 and D∗∗

2 .
Let (−)any be any translation of discussive formulas into the modal language, that

is, the function (−)any from Ford into Form. And let

Dany
2 � { A ∈ Ford : �♦Aany� ∈ S5 } ,

Corollary 9.4.2 The logics rteS5M, cmS5M, eS5M, mS5M, rS5M, and S5M are
the smallest rte-, cm-, congruential, monotonic, regular, and normal logic in S5�
defining Dany

2 , respectively.

One could askwhether there aremodal logics defining discussive logics, which do
not belong to S5�. For the case of the largest among classes considered in Corollary
9.4.2—the class of rte-logics—the answer is ‘no’:

Fact 9.4.3 ([8]) For any rte-logic L: L defines D2 iff L ∈ S5�.

The similar result can be obtained for the other considered here Jaśkowski-like
logics:

Fact 9.4.4 For any rte-logic L: L defines D∗
2 iff L ∈ S5�.

Proof “⇒”Let L be any rte-logic.Wedefine a function (−)◦ : Form −→ Ford which
� un-modalizes � every modal formula:

1. (a)◦ = a, for any propositional variable a,
2. for any ϕ,ψ ∈ Form:

(a) (¬ ϕ)◦ = �¬ ϕ◦�,
(b) (ϕ ∨ ψ)◦ = �ϕ◦ ∨ ψ◦�,
(c) (ϕ ∧ ψ)◦ = �¬(¬ ϕ◦ ∨ ¬ψ◦)�,
(d) (ϕ → ψ)◦ = �¬ ϕ◦ ∨ ψ◦�,
(e) (ϕ ↔ ψ)◦ = �¬(¬(¬ ϕ◦ ∨ ψ◦) ∨ ¬(¬ ψ◦ ∨ ϕ◦))�,
(f) (♦ϕ)◦ = �ϕ◦ ∧d (p ∨ ¬ p)�,
(g) (�ϕ)◦ = �¬ ϕ◦ →d ¬(p ∨ ¬ p)�.

Notice that for any ϕ,ψ ∈ Form we have the following equalities:

(¬ ϕ)◦∗ = �¬ ϕ◦∗ �,

(ϕ ∨ ψ)◦∗ = �ϕ◦∗ ∨ ψ◦∗ �,

(ϕ ∧ ψ)◦∗ = �¬(¬ ϕ◦∗ ∨ ¬ ψ◦∗)�,

(ϕ → ψ)◦∗ = �¬ ϕ◦∗ ∨ ψ◦∗�,

(ϕ ↔ ψ)◦∗ = �¬(¬(¬ ϕ◦∗ ∨ ψ◦∗) ∨ ¬(¬ψ◦∗ ∨ ϕ◦∗))�,

(♦ϕ)◦∗ = �♦ϕ◦∗ ∧ (p ∨ ¬ p)�,

(�ϕ)◦∗ = �♦¬ ϕ◦∗ → ¬(p ∨ ¬ p)�.
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Thus, for any ϕ,ψ ∈ Form, § ∈ {¬,♦} and ∗ ∈ {∧,∨,→,↔} the following formu-
las belong to PL:

(§ϕ)◦∗ ↔ §ϕ◦∗

(ϕ ∗ ψ)◦∗ ↔ (ϕ◦∗ ∗ ψ◦∗)
(�ϕ)◦∗ ↔ ¬♦¬ ϕ◦∗

(�)

Therefore for any ϕ, ψ , χ ∈ Form:

�χ ↔ χ [(§ϕ)◦∗
/§ϕ◦∗ ]� ∈ L ,

�χ ↔ χ [(ϕ∗ψ)◦∗
/(ϕ◦∗∗ψ◦∗)]� ∈ L ,

�χ ↔ χ [(�ϕ)◦∗
/¬ ♦ ¬ϕ◦∗ ]� ∈ L .

Thus, for any modal formulas ϕ1, …, ϕn , χ we obtain:

χ◦∗ ∈ L iff χ [�ϕ1/¬ ♦ ¬ϕ1 , . . . ,
�ϕn /¬ ♦ ¬ ϕn ] ∈ L ,

since for every propositional variable a we have a◦∗ = a. Hence we get:

χ◦∗ ∈ L iff χ ∈ L , (��)

since we can replace every occurrence of ‘¬ ♦¬’ by ‘�’, thanks to Remark 9.2.1.
If additionally L defines D∗

2, we obtain that for any ϕ ∈ Form: �♦ϕ� ∈ L iff (by
(��)) �(♦ϕ)◦∗� ∈ L iff (by (�)) �♦ϕ◦∗� ∈ L iff (since L defines D∗

2) ϕ◦ ∈ D∗
2 iff

�♦ϕ◦∗� ∈ S5 iff (by (�) and (��), and the fact that S5 is an rte-logic) �♦ϕ� ∈ S5. So
L ∈ S5�. �
Fact 9.4.5 For any rte-logic L: L defines D−

2 iff L ∈ S5�.

Proof “⇒” Let L be any rte-logic. We redefine the function (−)◦ used in the proof
of Fact 9.4.4 by stipulating that for any ϕ,ψ ∈ Form:

(f) (♦ϕ)◦ = �¬(ϕ◦ →d ¬(p ∨ ¬ p)),

while other cases stay unchanged with respect to the definition of the function (−)◦.
Notice that for any ϕ,ψ ∈ Form we have the following equalities:

(¬ ϕ)◦� = �¬ ϕ◦� �,

(ϕ ∨ ψ)◦� = �ϕ◦� ∨ ψ◦� �,

(ϕ ∧ ψ)◦� = �¬(¬ϕ◦� ∨ ¬ ψ◦�)�,

(ϕ → ψ)◦� = �¬ ϕ◦� ∨ ψ◦��,

(ϕ ↔ ψ)◦� = �¬(¬(¬ϕ◦� ∨ ψ◦�) ∨ ¬(¬ψ◦� ∨ ϕ◦�))�,

(♦ϕ)◦� = �¬(♦ϕ◦ → ¬(p ∨ ¬ p)),

(�ϕ)◦� = �♦¬ ϕ◦� → ¬(p ∨ ¬ p)�.

The rest of the proof goes as previously. �
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Fact 9.4.6 For any rte-logic L: L defines D∗∗
2 iff L ∈ S5�.

Proof “⇒” Let L be any rte-logic.We use the function (−)◦ : Form −→ Ford, where
for any ϕ,ψ ∈ Form:

(f) (♦ϕ)◦ = �ϕ◦ ∧d ϕ◦�,
and again we leave unchanged the other conditions given in the proof of Fact 9.4.4.

Notice that for any ϕ,ψ ∈ Form we have the following equalities:

(¬ϕ)◦× = �¬ ϕ◦× �,

(ϕ ∨ ψ)◦× = �ϕ◦× ∨ ψ◦× �,

(ϕ ∧ ψ)◦× = �¬(¬ ϕ◦× ∨ ¬ ψ◦×)�,

(ϕ → ψ)◦× = �¬ ϕ◦× ∨ ψ◦×�,

(ϕ ↔ ψ)◦× = �¬(¬(¬ ϕ◦× ∨ ψ◦×) ∨ ¬(¬ψ◦× ∨ ϕ◦×))�,

(♦ϕ)◦× = �♦ϕ◦× ∧ ♦ϕ◦×�,

(�ϕ)◦× = �♦¬ ϕ◦× → ¬(p ∨ ¬ p)�.

Thus, for any ϕ,ψ ∈ Form, § ∈ {¬,♦} and× ∈ {∧,∨,→,↔} the following formu-
las belong to PL:

(§ϕ)◦× ↔ §ϕ◦×

(ϕ × ψ)◦× ↔ (ϕ◦× × ψ◦×)

(�ϕ)◦× ↔ ¬ ♦¬ ϕ◦×
(�)

Analogously, from that the thesis of the fact follows. �

Corollary 9.4.7 The logic rteS5M (resp. cmS5M, eS5M, mS5M, rS5M, S5M) is the
smallest rte- (resp. cm-, congruential, monotonic, regular, normal modal) logic defin-
ing the logics D2, D∗

2, D−
2 , and D∗∗

2 .

Thus, the difference as regards modal logics defining respective Jaśkowski-like
discussive logics can appear only in the case of weaker than rte-logics. So, as in the
case of D2 we will indicate the weakest modal logics defining logics D∗

2, D−
2 , and

D∗∗
2 . For each of these modal logics, there are formulas of the form �♦ϕ� that belong

to S5, but do not belong to those logics.

9.5 Relations Between D2, D∗
2, D−

2 , and D∗∗
2

In [3] Ciuciura observed that D∗
2 � D2. It was shown that one of the axioms of the

logic D∗
2 that had three variables, is not a thesis of the logic D2.

One can indicate someother formulaswhich show that this inclusiondoes not hold,
that is, D∗

2 � D2. To be able to find out what are relations between four discussive
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logics, we consider the following formulas:

¬(p ∧d q) →d (p →d ¬ q) (ncon)

We see that

♦(¬(p ∧d q) →d (p →d ¬ q))• = ♦(♦¬(p ∧ ♦q) → (♦p → ¬ q))

On the basis of S5 it is equivalent to:

♦¬ p ∨ ¬♦q → (♦p → ♦¬ q)

which is not a thesis of S5. So (ncon) /∈ D2.
We have

♦(¬(p ∧d q) →d (p →d ¬ q))∗ = ♦(♦¬(♦p ∧ q) → (♦p → ¬ q))

On the basis of S5 it is equivalent to:

¬♦p ∨ ♦¬ q → (♦p → ♦¬ q)

which is a thesis of S5. So (ncon) ∈ D∗
2. Besides,

♦(¬(p ∧d q) →d (p →d ¬ q))� = ♦(♦¬(p ∧ q) → (♦p → ¬ q))

On the basis of S5 the formula it is equivalent to:

♦¬ p ∨ ♦¬ q → (♦p → ♦¬ q)

Again, this formula is not a thesis of S5. So (ncon) /∈ D−
2 . While

♦(¬(p ∧d q) →d (p →d ¬ q))× = ♦(♦¬(♦p ∧ ♦q) → (♦p → ¬ q))

This formula is equivalent on the basis of S5 to:

¬ ♦p ∨ ¬ ♦q → (♦p → ♦¬ q)

This formula is a thesis ofS5. So (ncon) ∈ D∗∗
2 . Thus,D∗

2 � D2,D∗
2 � D−

2 .D
∗∗
2 � D2,

D∗∗
2 � D−

2 .
Additionally, we see that D2 � D∗

2. Indeed, consider the formula:

¬ p →d ¬(p ∧d q) (scontr)

We have:
♦(¬ p →d ¬(p ∧d q))• = ♦(♦¬ p → ¬(p ∧ ♦q))
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This formula is equivalent on the basis of S5 to:

♦¬ p → ♦¬ p ∨ ¬♦q

which is a thesis of PL. So (scontr) ∈ D2, since PL ⊆ S5. We also have:

♦(¬ p →d ¬(p ∧d q))∗ = ♦(♦¬ p → ¬(♦p ∧ q))

This formula is equivalent to:

♦¬ p → ¬ ♦p ∨ ♦¬ q

which is not a thesis of S5. So (scontr) /∈ D∗
2.

We also have:

♦(¬ p →d ¬(p ∧d q))� = ♦(♦¬ p → ¬(p ∧ q))

This formula is equivalent to:

♦¬ p → ♦¬ p ∨ ♦¬ q

which is a thesis of S5. So (scontr) ∈ D−
2 .

We have:

♦(¬ p →d ¬(p ∧d q))× = ♦(♦¬ p → ¬(♦p ∧ ♦q))

This formula is equivalent to:

♦¬ p → ¬♦p ∨ ¬ ♦q

which is not a thesis of S5. So (scontr) /∈ D∗∗
2 .

Thus, as it has been announced D2 � D∗
2, but also D2 � D∗∗

2 , D−
2 � D∗

2, and
D−

2 � D∗∗
2 .

Now consider
¬ p →d ¬((p ∨ ¬ p) ∧d p) (contr-)

We have:

♦(¬ p →d ¬((p ∨ ¬ p) ∧d p))• = ♦(♦¬ p → ¬((p ∨ ¬ p) ∧ ♦p))

On the basis of S5, it is equivalent to:

♦¬ p → (♦¬(p ∨ ¬ p) ∨ ¬ ♦p),
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which is not a thesis of S5. So (contr-) /∈ D2. We have:

♦(¬ p →d ¬((p ∨ ¬ p) ∧d p))∗ = ♦(♦¬ p → ¬(♦(p ∨ ¬ p) ∧ p))

This formula on the basis of S5 is equivalent to:

♦¬ p → (¬ ♦(p ∨ ¬ p) ∨ ♦¬ p)

which is a thesis of S5. So (contr-) ∈ D∗
2. We also have:

♦(¬ p →d ¬((p ∨ ¬ p) ∧d p))� = ♦(♦¬ p → ¬((p ∨ ¬ p) ∧ p))

This formula on the basis of S5 is equivalent to:

♦¬ p → (♦¬(p ∨ ¬ p) ∨ ♦¬ p)

which is a thesis of S5. So (contr-) ∈ D−
2 .

We have:

♦(¬ p →d ¬((p ∨ ¬ p) ∧d p))× = ♦(♦¬ p → ¬(♦(p ∨ ¬ p) ∧ ♦p))

This formula on the basis of S5 is equivalent to:

♦¬ p → (�¬(p ∨ ¬ p) ∨ �¬ p)

which is not a thesis of S5. So (contr-) /∈ D∗∗
2 .

Thus, D−
2 � D2 and D∗

2 � D∗∗
2 , Consider again the following formula of two

variables:
¬(q ∧d p) →d (p →d ¬ q) (ncon′)

We see that

♦(¬(q ∧d p) →d (p →d ¬ q))• = ♦(♦¬(q ∧ ♦p) → (♦p → ¬ q))

On the basis of S5 it is equivalent to:

♦¬ q ∨ ¬♦p → (♦p → ♦¬ q)

which is a thesis of S5. So (ncon′) ∈ D2. Besides,

♦(¬(q ∧d p) →d (p →d ¬ q))� = ♦(♦¬(q ∧ p) → (♦p → ¬ q))

On the basis of S5 this formula is equivalent to:

♦¬ q ∨ ♦¬ p → (♦p → ♦¬ q)
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This formula is again not a thesis of S5. So (ncon′) /∈ D−
2 . While

♦(¬(q ∧d p) →d (p →d ¬ q))× = ♦(♦¬(♦q ∧ ♦p) → (♦p → ¬ q))

and this formula is equivalent on the basis of S5 to:

¬ ♦q ∨ ¬ ♦p → (♦p → ♦¬ q)

This formula is a thesis of S5. So (ncon′) ∈ D∗∗
2 .

♦(¬(q ∧d p) →d (p →d ¬ q))∗ = ♦(♦¬(♦q ∧ p) → (♦p → ¬ q))

This formula on the basis of S5 it is equivalent to:

¬♦q ∨ ♦¬ p → (♦p → ♦¬ q)

and this is not a thesis of S5. So (ncon′) /∈ D∗
2.

Summarizing, D2 � D−
2 and D∗∗

2 � D∗
2.

All four discussive logics have some thesis in common, take as an example p →d

p.

Corollary 9.5.1 In the set {D2, D∗
2, D−

2 , D∗∗
2 } every two logics cross each other.

Of course, none ofD2, D∗
2, D−

2 , D∗∗
2 hasDuns Scotus law p →d (¬ p →d q) as its

thesis. Thus, each of these logics can be treated as a solution to Jaśkowski’s problem
(see [5]).

As regards some other properties of considered discussive logics let us mention
that for example, Jaśkowski’s methodological Theorem 1 given in [5, 6] stays valid
for D∗

2 and D∗∗
2 . The proof goes as the original Jaśkowski’s proof. While this theorem

does not hold for D−
2 (even in the weaker version from [6]) due to our, ‘discussive’

formulation of equivalence given on p. 6. Consider a formula (p →d q) →d ((q →d

p) →d (p ↔d q)). We see that ♦((p →d q) →d ((q →d p) →d (p ↔d q)))� =
♦((♦p → q) → ((♦q → p) → ((♦p → q) ∧ (♦q → p)))), and the last formula
is not a thesis of S5, so p →d (q →d (p ↔d q)) /∈ D−

2 .

9.6 The Smallest Logics Defining D∗
2, D−

2 , D∗∗
2

We consider the following sets of modal formulas:

Gen � {ϕ ∈ Form : ∃A∈D2 ϕ = �♦A•�} = {�♦A•� ∈ Form : A ∈ D2},
Gen∗ � {ϕ ∈ Form : ∃A∈D∗

2
ϕ = �♦A∗�} = {�♦A∗� ∈ Form : A ∈ D∗

2},
Gen� � {ϕ ∈ Form : ∃A∈D−

2
ϕ = �♦A��} = {�♦A�� ∈ Form : A ∈ D−

2 },
Gen× � {ϕ ∈ Form : ∃A∈D∗∗

2
ϕ = �♦A×�} = {�♦A×� ∈ Form : A ∈ D∗

2}.
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Lemma 9.6.1 Every modal logic defining D2 (resp. D∗
2, D−

2 , D∗∗
2 ) includes the set

Sub(Gen) (resp. Sub(Gen∗), Sub(Gen�), Sub(Gen×)).

We say that a set L ⊆ Form is axiomatized by a set R of rules and a set S of
formulas iff L is the smallest set containing S which is closed on all rules from R.

Let AxPL be a set of modal formulas such that the pair 〈AxPL, {(mp)}〉 is an
axiomatization of the modal logic PL.

Let us recall (see [9]), that A is the smallest modal logic defining D2. Since
similarly as in the case of the logic D2, the family of modal logics defining D∗

2 (resp.
D−

2 , D∗∗
2 ) is closed under arbitrary intersections, there is the smallest modal logic

defining D∗
2 (resp. D−

2 , D∗∗
2 ). Let A∗ (resp. A−, A×) be the smallest modal logic

defining D∗
2 (resp. D−

2 , D∗∗
2 ).

Since sets (rep�), Sub(Gen), Sub(Gen∗), Sub(Gen�), and Sub(Gen×) are closed
under substitution and the considered axiomatization of AxPL relies only on modus
ponens rule, we easily see that:

Fact 9.6.2 A (respectively A∗, A−, A×) is the smallest modal logic including the set
Gen (resp. Gen�, Gen�, Gen×). Consequently, A (resp. A∗, A−, A×) is axiomatized
by the rule (mp) and the sum of the sets AxPL, (rep�), and Sub(Gen) (respectively
Sub(Gen∗), Sub(Gen�), Sub(Gen×)).

One can observe (see [9]) that:

Lemma 9.6.3 A ∩ ♦Form ⊆ Sub(♦{ϕ : ∃ψ∈(Ford)• ϕ = ψ[♦/¬ � ¬]}).
A similar observation holds for other considered discussive logics.

Lemma 9.6.4 1. A∗ ∩ ♦Form ⊆ Sub(♦{ϕ : ∃ψ∈(Ford)∗ ϕ = ψ[♦/¬ � ¬]}).
2. A− ∩ ♦Form ⊆ Sub(♦{ϕ : ∃ψ∈(Ford)� ϕ = ψ[♦/¬ � ¬]}).
3. A× ∩ ♦Form ⊆ Sub(♦{ϕ : ∃ψ∈(Ford)× ϕ = ψ[♦/¬ � ¬]}).

Proof Let v be any valuation from Form into {0, 1} such that it preserves classical
truth conditions for classical constants and for any ϕ ∈ Form:

• v(♦ϕ) = 1 iff ∃ψ∈(Ford)∗ ϕ ∈ Sub(ψ[♦/¬ � ¬]),
• v(�ϕ) = 0 iff ∃ψ∈(Ford)∗ ϕ ∈ Sub(�¬ψ[♦/¬ � ¬]�).

We show that for any ϕ ∈ A∗: v(ϕ) = 1.
For any ϕ from PL ∪ (rep�) ∪ Sub(Gen) we have that v(ϕ) = 1. Thus, by the

induction on the length of the proof, relative to the axiomatization considered in
Fact 9.6.2, we obtain: if ϕ ∈ A∗, then v(ϕ) = 1.

Proofs of the other cases proceed analogously. �

Using modal formulas given in Sect. 9.5, by the above lemma we obtain:

Lemma 9.6.5 In the family of sets {A ∩ ♦Form, A∗ ∩ ♦Form, A− ∩ ♦Form, A× ∩
♦Form} each pair of sets cross each other.

Corollary 9.6.6 Every two logics among A, A∗, A−, A× cross each other.



9 On Modal Logics Defining Jaśkowski-Like Discussive Logics 227

We know that:

Fact 9.6.7 ([9]) The logic A is not an rte-logic, in particular A � rteS5M.

From Facts 9.4.4, 9.4.5, 9.4.6, and Corollary 9.6.6 and the above fact we have:

Corollary 9.6.8 None of logics A∗, A−, A× is an rte-logic.

9.7 Conclusion

In this paper, we considered discussive logics denoted as D∗
2, D−

2 and D∗∗
2 which are

obtained by a slight modification of Jaśkowski’s original understanding of discussive
conjunction given in [6]. These logics are defined with the help of the logic S5,
however it can be also done by the use of other modal logics. In particular, we have
given the smallest modal logics defining respective Jaśkowski-like discussive logics.
We have shown that although all four discussive logics can be defined by a joint
rte-logic rteS5M being the smallest rte-logic that can define D2 (and D∗

2, D−
2 , and

D∗∗
2 ), the smallest logics in the family of all modal logics defining respectively D2,

D∗
2, D−

2 , and D∗∗
2 differ among each other. And finally, it is worth to mention that

all new discussive logics are paraconsistent (at least is some of possible ways of
understanding of this notion), seems to have some philosophical motivations and
can be viewed as solutions to Jaśkowski’s problem.
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Chapter 10
From Possibility Theory to Paraconsistency

Davide Ciucci and Didier Dubois

Abstract The significanceof three-valued logics partly dependson the interpretation
of the third truth-value. When it refers to the idea of unknown, we have shown that a
number of three-valued logics, especially Kleene, Łukasiewicz, and Nelson, can be
encoded in a simple fragment of the modal logic KD, called MEL, containing only
modal formulas without nesting. This is the logic of possibility theory, the semantics
of which can be expressed in terms of all-or-nothing possibility distributions repre-
senting an agent’s epistemic state. Here we show that this formalism can also encode
some three-valued paraconsistent logics, like Priest, Jaśkowski, and Sobociński’s,
where the third truth-value represents the idea of contradiction. The idea is just to
change the designated truth-values used for their translations. We show that all these
translations into modal logic are very close in spirit to Avron’s early work express-
ing natural three-valued logics using hypersequents. Our work unifies a number of
existing formalisms and the translation also highlights the perfect symmetry between
three-valued logics of contradiction and three-valued logics of incomplete informa-
tion, which corresponds to a swapping of modalities in MEL.
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10.1 Introduction

The program of paraconsistent logics after Jaśkowski [17] is to find a logic which
can manage contradictions and satisfies three requirements:

1.whenapplied to the contradictory, systemswouldnot always entail their over-completeness1;

2. would be rich enough to enable practical inference;

3. would have an intuitive justification.

Nowadays, a consensual definition of what a paraconsistent logic is does not seem
to exist, but a necessary condition is that the logical consequence relation is not
explosive, that is, there can exist contradictions in the logic without implying that
everything is true (point 1 above)—see the introduction of [23]. Several proposals to
define such a logic have been studied in literature, following different lines: discur-
sive logic, preservationism, adaptive logics, relevant logics, and many-valued logics
[23]. Jaśkowski used a third value to express paraconsistency, but he seems not to
have a clear definition of what a contradiction stands for. He refers to theories with
conflicting hypotheses, each one able to only partially explain the result of some
experiment, or to facts that are not predictable a-priori. D’Ottaviano and da Costa
[14] cite, as a justification for their three-valued logic J3, the existence of contradic-
tory theories in empirical disciplines for which we are (at the moment) not able to
say which theory is the correct one. In [2], the third value represents antinomies, that
is, propositions that are at the same time true and false. Priest logic of paradox [20]
uses the same connectives as in Kleene logic but it has two designated truth-values
one of them standing for both true and false, as in Belnap setups [8]. Although its
meaning is not always expressed clearly, it seems that, in all these logics, the third
truth-value refers to this view.

In the following, we try to provide a unified view of three-valued logics of para-
consistency, using the latter interpretation of the third value, and adopting a society
semantics in the style of Carnielli and Lima-Marques [10], where several sources of
information assign a different (Boolean) truth-value to a proposition. We first recall
the translation of three-valued logics of incomplete information into a simplified
epistemic logic called MEL [6], which we recently carried out [12]. This is a frag-
ment of KD, containing only modal formulas of depth 1 (no nested modalities), and
a simplified semantics in terms of nonempty subsets of propositional interpretations.
We show that our approach to the translation of Kleene, Nelson, and Łukasiewicz
three-valued logics bears similarities with their reconstruction by means of hyper-
sequents after Avron [5] who calls them natural three-valued logics. Next, we show
that we can translate several three-valued paraconsistent logics into MEL, including
Priest logic of paradox (PLP), J3, and RM3, in a way that parallels the translations
of the three-valued logics of incomplete information. We also do it for Sette logic.
The well-known symmetry between unknown and contradictory stemming from the
Belnap bilattice structure is here expressed by the fact that theMEL logic can capture

1A system is over-complete if any formula is a theorem.
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both three-valued logics of incomplete information and paraconsistent three-valued
logics, just changing the meaning of MEL models, viewing them either as epistemic
states of a single ill-informed agent or as complete epistemic states of sets of totally
informed agents. This translation highlights the epistemic meaning of sentences in
three-valued paraconsistent logics and facilitates a comparison among them.

10.2 From Three-Valued Logic to Modal Logic:
Incomplete Information

Let us consider a set of propositional variables V = {a, b, c, . . . } and a standard
propositional language L built on these symbols with the Boolean connectives of
conjunction (∧), disjunction (∨), negation (′), and implication (→), plus tautology
symbol (�). Let � be the set of interpretations of L: {w : V → {0, 1}}. The set of
models of p ∈ L is denoted by [p] ⊆ �.

10.2.1 The Possibilistic Modal Logic of Incomplete
Information

Consider a higher level propositional language L� defined by

φ ∈ L� ⇐⇒ φ = �p|φ′|φ ∧ ψ

where � denotes the necessity modality. Note that atoms of L� are of the form
�p, p ∈ L. As usual, the possibility modality ♦p is short for (�(p′))′. L� is a very
elementary fragment of a KD modal language proposed by Banerjee and Dubois
under the name MEL [6, 7]. It is viewed as a minimalist epistemic logic containing
only modal formulas of depth 1 (without nested modalities). In particular, it contains
no non-modal formulas from L. �p expresses the idea that based on its epistemic
state, an agent is bound to believe p. This statement can be expressed in various
uncertainty theories, �p, respectively, meaning P([p]) = 1 in probability theory,
and N ([p]) = 1 in possibility theory. In the latter equality, N is a set function with
values in {0, 1}, expressing the idea of certainty. Its basic axiom isminitivity: N ([p ∧
q]) = min(N ([p]), N ([q])) which is at the root of possibility theory [16], that is,
being certain of p and of q amounts to being certain of their conjunction, along with
N ([⊥]) = N (∅) = 0 and N ([�]) = N (�) = 1. Likewise, the intended meaning of
the sentence ♦p is that the agent has no evidence suggesting that p is false. The
corresponding set function �([p]) = 1 − N ([p′]) is a possibility measure such that
�([p ∨ q]) = max(�([p]),�([q])).

In the finite setting, the set function N is equivalent to the existence of a non-
empty subset E ⊆ S of propositional models, understood as an epistemic state: the
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information possessed by an agent that only knows that the real world lies in E . Its
non-emptiness means that the agent has a consistent epistemic state. MEL formulas
can be evaluated on the set E of nonempty subsets of interpretations as follows:

• E |= �p , if and only if E ⊆ [p];
• E |= φ′, if and only if E |= φ;
• E |= φ ∧ ψ, if and only if E |= φ; and E |= ψ, where φ,ψ are any L�-formulae.
• So, E |= ♦p if and only if E ∩ [p] = ∅.

The following KD axioms and inference rule are valid for these semantics:

• All axioms of propositional logic for L�-formulas.
• (K ) : �(p → q) → (�p → �q).

• (N ) : ��.
• (D) : �p → ♦p.
• Modus Ponens: If φ,φ → ψ then ψ.

This axiom system implies axiom (C):�(p ∧ q) ≡ �p ∧ �q, which is theminitivity
axiom. Sets E that represent MEL models cannot be empty due to axiom D, which
means the agent has a consistent epistemic state. The satisfaction of MEL-formulae
is then defined recursively: For any set � ∪ {φ} of L�-formulae, φ is a semantic
consequence of �, written � |= φ, provided for every epistemic state E, E |= �

implies E |= φ.
This Boolean possibilistic logic, equipped with modus ponens, (the L�-fragment

ofKD) is sound and completew.r.t. this semantics [7]. In particular, it does not require
the use of accessibility relations. In fact, MEL is a (higher-order) propositional logic
and the deduction theorem is valid in it.

In the sequel, a useful fragment of MEL is when modalities are only applied to
literals. The reduced language is then L�

� defined by

φ ∈ L�
� ⇐⇒ φ = (�a|�a′, a ∈ V)|φ′|φ ∧ ψ.

The MEL logic restricted to this language is sound and complete with respect to
the above epistemic semantics where the epistemic states E are restricted to par-
tial Boolean models [12]. A partial model is a conjunction of literals of the form
∧a∈Aa

∧ ∧b∈Bb′, for some pair (A, B) of disjoint subsets of variables. Let L�
♦ be

the language obtained from L�
� by replacing modality � by ♦. Clearly, the two

languages have the same expressive power, since � and ♦ are mutually definable.

10.2.2 Translating Three-Valued Logics of Incomplete
Information

Now, let us consider a three-valued logic. A three-valued interpretation is a mapping
v : V → L3 = {0, 1

2 , 1}.We assume 0 < 1
2 < 1. If we interpret the three truth-values
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0, 1
2 ,1 as certainly false, unknown, and certainly true, respectively, then v(a) is called

the epistemic truth-value of the variable a, as held by one agent. More generally, the
assertion “v(a) ∈ T ,” where T ⊆ L3 informs about the knowledge state of the agent
regarding a Boolean variable, which we also denote as a. For instance, v(a) ≥ 1

2
expresses that the agent believes a is true or that (s)he ignores whether a is true
or false. Strictly speaking, we should not use the same notations for three-valued
propositional variables and Boolean ones. However, we will do it for the sake of
simplicity.

Let us encode inMEL the assignment of L3 truth-values to a propositional variable
a. We denote by T (v(a) ∈ T ) the translation into MEL of the statement v(a) ∈ T .
This translation of the assignment of a subset of ternary truth-values to an atom

is a function T : 2({0,1,
1
2 }V ) → L� from subsets of ternary valuations to the modal

language L�. The following translation is in agreement with our understanding of
the third truth-value [12] as unknown for the agent.

T (v(a) ≥ 1
2 ) = ♦a T (v(a) ≤ 1

2 ) = ♦a′ (10.2.1)

T (v(a) = 1) = �a T (v(a) = 0) = �a′ (10.2.2)

T (v(a) = 1
2 ) = ♦a ∧ ♦a′ T (v(a) ∈ ∅) = �⊥ (10.2.3)

T (v(a) ∈ {0, 1}) = �a ∨ �a′ T (v(a) ≥ 0) = ♦� (10.2.4)

Note that this is NOT a syntactic translation from one logic into another: it provides
a tool for expressing the semantics of one logic into the syntax of another one. We
remark that these definitions clarify the debate on the acceptability or not of the
excluded middle law and the contradiction principle in the presence of unknown
value: a is always true or false, but �a ∨ �a′ is not a tautology nor is ♦a ∧ ♦a′ a
contradiction.

On this basis, we can translate into MEL the assignment of epistemic truth-values
to complex propositions in a given three-valued logic using the truth-tables of the
available connectives, as extensively described in [12]. It is clear that the result of
these translations will be formulas in the restricted language L�

�. Moreover, three-
valued valuations v are in one-to-one correspondence with partial Boolean models
∧a∈V :v(a)=1a

∧ ∧b∈V :v(b)=0b′ whose sets of propositional models correspond to spe-
cial cases of epistemic states that serve as interpretations of the language L� of
MEL.

10.2.3 The Case of Kleene Logic

The best known and often used logic to represent uncertainty due to incomplete
information is Kleene logic. The connectives are simply the min �, the max �, and
the involutive negation¬. Amaterial implication a →K b := ¬a � b is then derived.
The involutive negation preserves the De Morgan laws between � and �. The syntax
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of Kleene logic is the same as the one of the propositional logics (replacing∧,∨,′ by
�,�,¬). Besides, it is known that Kleene logic does not have any tautology (there
is no formula p such that ∀v, v(p) = 1).

Asserting the truth of a formula p inKleene logic comes down towritingv(p) = 1.
Then, it is clear that [12]

T (v(p � q) = 1) = T (v(p) = 1) ∧ T (v(q) = 1)

T (v(p � q) = 1) = T (v(p) = 1) ∨ T (v(q) = 1)

T (v(¬a) = 1) = T (v(a) = 0) = �a′.

The translation of Kleene implication ¬a � b is then �a′ ∨ �b. The translation into
MEL lays bare the meaning of Kleene implication: a →K b is “true” means that b
is certain if a is possible, which suggests a very strong implication.

We can always put a Kleene logic formula in conjunctive normal form (CNF),
that is, a conjunction of disjunction of literals (without simplifying terms of the form
a � ¬a). Its translation into MEL consists of the same set of clauses, where we put
the modality � in front of each literal. Finally, we see that the fragment of MEL that
exactly captures the language of Kleene logic contains only the set (conjunctions) of
disjunctions of elementary formulae of the form �a or �a′:

LK
� = �a|�a′|φ ∨ ψ|φ ∧ ψ ⊂ L�

�.

It does not include expressions containing the formula (��)′ where � is a literal. We
remark that the modal axioms of MEL cannot be expressed in this fragment. It is
also easy to see that the translation of any propositional tautology (if we replace each
literal � by �� in its CNF) will no longer be a tautology in MEL.

A knowledge base B in Kleene logic is a conjunction of formulae (clauses for
simplicity) supposed to have designated truth-value 1. Reasoning in Kleene logic
corresponds to the following semantic inference:

B |= p if and only if whenever v(pi ) = 1 for all pi ∈ B then v(p) = 1 (I1)

Informally, B |= p means that if the agent is certain that all pi ’s in B are true, then
this agent is also certain that p is true. A proof system for this logic is described
by Avron [5], who notices that ¬ is not an internal negation,2 nor →K an internal
implication (in particular we do not have that B ∪ {a} |= b implies B |= a →K b.)
Nevertheless, Kleene logic is a basic natural three-valued logic because it is based on
the only truth-preserving inference in the structure defined by the involutive negation
¬ and combining conjunction � (B |= p � q if and only if B |= p and B |= q).

We can use MEL to reason in Kleene logic. Denote by T (B) the translation
into MEL of v(B) = 1, where B is a Kleene base. We note that a form of modus
ponens applies to literals (since from �a and �a′ ∨ �b, we can derive �b in MEL).

2Anegation¬ is internal if “�, A � � iff� � �,¬A” or equivalently if “� � �, A iff�,¬A � �.”
An implication → is internal if “�, A � �, B iff � � �, A → B.”
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The same counterpart of the resolution principle is also valid. Kleene logic appears
like a propositional logic without tautologies but with standard rules of inference.
Here, as we have seen, a three-valued valuation v corresponds to a Boolean partial
model ∧a∈V :v(a)=1a

∧ ∧b∈V :v(b)=0b′. Let Ev be the corresponding special kind of
epistemic state. Conversely, to each epistemic state E can be assigned a unique
three-valued valuation vE such that vE (a) = 1 if E ⊆ [a], and 0 if E ⊆ [a′]. We
have that E ⊆ EvE . At the semantic level we can prove the following result [12].

Proposition 10.2.1 Let p be a formula in Kleene logic. For each three-valued val-
uation v such that v(p) = 1, the epistemic state Ev is a model (in the sense of MEL)
of T (v(p) = 1). Conversely, for each model in the sense of MEL (epistemic state) E
of T (v(p) = 1), the three-valued interpretation vE is a model of p in the sense that
vE (p) = 1.

We can easily verify that the inference B |= p in Kleene logic can be expressed
in the Kleene fragment of MEL (using models of the form Ev at the semantic level)
in the sense that T (B) � T (v(p) = 1) in MEL if and only if B |=K p.

10.2.4 Two Other Three-Valued Logics of Incomplete
Information

Avron [5] constructs two additional well-known three-valued logics, first by intro-
ducing an internal implication inside Kleene logic; the resulting framework captures
Nelson’s logic. Then by forming the conjunction of this implication and its contrapo-
sition obtained by the Kleene negation (thus getting Łukasiewicz logic). In [12] we
have shown that both logics can be captured in MEL and correspond exactly to the
fragment L�

� of the MEL language where the only restriction is to have � in front of
literals only. Here we explain this situation using the same approach as Avron, albeit
in MEL.

Indeed, we can easily augment the fragment LK
� of the MEL language capturing

Kleene logic, by introducing an implication that obeys the deduction theorem, which
is valid in MEL. By applying this valid property to reasoning with the Kleene frag-
ment of MEL, we generate the translation of a three-valued implication that is not
part of Kleene logic.

In MEL, the deduction theorem is valid, namely K ∪ {�a} � �b if and only if
K � (�a)′ ∨ �b. The expression (�a)′ ∨ �b ∈ L�

� means that “a is not certain or
b is certain.” But (�a)′ ∨ �b /∈ LK

�, it is not the translation of some Kleene logic
formula declared true. The idea then is that (�a)′ ∨ �b can stand for the modal
translation of an internal implication (one that obeys the deduction theorem).

Expressed in terms of epistemic truth-values, the truth of (�a)′ ∨ �b corresponds
to a three-valued implication a ⇒ b that takes value 1 when v(a) < 1 or v(b) = 1,
which describes condition “a is not certain or b is certain”. Besides, if�a is true, then
(�a)′ ∨ �b is equivalent to �b. It means that if v(a) = 1 then v(a ⇒ b) = v(b).
So the MEL setting generates the implication
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v(a →N b) =
{

1 if v(a) < 1;
v(b) otherwise.

(10.2.5)

This is Nelson [19] implication →N also introduced by Monteiro [18]. Three-
valued Nelson logic is based on Kleene connectives plus Nelson implication →N ,
inducing an additional negation given by −a = a →N 0 (an internal negation in
the sense of Avron). The logic based on Kleene connectives (�,�) and the internal
connectives (→N ,−) satisfies the axioms of classical logic, to which must be added
specific axioms for ¬. A syntactic inference B �N p uses these axioms and modus
ponens. The semantic inference in Nelson’s logic is the same as in Kleene logic,
based on the preservation of the designated truth-value 1.

It is shown in [12] that Nelson logic can be captured in MEL, in the sense that
all axioms in Nelson logic translate into MEL tautologies, where by translation,
we mean T (v(p) = 1) for a Nelson logic formula. The same results hold as for
Kleene logic except that the attained fragment of the MEL language is L�

� with
modalities prefixing literals only (thus including negations (��)′, contrary to the
Kleene fragment).Moreover, we again have the completeness of theNelson fragment
in MEL with respect to the models of the form Ev . The translation of Nelson logic
into MEL is such that if B is a set of propositions in Nelson logic, B �N p if and
only if T (B) � T (v(p) = 1) in MEL.

Łukasiewicz three-valued implication can be captured as well inside MEL
restricted to L�

�. Notice that Nelson implication is not contrapositive in the sense
that a →N b is not equivalent to ¬b →N ¬a. The MEL translation of the latter is
�b′ → �a′, which clearly differs from the translation �a → �b of Nelson impli-
cation. However, considering the implication (�a → �b) ∧ (�b′ → �a′) restores
a form of contraposition.3 In the three-valued logic, it corresponds to an implication
→L defined by (a →N b) � (¬b →N ¬a) that is provably equal to Łukasiewicz
three-valued implication. This symmetrization process is shown by Avron [5] to be
very general, starting from a general consequence relation with an internal nega-
tion, and a so-called combining conjunction (recalled in the previous subsection).
Using MEL, the translation (�a → �b) ∧ (�b′ → �a′) of Łukasiewicz implica-
tion immediately lays bare its symmetrized form [12].

Łukasiewicz three-valued logic Ł3 is based on the connectives →L and ¬ (¬a
is identified with a →L 0), from which all connectives in Kleene and Nelson logic
can be recovered. In fact, both Łukasiewicz and Nelson logics have the same expres-
sive power. The proof-theoretic machinery of Łukasiewicz logic relies on Wajsberg
axioms andmodus ponens (it is not recalled here). The syntactic consequence B �L p
in Ł3 can be captured in MEL, inside the sublanguage L�

� again in the sense that, if
B is a set of propositions in Ł3, then B �L p if and only if T (B) � T (v(p) = 1) in
MEL [12].

3Not to be confusedwith theMEL contrapositive form of�a → �b, i.e., (�b)′ → (�a)′, of course
equivalent to the former.
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10.3 From Three-Valued Paraconsistent Logics to MEL

In this section, we proceed to the same translation as above for some three-
valued paraconsistent logics that appear as mirror images of Kleene, Nelson, and
Łukasiewicz logics (as already pointed out by Avron [5] in a different context). The
only difference will be the choice of designated truth-values ( 1

2 and 1 instead of just
1), and the understanding of epistemic models of MEL formulas. First, we provide
our version of the multisource information semantics that we shall use to interpret
these three-valued logics.

10.3.1 Modal and Three-Valued Logics for Several Totally
Informed Agents

Instead of one agent having incomplete information, consider the case of several
logically sophisticated agents forming a set A sharing the same propositional lan-
guage L, each capable to decide whether any proposition p ∈ L is true or false, but
possibly disagreeing. In other words each agent possesses complete Boolean knowl-
edge, albeit not in full agreement with other agents. It comes down to assuming that
agent i believes that the real world is wi ∈ � (and can be assimilated to it). For each
formula p ∈ L, agent i can say whether it is true (wi (p) = T ) or false (wi (p) = F).
Agent i’s knowledge is described by Ei = {wi }. Let A be the set of interpretations
wi , i ∈ A.

Let us show that the MEL logic can account for this situation as well. We are
interested to express the following statement in the formal language ofMEL: “at least
one agent asserts that p is true.” It is clear that this statement means A ∩ [p] = ∅
that reads ♦p in the MEL language.

Now, let us define the meaning of the modal symbols in agreement with the above
remarks4

• ♦p stands for “at least one agent asserts p.”
• As usual, we define �p := (♦(p′))′, which here means that “all agents assert p”
(since A ⊆ [p]).
This kind of multisource setting was first introduced by Belnap [8] with agents

having incomplete knowledge about atomic propositions. It leads to a four-valued
truth-functional logic where the four values include unknown and contradictory. It
also corresponds to the so-called society semantics [10].

Now, let us consider a three-valued logic.We denote again by v(a) the (epistemic)
truth-value of the variable a, v(a) ∈ {0, 1, 1

2 }. However, here, these three values will
be interpreted in the light of the joint assertions of n fully informed agents:

4The convention differs from the ones in the preliminary version of this paper [11] where we used
�p to stand for “at least one source asserts p.” The latter convention leads to a logic where � has
the same properties as ♦ in a KD system, which may be misleading.
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• v(a) = 1 means that all agents say that a is true;
• v(a) = 0 means that all agents say that a is false;
• v(a) = 1

2 means that some agents say a is true, the other ones say a is false;
• v(a) ≥ 1

2 means that at least some agents say a is true.

Remember that those agents that do not say that a is true say it is false. None can
claim ignorance in our setting. We can then encode the assignment of a subset of
truth-values to a (Boolean) propositional variable a by means of the modalities �
and ♦. It is easy to see that the same translation rules (10.2.1)–(10.2.4), as described
in the previous section, are valid. What changes is the interpretation of the epistemic
truth-values, e.g., 1

2 means that some sources assert a and the other ones a′. So
this truth-value corresponds to some paraconsistent assertion of truth. Under this
interpretive view, it is natural to consider 1

2 and 1 as designated truth-values, contrary
to the incomplete information setting. This is the usual assumption in three-valued
paraconsistent logics. As a consequence, we see that asserting a in a paraconsistent
logic corresponds to writing ♦a in MEL.

10.3.2 Translation of Priest Logic of Paradox PLP

The logic PLP [20] attaches to the third truth-value themeaning of a paradox; it refers
to sentences that are “both true and false”. Priest’s intention is to “isolate paradoxes
and prevent them from contaminating everything else”. A similar intuition of the
third value is given by Asenjo [2] to deal with antinomies. However, in this paper,
we just consider this logic in the light of the multisource semantics outlined above.

Formally, PLP is the same as Kleene logic, but for the designated truth-values and
the ensuing semantic inference. It uses for connectives theminimum�, themaximum
�, the involutive negation ¬, and the material implication¬a � b of a Kleene lattice.
However, in his system both 1 and 1

2 are designated truth-values. In fact, the notion
of paraconsistent semantic inference is defined as follows:

Definition 10.3.1 If B is a set of propositions in a three-valued logic, then B �para p
if and only if whenever v(q) ≥ 1

2 ,∀q ∈ B then v(p) ≥ 1
2 .

In other words, there does not exist an interpretation v such that v(p) = 0 and
for all q ∈ B, v(q) ∈ {1, 1

2 }. All Boolean tautologies are valid in Priest logic, that
is, v(p) ≥ 1

2 , for all LPL formulas having the form of a propositional tautology, but
modus ponens does not apply. Of course, contradictions are accommodated in the
sense that p � ¬p |=para q.

If a knowledge base B in PLP contains an atom a, it means that v(a) ≥ 1
2 , that is,

we should write ♦a in MEL. For a negated atom, v(¬a) ≥ 1
2 if and only if v(a) ≤ 1

2
hence we should write♦a′ inMEL. If B contains the conjunction of two atoms a � b,
this is translated as

T (v(a � b) ≥ 1
2 ) = ♦a ∧ ♦b
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Table 10.1 Jaśkowski implication

→J 0 1
2 1

0 1 1 1
1
2 0 1

2 1
1 0 1

2 1

and similarly for the disjunction. A material implication statement ¬a � b ∈ B thus
translates into ♦a′ ∨ ♦b.

Let p be a PLP formula in conjunctive normal form (without simplifying the terms
of the form a � ¬a). Now, since designated truth-values are 1 and 1

2 , its translation
into MEL consists in the same classical conjunction of disjunctions where we put a
modality ♦ in front of all literals [12]. Clearly, the fragment of MEL we can capture
is just given by the conjunction and disjunction of literals preceded by a ♦, that is,
LP

♦ = ♦a|♦a′|ψ ∨ φ|ψ ∧ φ.
Note that if we replace all literals l by ♦l in a propositional tautology, it remains

a tautology in MEL. As a result, we can explain via the translation why all Boolean
tautologies are still valid in PLP. Moreover, it is clear that from♦a′ ∨ ♦b and♦a one
cannot infer ♦b in MEL. It explains why modus ponens does not hold any longer in
PLP. Similarly, a � ¬a �para b does not hold, and this is expressed by the fact that
♦a ∧ ♦a′ is not a contradiction in MEL.

The symmetry between Priest and Kleene logics is clear, since going from a
Kleene logic base to a PLP base in MEL comes down to turning � into ♦. We
can then easily verify that the inference B |=para p can be expressed in the Priest
fragmentLP

♦ ofMEL (using models of the form Ev at the semantic level) in the sense
that {T (v(q) ≥ 1

2 ) : q ∈ B} � T (v(p) ≥ 1
2 ) in MEL if and only if B |=para p [12].

10.3.3 Translation of A and J3 Logics

The logic A proposed by Asenjo and Tamburino in [3] has for connectives the ones
of Kleene–Priest logics plus Jaśkowski implication5 defined on Table10.1.

In this logic, the designated values are 1 and 1
2 . So, the only difference with

respect to PLP is the introduction of the new implication →J . The negation ∼a :=
a →J 0, such that v(∼a) = 1 if and only if v(a) = 0, only takes values 0, 1 and
is an “intuitionistic” one (in the sense that it violates the excluded middle law and
obeys the contradiction law). We have the equality p →J q = ∼p � q. Clearly, in
this logic modus ponens does hold. Note the analogy with the situation in Nelson’s
logic, in which one implication is added to Kleene connectives and all tautologies of
classical logic hold in the fragment without ¬ (and where a →N b = −a � b).

5Note that Jaśkowski traces back this implication to Słupecki.
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In [14] the authors introduce another logic J3 with a view to address issues raised
by Jaśkowski and recalled in the introduction. The primitive connectives are Kleene’s
conjunction, disjunction, and negation, plus the unary strengthening operator ∇
such that ∇0 = 0, ∇ 1

2 = ∇1 = 1. Among the derived operations, it is obvious that
Jaśkowski implication is recovered as a →J b := ¬∇a ∨ b, and we have ∼a =
¬∇a. Further, it is obvious that ∇ is also definable in A as ∇a = ¬(a →J 0) =
¬∼a. So A and J3 have the same connectives and all the results proved for A also
hold for J3. Not all classical tautologies are valid in these logics. But if we consider
the fragment of A without ¬ we have that all classical tautologies are still valid in A
(this has been stated in [14] for the equivalent logic J3).

Now we can consider the translation of any of these logics in MEL. We are
basically interested in computing T (v(p) ≥ 1

2 ) since inference from a knowledge
base in any of these logics comes down to preserving at least the truth-value 1

2 . To
the translation principles of PLP we must add the following definition (clear from
the truth-table of →J ):

T (v(p →J q) ≥ 1
2 ) = T (v(p) ≥ 1

2 ) → T (v(q) ≥ 1
2 ) = T (v(p) ≥ 1

2 )′ ∨ T (v(q) ≥ 1
2 )

If p = a, q = b are atoms, we obtain ♦a → ♦b as the translation of Jaśkowski’s
implication. Unsurprizingly, we get modus ponens back, an inference rule that is not
valid in Priest logic. The translation into MEL of the negation ∼a is

T (v(∼a) ≥ 1
2 ) = T (v(∼a) = 1) = T (v(a) = 0) = �a′.

Likewise T (v(∇a) ≥ 1
2 ) translates into ♦a. So the fragment in MEL corresponding

to the A logic is L�
♦ that is equivalent to L�

�.
In fact, adding connective →J corresponds to adding an internal implication to

Priest logic, following the lines of Avron [5], that is an implication ⇒ such that
v(p ⇒ q) ≥ 1

2 if and only if p |=para q. He shows that adding symmetry conditions
to this implication enforces the truth-table of →J .

The internal implication is obtained for free in MEL where, by the deduction
theorem,� T (v(p) ≥ 1

2 ) → T (v(q) ≥ 1
2 ), where→ denotes amaterial implication,

which is equivalent to T (v(p) ≥ 1
2 ) � T (v(q) ≥ 1

2 ). The only price we pay is that
we move out of the target language LP

♦ of PLP. Namely, for atoms, the formula
♦a → ♦b /∈ LP

♦ since it is (♦a)′ ∨ ♦b.
So our approach is to consider that the formula ♦a → ♦b is the translation into

MEL of v(a ⇒ b) ≥ 1
2 for an implication ⇒ added to PLP. Besides, remember that

v(¬p) ≥ 1
2 if and only if v(p) ≤ 1

2 , and in particular the translation of v(¬a) ≥ 1
2

is ♦a′. So we must also assume that the translation of v(a ⇒ b) ≤ 1
2 is ♦a ∧ ♦b′,

which expresses that a is paraconsistently true while b is paraconsistently false.
On this basis, we can retrieve the truth-table of Jaśkowski’s implication from the
properties of classical logic inside MEL, as we did with Nelson.

Proposition 10.3.2 Suppose that the three-valued implication ⇒ added to PLP
translates into MEL as follows:
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T (v(a ⇒ b) ≥ 1
2 ) = ♦a → ♦b;T (v(¬(a ⇒ b)) ≥ 1

2 ) = T (v(a ⇒ b) ≤ 1
2 ) = ♦a ∧ ♦b′

Then implication ⇒ is Jaśkowski’s implication.

Proof The deduction theorem in MEL comes down to v(a ⇒ b) ≥ 1
2 if and only

if v(a) ≥ 1
2 implies v(b) ≥ 1

2 . The latter condition equivalently reads v(a) = 0 or
v(b) ≥ 1

2 . Negating it reads v(b) = 0 and v(a) ≥ 1
2 , for which one must have v(a ⇒

b) = 0, and v(a ⇒ b) ≥ 1
2 otherwise. It yields part of the truth-table for ⇒.

The other condition reads v(a ⇒ b) ≤ 1
2 if and only if v(a) ≥ 1

2 and v(b) ≤ 1
2 .

From this equivalence it clearly follows that v(a ⇒ b) = 1 if and only if v(b) = 1
or v(a) = 0. Moreover, if v(b) = 1

2 , and v(a) ≥ 1
2 , the only possibility is that v(a ⇒

b) = 1
2 , as the deduction theorem in MEL enforces v(a ⇒ b) ≥ 1

2 in that case. �
Jaśkowski’s implication also writes

v(a →J b) =
{
1 if v(a) = 0;
v(b) otherwise.

(10.3.1)

which highlights its similarity with Nelson’s implication (10.2.5).

Remark 10.3.3 In the logicA [3], atoms are divided in two groups both at the seman-
tic and at the syntactic level: antinomic and non-antinomic. In the semantics, non-
antinomic atoms can have value 0 or 1, whereas antinomic atoms are those whose
truth-value is 1

2 and compound statements involving antinomic atoms can have any
value. However, we cannot have such a thing as antinomic atoms in MEL as it relies
on classical logic, where no provision is made for an intrinsic notion of antinomy. In
this paper, the antinomy arises from sources claiming a and other ones its opposite
(a � ¬a is expressed by ♦a ∧ ♦¬a); hence, it is an epistemic form of antinomy. The
purpose of our translation process is limited to an underlying society semantics. It
has nothing to do with mathematical paradoxes, nor statements that would be contra-
dictory in all possible worlds. In particular, we cannot translate the logical constant
1
2 into MEL, while precisely, antinomic atoms would be such that they ever take this
truth-value. Namely, there is no Boolean atom a for which the formula ♦a ∧ ♦a′
would be a MEL tautology.

10.3.4 Translation of RM3 (Sobociński) Logic

The same connectives that define A also define the relevance logic RM→J
3 [4] (→J

is denoted by ⊃ in the original paper), which is also equivalent to RM3 [1, 9], that
is, to Sobociński [4, 22] logic, through the following mutual definitions:

p →S q := (p →J q) ∧ (¬q →J ¬p)

p →J q := q ∨ (p →S q)
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Thus, even if Sobociński’s and RM3 logics were not originally meant to deal
with paraconsistency, they can play a role in this framework: in [4], it is claimed
that RM→J

3 “might be considered an optimal paraconsistent logic”. Interestingly,
implication →S is obtained as the symmetrization of Jaśkowski’s implication, just
like Łukasiewicz implication is the symmetrized form of Nelson’s implication for
logics of incomplete information. Here, we must again assume that 1 and 1

2 are
designated truth-values in order to get the paraconsistent behavior. Then RM3 has
the same expressive power as the logic A.

As a consequence of all these equivalences, all above translation results also apply
to RM3 and Sobociński logic. In particular, Sobociński implicationwhose truth-table
is in Table10.2 can be translated as

T (v(p →S q) ≥ 1
2 ) = T (v(p →J q) ≥ 1

2 ) ∧ T (v(¬q →J ¬p) ≥ 1
2 )

For atoms, it yields (♦a → ♦b) ∧ (�a → �b) in MEL, the same translation as
Łukasiewicz implication with designated truth-value 1. Note that a →S 0 = ∼a.
Sobociński conjunction and disjunction can be translated into MEL from Table10.2
or by means of the definition p ∧S q = ¬(p →S ¬q) and de Morgan properties. On
atoms they read as

T (v(a ∧S b) ≥ 1
2 ) = ♦a ∧ ♦b

T (v(a ∨S b) ≥ 1
2 ) = �a ∨ �b ∨ (♦a ∧ ♦a′ ∧ ♦b ∧ ♦b′)

As far as the axiom system is concerned and due to the equivalence between
RM3 and Sobociński logics, we just consider the axiom system of RM3 [9].
(R1) p →S p;
(R2) (p � (p →S q)) →S q;
(R3) p � q →S p;
(R4) p � q →S q;
(R5) ((p →S q) � (p →S r)) →S (p →S (q � r));
(R6) (p →S ¬p) →S ¬p;
(R7) (p →S ¬q) →S (q →S ¬p);
(R8) (¬¬p →S p);
(R9) (¬p � q) →S (p →S q);
(R10) ¬p →S (p � (p →S q));

Inference rules are

Table 10.2 Sobociński implication, conjunction, and disjunction
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1. p and p →S q implies q;
2. p and q implies p � q; and
3. p →S q and r →S t implies (q →S r) →S (p →S t).

Lemma 10.3.4 If p is a formula in the RM3 logic, then T (v(p) ≥ 1
2 ) ∨ T (v(p) ≤

1
2 ) is a tautology in MEL.

Proof The proof is by induction on the structure of p. �

• p = a. We have T (v(a) ≥ 1
2 ) ∨ T (v(a) ≤ 1

2 ) = ♦a ∨ ♦a′ that is an axiom of the
logic.

• T (v(¬p) ≥ 1
2 ) ∨ T (v(¬p) ≤ 1

2 ) = T (v(p) ≤ 1
2 ) ∨ T (v(p) ≥ 1

2 ) and so, it is
sufficient to use the induction.

• p = p1 � p2. Thus, T (v(p) ≥ 1
2 ) ∨ T (v(p) ≤ 1

2 ) =
[T (v(p1) ≥ 1

2 ) ∧ T (v(p2) ≥ 1
2 )] ∨ [T (v(p1) ≤ 1

2 ) ∧ T (v(p2) ≤ 1
2 )].

Now, it is sufficient to apply the distributivity and the induction. For the disjunction
� the proof is similar.

• p = p1 →S p2. So, T (v(p1 →S p2) ≥ 1
2 ) ∨ T (v(p1 →S p2) ≤ 1

2 ) is translated
as {[T (v(p1) ≥ 1

2 ) → T (v(p2) ≥ 1
2 )] ∧ [T (v(p1) = 1) → T (v(p2) = 1]} ∨

[T (v(p) ≥ 1
2 ) → T (v(q) = 1)]′. Then, by distributivity, we get

ψ ∨ [T (v(p) ≥ 1
2 ) → T (v(q) = 1)] ∨ [T (v(p) ≥ 1

2 ) → T (v(q) = 1)]′
(for the sake of simplicity we do not write the complete development of ψ) which
is a Boolean tautology.

Proposition 10.3.5 If A is an axiom in the RM3 logic, then T (v(A) ≥ 1
2 ) is a tau-

tology in MEL.

Proof Axioms (R1), (R3), (R4), and (R8) are easily proved.
Axiom (R2). It is the conjunction of two tautologies. The first one follows from the
fact that (R2) holds in Boolean logic and the second one by Lemma 10.3.4.
Axioms (R5) and (R7) are the conjunctions of two tautologies that easily follows by
the fact that (R5) is a Boolean theorem.
Axiom (R6) is the conjunction of two tautologies. The first one is just Lemma 10.3.4
and the second one the Boolean version of axiom (R6).
Axiom (R9) is the conjunction of two tautologies. The second one is just axiom R9
in Boolean logic. The first half is (T (v(¬p) ≥ 1

2 ) ∧ T (v(q) ≥ 1
2 )) → [(T (v(p) ≥

1
2 ) → T (v(q) ≥ 1

2 )) ∧ (T (v(p) = 1) → T (v(q) = 1))],
that is, T (v(p) = 1) ∨ (T (v(q) ≥ 1

2 ))′ ∨ [(T (v(p) ≥ 1
2 )′ ∨ T (v(q) ≥ 1

2 )) ∧
(T (v(p) = 1)′ ∨ T (v(q) = 1)].

Then by distributivity, we can simplify as
T (v(p) = 1) ∨ (T (v(q) ≥ 1

2 ))′ ∨ (T (v(p) = 1)′ ∨ T (v(q) = 1)),
which is a Boolean tautology.
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Table 10.3 Sette logic connectives

Axiom (10) is translated into the following two tautologies:
T (v(p) = 1)∨ T (v(p) ≥ 1

2 )∨ [((T (v(p) ≥ 1
2 )′ ∨ T (v(q ≥ 1

2 )) ∧ (T (v(p) = 1)′
∨ T (v(q) = 1))]
and T (v(p) ≥ 1

2 ) ∨ T (v(p) = 1) ∨ (T (v(p) ≥ 1
2 )′ ∨ T (v(q) = 1). �

Inference rules of RM3 can be checked to hold in their translation into MEL. So,
again we can simulate RM3 in MEL.

10.4 On Sette Logic

Sette [21] independently introduced a paraconsistent logic with the aim to deal with
“inconsistent (but not absolutely inconsistent) formal systems.” Its basic connec-
tives are one implication →Se and the already met “paraconsistent”6 negation − in
Table10.3. In this logic, the intuitionistic negation is definable as ∼ a := a →Se 0.

The peculiarity of this logic is that all these connectives yield Boolean results.
Special Boolean conjunction and disjunction can be expressed from implication and
negation as follows (they are not min and max):

x ∧Se y := (((x →Se x) →Se x) →Se −((y →Se y) →Se y)) →Se −(x →Se −y)

x ∨Se y := (x →Se − − x) →Se (−x →Se y)

Note that the table of →Se results from Jaśkowski’s implication when turning 1
2 into

1. Sette conjunction and disjunction tables are obtained likewise from Sobociński
conjunction and disjunction.

An axiom system together with modus ponens is given:

(S1) p →Se (q →Se p)

(S2) (p →Se (q →Se γ)) →Se ((p →Se q) →Se (p →Se γ))

(S3) (−p →Se −q) →Se ((−p →Se − − q) →Se p)

(S4) −(p →Se − − p) →Se p
(S5) (p →Se q) →Se − − (p →Se q)

This logic (named P1) is complete and (to quote [21]) “cannot be strengthened (i.e.,
there is no propositional calculus between P1 and P0, where P0 is the classical

6So-called, as it violates the contradiction law and satisfies the excluded middle law.
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propositional calculus)”. In other words, if we add to P1 any tautology which holds
in P0 but not in P1 we get P0.

The meaning of the third value in Sette logic is not discussed, but its connectives
(see Table10.3), except for negation, suggest that no difference is made between 1
and 1

2 . The translation of Sette connectives into MEL is thus the same in the two
cases ≥ 1

2 and = 1:

T (v(p →Se q) = 1) = T (v(p) ≥ 1
2 ) → T (v(q) ≥ 1

2 ) = T (v(p →J q) ≥ 1
2 )

T (v(p ∧Se q) = 1) = T (v(p) ≥ 1
2 ) ∧ T (v(q) ≥ 1

2 ) = T (v(p � q) ≥ 1
2 )

T (v(p ∨Se q) = 1) = T (v(p) ≥ 1
2 ) ∨ T (v(q) ≥ 1

2 ) = T (v(p � q) ≥ 1
2 )

For atoms we have T (v(−a) = 1) = ♦a′ and T (v(a →Se b) = 1) = ♦a → ♦b;
T (v(a ∧Se b) = 1) = ♦a ∧ ♦b;T (v(a ∨Se b) = 1) = ♦a ∨ ♦b. Note that this is the
same translation as conjunctions and disjunctions of Priest logic (the min and the
max) and of Jaśkowski implication.

Modus ponens also holds in the translation. Indeed, since we consider both 1 and
1
2 as designated values, it corresponds to “from T (v(p) ≥ 1

2 ) and T (v(p) ≥ 1
2 ) →

T (v(q) ≥ 1
2 ) it follows T (v(q) ≥ 1

2 ),” which clearly holds in MEL.

Proposition 10.4.1 If A is an axiom in Sette logic, then T (v(A) ≥ 1
2 ) = T (v(A) =

1) is a tautology in MEL.

Proof Lemma 10.3.4 applies to Sette Logic. Axioms (S1) and (S2) are Boolean
axioms, thus they easily follow. For axiom (S3), we use recursive translation rules
and come down to a formula of the form T (v(p) ≤ 1

2 ) ∨ T (v(p) ≥ 1
2 ), which is a

tautology by Lemma 10.3.4. Axioms (S4, S5) are proved in a similar manner. �

The fragment of the MEL language capturing Sette logic is thus again L�
♦, the

same as for J3 and Sobociński’s logics.
Sette logic connectives are definable in Łukasiewicz three-valued logic as follows

[13]: p ∧Se q := ¬(p ∧ q) →L (p ∧ q) and p →Se q := J0(q) →L J0(p), where
J0(p) := ¬p ∧Se ¬(p ∧Se ¬p) and∧ denotes the minimum; J0 returns 1 if and only
if v(p) = 0. The converse does not hold since with Sette connectives is not possible
to obtain the value 1

2 (nor can the latter be translated into MEL anyway).
Likewise, we can define Sette logic in Sobocinski’s as the former implication is

of the form
x →Se y =∼ y →S∼ x − x =∼∼ x ∨S x .

The otherway round is again not possible for the same reason as above. Sowhywould
we obtain the same MEL fragment from both Sette and Sobocinski’s logic? One
answer is that we do not translate into MEL the full truth-tables of these connectives.
For instance, Sette and Jaskowski’s implications translate the same since v(a →J

b) ≥ 1
2 if and only if v(a →Se b) = 1.

So, even if the three three-valued logics J3, RM3, and Sette are not equivalent,
they share the same paraconsistent behavior: they can be expressed in the same
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MEL fragment where the only language restriction is the presence of modalities
only in front of literals, and conjunction, disjunction, and implication have the same
translation.

10.5 Conclusion

This paper suggests that the modal logic MEL, originally the logic of incomplete
information in the sense of possibility theory, is also a natural framework for reason-
ing under contradictory information. Not only many three-valued logics of incom-
plete information extending Kleene logic but also several existing three-valued para-
consistent logics, when the third truth-value means both true and false, can be trans-
lated into MEL. The restriction to the fragment of MEL putting modalities only in
front of literals is the price paid by the truth-functionality of all these logics.

In contrast with our approach based on several completely informed agents,
Carnielli and Lima-Marques (see also Dubois [15]) indicate that only two incom-
pletely informed agents are needed to render Belnap’s four truth-values without any
loss of generality. In the multiple-agent semantics of paraconsistent logics discussed
here, on the basis of the translation of three-valued calculi into MEL, we put no
restriction on the number of completely informed agents. So one open question is
whether we can also assume there are only two completely informed agents. It comes
down to restricting MEL epistemic models of formulas in L�

� to subsets containing
at most two interpretations. Whether it is an alternative semantics for MEL restricted
to this sublanguage is an interesting question to be investigated.

Note that Belnap [8] epistemic truth-values unknown and contradictory play sym-
metric roles in the bilattice structure. Likewise here, the two streams of three-valued
logics studied here (Kleene-Nelson-Łukasiewicz vs. PLP-J3-RM3) form pairs of
logics (one for paraconsistency, one for incomplete information: PLP-Kleene, J3-
Nelson, RM3-Łukasiewicz), whose translations into MEL are in one-to-one corre-
spondence, exchanging♦ and�. Clearly, we can deal with both flaws in information,
namely, incomplete and contradictory knowledge, together. In this case, we need four
values, in the style of Dunn–Belnap logic, and another interesting prospect is to for-
mally show that theMEL-like fragment of a classical modal logic (EMN) introduced
in [15] can play for Belnap logic the same role as MEL plays for Kleene and for
Priest logics.

Acknowledgments The authors wish to thank Philippe Besnard for remarks on the first draft that
led us to improve the presentation.
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Chapter 11
Modality, Potentiality, and Contradiction
in Quantum Mechanics

Christian de Ronde

Abstract In da Costa and de Ronde (Found Phys 43:845–858, 2013), Newton da
Costa together with the author of this paper argued in favor of the possibility to
consider quantum superpositions in terms of a paraconsistent approach. We claimed
that, even thoughmost interpretations ofQuantumMechanics (QM)attempt to escape
contradictions, there are many hints that indicate it could be worth while to engage
in a research of this kind. Recently, Arenhart and Krause (New dimensions of the
square of opposition, Philosophia Verlag, Munich, 2014; Logique et Analyse, 2014;
The Road to Universal Logic (volume II), Springer, 2014) have raised several argu-
ments against this approach and claimed that—taking into account the square of
opposition—quantum superpositions are better understood in terms of contrariety
propositions rather than contradictory propositions. In de Ronde ( Los Alamos 2014)
we defended the Paraconsistent Approach to Quantum Superpositions (PAQS) and
provided arguments in favor of its development. In the present paper we attempt to
analyze the meaning of modality, potentiality, and contradiction in QM, and provide
further arguments of why the PAQS is better suited, than the Contrariety Approach
to Quantum Superpositions (CAQS) proposed by Arenhart and Krause, to face the
interpretational questions that quantum technology is forcing us to consider.
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11.1 Introduction

In [11], Newton da Costa together with the author of this paper argued in favor of the
possibility to consider quantum superpositions in terms of a paraconsistent approach.
We claimed that, even though most interpretations of QM attempt to escape contra-
dictions, there are many hints that indicate it could be worth while to engage in
a research of this kind. Recently, Arenhart and Krause [1, 2] have raised several
arguments against this approach. More specifically, taking into account the square of
opposition, they have argued that quantum superpositions are better understood in
terms of contrariety propositions rather than in terms of contradictory propositions.
In [17] we defended the PAQS and provided arguments in favor of its development.
We showed that: (i) Arenhart and Krause placed their obstacles from a specific
metaphysical stance, which we characterized in terms of what we call the Ortho-
dox Line of Research (OLR). And also, (ii) This is not necessarily the only possible
line, and that a different one, namely, a Constructive Metaphysical Line of Research
(CMLR) provides a different perspective in which PAQS can be regarded as a valu-
able prospect. Furthermore, we explained how, within the CMLR, the problems and
obstacles raised by Arenhart and Krause disappear. More specifically, we argued that
the OLR is based on two main principles:

1. Quantum to Classical Limit: The principle that one must find a continuous
bridge between classicalmechanics andQM, i.e., that themain notions of classical
physics must be used in order to explain quantum theory.

2. Classical Physical Representation: The principle that one needs to presuppose
the classical physical representation—structured through themetaphysics of enti-
ties together with the mode of being of actuality—in any interpretation of QM.

In this context, regarding quantum superpositions, the Measurement Problem (MP)
is one of the main questions imposed by the OLR. Given the fact that QM describes
mathematically the state in terms of a superposition, the question is why do we
observe a single result instead of a superposition of them? Although the MP accepts
the fact that there is something very weird about quantum superpositions, leaving
aside their problematic meaning, it focuses on the justification of the actualization
process.

Taking distance from the OLR, the CMLR is based on three main presuppositions
already put forward in [14, pp. 56–57].

1. Closed Representational Stance: Each physical theory is closed under its own
formal and conceptual structure and provides access to a specific set of phenom-
ena. The theory also provides the constraints to consider, explain, and understand
physical phenomenon. The understanding of a phenomena is always local for it
refers to the closed structure given by the physical theory fromwhich observations
are determined.

2. Formalism and Empirical Adequacy: The formalism of QM is able to provide
(outstanding) empirically adequate results. Empirical adequacy determines the
success of a theory and not its commitment to a certain presupposed conception
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of the world. Thus, it seems to us that the problem is not to find a new formalism.
On the contrary, the ‘road signs’ point in the direction that we must stay close to
the orthodox quantum formalism.

3. Constructive Stance: To learn aboutwhat the formalism ofQM is telling us about
reality we might be in need of creating new (non-classical) physical concepts.

Changing the metaphysical standpoint, the CMLR presents a different question-
ing which assumes right from the start the need of bringing into stage a different
metaphysical scheme to the one assumed by the OLR—based on the representation
provided by classical physics. What is needed, according to this stance, is a radical
inversion of orthodoxy and its problems. Regarding quantum superpositions, instead
of considering theMPwe should invert the questioning—changing the perspective—
and concentrate in the analysis of what we have called: ‘the superposition problem
(SP)’.

In a more recent paper [3], Arenhart and Krause have continued their analysis
arguing against the notion of potentiality and power presented in [16] and discussed
in [17]. In the present paper we attempt to analyze the notions of modality, potential-
ity, power, and contradiction in QM, and provide further arguments of why the PAQS
is better suited, than the Contrariety Approach to Quantum Superpositions CAQS
proposed by Arenhart and Krause, to face the interpretational questions that quantum
technology is forcing us to consider. The paper is organized as follows. In Sect. 11.2,
we discuss the physical representation of quantum superpositions. Section11.3 ana-
lyzes the meaning of modality in QM and puts forward our interpretation in terms
of ‘ontological potentiality’. In Sect. 11.4, we discuss the meaning of the notion of
‘power’ as a real physical existent. In Sect. 11.5, we analyze two different approaches
to quantum superpositions, the PAQS and the CAQS. In Sect. 11.6, we provide the
conclusions of the paper.

11.2 The Physical Representation of Quantum
Superpositions

In [17]wemade it clear whywe are interested—through theCMLR—in attacking the
SP, which attempts to develop a physical representation of quantum superpositions,
instead of discussing the famousMPwhich—following theOLR—attempts to justify
the actual non-contradictory realmof existence. The idea that quantumsuperpositions
cannot be physically represented was stated already in 1930 by Paul Dirac in the first
edition of his famous book: The Principles of Quantum Mechanics.

The nature of the relationships which the superposition principle requires to exist between
the states of any system is of a kind that cannot be explained in terms of familiar physical
concepts. One cannot in the classical sense picture a system being partly in each of two states
and see the equivalence of this to the system being completely in some other state. There
is an entirely new idea involved, to which one must get accustomed and in terms of which
one must proceed to build up an exact mathematical theory, without having any detailed
classical picture. [24, p. 12] (emphasis added)
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Also Niels Bohr was eager to defend the classical physical representation of our
world and set the limits of such representation in classical physics itself [8]. Bohr
would set the problems of the present OLRby claiming explicitly that: [41, p. 7] “[…]
the unambiguous interpretation of any measurement must be essentially framed in
terms of classical physical theories, and we may say that in this sense the language
of Newton and Maxwell will remain the language of physicists for all time.” At the
same time he closed any further conceptual development by arguing that “it would
be a misconception to believe that the difficulties of the atomic theory may be evaded
by eventually replacing the concepts of classical physics by new conceptual forms.”
Even Erwin Schrödinger, who was one of the first to see the implications of the
superposition principle exposed through his famous ‘cat experiment’, did not dare
to think beyond the representation of classical physics [37].

Unfortunately, these ideas have sedimented in the present foundational research
regarding QM. Indeed, the strategy of the OLR has been to presuppose the classi-
cal representation provided by classical Newtonian mechanics in terms of an Actual
State of Affairs (ASA). There are two main problems which block such a classi-
cal type representation. The first problem is the so-called ‘basis problem’ which
attempts to explain how nature ‘chooses’ a single basis—between the many possible
ones—when an experimental arrangement is determined in the laboratory—this also
relates to the problem of contextuality which we have analyzed in detail in [18].
The second problem is the already mentioned MP: given the fact that QM describes
mathematically the state in terms of a superposition of states, the question is why do
we observe a single result instead of a superposition of them? It should be clear that
the MP presupposes the determination of a basis and is not related to contextuality
nor the BP. Although the MP accepts the fact that there is something very weird
about quantum superpositions, leaving aside their problematic physical meaning, it
focuses on the justification of the actualization process. Taking the single outcome as
a standpoint it asks: how do we get to a single measurement result from the quantum
superposition?1 The MP attempts to justify why, regardless of QM, we only observe
actuality. The problem places the result in the origin, and what needs to be justified
is the already known answer.

Our interest, contrary to the OLR, focuses instead on what we have called the SP.
According to it, in case one attempts to provide a realist account of QM, one should
concentrate in finding a set of physical concepts which provide a physical represen-
tation of quantum superpositions. But in order to do so we need to go beyond the
question regarding measurement outcomes. Before we can understand actualization
we first need to explain what a quantum superposition is or represents. As we have
argued elsewhere [15], there is no self evident path between the superposition and its
outcome for there are multiple ways of understanding the projection postulate (see
for a discussion [20]).

Our research is focused on the idea that quantum superpositions relate to some-
thing physically real that exists in nature, and that in order to understand QM we

1Thequestioning is completely analogous to the one posedby the quantum to classical limit problem:
how do we get from contextual weird QM into our safe classical physical description of the world?
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need to provide a physical representation of such existence (see for a more detailed
discussion [18]). But why do we think we have good reasons to believe that quantum
superpositions exist? Mainly because quantum superpositions are one of the main
sources used by present experimental physicists to develop the most outstanding
technical developments and experiments of the last decades. Indeed, there are many
characteristics and behaviors we have learnt about superpositions: we know about
their existence regardless of the effectuation of one of its terms, as shown, for exam-
ple, by the interference of different possibilities in welcher-weg type experiments
[10, 33], their reference to contradictory properties, as in Schrödinger cat states
[34], we also know about their nonstandard route to actuality, as explicitly shown
by the MKS theorem [20, 25], and we even know about their nonclassical inter-
ference with themselves and with other superpositions, used today within the latest
technical developments in quantum information processing [5]. In spite of the fact
we still cannot say what a quantum superposition is or represents, we must admit
that they seem ontologically robust. If the terms within a quantum superposition are
considered as quantum possibilities (of being actualized) then we must also admit
that such quantum possibilities interact—according to the Schrödinger equation. It is
also well known that one can produce interactions between multiple superpositions
(entanglement) and then calculate the behavior of all terms as well as the ratio of
all possible outcomes. It then becomes difficult not to believe that these terms that
‘interact’, ‘evolve’, and ‘can be predicted’ according to the theory, are not real (in
some way).

Disregarding these known facts, most interpretations of QMdo not consider quan-
tum superpositions as related to physical reality. For example, the so-called Copen-
hagen interpretation remains agnostic with respect to the mode of existence of prop-
erties prior to measurement. The same interpretation is endorsed by van Fraassen in
his Copenhagen modal variant.2 Much more extreme is the instrumentalist perspec-
tive put forward by Fuchs and Peres [30, p. 1] who claim that: “[…] quantum theory
does not describe physical reality.What it does is provide an algorithm for computing
probabilities for the macroscopic events (‘detector clicks’) that are the consequences
of experimental interventions.” In Dieks’ realistic modal version quantum superpo-
sitions are not considered as physical existents, only one of them is real (actual),
namely, the one written as a single term, while all other superpositions of more than
one term are considered as possible (in the classical sense). It seems then difficult
to explain, through this interpretation, what is happening to the rest of non-actual
terms which can be also predicted—even though not with certainty. In a similar vein,
the consistent histories interpretation developed by Griffiths and Omnès also argues

2According to Van Fraassen [39, p. 280]: “The interpretational question facing us is exactly: in
general, which value attributions are true? The response to this question can be very conservative or
very liberal. Both court later puzzles. I take it that the Copenhagen interpretation—really, a roughly
correlated set of attitudes expressed by members of the Copenhagen school, and not a precise
interpretation—introduced great conservatism in this respect. Copenhagen scientists appeared to
doubt or deny that observables even have values, unless their state forces to say so. I shall accordingly
refer to the following very cautious answer as the Copenhagen variant of the modal interpretation.
It is the variant I prefer.”
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against quantum superpositions [31].3 Bohmian mechanics proposes the change the
formalism and talk instead of a quantum field that governs the evolution of particles.

Onemight also argue that some interpretations, althoughnot explicitly, leave space
to consider superpositions as existent in a potential, propensity, dispositional, or latent
realm. The Jauch and Piron School, Popper or Margenau’s interpretations, are good
examples of such proposals (see for discussion [14] and references therein).However,
within such interpretations the collapse is accepted and potentialities, propensities,
or dispositions are only defined in terms of ‘their becoming actual’—mainly because,
forced by the OLR, they have been only focused in providing an answer to the MP.
In any case, such realms are not articulated nor physically represented beyond their
meaning in terms of the actual realm. Only the many worlds’ interpretation goes as
far as claiming that all terms in the superposition are real in actuality. However, the
quite expensive metaphysical price to pay is to argue that there is a multiplicity of
unobservable worlds (branches) in which each one of the terms is actual. Thus, the
superposition expresses the multiplicity of such classical actual worlds.

Instead of taking one of these two paths which force us either into the abandon-
ment of representation and physical reality or to the exclusive account of physical
representation in terms of an ASA, we have proposed through the CMLR to develop
a new path which concentrates in developing radically new (non-classical) concepts.

11.3 Modality and Ontological Potentiality in Quantum
Mechanics

QM has been related to modality since its origin, when Max Born interpreted
Schrödinger’s quantum wave function, �, as a ‘probability wave’. However, it was
very clear from the very begining that the meaning of modality and probability in the
context of QMwas something completely new. As remarked by Heisenberg himself:

[The] concept of the probability wave [in quantum mechanics] was something entirely new
in theoretical physics since Newton. Probability in mathematics or in statistical mechanics
means a statement about our degree of knowledge of the actual situation. In throwing dice
we do not know the fine details of the motion of our hands which determine the fall of the
dice and therefore we say that the probability for throwing a special number is just one in
six. The probability wave function, however, meant more than that; it meant a tendency for
something. [32, p. 42]

Today, it is well known that quantum probability does not allow an interpretation in
terms of ignorance [36]—even though many papers in the literature still use proba-
bility uncritically in this way. Instead, as we mentioned above, the quantum formal-
ism seems to imply some kind of weird interaction of possibilities governed by the
Schrödinger equation.

3For a detailed analysis of the arguments provided by Dieks and Griffiths see: [18].
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So they say, we do not understand QM and trying to do so almost makes no
sense since it is too difficult problem to be solved. If Einstein, Bohr, Heisenberg,
Schrödinger, and many of the most brilliant minds in the last century could not find
an answer to this problem, maybe it is better to leave it aside. In line with these
ideas, the problems put forward by the OLR have left behind the development of
a new physical representation of QM and have instead concentrated their efforts in
justifying our classical world of entities in the actual mode of existence. Only when
leaving behind theOLR, onemight be able to consider the possibility to provide a new
non-classical physical representation of QM. Of course this implies reconsidering
the meaning of existence itself and the abandonment of another presupposed dogma:
existence and reality are represented by actuality either as an observation hic et nunc
(empiricism) or as a mode of existence (classical realism).

Following the CMLR, we believe that a reasonable strategy would be to begin
with what we know works perfectly well, namely, the orthodox formalism of QM
and advance in the metaphysical principles which constitute our understanding of
the theory. Escaping the metaphysics of actuality and starting from the formalism,
a good candidate to develop a mode of existence is of course quantum possibility.
In several papers, together with Domenech and Freytes, we have analyzed how to
understand possibility in the context of the orthodox formalism of QM [25–28].
From this investigation there are several conclusions which can be drawn.We started
our analysis with a question regarding the contextual aspect of possibility. As it is
well known, the Kochen–Specker (KS) theorem does not talk about probabilities,
but rather about the constraints of the formalism to actual definite-valued properties
considered from multiple contexts (see for an extensive discussion regarding the
meaning of contextuality [18]). What we found via the analysis of possible families
of valuations is that a theorem which we called—for obvious reasons—the Modal
KS (MKS) theorem can be derivedwhich proves that quantum possibility, contrary to
classical possibility, is also contextually constrained [25]. This means that regardless
of its use in the literature, quantum possibility is not classical possibility. In a recent
paper, [20] we have concentrated in the analysis of actualization within the orthodox
frame and interpreted, following the structure, the logical realm of possibility in
terms of potentiality.

Once we accept we have two distinct realms of existence: potentiality and actual-
ity, we must be careful about the way in which we define contradictions. Certainly,
contradictions cannot be defined in terms of truth valuations in the actual realm, sim-
ply because the physical notion that must be related to quantum superpositions must
be, according to our research, an existent in the potential realm—not in the actual one.
The MKS theorem shows explicitly that a quantum wave function implies multiple
incompatible valuations which can be interpreted as potential contradictions. Our
analysis has always kept in mind the idea that contradictions—by definition—are
never found in the actual realm. Our attempt is to turn things upside down: we do
not need to explain the actual via the potential but rather, we need to use the actual
in order to develop the potential [14, p. 148]. Leaving aside the paranoia against
contradictions, the PAQS does the job of allowing a further formal development of a
realm in which all terms of a superposition exist, regardless of actuality. In the sense
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just discussed the PAQS opens possibilities of development which have not yet been
fully investigated. It should be also clear that we are not claiming that all terms in
the superposition are actual—as in the many worlds interpretations—overpopulating
existence with unobservable actualities. What we claim is that PAQS opens the door
to consider all terms as existent in potentiality—independently of actuality.We claim
that just like we need all properties to characterize a physical object, all terms in the
superposition are needed for a proper characterization of what exists according to
QM. Contrary to Arenhart and Krause we do not agree that our proposal is subject of
Priest’s razor, the metaphysical principle according to which we should not populate
the world with contradictions beyond necessity [35]. The PAQS does not overpop-
ulate metaphysically the world with contradictions, rather it attempts to take into
account what the quantum formalism and present experiments seem to be telling us
about physical reality.4

Modal interpretations are difficult to define within the literature.5 We understand
that modal interpretations have two main desiderata that must be fulfilled by any
interpretation which deserves being part of the club. The first is to stay close to the
standard formalism of QM, the second is to investigate the meaning of modality
and existence within the orthodox formalism of the theory. The modal interpretation
that we have proposed [14] attempts to develop—following these two desiderata and
the CMLR—a physical representation of the formalism based on two main notions:
the notion of ‘ontological potentiality’ and notion of ‘power’. The notion of onto-
logical potentiality has been explicitly developed taking into account what we have
learnt from the orthodox formalism about quantum possibility, taking potentiality to
its limit, and escaping the dogmatic ruling of actuality. Contrary to the teleological
notion of potentiality used within many interpretations of QM our notion of onto-
logical potentiality is not defined in terms of actuality [38]. Such perspective has
determined not only the need to consider what we call a Potential State of Affairs
(PSA)—in analogous fashion to the ASA considered within physical theories—but
also the distinction between actual effectuations, which is the effectuation of poten-
tiality in the actual realm, and potential effectuations which happens in the potential
realm regardless of actuality [15, 16, 20]. Actualization only discusses the actual
effectuation of the potential, while potential effectuations remain in the potential
realm evolving according to QM. The question we would like to discuss in the fol-
lowing section is: what is that which exists in the potential realm?

4Regarding observation it is important to remark that such contradictory potentialities are observ-
able just in the same way as actual properties can be observed in an object. Potentialities can be
observed through actual effectuations in analogous fashion to physical objects—we never observe
all perspectives of an object simultaneously, instead, we observe at most a single set of actual
properties.
5As we have discussed in [13] modal interpretations range from empiricist positions such as that
of Van Fraassen [39] to realist ones such as the one endorsed in different ways by Dieks [23], Bub
[9], and Bacciagaluppi [4]. There are even different strategies and ideas regarding what should be
considered to be a coherent interpretation within this group.
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11.4 Powers as Real Quantum Physical Existents

Entities are composed by properties which exist in the actual mode of being. But
what is that which exists in the ontological potential realm? We have argued that
an interesting candidate to consider is the notion of power. Elsewhere [14, 16], we
have put forward such an ontological interpretation of powers. In the following we
summarize such ideas and provide an axiomatic characterization of QM in line with
these concepts.

The mode of being of a power is potentiality, not thought in terms of classical
possibility (which relies on actuality) but rather as a mode of existence—i.e., in
terms of ontological potentiality. To possess the power of raising my hand, does not
mean that in the future ‘I will raise my hand’ or that in the future ‘I will not raise
my hand’; what it means is that, here and now, I possess a power which exists in
the mode of being of potentiality, independently of what will happen in actuality.
Powers do not exist in the mode of being of actuality, they are not actual existents,
they are undetermined potential existents. Powers, like classical properties, preexist
to observation, unlike them, preexistence is not defined in the actual mode of being as
anASA, insteadwe have a potential preexistence of powers which determines a PSA.
Powers are indetermined. Powers are a conceptual machinery which can allow us to
compress experience into a picture of the world, just like entities such as particles,
waves, and fields, allow us to do so in classical physics.We cannot ‘see’ powers in the
same way we see objects.6 Powers are experienced in actuality through elementary
processes. A power is sustained by a logic of actions which do not necessarily take
place, it is and is not, hic et nunc.

A basic question which we have posed to ourselves regards the ontological mean-
ing of a quantum superposition [14]. What does it mean to have a mathematical
expression such as: α | ↑〉 + β | ↓〉, which allows us to predict precisely, according
to the Born rule, experimental outcomes? Our theory of powers has been explicitly
developed in order to try to answer this particular question. Given a superposition in
a particular basis, � ci |αi 〉, the powers are represented by the elements of the basis,
|αi 〉, while the coordinates in square modulus, |ci |2, are interpreted as the potentia of
each respective power. Powers can be superposed to different—even contradictory—
powers. We understand a quantum superposition as encoding a set of powers, each of
which possesses a definite potentia. This is what we call a Quantum Situation (QS).
For example, the QS represented by the superposition α | ↑〉 + β | ↓〉, combines the
contradictory powers, | ↑〉 and | ↓〉, with their potentia, |α|2 and |β|2, respectively.
Contrary to the orthodox interpretation of the quantum state, we do not assume the
metaphysical identity of the multiple mathematical representations given by differ-
ent basis [22]. Each superposition is basis dependent and must be considered as a
distinct quantum situation. For example, the superpositions cx1| ↑x 〉 + cx2| ↓x 〉 and
cy1| ↑y〉 + cy2| ↓y〉, which are both representations of the same� and can be derived

6It is important to notice that there is no difference in this point with the case of entities: we cannot
‘see’ entities—not in the sense of having a complete access to them.We only see perspectives which
are unified through the notion of object.
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from one another via a change in basis, are considered as two different and distinct
quantum situations, QS�,Bx and QS�,By .

The logical structure of a superposition is such that a power and its opposite can
exist at one and the same time, violating the principle of non-contradiction [11].
Within the faculty of raising my hand, both powers (i.e., the power ‘I am able to
raise my hand’ and the power ‘I am able not to raise my hand’) coexist. A QS is
compressed activity, something which is and is not the case, hic et nunc. It cannot
be thought in terms of identity but is expressed as a difference, as a quantum.

Our interpretation can be condensed in the following eight postulates.

I. Hilbert Space: QM is represented in a vector Hilbert space.
II. Potential State of Affairs (PSA): A specific vector � with no given math-

ematical representation (basis) in Hilbert space represents a PSA, i.e., the
definite existence of a multiplicity of powers, each one of them with a specific
potentia.

III. Actual State of Affairs (ASA): Given a PSA and the choice of a definite basis
B, B ′, B ′′, . . . (or equivalently a C.S.C.O.) a context is defined in which a set
of powers, each one of them with a definite potentia, is univocally determined
as related to a specific experimental arrangement (which in turn corresponds
to a definite ASA). The context builds a bridge between the potential and
the actual realms, between quantum powers and classical objects. The exper-
imental arrangement (in the ASA) allows the powers (in the PSA) to express
themselves in actuality through elementary processes which produce actual
effectuations.

IV. Quantum Situations, Powers, and Potentia: Given a PSA,�, and the context
we call a QS to any superposition of one or more than one power. In general
given the basis B = {|αi 〉} the quantum situation QS�,B is represented by the
following superposition of powers:

c1|α1〉 + c2|α2〉 + · · · + cn|αn〉 (11.4.1)

We write the QS of the PSA, �, in the context B in terms of the order pair
given by the elements of the basis and the coordinates in square modulus of
the PSA in that basis:

QS�,B = (|αi 〉, |ci |2) (11.4.2)

The elements of the basis, |αi 〉, are interpreted in terms of powers. The coor-
dinates of the elements of the basis in square modulus, |ci |2, are interpreted
as the potentia of the power |αi 〉, respectively. Given the PSA and the context,
the quantum situation, QS�,B , is univocally determined in terms of a set of
powers and their respective potentia. (Notice that in contradistinction with the
notion of quantum state the definition of a QS is basis dependent.)

V. Elementary Process: In QM one can observe discrete shifts of energy (quan-
tum postulate). These discrete shifts are interpreted in terms of elementary
processes which produce actual effectuations. An elementary process is the
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path which undertakes a power from the potential realm to its actual effectua-
tion. This path is governed by the immanent cause which allows the power to
remain preexistent in the potential realm independently of its actual effectua-
tion. Each power |αi 〉 is univocally related to an elementary process represented
by the projection operator Pαi = |αi 〉〈αi |.

VI. Actual Effectuation of Powers (Measurement): Powers exist in the mode of
being of ontological potentiality. An actual effectuation is the expression of a
specific power in actuality. Different actual effectuations expose the different
powers of a given QS. In order to learn about a specific PSA (constituted
by a set of powers and their potentia) we must measure repeatedly the actual
effectuations of each power exposed in the laboratory. (Notice that we consider
a laboratory as constituted by the set of all possible experimental arrangements
that can be related to the same �.)

VII. Potentia (Born Rule): A potentia is the strength of a power to exist in the
potential realm and to express itself in the actual realm. Given a PSA, the
potentia is represented via the Born rule. The potentia pi of the power |αi 〉 in
the specific PSA, �, is given by:

Potentia (|αi 〉, �) = 〈�|Pαi |�〉 = T r [P� Pαi ] (11.4.3)

In order to learn about a QS we must observe not only its powers (which are
exposed in actuality through actual effectuations) but we must also measure
the potentia of each respective power. In order to measure the potentia of each
power we need to expose the QS statistically through a repeated series of mea-
surements . The potentia, given by the Born rule, coincides with the probability
frequency of repeated measurements when the number of observations goes
to infinity.

VIII. Potential Effectuation of Powers (Schrödinger Evolution): Given a PSA,
�, powers and potentia evolve deterministically, independently of actual effec-
tuations, producing potential effectuations according to the following unitary
transformation:

i�
d

dt
|�(t)〉 = H |�(t)〉 (11.4.4)

While potential effectuations evolve according to the Schrödinger equation,
actual effectuations are particular expressions of each power (that constitutes
the PSA, �) in the actual realm. The ratio of such expressions in actuality is
determined by the potentia of each power.

According to our interpretation, just like classical physics talks about entities com-
posed by properties that preexist in the actual realm, QM talks about powers that
preexist in the (ontological) potential realm, independently of the specific actual
context of inquiry. This interpretational move allows us to define powers indepen-
dently of the context regaining an objective picture of physical reality independent
of measurements and subjective choices. The price we are willing to pay is the aban-
donment of a metaphysical equation that has been presupposed in the analysis of
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the interpretation of QM: ‘actuality = reality’. In the following section, taking into
account a typical quantum experience, we discuss in what sense powers are to be
considered in terms of ‘contradiction’ or ‘contrariety’.

11.5 Contradiction and Contrariety in Quantum
Superpositions

Arenhart and Krause have called the attention to the understanding of contradiction
via the Square of Opposition.

States in QM such as the one describing the famous Schrödinger cat—which is in a superpo-
sition between the states ‘the cat is dead’ and ‘the cat is alive’—present a challenge for our
understanding which may be approached via the conceptual tools provided by the square.
According to some interpretations, such states represent contradictory properties of a system
(for one such interpretation see, for instance, da Costa and de Ronde [6]). On the other hand,
we have advanced the thesis that states such as ‘the cat is dead’ and ‘the cat is alive’ are
contrary rather than contradictory (see Arenhart and Krause [1, 2]). [3, p. 2]

Within their CAQS, Arenhart and Krause have argued in [3] against the concept of
potentiality and its relation to contradiction concluding “that contrariety is still amore
adequate way to understand superpositions.” Elsewhere, together with Domenech
and Freytes, we have analyzed via the Square of Opposition the meaning of quantum
possibility. We argued that the notion of possibility needs to be discussed in terms of
the formal structure of the theory itself and that, in such case, one should not study the
Classical Square of Opposition but rather an Orthomodular Square of Opposition. In
[29] we developed such a structure and in [21] we provided an interpretation of the
Orthomodular Square of Opposition in terms of the notion of potentiality. Further-
more, according to the author of this paper, the development should also consider the
analysis of the hexagon, paraconsistent negation, and modalities provided by Béziau
in [6, 7]. In this section we argue that Arenhart and Krause have misinterpreted our
notion of ‘potentiality’ and ‘power’ and explain why the PAQS is better suited to
account for quantum superpositions than the CAQS.

Let us begin our analysis recalling the traditional definitions of the famous square
of opposition and the meaning of contradiction and contrariety.

Contradiction Propositions: α and β are contradictory when both cannot be true
and both cannot be false.
Contrariety Propositions: α and β are contrary when both cannot be true, but
both can be false.
Subcontrariety Propositions: α and β are subcontraries when both can be true,
but both cannot be false.
Subaltern Propositions: α is subaltern to proposition β if the truth of β implies
the truth of α.
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Discussing the inadequacy of the notion of power, Arenhart and Krause provide
the following analysis:

First of all, a property, taken by itself as a power (a real entity not actual), is not affirmed
nor denied of anything. To take properties such as ‘to have spin up in the x direction’ and ‘to
have spin down in the x direction’ by themselves does not affirm nor deny anything. To say
‘to have spin up in the x direction’ is not even a statement, it is analogous to speak ‘green’ or
‘red hair’. To speak of a contradiction, it seems, one must have complete statements, where
properties or relations are attributed to something. That is, one must have something like
‘spin up is measured in a given direction’, or ‘Mary is red haired’, otherwise there will be
no occasion for truth and falsehood, and consequently, no occasion for a contradiction. So,
the realm of the potential must be also a realm of attribution of properties to something if
contradiction is to enter in it. However, this idea of attribution of properties seems to run
counter the idea of a merely potential realm. On the other hand, the idea of a contradiction
seems to require that we speak about truth and falsehood. [3]

The idea that potentiality determines a contradictory realm goes back to Aristotle
himself who claimed that contradictions find themselves in potentiality. Of course,
as remarked by Arenhart and Krause, the square of opposition is discussing about
actual truth and falsehood. Thus, potentiality is not considered in terms of a mode
of existence but rather as mere logical possibility. The interesting question is if our
representation of quantum superpositions in terms of powers is compatible with the
square. We believe it easy to see that such is the case provided special attention is
given to the realms involved in the discussion. Furthermore, it is also easy to see that
the CAQS is incompatible with QM due to its empirical inadequacy. Some remarks
go in order.

First, we must stress the fact that a power is not—as claimed by Arenhart and
Krause [Op. cit., p. 7]—an entity. A physical entity exists in the mode of being
of actuality and is represented by three main logical and ontological principles:
the principle of existence, the principle of noncontradiction, and the principle
of identity (see for discussion [40]). As discussed in the previous section, quite
independently of such principles we have defined the notion of power in terms of the
principle of indetermination, the principle of superposition, and the principle
of difference. The adequacy or not of powers to interpret QM needs to be analyzed
taking into account this specific scheme [16]. Instead of doing so, Arenhart and
Krause have criticized a notion of power which they have not specified in rigorous
terms.

Second, truth and falsehood are related to actuality, since in the orthodox view this
is the only exclusive realm considered as real. However, our notion of ontological
potentiality is completely independent of actuality, and since powers are real objective
existents it makes perfect sense to extend ‘truth’ and ‘falsity’ to this mode of being. It
is the PSA which determines the specific set of powers which potentially preexist in
a given quantum situation. Thus, in analogous fashion to the way an ASA determines
the set of properties which are ‘true’ and ‘false’, a PSA determines a set of powers
which are ‘true’ and ‘false’, namely, those powers which potentially preexist and can
be exposed through the choice of different quantum situations (i.e., themultiplicity of
possible contexts). Our redefinition of truth and falsehoodwith respect to potentiality
escapes any subjective choice and regains an objective description of physical reality.
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In a given situation all the powers which determine possible actual effectuations
compose a PSA. For example, a Stern–Gerlach apparatus in a laboratory which
can be placed in the x , y, or z direction determines the existence of the powers:
| ↑x>, | ↓x>, | ↑y>, | ↓y>, | ↑z>, and | ↓z> irrespectively of the actual choice of
the particular context (i.e., the particular actual direction in which the Stern–Gerlach
is placed). We can say that even though the PSA is defined independently of the
context of inquiry, QS are indeed contextual existents.

Third, let us investigate, provided we grant, for the sake of the argument, that
powers do exist.Which is then themost suitable notion to account for two powers that
canbe actualized in a typical quantumexperiment?Considerwehave aStern–Gerlach
apparatus placed in the x direction, if we have the following quantum superposition:
α | ↑x> +β | ↓x>, thismeanswehave the power of having spin up in the x-direction,
| ↑x>, with potentia |α|2 and the power of having spin down in the x-direction, | ↓x>,
with potentia |β|2. Both powers can become actual. Is it contradiction or contrariety
the best notion suited to account for powers in this quantum experiment? Given this
QS, it is clear that both actualizations of the powers (elementary processes) | ↑x>

and | ↓x> cannot be simultaneously ‘true’ in actuality, since only one of them will
become actual; it is also the case that both actualizations of the powers (elementary
processes) | ↑x> and | ↓x> cannot be simultaneously ‘false’ in actuality, sincewhen
we measure this QS we know we will obtain either the elementary process ‘spin up
in the x-direction’, | ↑x><↑x |, or the elementary process ‘spin down in the x-
direction’, | ↓x><↓x |. Now, if we consider the CAQS, contrary propositions are
determined when both cannot be true, but both can be false. But this is not the case
in QM, in particular, it is not the case for the example we have just considered. Given
a measurement on the quantum superposition, α | ↑x> + β | ↓x>, one of the two
terms will become actual (true) while the other term will not be actual (false), which
implies that both cannot be false. Thus, while the PAQS is able to describe what we
know about what happens in a typical quantummeasurement, the CAQS of Arenhart
and Krause is not capable of fulfilling empirical adequacy.

In the conclusion of their paper, Arenhart and Krasue discuss what happens when
the state is in a superposition. They argue that one possibility is to claim that “when
not in an eigenstate the system does not have any of the properties associated with the
superposition.” According to them: “This option is compatible with the claim that
states in a superposition are contraries: both fail to be the case.”But aswe have seen in
the last section, given a superposition state such as α | ↑x> + β | ↓x>, we knowwith
certainty that one of the termswill become actual ifmeasured. Thus, itmakes no sense
to claim that both will ‘fail to be the case’. The CAQS, fails to provide the empirical
adequacy needed to account for basic quantum experiments. A second possibility is
to “assume another interpretation […] and hold that even in a superposition one of the
associated properties hold, even if not in an eigenstate.” According to Arenhart and
Krasue: “Following this second option, notice, the understanding of superpositions
as contraries still hold: even when one of the properties in a superposition hold, the
other must not be the case.” However, if only one of the properties is true then it
seems difficult to explain how a property that is the case can interact with a property
that is not the case. As we know, the interaction of superpositions happens between
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all terms in the superposition, the possibilities contained in the superposition may
interfere between each other. The question then raises: how can something that exists
interact with something else which does not exist?7

11.6 Final Remarks

Although we agree with Arenhart and Krause regarding the fact that the formal
approach that we provided in [11] was not completely adequate to the idea dis-
cussed here, we must also remark that we never claimed that this was the final formal
description of quantum superpositions but rather a very first step in such paracon-
sistent development. In this respect, we believe that this approach is still in need of
further development.8 However, we must also remark that the approach provides a
suitable answer to the existence of the multiple terms in a quantum superposition,
something that is needed in order to make sense about present and future quantum
experiments and technical developments. We believe that the possibilities it might
open deserve not only attention but also criticism. We thank Arenhart and Krause
for their careful and incisive analysis.

References

1. Arenhart, J.R., Krause, D.: Oppositions in quantum mechanics. In: Béziau, J.-Y., Katarzyna,
G.-K. (eds.) New Dimensions of the Square of Opposition, pp. 337–356. Philosophia Verlag,
Munich (2014)

2. Arenhart, J.R., Krause, D.: Contradiction, quantum mechanics, and the square of opposition.
Logique et Analyse (2014)

3. Arenhart, J.R., Krause, D.: Potentiality and contradiction in quantum mechanics. In: Koslow,
A., Buchsbaum, A. (eds.) The Road to Universal Logic (volume II). Springer (2014)

4. Bacciagaluppi, G.: Topics in the modal interpretation of quantum mechanics. Doctoral Disser-
tation. University of Cambridge, Cambridge (1996)

5. Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H.,
Markham, M., Twitchen, D.J., Childress, L., Hanson, R.: Heralded entanglement between
solid-state qubits separated by three metres. Nature 497, 86–90 (2013)

6. Béziau, J.-Y.: The power of the hexagon. Log. Univers. 6, 1–43 (2012)
7. Béziau, J.-Y.: Paraconsistent logic and contradictory viewpoint. To appear in Rev. Bras. de

Filosofia 241 (2014)
8. Bokulich, P., Bokulich, A.: Niels Bohr’s generalization of classical mechanics. Found. Phys.

35, 347–371 (2005)
9. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)
10. Clausen, C., Usmani, I., Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Gisin,

N.: Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011)

7For a detailed analysis of the relation between quantum superpositions and physical reality see:
[19].
8A possible development in line with the interpretation presented in this paper will be analyzed in
[12].



264 C. de Ronde

11. da Costa, N., de Ronde, C.: The paraconsistent logic of quantum superpositions. Found. Phys.
43, 845–858 (2013)

12. daCosta,N., deRonde, C.: The ParaconsistentApproach toQuantumSuperpositionsReloaded:
Formalizing Contradictory Powers in the Potential Realm, in preparation (2015)

13. de Ronde, C.: For and against metaphysics in the modal interpretation of quantum mechanics.
Philosophica 83, 85–117 (2010)

14. de Ronde, C.: The contextual and modal character of quantum mechanics: a formal and philo-
sophical analysis in the foundations of physics. PhD dissertation, Utrecht University (2011)

15. deRonde,C.:QuantumSuperpositions andCausality: on theMultiple Paths to theMeasurement
Result. Los Alamos Archive (2013). arXiv:1310.4534

16. de Ronde, C.: Representing Quantum Superpositions: Powers, Potentia and Potential Effectu-
ations. Los Alamos Archive (2013). arXiv:1312.7322

17. de Ronde, C.: A defense of the paraconsistent approach to quantum superpositions (Answer to
Arenhart and Krause). Los Alamos Archive (2014). arXiv:1404.5186

18. de Ronde, C.: Hilbert space quantum mechanics is contextual. (Reply to R.B. Griffiths). Los
Alomas Archive (2015). arxiv:1502.05396

19. de Ronde, C.: Quantum superpositions do exist! but ‘quantum physical reality �= actuality’.
Los Alamos Archive (2015). arxiv:1502.05311

20. de Ronde, C., Freytes, H., Domenech, G.: Interpreting the modal Kochen-Specker theorem:
possibility and many worlds in quantum mechanics. Stud. Hist. Philos. Mod. Phys. 45, 11–18
(2014)

21. de Ronde, C., Freytes, H., Domenech, G.: Quantum mechanics and the interpretation of the
orthomodular square of opposition. In: Béziau, Jean-Yves, Gan-Krzywoszynska, Katarzyna
(eds.) New Dimensions of the Square of Opposition, pp. 223–242. Philosophia Verlag, Munich
(2014)

22. deRonde,C.,Massri,C.:Revisiting theOrthodox Interpretationof ‘Physical States’ inQuantum
Mechanics. Los Alamos Archive (2014). arXiv:1412.2701

23. Dieks, D.: Quantum mechanics without the projection postulate and its realistic interpretation.
Found. Phys. 19, 1397–1423 (1989)

24. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Lon-
don (1974)

25. Domenech, G., Freytes, H., de Ronde, C.: Scopes and limits ofmodality in quantummechanics.
Ann. Phys. 15, 853–860 (2006)

26. Domenech, G., Freytes, H., de Ronde, C.: A topological study of contextuality and modality
in quantum mechanics. Int. J. Theor. Phys. 47, 168–174 (2008)

27. Domenech, G., Freytes, H., de Ronde, C.: Modal-type orthomodular logic. Math. Log. Q. 3,
307–319 (2009)

28. Domenech, G., Freytes, H., de Ronde, C.: Many worlds and modality in the interpretation of
quantum mechanics: an algebraic approach. J. Math. Phys. 50, 072108 (2009)

29. Freytes, H., de Ronde, C., Domenech, G.: The square of opposition in orthodmodular logic.
In: Béziau, Jean-Yves, Jacquette, Dale (eds.) Around and Beyond the Square of Opposition:
Studies in Universal Logic, pp. 193–201. Springer, Basel (2012)

30. Fuchs, C., Peres, A.: Quantum theory needs no ‘interpretation’. Phys. Today 53, 70 (2000)
31. Griffiths, R.B.: Hilbert space quantum mechanics is non contextual. Stud. Hist. Philos. Mod.

Phys. 44, 174–181 (2013)
32. Heisenberg, W.: Physics and Philosophy, World Perspectives. George Allen and Unwin Ltd.,

London (1958)
33. Ma, X., Zotter, S., Kofler, J., Ursin, R., Jennewein, T., Brukner, C., Zeilinger, A.: Experimental

delayed-choice entanglement swapping. Nat. Phys. 8, 480–485 (2012)
34. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical ‘Schrödinger

cats’ from photon number states. Nature 448, 784–786 (2007)
35. Priest, G.: In Contradiction. Nijhoff, Dordrecht (1987)
36. Rédei, M.: Some historical and philosophical aspects of quantum probability theory and its

interpretation. In: Dieks, D. et al. (eds.) Probabilities, Laws, and Structures, pp. 497–506.
Springer (2012)

http://arxiv.org/abs/1310.4534
http://arxiv.org/abs/1312.7322
http://arxiv.org/abs/1404.5186
http://arxiv.org/abs/1502.05396
http://arxiv.org/abs/1502.05311
http://arxiv.org/abs/1412.2701


11 Modality, Potentiality, and Contradiction in Quantum Mechanics 265

37. Schrödinger, E.: The present situation in quantummechanics. Naturwiss 23, 807 (1935). Trans-
lated to english. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement.
Princeton University Press, Princeton (1983)

38. Smets, S.: The modes of physical properties in the logical foundations of physics. Log. Log.
Philos. 14, 37–53 (2005)

39. Van Fraassen, B.C.: Quantum Mechanics: an Empiricist View. Clarendon, Oxford (1991)
40. Verelst, K., Coecke, B.: Early Greek thought and perspectives for the interpretation of quantum

mechanics: preliminaries to an ontological approach. In: Aerts, D. (ed.) The Blue Book of
Einstein Meets Magritte, pp. 163–196. Kluwer Academic Publishers, Dordrecht (1999)

41. Wheeler, J.A., Zurek, W.H. (eds.): Theory and Measurement. Princeton University Press,
Princeton (1983)



Part IV
Tools and Framework



Chapter 12
Consequence–Inconsistency Interrelation:
In the Framework of Paraconsistent Logics

Soma Dutta and Mihir K. Chakraborty
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12.1 Introduction

The notions of consequence and consistency, and hence inconsistency too, are inter-
woven in the context of classical logic. In [16] Surma presented two sets of axioms
characterizing the notions of consequence and consistency, and showed that taking
any one of them as primitive the other can be obtained. This equivalence greatly
depends on the idea that inconsistency, also called negation inconsistency (i.e. a
set of formulae yielding a formula and its negation together), and triviality, also
called absolute inconsistency (i.e. every formula derivable from a set of formulae)
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are equivalent. This is not the case in the context of paraconsistent logics. As a result
consequence–inconsistency equivalence does not work here.

From the notion of absolute inconsistency it is clear that classical notion of incon-
sistency is global in nature. That is, all inconsistent sets of formulae are identical in
the sense that their sets of consequences are the same viz. the set of all formulae. In
paraconsistent logics inconsistency means negation inconsistency, which requires a
formula and its negation to be followed together. That is, it depends on a formula. So,
we introduce a relativized notion of inconsistency. More specifically inconsistency
in the context of paraconsistent logics, let us call para-inconsistency or in short PI,
is a binary relation between a set of formulae and a single formula. We say (X,α) ∈
PI to represent that X is inconsistent with respect to α. A similar notion one can find
in [6] where authors talked about α-contradictory set, though it was not the focus
of the discussion of the paper [6]. In our earlier paper [11] this relativized notion of
inconsistency has been studied first time as an alternative notion of classical incon-
sistency, which could fit well with a non-explosive notion of consequence. In this
paper [11] we have concentrated only on the negation fragment of a language. This
paper is a continuation of the earlier one, and here we shall consider the study of
consequence–inconsistency duo over the entire propositional fragment of a language.

12.2 Non-explosive Consequence and Corresponding
Inconsistency

The notion of inconsistency, in a syntactic framework of a logic, is defined in terms
of the notion of consequence and the object language negation (¬). In classical logic,
logical connectives are so related that its explosive nature does not solely depend on
the connective negation (¬). In this section we shall explore different fragments of a
propositional language, and exclude possible ways of explosion. In other words, we
shall look for those conditions which are necessitated by the law of non-explosion,
i.e. there exists some wff α such that {α,¬α} � β for some β.

Let us first concentrate on the ¬-fragment of a language.

12.2.1 Consequence and Inconsistency in the ¬-fragment

In our presentation we need to refer to the standard sequent calculus presentation of
classical logic [12] at several points of time. We consider a sequent as an expres-
sion of the form X � Y , where X, Y are sets of formulae. With the progress of the
presentation of this article, according to our requirement, gradually we shall impose
constraints on the notion of sequent. For the sake of reference we stick to the follow-
ing sequent calculus presentation for the structural and non-structural rules.
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axiom α � α

cut � � �,α α, � � �

�,� � �,�

right rule left rule
dilution � � � � � �

� � �,α α, � � �

right rule left rule
& � � �,α � � �,β α, � � � β, � � �

� � �,α&β α&β, � � � α&β, � � �

∨ � � �,α � � �,β α, � � � β, � � �

� � �,α ∨ β � � �,α ∨ β α ∨ β, � � �

⊃ α, � � �,β � � �,α β,� � �

� � �,α ⊃ β α ⊃ β, �,� � �,�

¬ α, � � � � � �,α
� � �,¬α ¬α, � � �

We shall also refer to the following rules of ¬, which are derivable from consecutive
use of ¬-left and ¬-right.
(¬¬-I) α � ¬¬α (¬¬-E) ¬¬α � α.

Let us present some derivations generating explosion in the ¬-fragment of a
language.
(a) ¬-left + dilution-right imply explosion.
(D1) α � α (D2) α � α

α,¬α � (¬-left) α � α,β (dil-right)
α,¬α � β (dil-right) α,¬α � β (¬-left)

(b) ¬-right + ¬-left + dilution-left + cut imply explosion.
(D3) α � α

� α,¬α (¬-right)
¬β � α,¬α (dilution-left)
¬β,¬α � ¬α (¬-left)
¬α,¬¬α � ¬¬β (¬-left, right)

α � ¬¬α ( ¬¬-I)
α,¬α � ¬¬β (cut)

¬¬β � β (¬¬-E)
α,¬α � β (cut)

So, from the above derivations we can conclude that for non-explosion it is necessary
to (a) not to take¬-left and dilution-right together, and (b) not to take¬-right,¬-left,
dilution-left and cut together.

From (a) and (b) it is clear that to avoid explosionwe have to drop some of the rules
from the above-mentioned set of rules. We prefer to keep the structural properties
of a consequence relation intact. We know that a sequent of the form X � Y never
representsY as a set of consequences ofX; rather it represents that at least one formula
of Y is a consequence of X. We hence represent consequence, which is presented
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by a sequent, as X � α, and set of all consequences of X as C(X), where C(X) =
{α : X � α}. This consideration automatically helps us to eliminate ¬-left, ¬-right
from our system of concern. Instead of ¬-left, ¬-right we may consider ¬¬-I and
¬¬-E, the weaker versions of ¬-left, ¬-right, from now onwards.

In classical logic ¬-right and ¬-left are the conditions, through which the behav-
iour of classical negation is captured. Let us explore in the absence of these two
properties what else can be added to ¬¬-I and ¬¬-E to keep the properties of nega-
tion as close as possible to the classical one, at the same time disrespecting explosion.
Following Michael Dunn’s kite diagram for negation [9, 10] let us list some proper-
ties of negation. As ¬¬-I and ¬¬-E are already mentioned above, we list the other
properties.

X,α � β (Subminimal)
X,¬β � ¬α
X � α X � ¬α (Ex Contradictionae Quodlibet/ECQ)

X � β
X,α � β X,¬α � β (R¬)

X � β
It can be shown that (i) subminimal + ¬¬-I imply α,¬α � ¬β,

(ii) subminimal + ¬¬-E imply explosion and
(iii) subminimal + ¬¬-E + R¬ imply explosion.

It is visible that the subminimal property of negation is the common factor caus-
ing explosion. So, the idea is to drop the subminimal property of ¬, and consider
the other properties excluding explosion (i.e. ECQ). Following this line of thought
in [11] we have proposed sets of axioms characterizing a non-explosive notion of
consequence and its corresponding notion of inconsistency. The sets of axioms in
the ¬-fragment of a language [11] are given below.

C : P(F) �→ P(F), denoting a consequence operator, satisfies the following con-
ditions.

(C1): X ⊆ C(X). (reflexivity)
(C2): X ⊆ Y implies C(X) ⊆ C(Y). (monotonicity/dilution)
(C3): C(C(X)) = C(X). (idempotence/cut)
(C4): For some α, C({α,¬α}) 	= F. (non-explosion)
(C5): C(X ∪ {α}) ∩ C(X ∪ {¬α}) = C(X). (R ¬)
(C6): C({α}) ⊆ C({¬¬α}). (¬¬-E)
(C7): C({¬¬α}) ⊆ C({α}). (¬¬-I)

PI ⊆ P(F) × F, denoting the notion of inconsistency, is a binary relation such that
it satisfies

(PI1) {(X ∪ {¬α},α) : X ⊆ F,α ∈ X} ⊆ PI,
(PI2) If X ⊆ Y then (X,α) ∈ PI implies (Y ,α) ∈ PI,
(PI3) If for all α ∈ Y , (X ∪ {¬α},α) ∈ PI, then (X ∪ Y ,β) ∈ PI implies

(X,β) ∈ PI,
(PI4) For some α, there is some β such that ({α,¬α},β) /∈ PI,
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(PI5) (X ∪ {α},β) ∈ PI and (X ∪ {¬α},β) ∈ PI imply (X,β) ∈ PI,
(PI6) (X,¬α) ∈ PI implies (X,α) ∈ PI, and
(PI7) (X ∪ {¬¬α},β) ∈ PI implies (X ∪ {α},β) ∈ PI.

Following theorems [11] establish that C, the notion of non-explosive consequence,
and PI, the relativized notion of inconsistency, are equivalent in the sense that con-
sidering one of the notions as primitive the other can be derived.

(i) Theorem: Let PI be given, and C be defined as follows:
α ∈ C(X) if (X ∪ {¬α},α) ∈ PI. Then C satisfies (C1) to (C7) axioms.

(ii) Theorem: Let C be given, and PI be defined as follows:
(X,α) ∈ PI if {α,¬α} ⊆ C(X). Then PI satisfies (PI1) to (PI7) axioms.

Some of the logics [1–4, 6, 13, 17, 19] satisfying the consequence axioms, and hence
inconsistency axioms too, are the following.

(1) D2 (discussive logic, Jaśkowski, 1977)
(2) Jn, 1 ≤ n ≤ 5 (Arruda, da Costa, 1968)
(3) J3 (da Costa, D’Ottavino, 1970)
(4) Calculus of antinomies (Asenjo, 1966)
(5) LP (Logic of paradox, Priest, 1979)
(6) Pac (Avron, 1991)
(7) Cie systems (Carnielli, Coniglio, Marcos, 2003).

12.2.2 Consequence and Inconsistency
in the {¬,∨}-fragment

From now onwards, for each connective ∗, we shall consider two kinds of properties
of ∗; one is related to its basic nature, i.e. right/left rules, and the other is related to
its interaction with ¬. In case of the connective ∨, usual interpretation of which is
linguistic ‘or’, disjunctive syllogism (DS) is a property which presents the interaction
of ∨ with respect to the ¬. DS is given by α,¬α ∨ β � β.

Below, some derivations generating explosion in the {¬,∨}-fragment are pre-
sented. Though while characterizing the notion of consequence in the ¬-fragment
we have decided to consider sequent of the form X � α, and hence eliminated ¬-
left, ¬-right from our concern of presentation, we still continue to refer to the forms
of the table of Sect. 2.1 in the further sections also. The reason behind this is first
to show various ways leading to explosion in the standard presentation of sequent
calculus, and then to format the notion of consequence in our framework based on
that observations.
(a) ∨-right + cut + DS imply explosion
(D4) ¬α � ¬α

¬α � ¬α ∨ β (∨-right)
α,¬α ∨ β � β (DS)

α,¬α � β (cut)

http://dx.doi.org/10.1007/978-81-322-2719-9_2
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(b) ∨-right + cut imply (R∨) ¬-left + ∨-left imply DS

(D5) X,α ∨ β � γ (assume) (D6) α � α
α � α ∨ β (∨-right) α,¬α,� (¬-left)

X,α � γ (cut) β � β
α,¬α ∨ β � β (∨-left)

(R∨) + DS imply explosion

(D7) α,¬α ∨ β � β (DS)
α,¬α � β (R∨)

From (a) it is clear that non-explosion necessitates that ∨-right and DS cannot be
taken together, and from (b) that ∨-right and ∨-left cannot be taken together in the
presence of¬-left. As we have already abandoned¬-left from our consideration, we
need to only ensure non-occurence of ∨-right and DS together.

So, there are two possibilities to extend the axiomatization obtained at the ¬-
fragment. Let us denote C characterized by (C1) to (C7) by C{¬}.

C{¬}
↙ ↘

(∨-right) + (∨-left) (∨-left) + (DS)

So, the extensions are
(b1) C{¬} +

(C8) α ∈ C(X) implies α ∨ β ∈ C(X) (∨-right)
(C9) C(X ∪ {α}) ∩ C(X ∪ {β}) ⊆ C(X ∪ {α ∨ β}) (∨-left)
(b2) C{¬} +

(C9) C(X ∪ {α}) ∩ C(X ∪ {β}) ⊆ C(X ∪ {α ∨ β}) (∨-left)
(C10) β ∈ C({α,¬α ∨ β}) (DS)

Correspondingly, the axioms for PI also are extended in two wings.
(b1) PI{¬} +

(PI8) (X ∪ {¬α},α) ∈ PI implies (X ∪ {¬(α ∨ β)},α ∨ β) ∈ PI
(PI9) (X ∪ {α}, γ) ∈ PI and (X ∪ {β}, γ) ∈ PI imply (X ∪ {α ∨ β}, γ) ∈ PI

(b2) PI{¬} +

(PI9) (X ∪ {α}, γ) ∈ PI and (X ∪ {β}, γ) ∈ PI imply (X ∪ {α ∨ β}, γ) ∈ PI
(PI10) (X ∪ {β}, γ) ∈ PI implies (X ∪ {α,¬α ∨ β}, γ) ∈ PI

In the same way as given in theorems (i) and (ii) of Sect. 2.1, the following theorem
can be established.

http://dx.doi.org/10.1007/978-81-322-2719-9_2
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Theorem: C{¬,∨}, the notion of non-explosive consequence, and PI{¬,∨}, the rela-
tivized notion of inconsistency, are equivalent for both the extensions (b1) and (b2).

The bifurcation of C{¬} into two branches b1 and b2 is evident from the following
theorem.

Theorem: In the presence of (C1) to (C4)

(i) if (C8) holds, then (C10) does not hold, and
(ii) if (C10) holds, then (C8) does not hold.

Proof Below we give a proof outline of (i).
(C4) ensures the presence of an α, β such that β /∈ C({α,¬α}).
By (C1) we have ¬α ∈ C({¬α}). Hence by (C8) ¬α ∨ β ∈ C({¬α}).
Therefore, using (C2) and (C3) we have C({α,¬α ∨ β}) ⊆ C({α,¬α}).
Hence as β /∈ C({α,¬α}), β /∈ C({α,¬α ∨ β}). �

12.2.3 Consequence and Inconsistency
in {¬,∨,&}-fragment

There are two versions for non-explosion in a {¬,&}-fragment of a language. One is
the usual one, i.e. {α,¬α} � β for some α,β; and the other is α&¬α � β for some
α,β. Some logical systems accept true contradiction, i.e. α&¬α may not be false
there. Those systems, as a result, may validate α&¬α � β for some α,β. Believing
in true contradiction is considered as dialetheism. There are some logical systems
which endorse both α&¬α � β for some α, β, as well as {α,¬α} � β for some
α, β. These are known as strong paraconsistent logics. The systems, where only
{α,¬α} � β for any β is violated, are known as weak paraconsistent systems.

In this section we shall consider these two kinds of explosion. α&¬α � β for any
β will be referred to as &-explosion.

(a) (&-explosion) + &-right + cut imply explosion
(D8) α&¬α � β

α � α ¬α � ¬α
α,¬α � α&¬α (&-right)

α,¬α � β (cut)

(b) ¬-left + &-left + dilution-right + cut imply &-explosion

(D9) α � α α � α ¬α � ¬α
α,¬α � α&¬α � α α&¬α � ¬α (¬-left, &-left)

α,¬α � β (dil-right)
α&¬α � β (cut)

(c) α&β ≡ ¬(¬α ∨ ¬β) + subminimal + ¬¬-E + LEM + dilution + cut imply &-
explosion
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(D10) � ¬α ∨ ¬¬α (LEM)
¬β � ¬α ∨ ¬¬α (dilution)
¬(¬α ∨ ¬¬α) � ¬β (subminimal)
α&¬α � ¬¬β (definition of &)

¬¬β � β (¬¬-E)
α&¬α � β (cut)

Derivation of (a) suggests that non-explosion does not endorse &-right and &-
explosion to occur together. There are well-known paraconsistent systems, known
as non-adjunctive logics [1, 19], where &-explosion is allowed but non-explosion is
achieved by rejecting &-right. In derivations of (b) and (c), &-explosion is achieved
via some logical rules which include ¬-left (in b), and subminimal property of ¬
(in c). Both of these properties are excluded from our axiomatization. So, one can
safely go with two possible extensions of C{¬,∨}; one is to include &-right, &-left,
and the other is to include &-left, &-explosion. LEM is equivalent to (R¬), i.e. (C5)
in the presence of∨-right and∨-left. So, in the branch (b1) of {¬,∨}-fragment LEM
can be obtained. One can also define &in terms of ¬ and ∨, as given in (c). But
this interdefinability does not ensure the derivability of &-right from the rules for ∨-
right/left and axioms of C{¬}.

So, we propose a pair of simple extensions of C{¬,∨}, each for both the branches
(b1) and (b2).

C{¬,∨}
↙ ↘

(&-right) + (&-left) (&-left) + (&-explosion)

The extensions are given below for i = 1, 2.
(bi1) C{¬,∨} +

(C11) α,β ∈ C(X) implies α&β ∈ C(X) (&-right)
(C12) γ ∈ C({α}) implies γ ∈ C({α&β}) (&-left)

(bi2) C{¬,∨} +

(C12) γ ∈ C({α}) implies γ ∈ C({α&β}) (&-left)
(C13) β ∈ C({α&¬α}) (&-explosion)

Accordingly, the extensions for PI{¬,∨} are given below.
(bi1) PI{¬,∨} +

(PI11) (X ∪ {¬α},α) ∈ PI and (X ∪ {¬β},β) ∈ PI imply
(X ∪ {¬(α&β)},α&β) ∈ PI

(PI12) (X ∪ {¬(α&β)},α&β) ∈ PI implies (X ∪ {¬α},α) ∈ PI

(bi2) PI{¬,∨} +

(PI12) (X ∪ {¬(α&β)},α&β) ∈ PI implies (X ∪ {¬α},α) ∈ PI
(PI13) For any α,β, ({α&¬α},β) ∈ PI .

As given in Sects. 2.1 and 2.2, here also we have proved the following theorem.

http://dx.doi.org/10.1007/978-81-322-2719-9_2
http://dx.doi.org/10.1007/978-81-322-2719-9_2
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Theorem: For each of the branches bij, i, j = 1, 2, the respective notions of C{¬,∨,&}
and PI{¬,∨,&} are equivalent.

The bifarcation of C{¬,∨} for each of its branch is endorsed by the following
theorem.

Theorem: In the presence of (C1) to (C4)

(i) if (C11) holds, then (C13) does not hold, and
(ii) if (C13) holds, then (C11) does not hold.

12.2.4 Consequence and Inconsistency
in {¬,∨,&,⊃}-fragment

Modus ponens (MP) is a rule which is almost everywhere acceptable in the context
of reasoning. In many logical systems the connective implication (⊃) is defined in
terms of ∨ and ¬; or vice-versa, i.e. ∨ is defined in terms of ¬ and ⊃. In such cases,
MP and DS are equivalent to each other. Specifically, MP + α ⊃ β ≡ ¬α ∨ β imply
DS, and DS + α ⊃ β ≡ ¬α ∨ β imply MP. Let us see some derivations generating
explosion in the {¬,∨,&,⊃}-fragment of a language.
(a) ∨-right + cut + MP + α ⊃ β ≡ ¬α ∨ β imply explosion.

(D11) X,α ∨ β � γ
α � α

α � α ∨ β (∨-right)
X,α � γ (cut)

Call the property obtained above (∨N ): X,α ∨ β � γ
X,α � γ

(D12) α,α ⊃ β � β (MP)
α,¬α ∨ β � β (definition of ∨)
α,¬α � β (∨N )

(b) DT + α ∨ β ≡ ¬α ⊃ β imply ∨-right: (D13) β � β
¬α,β � β (dilution)
β � ¬α ⊃ β (DT)
β � α ∨ β

(¬¬-I) + MP + α ∨ β ≡ ¬α ⊃ β imply DS.
(D14) ¬¬α,¬¬α ⊃ β � β (MP)

α � ¬¬α (¬¬-I)
α,¬¬α ⊃ β � β (cut)
α,¬α ∨ β � β

∨-right + DS imply explosion.
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So, from (a) we can conclude that in the presence of ∨-right non-explosion implies
either α ⊃ β ≡ ¬α ∨ β has to be dropped or MP has to be dropped. On the other
hand, (b) shows that MP and DT cannot be taken together if∨ is defined by α ∨ β ≡
¬α ⊃ β.

In the last two sections, for each connective apart from the right/left rule one
more rule is considered; the rule relates the concerned connective with ¬. In the
context of interaction of ⊃ with ¬, the first natural property is contraposition, i.e.
α ⊃ β � ¬β ⊃ ¬α or its inverse i.e. ¬β ⊃ ¬α � α ⊃ β. Contraposition seems to
be a variant form of subminimal property, which has been abandoned at the very
beginning ofC{¬} axiomatization. In this context it is relevant to consider the Logic of
Paradox (LP) of Priest [13]. Asmentioned in Sect. 2.1, LP satisfies all axioms ofC{¬}.
Furthermore, LP satisfies (C8)-(C9), and (C11)-(C12), that is, LP can be considered
in the branch (b11). It is to be noted that LP satisfies DT, and contraposition but does
not satisfy MP, that is, in LP subminimal property does not hold but contraposition
holds. This claim can also be established from the truth tables of ¬ and ⊃ defined in
LP [13].

So, we here consider three properties of ⊃; One is DT (⊃-right), the second
is MP (⊃-left), and the third is contraposition along with its inverse, which reflects
interrelation between⊃ and¬, that is, additional axioms forC{¬,∨,&,⊃} are as follows.

(C14) β ∈ C(X ∪ {α}) implies α ⊃ β ∈ C(X) (⊃-right/DT)
(C15) α ⊃ β ∈ C(X) implies β ∈ C(X ∪ {α}) (⊃-left/MP)
(C16) C(X ∪ {α ⊃ β}) = C(X ∪ {¬β ⊃ ¬α}) (contraposition and its inverse)

The following theorem shows that C{¬,∨,&} can be extended in three possible direc-
tions.

Theorem: In the presence of (C1) to (C4)

(i) if (C14) and (C15) hold, then (C16) does not hold,
(ii) if (C15) and (C16) hold, then (C14) does not hold, and
(iii) if (C14) and (C16) hold, then (C15) does not hold.

Proof We give the proof of (iii) only.
By (C4) we have for some α,β, β /∈ C({α,¬α}).
By (C1), ¬α ∈ C({α,¬α,¬β}). Hence ¬β ⊃ ¬α ∈ C({α,¬α}) (by (C14)).
By (C16) we have, α ⊃ β ∈ C({¬β ⊃ ¬α}). Therefore using (C3) we have
α ⊃ β ∈ C({α,¬α}). Hence by (C2), (C3), C({α,α ⊃ β}) ⊆ C({α,¬α}).
Now as, β /∈ C({α,¬α}), β /∈ C({α,α ⊃ β}), that is, MP does not hold. �

So we obtain the following directions.
C{¬,∨,&}

↙ ↓ ↘
↙ ↓ ↘

(C14) + (C15) (C15) + (C16) (C14) + (C16)
Inconsistency axioms are also accordingly divided into three branches (bij1), (bij2),

http://dx.doi.org/10.1007/978-81-322-2719-9_2
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and (bij3), for i, j = 1, 2. The extensions are as follows.
(bij1) PI{¬,∨,&} +

(PI14) (X ∪ {α,¬β},β) ∈ PI implies (X ∪ {¬(α ⊃ β},α ⊃ β) ∈ PI
(PI15) (X ∪ {¬(α ⊃ β},α ⊃ β) ∈ PI implies (X ∪ {α,¬β},β) ∈ PI

(bij2) PI{¬,∨,&} +

(PI15) (X ∪ {¬(α ⊃ β},α ⊃ β) ∈ PI implies (X ∪ {α,¬β},β) ∈ PI
(PI16) (X ∪ {α ⊃ β}, γ) ∈ PI iff C(X ∪ {¬β ⊃ ¬α}, γ) ∈ PI

(bij3) PI{¬,∨,&} +

(PI14) (X ∪ {α,¬β},β) ∈ PI implies (X ∪ {¬(α ⊃ β},α ⊃ β) ∈ PI
(PI16) (X ∪ {α ⊃ β}, γ) ∈ PI iff C(X ∪ {¬β ⊃ ¬α}, γ) ∈ PI

In the same manner, as proved for all the other fragments of the propositional lan-
guage, for {¬,∨,&,⊃}-fragment also the following theorem can be proved.

Theorem: C{¬,∨,&,⊃} and PI{¬,∨,&,⊃} are equivalent for each of the respective exten-
sions bijk , i, j = 1, 2, and k = 1, 2, 3.

This study leads us towards the following diagram.
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(Batens)

&−explosion(C13)
&−explosion(C13)

The above diagram shows different possible branches of paraconsistent logics,
for which the notions of consequence and inconsistency are interwoven. Moreover,
it exhibits which paraconsistent system [1–6, 13–15, 18, 19] is lying where. What
else this study can yield that we shall discuss in the concluding section.
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Before ending this section we here present a concrete example to visualize the
use of this consequence–inconsistency relationship in the context of paraconsistent
logics. We consider a particular known logic, viz. Logic of Paradox [13], whose
notion of consequence is well defined. Through this example our attempt is to show
that the logic also has a well-defined theory for inconsistency, which can determine,
given (Xi,αi) ∈ PI for finitely many i’s, whether (X,α) ∈ PI or not, where X and α
are related to Xi, αi in some sense.

Example: The following truth table is based on the truth functions for⊃ and¬ of the
Logic of Paradox [13]. The value set and the designated set are {t, p, f } and {t, p},
respectively.

α β ¬α ¬β α ⊃ β β ⊃ ¬α

t t f f t f
t p f p p p
t f f t f t
p t p f t p
p p p p p p
p f p t p t
f t t f t t
f p t p t t
f f t t t t

We consider the following sets; X = {α,¬α,β}, Y = {α,β ⊃ ¬α,β}, and
Z = {α,β,¬(α ⊃ β)}. From the above truth table the following can be verified.

(i) X � α, X � ¬α, X � ¬β. That is, (X,α) ∈ PI, (X,β) /∈ PI.
(ii) Y � α, Y � ¬α, Y � ¬β. That is, (Y ,α) /∈ PI, (Y ,β) /∈ PI.
(iii) Z � α, Z � ¬α, Z � β, Z � ¬β, Z � α ⊃ β, and Z � ¬(α ⊃ β).

That is, (Z,α) ∈ PI, (Z,β) ∈ PI, (Z,α ⊃ β) ∈ PI.
Now using the theory for PI from (i) we obtain the following.

We have ({α} ∪ {β,¬α},α) ∈ PI. Hence by (PI14) we can conclude
({α,¬(β ⊃ α)},β ⊃ α) ∈ PI. Also by (PI8), for {¬,∨}-fragment, we conclude
({α,β,¬(α ∨ γ)},α ∨ γ) ∈ PI, but cannot claim ({α,β,¬(β ∨ γ)},β ∨ γ) ∈ PI.

On the other hand, in case of (iii) we have ({α,β,¬(α ⊃ β)},α ⊃ β) ∈ PI, but
as in LP (PI15) is absent we cannot claim ({α,β} ∪ {¬β},β) ∈ PI using (PI15); but
the same can be claimed directly using (PI1).

12.3 Concluding Remarks and Future Directions

One of the pioneering works where a systematic attempt is made to develop a class
of paraconsistent logics satisfying some properties of the notion of consequence, as
close as possible to the classical one, is due to Newton da costa [7, 8]. Newton da
Costa proposed a hierarchy of C-systems imposing some constraints on the notion
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of consequence such that the logical inference of those systems remains as close
as possible to that of the classical system, and at the same time rejects the law of
contradiction. Later, da Costa along with other researchers [1] proposed clauses
for non-truth functional semantics for negation, some of which give the semantic
justification for da Costa’s C-systems. In the C-systems da Costa kept a room open
for expressing ‘a formula behaves consistently’ in the syntax of the object language.
The same attempt is also found in the literature of logics of formal inconsistency [6].
Logics of formal inconsistency (LFI) are also developed in a systematicmannerwhere
one by one properties have been added to the meta-logical notion of consequence
to obtain a general scheme for generating paraconsistent logics. The basic system
of this class of LFI’s is known as Cmin; da Costa’s C-systems turn out to be LFI’s
proposed in [6]. By imposing one by one conditions to the consequence operator of
Cmin, a hierarchy of LFI’s is obtained. Some of these LFI’s are proposed to have an
operator ◦ in the object language so that ‘α is consistent’ can be expressed by ◦α
in the object language. In both of these approaches, the idea was to designate some
formulas which behave consistently, and allow them to explode in the presence
of their negated formulas. Thus the target was to restrict explosion for a class of
formulas, and make the system generally non-explosive. In order to achieve this
objective, themeta-logical notion of ‘consistency’was brought in the object language
of the logical system. We, in contrast, concentrate on a study of consequence and
inconsistency simultaneously, and explore how the properties of one meta-logical
notion influence the property of the other meta-logical notion in order to have a one-
to-one correspondence between consequence and inconsistency for paraconsistent
logics. This study leads us towards a general scheme for generating paraconsistent
logics where the notions of consequence and inconsistency are interwoven.

The tree diagram, given in the last section, works like a scheme for generating
a class of paraconsistent logics following a common pattern. Each system lying at
the end of a branch should satisfies the following. For each binary connective, say ∗,
either the system satisfies left and right rule for ∗, or it satisfies any one of them along
with a rule specifying interaction of ∗with¬. From the diagram, it is visible that most
of the known existing systems are lying in the branches of b1. We yet have not found
systems under the other branches. The search may lead to rediscovering existing
systems under this consequence–inconsistency characterization, or generating new
paraconsistent systems following the scheme.

We could have a different diagram if we consider different rules specifying inter-
action of a connective with ¬. Let us take the instance of ⊃, for which we have
considered contraposition and its inverse. The systems Jn, 1 ≤ n ≤ 5, satisfy a vari-
ant of (C16), and we are not sure whether these five systems lie in the branch b123
or not. So, a little variation to (C16) may give another diagram as a model for some
other paraconsistent logics. These all are new challenges to explore.

Finding an alternative theoretical perspective for paraconsistent logics where con-
sequence and inconsistency are interderivable is one of the future aims for this study.
The importance of this future research direction, perhaps, will be clear from the dis-
cussion below. The usualway of proving completeness theoremof the first order logic
exploits the interrelation between the notions of consequence and inconsistency, and
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the bivalent nature of the connective negation. Both of these aremissing in the context
of paraconsistent logics. The result of this missing link is also evident from the fact
that Diderik Batens had to take a different route in order to prove the completeness
theorem for a class of paraconsistent logics. The following lines are referred to [5]
in this regard.

The traditional proof that the classical propositional calculus (PC) is strongly
complete (i.e. if α |= A then α � A) is based on the notion of a maximal consistent
set of formulas, and hence on certain properties of strong (i.e. PC) negation. I present
a completeness-proof method which does not refer to maximal consistent sets, but
only to sets which are (i) non-trivial (not all formulas are members), (ii) deductively
closed (all syntactical consequences are members) and (iii) implication saturated
(for all B, A ⊃ B is a member if A is not a member).

In the completeness-proof, mentioned above, sets with the properties (i)–(iii)
play the similar role which maximal consistent sets play in ordinary context.
Completeness-proof is not the only case; interrelation between consequence and
consistency/inconsistency makes it smooth to prove the meta-theory of a logic. In
paraconsistent literature different approaches are taken to design a non-explosive
consequence; but the notion of inconsistency has not been modified accordingly to
fit suitably with such inconsistency tolerant notion of consequence. We expect that
this relativized notion of inconsistency and its interrelation with non-explosive con-
sequence may help us to get an alternative route for proving meta-theorems of a
paraconsistent system.
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Chapter 13
Univalent Foundations of Mathematics
and Paraconsistency

Vladimir L. Vasyukov

Abstract Vladimir Voevodsky in his Univalent Foundations Project writes that
univalent foundations can be used both for constructive and for non-constructive
mathematics. The last is of extreme interest since this project would be understood
in a sense that this means an opportunity to extend univalent approach on non-
classical mathematics. In general, Univalent Foundations Project allows the exploita-
tion of the structures on homotopy types instead of structures on sets or structures
on categories as in case of set-level mathematics or category-level mathematics.
Non-classical mathematics should be respectively considered either as non-classical
set-level mathematics or as non-classical category-level (toposes-level) mathemat-
ics. Since it is possible to directly formalize the world of homotopy types using
in particular Martin-Lof type systems then the task is to pass to non-classical type
systems e.g. da Costa paraconsistent type systems in order to formalize the world
of non-classical homotopy types. Taking into account that the univalent model takes
values in the homotopy category associated with a given set theory and to con-
struct this model one usually first chooses a locally cartesian closed model category
(in the sense of homotopy theory) then trying to extend this scheme for a case of
non-classical set theories (e.g. paraconsistent ones) we need to evaluate respective
non-classical homotopy types not in cartesian closed categories but in more suitable
ones. In any case it seems that such Non-Classical Univalent Foundations Project
should be directly developed according to Logical Pluralism paradigma and and it
seems that it is difficult to find counter-argument of logical or mathematical character
against such an opportunity except the globality and complexity of a such enterprise.
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13.1 Introduction

A few years ago Vladimir Voevodsky have come up with an idea for a new seman-
tics for dependent type theories—“univalent semantics”—which unlike of the usual
semantics interpretation of types as sets interprets types as homotopy types. The
key property of the univalent interpretation was that it satisfies the univalence axiom
which makes it possible to automatically transport constructions and proofs between
types which are connected by appropriately defined weak equivalences. According
to Voevodsky [6] the key features of these “univalent foundations” are as follows:

1. Univalent foundations naturally include “axiomatization” of the categorical and
higher categorical thinking.

2. Univalent foundations canbe conveniently formalizedusing the class of languages
called dependent type systems.

3. Univalent foundations are based on direct axiomatization of the “world” of homo-
topy types instead of the world of sets.

4. Univalent foundations can be used both for constructive and for non-constructive
mathematics.

The central concept of the univalent foundations is a homotopy. A homotopy
between continuous maps f, g : X → Y is a continuous map ϑ : X × [0; 1] → Y
satisfying ϑ(x; 0) = f (x) and ϑ(x; 1) = g(x). Such a homotopy ϑ can be thought
of as a “continuous deformation” of f into g. Two spaces X and Y are said to be

homotopy-equivalent if there are continuous maps going back and forth X
f−→←−g Y , the

compositions of which are homotopical to the respective identity mappings (which
is tantamount to saying that there exist homotopies f g × [0; 1] → 1X and g f ×
[0; 1] → 1Y ). When this latter condition holds spaces X and Y are called homotopy
equivalent, or interchangeably, belonging to the same homotopy type. It is natural
to also consider homotopies between homotopies, referred to as higher homotopies.
When we consider a space X , a distinguished point p ∈ X , and the paths in X
beginning and ending at p, and identify such paths up to homotopy, the result is the
fundamental group π(X; p) of the space at the point. If we remove the dependence
on the base-point p by considering the fundamental groupoidπ(X ),1 consisting of all
points and all paths up to homotopy. Next, rather than identifying homotopic paths,
we can consider the homotopies between paths as distinct, new objects of a higher
dimension (just as the paths themselves are homotopies between points). Continuing
in this way, we obtain a structure consisting of the points of X , the paths in X , the

1A groupoid is like a group, but with a partially-defined composition operation Precisely, a groupoid
can be defined as a category in which every arrow has an inverse. A group is thus a groupoid with
only one object.
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homotopies between paths, the higher homotopies between homotopies, and so on
for even higher homotopies.

There is a groupoid model of Martin-Löf’s type theory, where a given basic
type A (a judgements of the form � A : t ype) is groupoid A, term x of type A
( judgement� x : A) is object x of groupoid A, and dependent type B(x) (judgement
x : A � B(x) : t ype) is fibration2 of the form B → A. Identity type I dA(x; y) in this
model is the arrow groupoid of groupoid A, which is a functor category of the form
[I ; A] where I is the connected groupoid having exactly two non-identical objects
and a single non-identity isomorphism between these objects. The crucial idea here
was to replace families of sets indexed by sets by families of groupoids indexed by
groupoids.

Members of Voevodsky’s hierarchy at low levels are as follows (A is a space of
h-level n + 1 if for all its points x; y path spaces pathsA(x; y) are of h-level n):

• Level 0: up to homotopy equivalence there is just one contractible space3 that we
call “point” and denote pt ;

• Level 1: up to homotopy equivalence there are two spaces at this level: the empty
space ∅ and the point pt . We call ∅; pt truth values; we also refer to types of
this level as properties and propositions. Notice that h-level n corresponds to the
logical level n − 1: the propositional logic (i.e., the propositional segment of our
type theory) lives at h-level 1.

• Level 2: Types of this level are characterized by the following property: their
path spaces are either empty or contractible. So such types are disjoint unions of
contractible components (points), or in other words sets of points. This will be our
working notion of set available in this framework.

• Level 3: Types of this level are characterized by the following property: their path
spaces are sets (up to homotopy equivalence). These are obviously (ordinary at)
groupoids (with path spaces hom-sets).

• Level 4: Here we get 2-groupoids.
• Level n + 2: n-groupoids.

It is interesting to notice that like Euclid Voevodsky begins constructing his hier-
archical universe of homotopy types with a point and then applies a simple inductive
procedure for generating from this point the rest of this universe (cf. [3]).

The last feature of univalent foundations above looks very attractive for those
who are interested in so-called non-classical mathematics paradigma which con-
siders mathematics based on various non-classical logics. The last thesis becomes
more comprehensive indeed if we take into account that such “mathematics” should
obviously be non-constructive by their nature because within this paradigma they all
differ drastically from mathematics based on intuitionistic logic.

2Fibrations here are functors p : E → B between grupoids E, B such that for each object e from
E and any isomorphism i : p(e) ↔ b from B there exists an isomorphism j : e ↔ e′ such that
p( j) = i .
3A space A is called contractible when there is point x : A connected by a path with each point
y : A in such a way that all these paths are homotopic.
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At first glance it seems that considerations of such a kind are too abstract, too
global and obscure to provide arguments for extending Voevodsky’s program in such
a manner. But they are indispensable for studies of the foundations of mathematics
being the part of the quest for answering the question of proven uniqueness of mathe-
matic existed which would not be taken for granted due to the lack of the worthwhile
rivals. And here is one more tendency in univalent foundations program and like
consisting not just in incorporating logic to mathematical structures but in deriiving
logic from mathematical considerations, in an “internalization” of logic and making
it the secondary thing. But why one believe that the result always will be the same?
We will try to show that there are some other possibilities which deserve to be taken
into account in future investigations.

13.2 Logical Pluralism and Non-classical Mathematics

The motto of the first conference on non-classical mathematics (Hejnice, Czech
republic, 2009) was: “The 20th century has witnessed several attempts to build (parts
of)mathematics on different grounds than those provided by classical logic. The orig-
inal intuitionist and constructivist renderings of set theory, arithmetic, analysis, etc.
were later accompanied by those based on relevant, paraconsistent, non-contractive,
modal, and other non-classical logical frameworks. The subject studying such theo-
ries can be called non-classical mathematics and formally understood as a study of
(any part of) mathematics that is, or can in principle be, formalized in some logic
other than classical”.

The featured topics included in program of this conference, but were not limited
to, were, in particular, the following:

• Intuitionistic mathematics: Heyting arithmetic, intuitionistic set theory, topos-
theoretical foundations of mathematics, etc.

• Constructive mathematics: constructive set or type theories, pointless topology,
etc.

• Substructural mathematics: relevant arithmetic, non-contractive naive set theories,
axiomatic fuzzy set theories, etc.

• Inconsistent mathematics: calculi of infinitesimals, inconsistent set theories, etc.
• Modal mathematics: arithmetic or set theory with epistemic, alethic, or other
modalities, modal comprehension principles, modal treatment of vague objects,
modal structuralism, etc.

An issue arising in connection with these topics would be formulated as follows:
it is evident that there are not one but many true mathematics (such point of view
could be called a mathematical pluralism) but what is their mutual relationship—
they are rivals, amicable with each other, complementary or mutually exclusive?
It reminds us the situation with non-euclidean geometry when after Lobachevsky
and Riemann discoveries it turns out to be that there are many equivalent systems
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of geometry and the matter is just their relationship. If to draw an analogy then
taking into account modern state of affairs in field of geometry one can in case
of non-classical mathematics suggests an opposition of classical and non-classical
mathematics: is our mathematics globally classical and locally non-classical (that is,
have nonclassical parts) or, vice versa, it is globally non-classical being at the same
time locally classical?

Conception ofmathematical pluralism ismostly inspired by the situation in logics.
In modern philosophy of logic very popular is the point of view of correctness not
one but a great number of true logics. Namely this standpoint is being known as
logical pluralism. Contemporary debate has led to a re-examination of some older
views, especially the pluralism resulting fromCarnap’s famous tolerance for different
linguistic frameworks and, for example, the work of Scottish/French logician Hugh
McColl (1837–1909), who some have claimed was an early logical pluralist.

But what is the impact of foundational logic (or rather the change of foundational
logic) in non-classical mathematics on the mathematical constructions themselves?
Does it really matter?

13.3 Paraconsistent Sets and Homotopies

On the one hand, we can say that foundational logic serves not so much “to prop up
the house of mathematics as to clarify the principles andmethods by which the house
was built in the first place. ‘Foundations’ as a discipline that can be seen as a branch
of mathematics standing apart from the rest of the subject in order to describe the
world in which the working mathematician lives” [2, p. 14]. But, on the other hand,
set theory being the lingua universalis for mathematical foundations grows on the
base of foundational logic and as mathematical practice shows the change of logical
basis is not unnoticed for set theory. As a consequence we have now intuitionistic set
theory, paraconsistent set theory, fuzzy set theory, quantum set theory etc. nucleating
the foundational frameworks of the respective non-classical mathematics.

The last thesis would be reinforced by the non-classical attitude in homotopy
theory consideration. For this aim let us consider the definitions which take place
in the usual homotopy type theory. But firstly we recall the inductive definition (see
[7]) which is used for describing homotopy type hierarchy:

• (i) Given space A is called contractible when there is point x : A connected by a
path with each point y : A in such a way that all these paths are homotopic.

• (i i) We say that A is a space of h-level n + 1 if for all its points x; y path spaces
pathsA(x; y) are of h-level n.

This completes the defnition.
And now return to the main definitions [6, p. 1]:

• A (homotopy) type T is said to be of h-level 0 if it is contractible,
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• A (homotopy) type T is said to be of h-level 1 if for any two points of T the space
of paths between these two points is contractible,

• A (homotopy) type T is said to be of h-level n + 1 if for any two points of T the
space of paths between these two points is of h-level n.

Then we have:

• There is only one (up to a homotopy equivalence) type of h-level 0—the one point
type pt .

• There are exactly two types of h-level 1, pt and ∅; i.e. types of h-level 1 are the
truth values.

• Types of h-level 2 are types such that the space of paths between any two points
is either empty or contractible. Such a type is a disjoint union of contractible
components i.e. (up to an equivalence) types of h-level 2 are sets.

• Types of h-level 3 are (homotopy types of nerves of) groupoids.
• More generally, types of h-level n + 2 can be seen as equivalence classes of

n-groupoids.

For ∅ condition (i i) is satisfied vacuously; for pt (i i) is satisfied because in pt
there exists only one path, which consists of this very point. Usually ∅, pt are called
truth values and also refer to types of this level as properties and propositions. Notice
that h-level n corresponds to the logical level n − 1: the propositional logic (i.e., the
propositional segment of our type theory) lives at h-level 1.

Butwhat about∅ ? It is known (see [1]) that there is a system Z F1 of paraconsistent
set theory that related to Church’s version of Zermelo-Fraenkel set theory Z F0 with a
universal set as a da Costa paraconsistent first-order logicC=

1 is related to the clasical
first-order predicate calculus C=

0 . In essence, “Z F1 should be ‘partially’ included in
Z F0, though the latter is is also to be contained, in a certain sense, in the former”
[1, p. 170]. The basic set-theoretic concepts of Z F1 are analogous to those of Z F0,
although the concepts involving negation give rise to two notions: one involving the
weak negation (¬) and the other the strong negation (¬∗). As a result we have, for
instance, two empty sets: ∅ = {x : x 
= x} and ∅

∗ = {x : ¬ ∗ (x = x)}.
In this case (i.e. onewill purport sets not from the class of Z F0-models but from the

class of Z F1-models) the respective point from the definition above will be changed:

• There are exactly three types of h-level 1, pt , ∅ and ∅
∗; i.e. types of h-level 1 are

the truth values.

Of course, since it is known that each axiom scheme of Z F0 generates two corre-
sponding axiom schemes of Z F1, one with the strong negation and another with the
weak one, then we can say that Z F1 simply includes Z F0. Hence, it seems that our
reformulation of the point above does not essentially distort the whole construction
of usual homotopy theory. The only consequences is that the generality of this theory
will be restricted.

But since Z F1 should be considered as some extension of Z F0 then one can
assume that there are some (paraconsistent) sets which are outside the scope of usual
set theory. Hence, our usual account of the category Set as the category of all sets
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will be incomplete and Set appears to be just a subcategory of some category P Set
which should include paraconsistent sets too.

Anyway, will such kind of limitation be capable to affect the project of univalent
foundations? The answer depends not only on the level of logical and mathematical
tools exploited but also on the alternatives proposed.

13.4 Paraconsistent Categories and Types

Along with set-theoretical there are another aspects of restriction of generality of
homotopy type theory and respectively univalent foundations. Analyzing this pro-
gram A.Rodin writes: “in Voevodsky’s univalent foundations homotopy types turn
to be the elementary bricks for constructing the whole of the mathematical universe
including its logic” [3, p. 224]. This inclusion having its effect in uniform hierarchi-
cal treatment of propositions simply as data of the specific type along with sets and
categories. This uniformity plainly displayed in the semantic construction.

Syntactically a non-classical way of extending univalent foundations seems to be
evident: one need to employ non-classical logical connectives and axioms in all for-
mulations e.g. issue from typed λ—calculi with non-classical forming operations.
But there are some deadends on this way—the open question of the general con-
ception of negation forming operation (in many logical systems the negation is a
primitive connective unlike the intuitionistic logic).

More challenging seems the semantic approach. To obtain a model with values in
a category one need to construct a category with some additional structure, which is
an object defned up to an equivalence. A technique for doing this which Voevodsky
found very useful is based on the notion of a universe structure in a category [6, p.
4]. Let C be a category. By a universe structure on C we will mean a collection of
data of the following form:

1. a final object pt in C ,
2. a morphism p : Ũ → U ,
3. for any morphism f : X → U a choice of a pull-back square

Q( f ) �(X, f )

p(X, f )

� ��

p

f
X U

Ũ

Usually then it is postulated thatC is an lccc—a locally cartesian closed category.
Doing this we obtain an opportunity to exploit a well known interpretation of logical
connectives of intuitionistic logic as type forming operators since Martin-Lof’s intu-
itionistic type theory has an lccc as a category-theoretic model. What will happen if
we modify C?
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Early in [4] the intepretation of da Costa paraconsistent logics in topos of functors
was proposed. As the basic construction there have been implemented so-called
C N -categories. Generalizing their definition (original construction was based on
pre-order categories) we can shortly characterize such a category C as cartesian
closed category for which the following conditions are fulfilled:

• for any object a of C there is an object Na such that we have arrows N Na → a
and ao → (Na)o in C where ao = N 〈a, Na〉 and for any arrow d → a there is
an arrow d → Na in C;

• for any two objects a, b in C there is an arrow ao → (b ⇒ a) ⇒ ((b ⇒ Na) ⇒
Nb) (here ⇒ is an exponential);

• 1 ∼= [a, Na] and 0 ∼= 〈ao, Nao〉.
Let us call such category a paraconsistent cartesian closed category—pccc. The

main advantage of pccc is that there is the categorical interpretation of paraconsistent
negation in it (alongwith daCosta paraconsistent logics).What should be done as one
more step in our consideration it is an introduction of lpccc—a locally paraconsistent
cartesian closed category.And ifwe succeed thenwe can try to transformour category
C above in lpccc. Simultaneously one can ask the question: would it be right to speak
in this case that we obtain in such a way a model of paraconsistent type theory? If
yes then would we consider the situation from the point of view of non-classical
univalent foundations project?

Onemore examplewould be obtained in a similarway by issuing from the categor-
ical interpretation of relevant logic R in topos of functors (see [5]). Here the original
subject were so-called RN -categories which generalization in nutshell should be
defined as ⊗—cartesian cliosed categories with negation (again by generalizing the
original construction based on pre-order categories). In detail one can defined them as
the bicomplete categories endowed with a covariant bifunctor ⊗ : C × C → C and
a contravariant functor N : C → C such that the following conditions are satisfied:

(i) for any objects a, b, c in C there are the following natural isomorphisms:

a ⊗ [b, c] ∼= [a ⊗ b, a ⊗ c],
[b, c] ⊗ a ∼= [b ⊗ a, c ⊗ a],

(ii) C allows exponentiation relative to ⊗, i.e. the following diagram commutes

ev
(a ⇒ b)

⊗a � b

ĝ
⊗1a g

c⊗a �
�

�
���

where ⇒ is an exponential;
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(iii) the following functorial equations are satisfied:

(a) (g1 f1) ⊗ (g2 f2) = (g1 ⊗ g2)( f1 ⊗ f2);
(b) 1A ⊗ 1B = 1A⊗B .

(iv) C has an object 1 such that 1 ⊗ a ∼= a and there is an arrow a → a ∼= 1 in C
for all a in C ;

(v) for any objects a, b, c in C, a ⊗ (b ⊗ c) ∼= (a ⊗ b) ⊗ c.
(vi) for any objects a, b in C there is an arrow a ⊗ b → b ⊗ a.
(vii) for any object a in C there is an arrow a → a ⊗ a.
(viii) N 2a ∼= a for any a in C ;
(ix) for any arrow a ⊗ b → c there is an arrow a ⊗ Nc → Nb in C .

If we denote such categories as relevant cartesian closed categories—rccc—and con-
sider their more sophisticated version—a locally relevant cartesian closed categories
lrccc—then one can conclude that we arrive at non-classical model of a hypotheti-
cal relevant type theory. Taking into account an internal paraconsistency of relevant
logic R which is now mirroring in the lrccc due to the existence of an interpretation
of R in topos of functors from RN -category to Set would it again be true to claim
that there exists one more way to obtain a version of non-classical (paraconsistent)
univalent foundations project?

13.5 Conclusion

The extremely non-classical point of view considered here seems to be too much
marginal for taking him into account. But if the mathematical universe includes its
logic in one or another way then it seems that logical pluralism inevitably will have
direct influence on themathematics. Hence, mathematical pluralism and emerging of
non-classical mathematics are not accidental phenomena and these faces of plurality
in mathematics are her real proper faces.

On the other hand, the implied lack of the uniqueness of univalent foundations
project again make actual an issue of mathematical “paradise lost”. It seems that
we can turn out to be the witnesses of the process of paradigmal shifting (from set-
theoretic to homotopy type paradigma). But is there one true mathematics still is an
open question.
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Chapter 14
A Method of Defining
Paraconsistent Tableaus
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Abstract The aim of this paper is to show how to simply define paraconsistent
tableau systems by liberalization of construction of complete tableaus. The pre-
sented notions allow us to list all tableau inconsistencies that appear in a complete
tableau. Then we can easily choose these inconsistencies that are effects of inter-
actions between premises and a conclusion, simultaneously excluding other incon-
sistencies. A general technique we describe is presented here for the case of Propo-
sitional Logic, as the simplest one, but it can be easily extended to more complex
cases. In other words, a kind of paraconsistent consequence relation is being studied
here, and a simple tableau system is shown to exist that captures that consequence
relation.
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14.1 Introduction and Overview

In this article, we study some kind of paraconsistent consequence relation that is
determined by tableau system. That is why we start with some remarks on tableau
methods and a strategy we implement.

Usually, tableau methods are at the same time effective but rather intuitive and
nonformal. One of the many problems of this is that when we develop a tableau, we
can many times obtain the same expressions or apply rules to branches that contain
inconsistent expressions. It is a reason why a formal approach to tableau methods
that exclude such situations are studied.

Although we prepared a formal theory of tableaus [2] that prevents from a jeJune
wayof applicationof tableau rules—amongothers, they cannot be applied to branches
that contain inconsistent expressions—here we defined rules as blind. It means that
tableau inconsistencies that occur in tableaus do not stop developing of a given
tableau. We do not stop a proof, till we decompose all expressions. It is because
in the case of paraconsistent arguments we look for a special kind of inconsistency
that follows from incompatibility of premises and a negated conclusion. In order to
identify suitable inconsistencies in a tableau, we need to decompose all expressions
to the level of literals in such a way that it would give an answer to the question
whether there is a collision between premises and a negated conclusion or not.

In Sect. 14.3, we describe a mechanism of building such tableaus and choosing
suitable inconsistencies. In further parts, we analyze somemetatheoretical properties
of this proposal and a paraconsistent consequence relation that it captures.

In the article, we consider the simplest case, the case of Propositional Logic,
and its paraconsistent subrelation determined by described tableaus. This type of
approach can be applied to other logics, being generalized as long as tableau rules
are defined in the proposed style.

Finally, let us add that in our paper the tableau tools are treated as a fully syntac-
tical method of checking whether arguments are correct and—as a counterpart of a
consequence relation—defined semantically.

14.2 Basic Notions

In this part of paper, we remind some semantical notions and basic tableau notions
we need to formulate and prove facts about paraconsistent tableaus that define a
paraconsistent subrelation of the classical propositional consequence relation.
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14.2.1 Classical Propositional Consequence Relation

Let For be the set of all formulas build over the following alphabet: Var ∪ {¬,∧,∨,
→,↔}. Let V : For −→ {0, 1} be a valuation of formulas, so for any A, B ∈ For
the function V satisfies conditions:

• V (¬A) = 1 iff V (A) = 0
• V (A ∧ B) = 1 iff V (A) = 1 and V (B) = 1
• V (A ∨ B) = 1 iff V (A) = 1 or V (B) = 1
• V (A → B) iff V (A) = 0 or V (B) = 1
• V (A ↔ B) iff V (A) = V (B).

Let V be a set of all valuations of formulas. Having a set of formulas X and
a valuation V we say that X is true in V (in short: V (X) = 1) iff for all A ∈ X ,
V (A) = 1. If a set of formulas X is not true in V , we say that is false in V and write
V (X) = 0.

We define classical consequence relation |= on 2For × For in a standard way.
Hence, for any formula A and set of formulas X we say that A is a consequence of
X (in short: X |= A) iff ∀V ∈V(V (X) = 1 =⇒ V (A) = 1).

We say that a set of formulas X is inconsistent iff for any valuation V (X) =
0. Otherwise, we call X consistent.1 Now, by definition of classical consequence
relation |=, we have a conclusion that expresses a vulnerability of classical logic to
inconsistent sets of premises.

Corollary 14.2.1 Let X be an inconsistent set of formulas. Then X |= A, for all
A ∈ For.

Of course, no paraconsistent logic should have the above property.

14.2.2 Tableau System for Propositional Logic

In work [3] and especially in [2], we presented a formal theory of tableau systems for
a class of logics defined by some syntactical and semantical conditions.2 Hence, we
have precise tableau notions that incorporate standard, intuitive notions. The precise
notions (of a tableau rule and various kinds of branches, tableaus etc.) with a notion of
tableau system are necessary, when we generalize results, looking for some abstract
properties of tableau methods.

1We use a word inconsistent instead—for example—contradictory, since it enables us a direct
transition between semantical and tableau notions.
2We mean such logics that are logics of terms or propositions, and are two–valued.
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However, here we dealt with tableaus for Boolean language, so we just use well-
known intuitive tableau notions presented in many publications, for example in [1].
We remind them in turn giving a handful of nonformal but instructive definitions as
usually authors do.

We assume that a set of formulas X are t-inconsistent iff for some A ∈ For, X
contains A and ¬A. A set of formulas X is t-consistent iff X are not t-inconsistent.
By R we denote a set of all standard tableau rules for Boolean connectives. We have
nine rules in R: four positive rules (for ∧, ∨, →, ↔) and five negative (for ¬¬, ¬∧,
¬∨, ¬→, ¬↔).3

A root is a set that contains premises and a negation of conclusion. A branch is a
sequence of formulas that starts from a root. The rest of the branch contains results of
applying of rules to former formulas. A branch is complete iff all applicable tableau
rules were used.4 A branch is incomplete iff it is not complete. Branches can be also
closed or open. A branch is closed iff it contains t-incosistent set of formulas; it is
open iff is not closed.

Tableau can be treated as sets of branches with the same roots. Tableaus that
include all suitable and only complete branches are called complete. Complete
tableaus can be closed or open. A tableau is closed iff it is complete and all branches
that includes are closed; it is open iff is not closed.

Now, for any set of formulas X and a formula A, we define a tableau classical
consequence relation �, by putting:

Definition 14.2.2 X � A iff there exist a finite subset Y of X and a closed tableau
with a root Y ∪ {¬A}.

Of course, the relation � is fully determined by tableau rules of R. Therefore, by
〈For,�〉 we understand a tableau system determined by classical tableau rules R.
The tableau system defines Propositional Logic, since it is well-known that:

Fact 14.2.3 For all X ⊆ For, A ∈ For, X � A iff X |= A.

14.3 Paraconsistent Tableaus

As we said our aim is to define a paraconsistent tableau inference that defines some
paraconsistent subrelation of classical propositional consequence relation. However,
first we introduce some auxiliary notions.

3The rules modified a little in a manner that is good for our paraconsistent aim are presented in the
Sect. 14.3.
4Generally, we divide complete branches into open and closed ones, since in our formal theory of
tableau methods in [2] our aim is always to complete a branch, so a branch itself is just a technical
concept. At the same time an occurrence of a t-inconsistency completes a branch. In the paper we
change our point of view a bit: applying of rules is allowed as far as it is possible, ignoring any
t-inconsistency—later we will come back to the idea, when explaining exactly what we mean by
‘blind rules’ (exactly in the Sect. 14.3).
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Let N be the set of natural numbers—the set of indexes I = N ∪ {0}. We distin-
guish an index zero: 0 for conclusions of a given tableau proof.

Next, we define a set of formulas indexed by superscripts: For′ = {Ai : A ∈
For, i ∈ N}. The expressions from For′ will represent formulas from For in tableau
proofs. Notice that no formula in For′ has a superscript 0.

By the function • : For′ ∪ {A0 : A ∈ For} −→ N ∪ {0}, defined with the condi-
tion •(Ai ) = i , we can choose superscripts that occur in formulas For′ and of those
formulas that have a superscript 0.

Let X be a subset of For. By X (x)we mean such a non-empty subset of powerset
of For′ that for all Y ∈ X (x) and all A, B ∈ For the conditions are fulfilled:

1. A ∈ X iff for some i ∈ N, Ai ∈ Y
2. for any i, j ∈ N, if Ai , B j ∈ Y then one of the below holds:

(a) A �= B and i �= j
(b) A = B and i = j .

Of course, for a set of formulas X there are usually many sets satisfying X (x)–
conditions, so writing Y ∈ X (x) we mean some arbitrary, but fixed set from X (x)
that we take into consideration.

Now we give a notion of a particular kind of t-inconsistency. We mean an incon-
sistency that is a result of expressions with some fixed indexes. Surely, this notion
is based on a usual notion of inconsistency (defined here Sect. 14.2.2), so it is still
about a set of formulas that contains A and¬A, for some formula A, but additionally
both inconsistent formulas should have indexes of some kind. Formally, let i, j ∈ I

and X ⊆ For′ ∪ {A0 : A ∈ For}. X is t i, j -inconsistent iff for some A, B:

1. {A, B} ⊆ X
2. {A, B} is a t-inconsistent set of formulas
3. {•(A), •(B)} = {i, j}.

It is a particular kind of t-inconsistency, because it refers to some superscripts
omitting t-inconsistencies with other superscripts. Hence, a set Y of formulas with
superscripts can be t-inconsistent, but not t i, j -inconsistent, for some i, j ∈ I, since
no pair of t-inconsistent formulas in Y contains superscripts i, j . On the other hand,
the opposite relationship holds: if a set is t i, j -inconsistent, for some i, j ∈ I, it is also
just t-inconsistent.

Now, we reformulate the tableau rules of R. A new set of rules R′ is defined on
For′ ∪ {A0 : A ∈ For}. For all i ∈ I the schemas of new rules are as below:

R∧ : (A∧B)i

Ai ,Bi R∨ : (A∨B)i

Ai ||Bi R→ : (A→B)i

¬Ai ||Bi

R↔ : (A↔B)i

Ai ,Bi ||¬Ai ,¬Bi R¬¬ : ¬¬Ai

Ai R¬∧ : ¬(A∧B)i

¬Ai ||¬Bi

R¬∨ : ¬(A∨B)i

¬Ai ,¬Bi R¬ → : ¬(A→B)i

Ai ,¬Bi R¬ ↔ : ¬(A↔B)i

¬Ai ,Bi ||Ai ,¬Bi
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The tableau rules in R′ have such a property that they preserve superscripts. For
example, when we decompose a formula ¬¬p1 by rule for ¬¬, we obtain p1; if
we decompose a formula (p → q)0 by rule for →, we obtain on the left branch
¬p0 and on the right branch q0 etc. The technique allows us to trace a process of
decomposition of formulas and find out the origin of t-inconsistencies.

As we already said, we resign here from internal mechanism nested in rules
that blocks applying rules to branches including t-inconsistencies (it was one of
distinguishing features of our last works [2, 3]). Here, we want to develop branches
as long as it is possible in order to get all t-consistencies that a branch can generate.
Now it is clear why we call these rules ‘blind’—they just do not see that a branch is
closed, which normally is a sufficient fact to stop applying rules.

Moreover, we assume all definitions for tableaus for Propositional Logic—
obviously, now the notions depend on the new set of tableau rules R′. However,
we add one more definition for testing its properties.

Definition 14.3.1 Let Y ∈ X (x), for some X ⊆ For, and let B ∈ For. A tableau T
with a root Y ∪ {¬B0} is paraconsistently closed iff:

1. T is complete
2. for any branch b in T there is such index i ∈ •(Y ∪ {¬B0}) that a t i,0-inconsistent

set of formulas belongs to b.

Now, we explain the conditions in Definition 14.3.1 one by one. First, we have
some set of formulas X and a formula B that is supposed to follow from X . We do
not assume that X is a finite set, since by defining a suitable tableau consequence
relation, we will impose a constraint that there must exist a finite set as a root for
some complete and closed tableau (like in the case of classical tableau consequence
relation Definition 14.2.2), so below we give examples only for finite cases.

We take a set Y ∈ X (x), so Y has all and only formulas from X , each one with
a different index. We build a complete tableau with the root Y ∪ {¬B0}. Now, if on
any branch there is a t i,0-inconsistency, for some i ∈ •(Y ∪ {¬B0}), then the tableau
is paraconsistently closed. If for some branch there is no t i,0-inconsistency, for any
i ∈ •(Y ∪ {¬B0}), then the tableau is not paraconsistently closed.

Nowwe present few simple examples of paraconsistently closed tableaus (accord-
ing to our last Definition 14.3.1) for some key cases.

Example 14.3.1 Consider a set of premises X = {p ∧ ¬p} and a possible conclusion
q. We take a root {(p ∧ ¬p)1,¬q0} and draw a tableau.

{( p ∧ ¬p)1,¬q0}
p1

¬p1

As we see it is not a paraconsistently closed tableau. In some branch (there is of
course only one branch) there is no t i,0-inconsistency, for any index i . Admittedly,
we have a t-inconsistent set {p1,¬p1}, but with no index 0. The example shows
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that a consequence relation completely determined by the notion of paraconsistently
closed tableau Definition 14.3.1 is robust to unlimited ex falso quodlibet.

A positive point of the presented approach is also that we could sometimes infer a
conclusion from a logically invalid formula, if a formula that is a conclusion follows
from some part of it.

Example 14.3.2 Consider a set of premises X = {p ∧ ¬p} and a possible conclusion
p. We take a root {(p ∧ ¬p)1,¬p0} and draw a tableau.

{( p ∧ ¬p)1,¬p0}
p1

¬p1

As we see it is a paraconsistently closed tableau by Definition 14.3.1. In any
branch (there is of course only one branch) there is t i,0-inconsistency, for some
index i . Admittedly, we have a t-inconsistent set {p1,¬p0}. The example shows
that a consequence relation completely determined by the notion of paraconsistently
closed tableau Definition 14.3.1 enables to infer parts of a contradictory formula.

Another positive point of the presented approach is that we can of course infer
any classical tautology.

Example 14.3.3 Consider a set of premises X = ∅ and a possible conclusion p ∨
¬p. We take a root {¬(p ∨ ¬p)0} and draw a tableau.

{¬( p ∨ ¬p)0}
¬p0

¬¬p0

p0

As we see it is a paraconsistently closed tableau by Definition 14.3.1. In any
branch (there is of course only one branch) there is t i,0-inconsistency, for some
index i . Admittedly, we have a t-inconsistent set {p0,¬p0}. The example shows
that a consequence relation completely determined by the notion of paraconsistently
closed tableau Definition 14.3.1 enables to infer parts of a contradictory formula.

However, we have some objections. First of all, we can accept that from {p,¬p}
follows p and follows¬p, since some part of information in the set {p,¬p}must be
true (either {p} or {¬p})—clearly, the inference also holds according to theDefinition
14.3.1. But in the Example 14.3.2 we have an inference we do not accept, since a set
{p ∧ ¬p} cannot be true. One can say that sets {p ∧ ¬p} and {p,¬p} are classically
equivalent not because they are contradictory, but because in general sets {A ∧ B}
and {A, B} are classically equivalent, for any formulas A, B. Our point of view is
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that the set {p ∧ ¬p} is worthless. Contrary to the set {p,¬p} is not useless, if we do
not know whether p or ¬p, then we can suspend for a moment one of the premises
and use the classical consequence relation to a noncontradictory set {p} or {¬p}.

But themost striking fact and a fundamental weakness of that approach is pictured
in the next example.

Example 14.3.4 Consider a set of premises X = {(p ∧ ¬p) ∨ q)} and a possible
conclusion q. We take a root {((p ∧ ¬p) ∨ q))1,¬q0} and draw a tableau. The
tableau is complete, since all possible rules of decomposition were used.

{((p ∧ ¬p) ∨ q))1,¬q0}
(p ∧ ¬p)1

p1

¬p1

q1

It is a classically closed tableau, but—according to the Definition 14.3.1—it is
not a paraconsistently closed tableau, since on the left branch we do not have t1,0-
inconsistency, and as a consequence the condition 2 of Definition 14.3.1 is not sat-
isfied.

Since we cannot accept this situation, we propose a modification. This modifica-
tion brings another additional benefit. Refusing inferences from inconsistent sets of
premises, we can almost automatically define simple and intuitive semantics for the
new tableaus. Obviously, one can say that a fact we refuse, for example, the infer-
ence from {p ∧ ¬p} to p and simultaneously accept the inference from {p,¬p} to
p is a cost we pay for natural semantics, but we also include such cases like the
Example 14.3.4.

14.3.1 Paraconsistent Tableau Consequence Relation

Therefore we redefine the latter definition of paraconsistently closed tableau to cap-
ture some inferences we like, exclude some inferences we do not like, and at the
same time have intuitive semantics.

Definition 14.3.2 Let Y ∈ X (x), for some X ⊆ For, and let B ∈ For. A tableau T
with a root Y ∪ {¬B0} is paraconsistently closed iff:

1. T is complete
2. for any branch b in T there are such indexes i, j ∈ •(Y ∪ {¬B0}) that t i, j -

inconsistent set of formulas belongs to b.
3. there is a branch b in T that for any pair of indexes i, j ∈ •(Y ) no t i, j -inconsistent

set of formulas belongs to b.
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Now,we explain the conditions inDefinition 14.3.2 one by one. The first condition
is identical to that in Definition 14.3.1. A novelty are the remaining two conditions.

In the second condition it is said that for some i, j ∈ •(Y ∪ {¬B0}) in all branches
theremust be t i, j -inconsistent set of formulas. It means that at least on some branches
a t-inconsistency may not contain index 0, so we capture cases like in the Example
14.3.4.

The third condition says that in a paraconsistently tableau at least on one branch
there is no t-inconsistency generated on the ground of formulas from Y , whichmeans
that X is a consistent set of formulas itself. So although according to the former
definition for {p ∧ ¬p,¬p} we have a paraconsistently closed tableau (Example
14.3.3), according to the latter one we do not have, which is the most convincing.

Again we have some simple examples.

Example 14.3.5 We come back to Example 14.3.2. Consider a set of premises X =
{p ∧ ¬p} and a possible conclusion p. We take a root {(p ∧ ¬p)1,¬p0} and draw
a tableau.

{(p ∧ ¬p)1,¬p0}
p1

¬p1

As we see it is not a paraconsistently closed tableau according to Definition
14.3.2. On any branch (there is of course only one branch) there is t i,0-inconsistency.
Admittedly, we have a t-inconsistent set {p1,¬p0}. But there is no branch on which
for any pair of indexes i, j ∈ •({(p ∧ ¬p)1}) no t i, j -inconsistent set of formulas
belongs to b (so the condition 3 is not satisfied), since on all branches we have
t1,1-inconsistency—{p1,¬p1}.
Example 14.3.6 Consider a set of premises X = {p} and a possible conclusion p.
We take a root {p1,¬p0} and draw a tableau.

{p1,¬p0}
Aswe see it is a paraconsistently closed tableau according toDefinition 14.3.2. On

any branch (there is of course only one branch) there is t i,0-inconsistency.Admittedly,
we have a t-inconsistent set {p1,¬p0}. And there is a branch on which for any pair of
indexes i, j ∈ {p1} no t i, j -inconsistent set of formulas belongs to b (so the condition
3 is satisfied), since on the branch we do not have t1,1-inconsistency.

At the end we present an example, where the mentioned liberalization of rules
really works.

Example 14.3.7 Consider a set of premises X = {r, p ∧ ¬p} and a possible conclu-
sion r . We take a root {r1, (p ∧ ¬p)2,¬r0} and draw a tableau.

{r1, (p ∧ ¬p)2,¬r0}
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Classically, this is a closed and complete tableau, if we assume we cannot apply
tableau rules to inconsistent sets of premisses. There is only one branch and we have
t1,0-inconsistency on it. Moreover, on some branches there is no t i, j -inconsistency
for i, j ∈ •({r1, (p ∧ ¬p)2). So there it would seem like a paraconsistently closed
tableau. But it is not true, we can still make the branch longer and obtain some
interesting formulas as below:

{r1, (p ∧ ¬p)2,¬r0}
p2

¬p2

As we see now it is not a paraconsistently closed tableau according to Definition
14.3.2, because on all branches we have t i, j -inconsistency for i, j ∈ •({r1, (p ∧
¬p)2) and the last condition of definition is not satisfied. The tableau we get, because
we can apply tableau rules, even if we have t-inconsistencies. We should not worry
about this, since as we have already said we shall define a paraconsistent tableau
consequence relation in such a way that a formula A is a consequence of X iff for
some finite subset Y of X we have a paraconsistently closed tableau. So although the
example is not an example of paraconsistently closed tableau, from the premisses it
follows the conclusion, because we can built a paraconsistently tableau with {r}—a
finite subset of X .

{r1,¬r0}

Now, we have a conclusion that expresses a connection between usual, classical
tableaus, and paraconsistent tableaus.

Corollary 14.3.3 Let Y ∈ X (x), for some set of formulas X, and let B be a formula.
A tableau T1 with the root Y ∪ {¬B0} is paraconsistently closed iff

1. there is a complete and open tableau T2 with a root X
2. there is a closed tableau T3 with a root X ∪ {¬B}.
Proof The proof is by conditions 2 and 3 of the Definition 14.3.2. �

It means that we could replace Definition 14.3.2 by the statements 1 and 2 of
the Corollary 14.3.3 as definitional conditions. Theoretically, it would be simpler.
However, practically it is difficult to choose a suitable subset of premises that gen-
erates complete and open tableau, but with a negated conclusion generates a closed
tableau. In the presented approach, we consider all possible decompositions, tracking
superscripts, and kinds of t-inconsistencies that appear, and finally we can choose a
suitable and consistent set of premisses (if any exists) which on interaction with a
negated conclusion generates some t-inconsistencies.

Now, we can define a paraconsistent tableau consequence relation �′.

Definition 14.3.4 Let X ⊆ For and A ∈ For. X �′ A iff there exist a finite subset Y
of X and aparaconsistently closed tableauwith a root Z ∪ {¬A0}, for some Z ∈ Y (y).
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One example of how to pass from a unsuccessful tableau to a paraconsistently
closed one we give here.

Example 14.3.8 We consider a set of premisses X = {¬p ∨ q, r ∧ ¬r,¬q, } and a
conclusion ¬p. The question is whether X �′ ¬p?

The set X is a finite subset of X and the tableau with a root {(¬p ∨ q)1, (r ∧
¬r)2,¬q3,¬¬p0} is complete—all possible rules of decomposition were used.

{(¬p ∨ q)1, (r ∧ ¬r)2,¬q3,¬¬p0}
p0

r2

¬r2

¬p1 q1

The condition 1 and 2 of the Definition 14.3.2 are satisfied—the tableau is com-
plete and on all branches we have t i, j -inconsistency, for some i, j ∈ {1, 2, 3, 0}.
Unfortunately, the condition 3 of the Definition 14.3.2 is not satisfied, since on all
branches we have t i, j -inconsistency, for some i, j ∈ {1, 2, 3}.

Hence, it is not an example of a paraconsistently closed tableau, but it does not
mean that it is not X �′ ¬p. When we take into account a subset of X , the subset
Y = {¬p ∨ q,¬q, } we see that the conditions are fully satisfied. We can look at the
latter tableau or draw another one.

{(¬p ∨ q)1,¬q3,¬¬p0}
p0

¬p1 q1

The condition 1 and 2 of the Definition 14.3.2 are satisfied. Moreover at least on
onebranch—the left one—no t i, j -inconsistencywehave, for any i, j ∈ {1, 3}.Hence,
it is an example of a closed tableau and simultaneously a paraconsistently closed
tableau, and according to Definition 14.3.4 we have: {¬p ∨ q, r ∧ ¬r,¬q, } �′ ¬p.

A demanded fact is that the paraconsistent, tableau consequence relation �′ is a
proper subrelation of a classical tableau consequence relation �.

Corollary 14.3.5 �′⊂�.

Proof Let X �′ A, for some X ⊆ For and A ∈ For. Then by Definition 14.3.4,
there exist a finite subset Y of X and a paraconsistently closed tableau with a root
Z ∪ {¬A0}, for some Z ∈ Y (y).

By Corollary 14.3.3 there exist a finite subset Y of X and a closed tableau with a
root Y ∪ {¬A}. So, according to the Definition 14.2.2, X � A, and �′⊆�.
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On the other hand, we have an example of a closed tableau (Example 14.3.1),
that is not paraconsistently closed. Hence, by Definitions 14.2.2 and 14.3.4, we get
���′. �

Having the relation �′, we straightforwardly determine a paraconsistent tableau
system 〈For,�′〉 of a sublogic of Propositional Logic.

14.4 Semantics

As quick as there appears a question about semantics for 〈For,�′〉, we get a natural
answer. A natural and commonsense approach to the problem of paraconsistency in
Boolean language is to define a paraconsistent semantic relation of consequence by
a set of valuations V as follows:

Definition 14.4.1 For all X ⊆ For and A ∈ For, X |=′ A iff there is such Y ⊆ X
that Y is a consistent set of formulas and Y |= A.

Surely, the relation |=′ is identical to our relation �′.

Theorem 14.4.2 |=′ =�′.

Proof We take any X ⊆ For and A ∈ For.
First, we assume that X |=′ A. Then, byDefinition 14.4.1, there exists suchY ⊆ X

that Y is a consistent set of formulas, Y |= A and Y is finite—by compactness of |=.
By Fact 14.2.3 we have Y � A, so there is a closed tableau with a root Y ∪ {¬A}.
But because Y is a consistent set, so there is a complete and open tableau with a root
Y . As a consequence, by Corollary 14.3.3, a tableau with a root Z ∪ {¬A0}, for some
Z ∈ Y (y), is paraconsistently closed. Hence, by Definition 14.3.4, X �′ A.

Second, we assume that X �′ A. By Definition 14.3.4 there exist a finite subset Y
of X and aparaconsistently closed tableauwith a root Z ∪ {¬A0}, for some Z ∈ Y (y).
By Corollary 14.3.3 Y is consistent, since there is a complete and open tableau with a
root Y , and Y �′ A. Hence, Y � A, by Corollary 14.3.5, and Y |= A, by Fact 14.2.3.
As a consequence, since Y ⊆ X , Y is consistent and Y |= A, X |=′ A. �

By Theorem 14.4.2 and Corollary 14.3.5 we have some final conclusion:

Corollary 14.4.3 �′ =�∩ {〈X, A〉 : 〈X, A〉 ⊆ 2For × For, ∃Y ⊆ X, Y is consistent
and Y |= A}.

14.5 Further Applications

The presented mechanism can be used to other tableau systems/logics. Through a
formal theory of tableau systems [2], we should aim at a general theorem:



14 A Method of Defining Paraconsistent Tableaus 307

if |==�, then |=′=�′
where |= and � are semantical and tableau consequence relations of a given logic,
while |=′ and �′ are their paraconsistent tableau counterparts.
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Chapter 15
Some Adaptive Contributions to Logics
of Formal Inconsistency

Diderik Batens

Abstract Some insights were gained from the study of inconsistency-adaptive
logics. The aim of the present paper is to put some of these insights to work for
the study of logics of formal inconsistency. The focus of attention is application con-
texts of the aforementioned logics and their theoretical properties in as far as they
are relevant for applications. As the questions discussed are difficult but important,
a serious attempt was made to make the paper concise but transparent.
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15.1 Introduction

Logics of Formal Inconsistency, LFIs for short, exploit a typical property of Newton
da Costa’s Cn-systems (0 < n < ω), viz. that there is a connective that expresses
consistency. The connective is explicitly definable within the Cn-systems and the
precise definition varies with n, but this matter need not concern us here. In [10],
the consistency operator is studied in general, viz. in the context of a wide variety
of paraconsistent logics. Many theorems are proved for classes of logics. The study
is restricted to the propositional level; extending it to the predicative level involves
some technical difficulties, which are studied in Sect. 15.5.

Within a paraconsistent context, consistency statements have a dramatic effect.
Consider the logical symbols with their CL meaning, except that the negation may
be paraconsistent. If A and ¬A are true together, then A ∨ B and ¬A may be true
together while B is false. So Disjunctive Syllogism is invalid because the truth of the
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premises A ∨ B and ¬A may result from the inconsistent behaviour of A rather than
from the truth of B and ¬A. Put differently, A ∨ B and ¬A entail (A ∧ ¬A) ∨ (B ∧
¬A) and if the first disjunct is true, then B may be false. A consistency statement ◦A
typically says that A is consistent, in other words that the first disjunct of (A ∧ ¬A) ∨
(B ∧ ¬A) is false, and hence that B is true if the disjunction is true. All this may be
summarized by the comment that A ∨ B,¬A � B but A ∨ B,¬A, ◦ A � B.

Every paraconsistent logic classifies a set of classically valid rules as invalid.
Which rules are so classified depends on the logic. That there is a need for consid-
ering some inconsistencies as true does obviously not entail that all inconsistencies
should be considered as true. So it is sensible to state that some formulas behave
consistently. Whenever we state a formula to be consistent, some classical conse-
quences of the premises are added to the paraconsistent consequence set. So we can
separate formulas that behave consistently from those that might not so behave and
in doing so we obtain a richer theory. This is what makes LFIs interesting.

Summarizing, the main idea behind LFIs is that a logic with a paraconsistent
negation ¬ is extended with a connective, ◦, that expresses consistency with respect
to ¬. Whenever ◦A is derivable from the premises, A functions as it would function
in classical logic. The effect may be phrased in two ways: ◦ offers a means to
locally restore classicality and ◦ offers a means to locally give up paraconsistency.
A consistency operator first occurred in da Costa’s Cn logics, which were around at
least from 1963 on [11]. In those days, the consistency operator did not receive much
attention, partly because the idea of paraconsistency was so new for most logicians—
their reaction was neither nice nor smart—partly because the consistency operator
is defined in the Cn logics and actually not defined in a very elegant way.1

Several insights gained during the study of (the metatheory of) adaptive logics are
useful for understanding andmastering LFIs. Presenting these insights was the initial
aim of the present paper. On the road, a few further insights on LFIs were added.
Moreover, it turned out useful to add a comparison, for some application contexts,
between an approach in terms of LFIs and an adaptive approach. I shall not argue
that one of the approaches is superior, but rather compare some of their properties.

As realistic applications of LFIs seem to be unavoidably predicative, the predica-
tive case is included in the present paper. Some useful comments on predicative LFI
are found in Sect. 15.5.

Next, I shall restrict my attention to LFI inwhich there is a (primitive or decidable)
consistency connective ◦ that names a consistency operator. In some LFI, the role
of the consistency operator is taken on by a set of formulas ©(A) each member of
which is built from logical symbols and occurrences of A. As we shall see, several
consistency operatorsmay occurwithin a LFIL.Where ◦ is a consistency connective,
◦A will be called a consistency statement; it states that A is consistent (or behaves
consistently). Another restriction in focus is that I shall only consider paraconsistent
logics that are not paracomplete.

1Being merely an abbreviation in Cn logics, the consistency operator adds nothing to the expressive
power of the language. That the definiens, for example¬(A ∧ ¬A) in C1, expresses the consistency
of A is somewhat awkward in the context of the Cn logics.
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Finally, this paper is not phrased in the terminology from [10]. That terminology is
precise as well as useful, but it would turn the present paper into one that is lengthy as
well as difficult to read. This is especially so because the terminology would require
modifications and extensions for the predicative case. I shall also depart from the
terminology where an alternative is easier for present purposes.

It seems useful to state that themetalanguagewill be classical—this actually holds
for all my papers and it agrees with the Brazilian tradition. Also “true” and “false”
will be used as excluding each other. So an inconsistent situation is one in which
a formula A is true together with its negation ¬A but such a situation cannot be
described by saying that A is both true and false. This convention presupposes that
paraconsistent logics can be consistently described, for example in that no formula
is verified as well as falsified by a model, not both M � A and M � A, and in that
no formula is a semantic consequence as well as not a semantic consequence of any
premise set, not both� � A and� � A. The two conventions are essential to interpret
the theorems and other metatheoretic statements in the sequel of this paper.

Another useful warning is that this paper does not contain a decent survey of
adaptive logics—other papers [5, 7] provide introductions. The essential dynamic
proof theory is not even mentioned below. Yet, there will be sufficient information
to make the present paper self-contained.

15.2 Preliminaries

Let L be a variable for languages, with F as its set of formulas and W as its set
of closed formulas. The standard predicative language will be called Ls , with Fs

and Ws as expected. Where ¬ will be the standard negation, which will usually be
paraconsistent, the symbol∼will always denote the classical negation—but you will
be reminded. Let us impose a minimal requirement on negations.2

Definition 15.1 A unary connective ξ is a negation in a logic L iff there are � and
A such that �, A �L ξA and �, ξA �L A.

This very weak definition imposes requirements for being a negation that have
no exceptions. A negation ξ is a unary connective. Moreover, ξA is neither logically
stronger nor logically weaker than A. This property, which is expressed semantically
by the first paragraph of Lemma 15.14 below, entails that for some A, ξA is not a
logical truth. I suggest thatDefinition 15.1 holds for all connectives thatwere sensibly
called negations in the literature, while stronger definitions do not—the “sensibly”
obviously contains a conventional element.

2Someparaconsistent logicians defend a specificnegation as the correct one. Priest [17], for example,
seems to assign this role to the negation of LP. Other paraconsistent logicians, for example da Costa
[12], consider a multiplicity of operators as paraconsistent negations, but sometimes impose certain
conditions. Often a more general outlook is taken, as for example by Béziau [9].
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As paracomplete negations are disregarded in this paper, everyL-modelwill verify
either A or ξA for every closed formula A and for every paraconsistent negation ξ.
That a logic is not paracomplete can be defined as follows in syntactic terms.

Definition 15.2 A symbol ξ is a complementing negation in a logic L iff it is a
negation in L and, for all �, A, and B, if �, A �L B and �,¬A �L B, then � �L B.

The disjunction ∨ will be taken to be classical except where otherwise specified.
Expressions like A(x) and A(a)will have their usualmeaning. The existential closure
of A, viz. the result of prefixing A with an existential quantifier over every variable
free in A, will be denoted by ∃A. The universal closure of A will be denoted by ∀A.
The L-consequence set of � is CnL(�) =df {A | A ∈ W;� �L A}.

An easy way to define what it means that a symbol is classical goes as fol-
lows. Every logic L defines a two-valued inferential semantics, obtained by turning
every true inferential statement A1, . . . , An �L B (n ≥ 0) into the semantic clause “if
vM(A1) = . . . = vM(An) = 1, then vM(B) = 1”.3 Note that the usual CL-semantics
contains a specific clause for every logical symbol of Ls . The classical clause for
disjunction, for example, reads “vM(A ∨ B) = 1 iff vM(A) = 1 or vM(B) = 1”.

Definition 15.3 A logical symbol ξ is classical in a logic L iff extending the infer-
ential semantics of L with the classical clause for ξ does not affect the semantic
consequence relation.

Definition 15.4 A logic L is explosive with respect to a negation ¬ iff it holds that
�, A,¬A �L B.4

Definition 15.5 A negation ¬ is paraconsistent in a logic L iff L is not explosive
with respect to ¬.

As paracomplete negations are disregarded in this paper, a L-model that verifies
the classical negation of A falsifies A, and hence verifies the paraconsistent negation
of A.5

Fact 15.6 Where ¬ is a paraconsistent negation in L and ∼ is a classical negation
in L, ∼A �L ¬A.

Definition 15.7 A logic is paraconsistent iff one of its negations is paraconsistent.

In agreement with the announced restriction on ©A, the following definition is
less general than the one in [10].

3The insight was Suszko’s [18]. The resulting semantics may be ugly but is obviously adequate.
4The reference to � may be dropped for Tarski logics (reflexive, transitive, and monotonic logics).
5The syntactic justification refers to the complementing character of the non-paracomplete paracon-
sistent negation. A,∼A �L ¬A by explosion for the classical∼ and¬A,∼A �L ¬A by reflexivity.
Both together entail ∼A �L ¬A in view of the is complementing character of ¬.
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Definition 15.8 A logic L is gently explosive with respect to a negation¬ iff there is
a (primitive or defined) unary connective ◦ such that ◦A, A �L B and ◦A,¬A �L B
hold for some A and B, whereas �, ◦A, A,¬A �L B hold for all �, A and B.6

Definition 15.9 L is a Logic of Formal Inconsistency iff there is a negation ¬ such
that L is not explosive with respect to ¬ but is gently explosive with respect to ¬.

Let ◦ be a consistency connective for ¬ within a LFI iff it functions as described
in Definition 15.8.

Fact 15.10 Where ◦ is a consistency connective for ¬ in a LFI L, �L ◦A and, for
some B, ◦A �L B.

Fact 15.11 Where ◦ is a consistency connective for¬ in a LFIL, (i) A,¬A �L ¬◦A,
(ii) where ∼ is classical negation in L, A,¬A �L ∼◦A, (iii) where ∧ is a non-glutty
conjunction in L, ◦A �L ¬(A ∧ ¬A), and (iv) where ∧ is a non-glutty conjunction
in L and ∼ is classical negation in L, ◦A �L ∼(A ∧ ¬A).

It is worth pointing out that a consistency connective ◦ of a LFI L need not be
a truth-function in L. Every L-model that verifies A ∧ ¬A falsifies ◦A, but some
L-models may falsify both. Put differently, a L-model that verifies A may verify ¬A
and may also verify ◦A; it cannot verify both ¬A and ◦A but it can falsify both.7 A
consistency statement provides enough information to turn a specific inconsistency
into triviality, but fulfils no further requirements.

Some people dislike this aspect of the approach. If¬ is a paraconsistent negation,
¬A is not a truth-function of A. One sensible way to understand the situation is this:
if A is true, then whether ¬A is true or false depends on a separate fact—separate
in the sense that it is not part of the fact that causes A to be true. Note that this
idea agrees with most of the two-valued semantics devised in Brazil or Belgium
for paraconsistent logics. It seems more difficult, however, to argue for a notion of
consistency such that ◦A is not a truth-function of A and ¬A—whence ¬A is not
a truth-function of A and ◦A either. If inconsistent situations are possible, then the
truth-value of ¬A depends on a fact independent of the one that determines A to
be true. But which fact might determine the truth of ◦A in case either A or ¬A is
false? Whether you like it or not, this is the way in which the people who devised
LFI laid it out.8 And there is nothing wrong with their decision to study, with respect
to a negation ¬ and logic L, the behaviour of a connective ◦ that, however weak or
strong, is such that ◦A, A �L B, ◦A,¬A �L B,¬A, A �L B, and ◦A, A,¬A �L B.

6Here too the reference to � may be dropped for Tarski logics.
7This is the reason why the converses of the inferences mentioned in Fact 15.11 do not hold for all
consistency connectives.
8The situationmayhave been influencedby the somewhat oddbehaviour of the (defined) consistency
operator A(n) in da Costa’s Cn systems with n > 1. Another relevant consideration might have been
that the consistent behaviour of a formula A on a premise set �, viz. that the logic does not require
� to entail A as well as ¬A, should not cause ◦A to be derivable from �. However, this danger is
nonexistent even in case ◦A is the suitable truth-function of A and ¬A.
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Needless to say some consistency connectives ◦ are such that ◦A holds true just in
case one of A and ¬A is false. As I disregard paracomplete negations, this holds just
in case vM(A) �= vM(¬A).

Definition 15.12 The connective ◦ is a complementing consistency connective for¬
within a LFIL iff extending the inferential semantics ofLwith the clause “vM (◦A) =
1 iff vM(A) �= vM(¬A)” does not affect the semantic consequence relation.

Given that I disregard paracomplete negations in the present paper, the clause may
be replaced by “vM(◦A) = 1 iff (vM(A) = 0 or vM(¬A) = 0)”.

Fact 15.13 Where L is a paraconsistent logic, it is possible to extend the language
of L with a connective ◦ and to devise a semantics for a LFI L′ by extending the
L-semantics with a clause for ◦ in such a way that ◦ is a complementing consistency
connective for ¬ in L′.

Whether L′ has a Hilbert axiomatization will depend on the logical symbols of
L. However, it is possible to syntactically characterize L′ by extending the syntactic
characterization of L with the rule A,¬A, ◦A/B and with two meta-rules: (i) if
�, ◦A � B and �, A � B, then � � B, and (ii) if �, ◦A � B and �,¬A � B, then
� � B.

It is worthwhile to state the semantic equivalents of some of the definitions. The
proof of the subsequent lemma is standard. Note that there is no need to refer to �

in the lemma.9

Lemma 15.14 A unary connective ¬ is a negation in a logic L iff there are L-models
M such that M � A and M � ¬A and there are L-models M such that M � ¬A
and M � A.

A negation ¬ is paraconsistent in L iff there is a L-model M such that M � A
and M � ¬A.

Where ¬ is paraconsistent in L, a unary connective ◦ is a consistency connective
for ¬ in L iff there is no non-trivial L-model M such that M � A, M � ¬A and
M � ◦A.

Where ¬ is paraconsistent in L and ◦ is a consistency connective for ¬ in L, ◦
is a complementing consistency connective for ¬ in L iff, for every L-model M, the
following holds: if M � A or M � ¬A, then M � ◦A.

The qualification “non-trivial” may obviously be dropped if the semantic clauses
rule out the trivial model. Thus, the usual clause for the CL-negation rules out the
trivial model and so does the clause mentioned in Definition 15.12. An alternative,
which leads to an equally adequate semantics, is obtained by appending to that clause
“or vM(B) = 1 for all B”.10

9A non-monotonic logic may assign to � a selection of models that verify all members of �. The
lemma contains references to all L-models.
10Adding or removing the trivial model—the model verifying all closed formulas—to the set of
models defined by a semantics may require that the semantic clauses are adjusted. In view of the
definition of the semantic consequence relation, it is obvious that such addition or removal does not
affect the consequence relation.
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Lemma 15.15 Where ¬ is paraconsistent in L, ◦ is a complementing consistency
connective for ¬ in L, and ∧ is classical or gappy in L, ∼A =df ¬A ∧ ◦A defines
a classical negation.

Proof It is easily seen that, if the antecedent is true, no L-model verifies A as well
as ¬A ∧ ◦A and every L-model verifies either A or ¬A ∧ ◦A. �

The following comments are meant to cause some reflection. In the presence of
the complementing consistency connective ◦ for ¬ in L, every L-model agrees with
one of three possibilities with respect to A, as represented in the top row of the
following two tables. The LFI L is reduced to CL by the mapping that agrees with
the following schema.

L1 :
L2 :

A, ◦A A,¬A ¬A, ◦A
A ¬A

It seems natural to read the so obtained version of CL as: either A is (consistently or
inconsistently) true or else ¬A is consistently true, but not both. However, the LFI
L is also turned into CL by the mapping that agrees with the following schema.

L1 :
L2 :

A, ◦A A,¬A ¬A, ◦A
A ¬A

Thismapping gives us: either A is consistently true or else¬A is true, but not both. So
even if the world is inconsistent, there are twoways to describe it in terms ofCL. The
first presupposes that consistent falsehood canbe identified, the second that consistent
truth can be located. In both cases, the transition to CL leads to a lack of expressive
power—distinct situations are identified. If one wants to combine the paraconsistent
view with the classical one in the same language, the first mapping merely requires
that a new negation symbol is introduced, whereas the second mapping requires a
consistently true symbol. Although most people will consider the second alternative
as conceptually more difficult, both are perfectly symmetric.

An interesting insight in LFIs is that some ◦-free formulas establish logical rela-
tions between consistency statements. Let → be a detachable implication in a logic
L—for all L-models M , if M � A → B and M � A, then M � B—but for which
Modus Tollens does not hold.11 Note that

A → B,¬B, ◦B �L ¬A

holds. Indeed, no non-trivial models of the premises verify A. So all models of the
premises verify ¬A. However,

A → B,¬B, ◦B �L ◦A

11There is no reason to handleModus Ponens andModus Tollens on a par. The first states a property
of the implication. The justification of Modus Tollens requires a reference to negation: if A is true,
then B is true (byModus Ponens); but¬B is true; so if inconsistencies are not true, then neither is A.
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also holds for complementing consistency connectives ◦. Indeed, if a model of the
premises would verify A, it would also verify B and hence would be trivial. So the
model either falsifies A or is trivial. In both cases it verifies ◦A.

A final preliminary comment concerns weird logics. There are some paracon-
sistent logics and some LFI that we do not want to consider because they have
exceptional properties and, as far as we can see at this moment, no one is interested
in them. I shall call them irregular and now explain what I mean by that. Any decent
semantics presupposes a complexity ordering<which is such that if A < B, then all
non-logical symbols that occur in A also occur in B. The valuation function defines
the valuation value vM(A) in terms of the assignment function and in terms of valua-
tion values vM(B1), …, vM(Bn) such that B1 < A, …, Bn < A. Some paraconsistent
models M verify both A and ¬A while this is not determined by the truth values of
formulas less complex than ¬A. There is nothing wrong with this, but if the logic is
regular there should be a model M ′ such that M and M ′ verify the same formulas,
except for ¬A and formulas B such that ¬A < B.12 Similarly, some LFI-models M
falsify a member of {A,¬A} but also falsify ◦A. Again, this is all right, but if the LFI
is regular there should be a LFI-model M ′ that verifies exactly the same formulas as
M except for ◦A and formulas B such that ◦A < B.13

15.3 Derivable Disjunctions of Contradictions

Let L be a LFI in which ∧ and ∨ have their classical meaning and let us, for this
section, restrict our attention to propositional premise sets. From some such sets, a
set of contradictions is derivable. From others only a disjunction of contradictions
is derivable. A common example of the latter is �1 = {¬p,¬q, p ∨ q, p ∨ r, q ∨
s,¬t, u ∨ t}. According to many paraconsistent logics, no contradiction is derivable
from�1, but a disjunction of contradictions is derivable from it, viz. (p ∧ ¬p) ∨ (q ∧
¬q). Suchdisjunctionsmay count any (finite) number of disjuncts and infinitelymany
such disjunctions may be derivable from a premise set.

To save on terminology, I already introduce here some concepts from themetathe-
ory of adaptive logics. Aswe shall see in Sect. 15.6, one of the elements of an adaptive
logic is a ‘set of abnormalities’ �. Let us, for the present propositional discussion,
identify abnormalities with contradictions, whence � = {A ∧ ¬A | A ∈ W}. A dis-
junction of members of � will be called a Dab-formula (a disjunction of abnormal-
ities). In the expression Dab(�) (and in similar expressions), � is a finite subset of
� and Dab(�) is the disjunction of the members of �. If � �L Dab(�), we shall

12This regularity requirement is stronger than the requirement for being a negation in the sense of
Lemma 15.14. If S contains all CL-models as well as the trivial model, ¬ is a negation but the
regularity requirement is not fulfilled.
13Do not confuse the question whether a logic is regular with the question whether a specific
semantics of this logics is deterministic. See Sect. 2 of another paper [7] in this volume for a
method to turn an indeterministic semantics of a certain type into a deterministic one.
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say that Dab(�) is a Dab-consequence of �.14 Finally, consider a semantic notion.
Where M is a L-model, define Ab(M) = {A ∈ � | M � A}—the set of abnormali-
ties verified by M , in some papers called the ‘abnormal part’ of M .

As the disjunction is classical, Addition holds. So if a premise set has a Dab-
consequence, then it has infinitely many different Dab-consequences. In the sequel
I shall need minimal Dab-consequences of a premise set. Where Dab(�) is a Dab-
consequence of�,Dab(�) is aminimal Dab-consequence of � iff there is no�′ ⊂ �

such that Dab(�′) is a Dab-consequence of �.
If Dab(�) is a minimal Dab-consequence of � and A ∧ ¬A ∈ �, then Dab(� −

{A ∧ ¬A}) is a minimal Dab-consequence of � ∪ {◦A}. Put differently, extending
� with consistency statements may result in Dab-consequences that contain less
disjuncts. The reader who frowns at the “may” should consider that extending �1

with ◦t does not have any effect on the minimal Dab-consequences of �1.15

The previous paragraph hides an interesting insight. Instead of spelling it out here,
I save it for Sect. 15.7 where its consequences can be highlighted.

15.4 A Logical Boundary

A theory may be seen (on the statement view) as a couple T = 〈�, L〉 in which �

is a set of non-logical axioms and L is a logic. Adding consistency statements to
T only makes sense if at least one negation of L is paraconsistent and provided the
consistency statements pertain to such a negation. The decision to add consistency
statements to T is extra-logical. It is a decision to extend T with new non-logical
theorems by strengthening a certain statement in a specific way. This is clearly extra-
logical with respect to L. Strengthening A to A ∧ ◦A, or ¬A to ¬A ∧ ◦A, may be
justified by a general consistency presumption, but not if A ∧ ¬A is a disjunct of a
minimal Dab-consequence of �.

Although the decision is extralogical, there are logical constraints. If the non-
logical axiomsare�2 = {p, q,¬p ∨ r,¬q ∨ s,¬q}, then adding◦q causes triviality,
whereas adding◦p does not. If the non-logical axiomsare�1 = {¬p,¬q, p ∨ q, p ∨
r, q ∨ s,¬t, u ∨ t}, then neither adding ◦p nor adding ◦q causes triviality, but adding
both does. In general there are, for every inconsistent theory T , sets of consistency
statements such that adding all members of the set to T causes triviality but adding

14There is no need to add “with respect to L” as Dab-consequences of � will always be considered
for a specific logic.
15The set of minimal Dab-consequences obviously depends on the logic. For some paraconsistent
logics, like CLuN mentioned in a subsequent section, (p ∧ ¬p) ∨ (q ∧ ¬q) is the only Dab-
consequence of �1. Other paraconsistent logics assign infinitely many Dab-consequences to �1.
Still, I cannot picture any formal paraconsistent logic for which ◦t has an effect on the minimal
Dab-consequences of �1. This is weaker than what is claimed in the text, but I shall buy you a beer
if you show my imagination lacking at this point and that is stronger than what is said in the text.
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all but one members does not.16 Only a very limited number of sensible people
will judge that extralogical reasons may outweigh reasons to avoid triviality. So in
constructing LFI-theories, one should mind the triviality danger.

As soon as this is agreed upon, a further question surfaces: Given a paraconsistent
theory, which are the maximal sets of consistency statements that can be added to
it? This may be termed the maximality question. Reconsider the premise set �1. It is
possible that one has no good (extralogical) reason to prefer adding ◦p to adding ◦q
and vice versa. In that case, opting for one of the extensions seems unjustifiable. Of
course several alternatives are still open. One may simply not add either consistency
statement. One may consider and study the two extended theories without choosing
between them, for example in the hope that this may lead to a good reason to prefer
one decision over the other. One may also extend the theory with the (classical or
gappy) disjunction ◦p ∨ ◦q. This will cause r ∨ s rather than one of its disjuncts to
be a theorem.

It is not in general desirable that one tries to obtain a theory to which no further
consistency statements can be added. After all, a person who devises a theory is
free to organize it along his or her preferences. Theories are judged in view of what
they state and in view of the way in which they ‘react’ to other knowledge. That an
otherwise good theory does not contain a maximal set of consistency statements is at
best a theoretical problem. Nevertheless, it is useful to solve themaximality question,
viz. to study the maximal sets of consistency statements that extend a premise set
without causing triviality. A set of consistency statements non-trivially extends the
considered theory iff it is a subset of one of those maximal sets.

15.5 Predicative Consistency Statements

The transition from propositional LFI to predicative ones is not completely obvious
and some definitions from Sect. 15.2 have to be adjusted, for example Definition
15.8. The matter is important in view of realistic applications.

The main technical difficulty concerns the typical predicative consistency state-
ment. Indeed,

∃(A ∧ ¬A) �CL B (15.1)

whereas, for many paraconsistent logics L, there are A such that ∃(A ∧ ¬A) �L

B ∧ ¬B holds for all B ∈ W—for example ∃x(Px ∧ ¬Px) �CLuN B ∧ ¬B.17 In

16To be more precise, this is the case for some (not necessarily all) sets {A1, . . . , An} such that
(A1 ∧ ¬A1) ∨ . . . ∨ (An ∧ ¬An) is a minimal Dab-consequence of the non-logical axioms of the
theory.
17Thepredicative logicCLuN, first introduced in [2], is the predicative extensionof the propositional
PI from [1]. The latter extended with a suitable axiom for a consistency operator is the LFI mbC—
see Definition 42 of [10].
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view of this situation, if a predicative LFI L has a suitable conjunction,18 then it
needs a formula X that functions as the consistency statement for A, viz.

X, ∃(A ∧ ¬A) �L B (15.2)

or perhaps
∃(X ∧ A ∧ ¬A) �L B . (15.3)

In the presence of the CL-negation ∼, it obviously holds that

∼∃(A ∧ ¬A), ∃(A ∧ ¬A) �L B , (15.4)

equivalently
∀(∼A ∨ ∼¬A), ∃(A ∧ ¬A) �L B , (15.5)

and it also holds that

∃((∼A ∨ ∼¬A) ∧ A ∧ ¬A) �L B . (15.6)

Both ∼∃(A ∧ ¬A) and ∀(∼A ∨ ∼¬A) are complementing consistency operators
for ¬. Similarly, for the option corresponding to (15.3), the ‘internal’ consistency
operator ∼A ∨ ∼¬A from (15.6) is complementing. However, in line with the way
in which the consistency operator is introduced at the propositional level, one should
also consider consistency operators that are not complementing. So we want to allow
that the X in (15.2) is weaker than the first formula in (15.5) and that the X in (15.3)
is a weaker than the open formula ∼A ∨ ∼¬A in (15.6).

A little reflection readily reveals the road to be taken. Instead of explicitly defin-
ing a consistency operator by the definiens ∼A ∨ ∼¬A, we should replace this
expression in (15.5) and (15.6) by ◦A in which ◦ is any propositional consistency
connective—remember the comment on Definition 15.8.

For the option corresponding to (15.2), this results in universally closed consis-
tency statements,

∀◦A, ∃(A ∧ ¬A) �L B , (15.7)

supposing that the universal quantifier is classical. However weak the consistency
connective, the consistency statement cannot warrant that ∃(A ∧ ¬A) results in triv-
iality unless ◦A holds true independent of the way in which the free variables in
A are mapped on the model’s domain. Precisely this is warranted by ∀◦A. If no

18Suitable are a classical conjunction or a gappy one. Glutty conjunctions have to be considered
contextually because they allow formodels that verify a conjunction and falsify one of the conjuncts.
While such models are clearly abnormal with respect to CL and many other logics, it depends on
further properties whether a consistency operator should handle this. See for example [8] on gluts
and gaps of all kinds.
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free variables occur in A, there are no quantifiers in (15.7), whence it reduces to the
desired propositional property

◦A, A,¬A �L B (15.8)

provided the conjunction is not glutty.
For the option corresponding to (15.3) the possibly open formula ◦A will do.

However, this option does not seem very attractive, neither with respect to LFI prop-
erly nor with respect to adaptive LFI. Consider indeed�3 = {∃x Px,∀(Qx ∨ ¬Px)}
and letL be a logic in which conjunction, disjunction and the quantifiers behave clas-
sically, whence �3 �L ∃x(Qx ∨ (Px ∧ ¬Px)). In order that ∃x Qx be L-derivable,
it is obviously not sufficient to add ∃x ◦Px ; we need to add at least ∃x(Px ∧ ◦Px).
In other words, we have to state that some object has property P and is consistent in
this respect.

The situation is easily misleading. Indeed, ∃x(Px ∧ ◦Px) cannot be seen as a
consistency statement because it also contains the information ∃x Px , which is not
part of the meaning of ∃x◦Px . One might think that ∃x(Px ∧ ◦Px) may be seen
as a specification of the premise ∃x Px , as the addition ‘under the quantifier’ that
the x which has property P has this property in a consistent way. This, however
is mistaken. Consider indeed �4 = {∃x Px,∀(Qx ∨ ¬Px), ∃x(Px ∧ ¬Px)}. If we
extend �4 with ∃x(Px ∧ ◦Px), then, just as in the case of �3, ∃x Qx is derivable.
So it is quite obvious that ∃x(Px ∧ ◦Px) cannot be seen as a specification of the
premise ∃x Px for the simple reason that, in the extended�4, some x have property P
in a consistent way whereas other x have it in an inconsistent way. Here is a different
way of stating the matter: given that conjunction, disjunction and the quantifiers
were presumed to be classical, the set of consequences of �4 coincides with the
set of consequences of �5 = {∀(Qx ∨ ¬Px), ∃x(Px ∧ ¬Px)}. So ∃x(Px ∧ ◦Px)

is new information, viz. that an object has property P in a consistent way, and is
not the specification that an object known to have property P has this property in a
consistent way.

What precedes shows that formulas containing a consistency statement that is
‘internal’ in the sense of (15.3) introduces new information. It easily follows, how-
ever, that these are not consistency statements at all. The correct rendering of (15.3),
implemented as ∃(◦A ∧ A ∧ ¬A) �L B is

∃(◦A ∧ A ∧ ¬A), ∃(A ∧ ¬A) �L B

because ∃(◦A ∧ A ∧ ¬A) constitutes new information and does not specify the state-
ment ∃(A ∧ ¬A). Note also that ∃(◦A ∧ A ∧ ¬A) itself is not a consistency operator.
This is obvious from

∃(◦A ∧ A ∧ ¬A) �L B

and Definition 15.8.
The preceding considerations, so you might think, show that the option corre-

sponding to (15.3) leads to trouble and that the option corresponding to (15.2) is the
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right one. But that is wrong too. Extending�4 (or�5) with ∀x◦Px results in triviality.
This, however, does not mean that the consistency connective does not allow one to
extend �4 or �5 in such a way that ∃x Qx is a consequence. Indeed, as we have seen,
extending those premise sets with ∃x(Px ∧ ◦Px) does the job.

Even more astonishing might be that the option corresponding to (15.2) is by no
means exhausted by what was said before. Although ∀◦A seems to be the regular
form of the predicative consistency statement, it sometimes also pays to add ∃◦A.
Consider indeed the premise set�6 = {∀x(Px ⊃ Qx), ∃x(Qx ∧ ¬Qx)} and the LFI
mbC. Extending �6 with ∀x◦Qx results in triviality, but extending it with ∃x◦Qx
does not. Moreover, it extends the mbC-consequence set with ∃x((Qx ∧ ◦Qx) ∨
(¬Qx ∧ ◦Qx)) andhence alsowith∃x((Qx ∧ ◦Qx) ∨ (¬Px ∧ ◦Px)). By the same
reasoning, if �7 = {∀x(Px ⊃ Qx),∀x(Rx ⊃ ¬Qx), ∃x(Qx ∧ ¬Qx)} is extended
with ∃x◦Qx , then its mbC-consequence set is extended with ∃x((Qx ∧ ◦Qx) ∨
(¬Qx ∧ ◦Qx)) and hence also with ∃x((¬Rx ∧ ◦Rx) ∨ (¬Px ∧ ◦Px)).

Allow me to stress that what precedes is by no means a criticism of the LFI
programme. I just want to point out that the transition from propositional LFIs to
predicative LFIs is not obvious. Indeed, one of the oddities is that no logical form
can function in general as the predicative consistency statement.

The only further noteworthy comment at the predicative level concerns decidabil-
ity matters. Many propositional LFIsL assign a recursive consequence setCnL(�) to
every finite premise set�. So it is decidable whether theL-consequence set of a finite
propositional � is trivial. For infinite but decidable premise sets �, CnL(�) is only
semi-decidable. By moving to the predicative level, CnL(�) is only semi-decidable
even for most finite �. So it is in general only semi-decidable whether CnL(�) is
trivial.

15.6 A Few Adaptive Basics

Adaptive logics are defined as triples consisting of (i) a lower limit logic LLL:
a logic that has static proofs,19 (ii) a set of abnormalities �: a set of closed formulas,
characterized by a possibly restricted logical form,20 and (iii) an adaptive strategy
(as clarified below).

In this section, I consider the question what adaptive LFI should look like. By an
adaptive LFI I mean an inconsistency-adaptive logic that has a LFI as lower limit and
that enables one to derive consistency statements that, once derived, play the typical
LFI-role.

The intuitive idea behind� is that it contains the formulas that are presumed to be
false unless and until the premises require them to be true. The precise meaning of
the latter expression depends on the strategy—only two strategies will be given some

19For present purposes, this may be identified with a compact Tarski logic.
20The set � may comprise formulas of the form ∃(A ∧ ¬A). If A is any formula, the form is
unrestricted; if A is required to be an atomic formula, the form is restricted.
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attention in this paper—and on the (classical) disjunctions of abnormalities derivable
byLLL from the premise set. As is the case for many Tarski logics, many LFImay be
combined with different strategies and with different sets of abnormalities to obtain
a multiplicity of adaptive logics. Where the lower limit logic LLL is a LFI, two hints
help to avoid inadequate sets�. First, abnormalities should beLLL-contingent.Next,
� should be such that the adaptive LFI maximally approaches the CL-consequence
setwithout being trivial andwithout involving choices that are arbitrary froma logical
point of view. This second hint requires some explanation.

Adding ◦p rather than ◦q to �1 = {¬p,¬q, p ∨ q, p ∨ r, q ∨ s,¬t, u ∨ t} is an
obvious example of a logically arbitrary choice. The choice may obviously be justi-
fied by non-logical preferences. So there is nothing wrong when a person applying a
LFI chooses to add one consistency statement rather than another. Adaptive logics,
however, whether their lower limit logic is a LFI or not, cannot make such choices.
They may add consistency statements to premise sets, but only in a logically sym-
metric way—more detailed insights follow in this section. Adaptive LFIs interpret
premise sets as consistently as possible in the following sense: if a consistency state-
ment is not in the adaptive consequence set of �, then adding the statement either
leads to the trivial consequence set or involves a logically arbitrary choice. In the
specific case where � is a normal premise set, viz. one that has CL-models, the
adaptive consequence set of � should be identical to its CL-consequence set. That
CL is chosen as the upper limit logic21 is a decision taken by the people who devised
LFI. A neat comparison requires that a consistency operator is added to the lan-
guage of CL and that it is explicitly or implicitly defined in such a way that ◦A is a
CL-theorem—an obvious choice is ◦A =df ¬(A ∧ ¬A).

In many inconsistency-adaptive logics, the set of abnormalities is

� = {∃(A ∧ ¬A) | A ∈ X }

in which ∃ and ∧ are classical22 and X is the set of open and closed formulas of the
standard predicative language or a subset of it, often the set of atomic formulas—
note that the logical form is then restricted.23 The need for the existential closure is
obvious by the reasoning from Sect. 15.5.

In combination with a LFI as lower limit logic, � will only lead to an adaptive
logic that maximally adds consistency statements if ◦ is complementing. A different
choice, which will function well for any consistency connective ◦, is

� = {∃¬◦A | A ∈ X } (15.9)

21The upper limit logic ULL is obtained by extending LLL with a rule that causes all abnormalities
to entail triviality.
22If one of those symbols would be glutty or gappy, the abnormalities would need to contain
members that describe the gluts or gaps in the existential quantifier and the conjunction in order to
handle the situation in an adequate way. See [8] for more information.
23The absence of the restriction may cause the adaptive logic to be a flip-flop, which means that
the adaptive consequence set reduces to the lower limit consequence set whenever the premise set
is abnormal.
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in which ∃ and X are as before and, as agreed, the negation is not gappy.24 The
central desirable feature is that the falsehood of the abnormality should entail the
truth of the corresponding consistency statement. And indeed, if the quantifiers are
classical and the negation is not gappy, then ∀◦A is true whenever ∃¬◦A is false.

For most paraconsistent logics L and premise sets �, it holds, first, that CnL(�)

is inconsistent iff CnCL(�) is so and, next, that classical disjunctions of abnormal-
ities are L-derivable from � while none of the disjuncts is. The second property is
what interest us here. An obvious example is again�1 = {¬p,¬q, p ∨ q, p ∨ r, q ∨
s,¬t, u ∨ t}. When the logic is CLuN, or nearly any other sensible paraconsistent
logic, (p ∧ ¬p) ∨ (q ∧ ¬q) is derivable from �1 but neither disjunct is.

A few definitions were already hinted at in Sect. 15.3 but are repeated here in a
more precise setting. By a Dab-formula I mean a classical disjunction of abnormal-
ities, including the border case where there is only one disjunct. In expressions like
Dab(�), � is a finite subset of � and Dab(�) is the classical disjunction of the
members of �. Dab(�) is a Dab-consequence of � iff � �LLL Dab(�). Dab(�) is
a minimal Dab-consequence of � iff it is a Dab-consequence of � and no �′ ⊂ �

is such that Dab(�′) is a Dab-consequence of �. A choice set of � = {�1,�2, . . .}
is a set that contains one element out of each member of �. A minimal choice set of
� is a choice set of � of which no proper subset is a choice set of �.

Definition 15.16 Where Dab(�1), Dab(�2), . . . are the minimal Dab-
consequences of �, �(�) is the set of minimal choice sets of {�1,�2, . . .}.25

Definition 15.17 Where M is a LLL-model, Ab(M) = {A | A ∈ �; M � A}.
LetALm denote the adaptive logic defined by a givenLLL, an�, and theMinimal

Abnormality strategy. Let MLLL
� be the set of all LLL-models of � and let Mm

� be
the set of all minimally abnormal models of � as defined below.

Definition 15.18 M ∈ Mm
� (M is aminimally abnormalmodel of�) iff M ∈ MLLL

�

and no M ′ ∈ MLLL
� is such that Ab(M ′) ⊂ Ab(M).

Definition 15.19 � �ALm A iff M � A for all M ∈ Mm
� .

Note that there are no ALm-models, but only ALm-models of a set �. Theorem
15.20, proven as Lemma 4 in [5], establishes an important relation between the
semantics and the syntactic level; it actually plays an essential role in the proof
that the dynamic proof theory of ALm is sound and complete with respect to the
ALm-semantics.

Theorem 15.20 If � has LLL-models, then ϕ ∈ �(�) iff ϕ = Ab(M) for some
M ∈ Mm

� .

24This � will also be adequate for some combinations of non-classical quantifiers, but that need
not concern us in the present paper.
25If � has no Dab-consequences, �(�) = {∅}; if � has no LLL-models, �(�) = {�}; �(�) �= ∅
always holds.
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The following corollary holds in view of Theorem 15.20 and Definitions 15.18
and 15.19 (and holds vacuously in case MLLL

� = ∅):
Corollary 15.21 � �ALm A iff M � A for all M ∈ MLLL

� for which Ab(M) ∈
�(�).

While ALm follows the Minimal Abnormality strategy, some adaptive logics fol-
low the related Normal Selections strategy—this strategy was first invoked in [3];
the generic name of these adaptive logics is ALn.

Definition 15.22 � �ALn A iff, for some M ∈ Mm
� , M ′ � A for all M ′ ∈ Mm

� for
which Ab(M ′) = Ab(M).

So � �ALn A iff A is verified by all members of a set of minimally abnormal
models of � that verify the same set of abnormalities.

If M ′ ∈ Mm
� and Ab(M ′) = Ab(M) then M ′ verifies � ∪ Ab(M); so M ′ ∈

MLLL
�∪Ab(M). If M ′ were not a minimally abnormal model of � ∪ Ab(M), then it

would not be a minimally abnormal model of � in view of Definition 15.19. So
M ′ ∈ Mm

�∪Ab(M). In view of Theorem 15.20, this amounts to:

Corollary 15.23 � �ALn A iff, for some ϕ ∈ �(�), M � A for all M ∈ Mm
�∪ϕ.

The following theorem, proven as Theorem 5 in [5], is mentioned for future
reference.

Theorem 15.24 If M ∈ MLLL
� − Mm

� , then there is a M ′ ∈ Mm
� such that Ab(M ′)

⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

The property fundamentally expresses that there are no infinite sequences of mod-
els of � such that every model is less abnormal than its predecessor. Other names
for the property are Smoothness and Stopperedness.

15.7 Back to LFI

Information from the previous section will be put to use here. I shall only consider
adaptive logics that have a LFI asLLL and� as in (15.9). Let� = {∀◦A | A ∈ X }—
actually, for reasons that become clear later in this section, one may read X as F .

Fact 15.25 Where � ⊆ �, CnLLL(� ∪ �) is not trivial iff some member ofMLLL
�

verifies all members of �.

As I have to make a decision anyway, I take ∀◦A to be the official predicative
consistency statement and I take the notion of regularity from Sect. 15.2 upgraded
accordingly.
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Fact 15.26 � ⊆ � is maximal with respect to � and LLL iff a member of MLLL
�

verifies all members of � and no member of MLLL
� verifies all members of � and

moreover some members of � − �.

Note that these facts are independent of the question whether ◦ is complementing
or not. If M does not verify both A and ¬A but nevertheless falsifies ◦A, then, by
the regularity of LLL, a different LLL-model of the premises, say M ′, verifies the
same formulas as M , except for ◦A and formulas B such that ◦A < B.

Theorem 15.27 � ⊆ � is maximal with respect to � and LLL iff there is a M ∈
Mm

� such that (i) if A ∈ �, then M � A and (ii) if A ∈ � − �, then M � A.

Proof ⇒ Suppose that � ⊆ � is maximal with respect to � and LLL but that there
is no M ∈ Mm

� such that (i) and (ii) are fulfilled. In view of Fact 15.26, (1) some
M ∈ MLLL

� verifies all members of � and no members of � − �, and (2) no M ∈
MLLL

� verifies all members of� as well as some members of� − �. (2) entails that
(3) no M ∈ MLLL

� falsifies ∃¬◦A whenever ∀◦A ∈ � and moreover falsifies ∃¬◦A
for some ∀◦A ∈ � − �.

By the regularity of LLL, (1) entails that there is a M ′ ∈ MLLL
� that verifies ∀◦A

iff ∀◦A ∈ � and that verifies ∃¬◦A iff ∀◦A ∈ � − �. So (i) and (ii) hold for M ′ and
M ′ falsifies ∃¬◦A iff ∀◦A ∈ �. But then M ′ ∈ Mm

� in view of (3).
⇐ Suppose that (1) (i) and (ii) hold for M ∈ Mm

� , but that (2) � ⊆ � is not
maximal with respect to � and LLL. (1) entails that (3) M ∈ Mm

� and M falsifies all
members of� − � andhence verifies∃¬◦Awhenever∀◦A ∈ � − �. ByFact 15.26,
(2) entails that some M ′ ∈ MLLL

� verifies all members of� as well as somemembers
of� − �. By the regularity ofLLL, (4) some M ′′ ∈ MLLL

� verifies all members of�
aswell as somemembers of� − �, falsifies∃¬◦Awhenever∀◦A ∈ � andmoreover
falsifies at least one ∃¬◦A for which ∀◦A ∈ � − �. But then Ab(M ′′) ⊂ Ab(M),
which is impossible (3).

Corollary 15.28 � ⊆ � is maximal with respect to � and LLL iff {∃¬◦A | ∀◦A ∈
�} ∈ �(�).

Theorem15.27 relatesminimally abnormalmodels tomaximal sets of consistency
statements. But what about maximal consistent models? Consider a LFI LLL, a
premise set �, and a � ⊆ � that is maximal with respect to � and LLL. Suppose
that M ∈ MLLL

� verifies all members of � but that M /∈ Mm
� . In view of Theorem

15.27, this can only mean that there is a formula B such that M verifies ∀◦B ∈ �

but also verifies ∃¬◦B, whereas some M ′ ∈ MLLL
� falsifies ∃¬◦A as well as ¬∀◦A

for all ∀◦A ∈ �, and hence falsifies ∃¬◦B. In view of Theorem 15.24, it follows
that some M ′′ ∈ Mm

� falsifies ∃¬◦A as well as ¬∀◦A for all ∀◦A ∈ �, and hence
falsifies ∃¬◦B as well as ¬∀◦B. But this is impossible. Indeed, as M ′′ ∈ Mm

� , it
falsifies ¬◦∀◦B and hence verifies ◦∀◦B. But ◦∀◦B /∈ �, because M falsifies it and
� ⊆ � that is maximal with respect to � and LLL.

Corollary 15.29 M ∈ MLLL
� verifies a � ⊆ � that is maximal with respect to �

and LLL iff M ∈ Mm
� .
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Consider again the premise set �1 = {¬p,¬q, p ∨ q, p ∨ r, q ∨ s,¬t, u ∨ t}
and the LFI mbC—see footnote 17—in which conjunction and disjunction are
classical. It is easily seen that �(�1) = {{p}, {q}}. �1 may be extended with two
different kinds of consistency statements. Every extension with a ∀◦A for which
∃¬◦A /∈ ⋃

�(�1) may be called a consistency reclaim. Such extensions are com-
pletely harmless. Onemay add as many consistency reclaims to�1 as one desires and
onemay add them all together. Extending�1 with a∀◦A forwhich ∃¬◦A ∈ ⋃

�(�1)

may be called a consistency decision. Consistency decisions cannot always be
combined—extending �1 with both ◦p and ◦q results in triviality. Insights from
adaptive logics teach us that consistency decisions may be combined iff the cor-
responding abnormalities belong to the same ϕ ∈ �(�). Needless to say, �1 is an
utterly simple toy example, but Corollary 15.28 shows that thematter holds generally.

Fact 15.30 If � is not LLL-trivial,26 � ⊆ �, and ∃¬◦A /∈ ⋃
�(�) whenever

∀◦A ∈ �, then a � ∪ � is not LLL-trivial. (Consistency reclaims)

Fact 15.31 If � is not LLL-trivial, � ⊆ �, and ∃¬◦A ∈ ⋃
�(�) whenever ∀◦A ∈

�, then a � ∪ � is not LLL-trivial iff there is a ϕ ∈ �(�) such that ∃¬◦A ∈ ϕ
whenever ∀◦A ∈ �. (Consistency decisions)

Theorem 15.32 Dab(�) ∈ CnAL(�) iff Dab(�) ∈ CnLLL(�). (Immunity / AL is
Dab-conservative with respect to LLL.)

This theorem, proven as Theorem 10 in [5], shows that, if � is extended into �′
by a (finite or infinite) set of consistency reclaims, then �(�′) = �(�). It follows
that if a non-LLL-trivial � is extended by any set of consistency reclaims combined
with any set of coherent consistence decisions—coherent in that they refer to the
same ϕ ∈ �(�)—then the resulting set is not LLL-trivial.

Aswe shall see in the next section, an inconsistency-adaptive logic restricts itself to
extending a premise setwith the full set of consistency reclaims—some extreme cases
aside, this set is always infinite. Some consistency reclaims have an obvious effect—
adding ◦t to �1 makes u derivable. For others, the gain is merely CL-theorems and
combinations of them with already derivable formulas. Thus if ◦v is added to �1

and the LFI is mbC, then the following formulas are derivable among many others:
(v ∧ ¬v) ⊃ w and (¬t ∧ v) ∨ (v ⊃ (w ∧ ¬w)).

This is probably the best place to insert a brief comment on flip-flop adaptive
logics. By minimizing abnormalities, adaptive logics interpret premise sets as much
as possible in agreement with ULL, which is CL for most inconsistency-adaptive
logics. However, some adaptive logicsAL display the following odd behaviour. If the
premise set � has no Dab-consequences, the AL-consequence set of � is identical
to its ULL-consequence set. This is as it should be and as it is for all adaptive logics.
However, if � has Dab-consequences, then the AL-consequence set of � is identical
to itsLLL-consequence set. This is obviously not all right.More correctly, it is nearly
never what one wants. Usually one wants to isolate the unavoidable abnormalities
and to consider at least some abnormalities as false.

26Where a logic L is defined over L, a set � is L-trivial iff CnL(�) = W .
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Some adaptive logics are flip-flops because the combination of a lower limit logic
with a specific consequence set causes, in case � has Dab-consequences, all models
of� to be minimally abnormal models of�. What this means in terms of consistency
statements is that consistency reclaims are impossiblewhile consistency decisions are
possible. This looks odd from an adaptive point of view, but not from the viewpoint of
LFIs. While the distinction between consistency reclaims and consistency decisions
is heuristically and computationally interesting for a person applying a LFI, there is
no reason for this person, or least for most applications, to restrict the addition of
consistency statements to consistency reclaims. The target of inconsistency-adaptive
logics is the set of formulas verified by every minimally abnormal model of the
premises, the target of a person applying a LFI is the set of formulas verified by
every model of the premises that falsifies a specific set of abnormalities.

15.8 Comparing Application Contexts

The last statement of the previous section identifies a central difference between
LFIs and inconsistency-adaptive logics. Some more differences are worth being
highlighted. One of them is that LFIs are Tarski logics (or very close to Tarski logics),
are deductive logics, and have recursively enumerable consequence sets, whereas
inconsistency-adaptive logics are defeasible, are formal characterizations ofmethods,
and have very complex consequence sets—up to �1

1 for Minimal Abnormality—see
[16, 19]. Another difference is that LFIs typically require ingenuity. The person who
applies the logics should select consistency statements in order to extend the initial
inconsistent theory T and to strengthen it with applications of CL-rules that are not
generally valid. Inconsistency-adaptive logics do not depend on human decisions
for their applications. They strengthen the initial T with the applications of the
aforementioned CL-rules that are justifiable on logical grounds from the consistency
presupposition—by way of comparison: consistency reclaims are so justified while
consistency decisions are not. Some consequence sets that are too complex to be
reached by human ingenuity can nevertheless be defined in adaptive terms.

The typical intended application context of LFIs is to phrase a theory T = 〈�, L〉,
in which L is a LFI and T is an inconsistent theory. Whether the theory was devised
as inconsistent, or is the result of a failed attempt to formulate a consistent theory
does not seem to be important. What is important is that the people devising T want
it to be richer than a paraconsistent logic without definable consistency operator can
define. They want T to be non-explosive but at the same time want T to contain the
result of certain applications of CL-rules that are not validated by L. This is realized
by adding consistency statements.

Given the LFI-theories that have been formulated in the da Costa tradition, I think
it is fair to say that those theories basically came into being by starting from a T0

that does not contain any consistency statements and stepwise extend it to T1, T2,
etc. by adding a consistency statement at points where the available version Ti is
judged to be too weak. Now and then, an extension will have turned out trivial, but
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then one may retract and remove a previously added consistency statement. This is
perfectly all right; it is the way in which theories come into being in general. The
only specific feature here is that T0 is separated from the subsequent additions of
consistency statements. Even if the addition and removal of consistency statements
goes hand in hand with other additions and removals during the genesis of a theory,
the steps that handle consistency statements are so specific and unusual that we may
conceptually separate them from the other steps.

Are inconsistency-adaptive logics able to play the same role. Not quite. Given
a premise set �, an adaptive LFI defines, all by itself, a consequence set of � that
contains all LLL-consequences and moreover contains all consistency statements
that are obtained by consistency reclaims. Incidentally, I write “all by itself” because
the persons that apply the adaptive LFI do not need to add any consistency statements
as premises. Comparing this to LFI for the typical intended application context of
LFI, it seems that the adaptive approach does too much as well as not enough. It does
too much by adding all consistency statements obtained from consistency reclaims.
People applying the original LFI certainly do not do this and even cannot do this
because the added set need not even be semi-recursive. Nevertheless, it is hard to
see that anyone would object to consistency reclaims. If T can safely be extended
with a consistency statement, if is can safely be so extended irrespective of the other
consistency statements that are added to T 27 then what possible objection might one
have to this extension? As announced, the adaptive approach does not add enough.
Indeed, an adaptive LFI does not add any consistency statements obtained from
consistency decisions.

One obviously might combine an adaptive LFI with a sequence of consistency
decisions, just as in the application of the plain LFI. Another possibility is to apply
a LFI and the � from (15.9) with the All Selections strategy, which is an obvious
variant to the Normal Selections strategy. The resulting adaptive logic is somewhat
unorthodox in that its consequence sets are sets of sets. Describing the approach here
would take too much space. Moreover, the approach is somewhat arduous in that the
adaptive logic defines all possible theories obtained by extending a premise set �

with a � ⊆ � that is maximal with respect to � and LLL.
There is, however, a further possibility. While inconsistency-adaptive logics han-

dle inconsistency, other adaptive logics serve other purposes, for example defeasibly
extend a set of statements (or formulas) with further entities, all on a par or in agree-
ment with a preference ranking. One way to implement this is to add consistency
statements preceded by a ‘plausibility operator’ ♦, which is governed by a modal
logic, for example T . This lower limit logic may be combined, for example, with a
set of abnormalities that (for the present application) have the form ♦∀◦A ∧ ¬∀◦A.
Note that ♦∀◦A entails ∀◦A ∨ (♦∀◦A ∧ ¬∀◦A). So if all minimally abnormal mod-
els of the premises falsify the abnormality ♦∀◦A ∧ ¬∀◦A, then ∀◦A is an adap-
tive consequence; otherwise it is not. The effect is that some plausible consistency
statements function as actual consistency statements, whereas others remain merely

27If consistency decisions do not trivialise the theory, consistency reclaims do not either; if consis-
tency decisions trivialise the theory, consistency reclaims cannot make that situation worse.
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plausible. The effect may be enhanced by formulas that contain several diamonds.
♦∀◦A expresses that ∀◦A has the highest plausibility, ♦♦∀◦B that ∀◦B has the next
highest plausibility, and so on. I refer to [4] for a general description of this approach
and for a related approach.

The logic that handles the plausibility-ordered consistency statements has some
interesting features. The persons applying the logic have to decide to which premise
set they apply it—so they have to fix which plausibility is attached to a consistency
statement and the result functions as a premise. Once the premises are fixed, however,
the adaptive logic defines the consequence set and does not demand ingenuity from
the persons applying the logic. Moreover, adding consistency statements with a
certain plausibility attached to them is a safeway to proceed. It never leads to triviality.
If ♦∀◦A is a premise, but adding ∀◦A would result in triviality, then ∀◦A will not be
a member of the adaptive consequence set. As adaptive logics are reflexive, ♦∀◦A
will still be in the consequence set. But that is harmless anyway.

Allow me to repeat that it is not my intention to defend the adaptive approach or
to attack the LFI approach. I am merely comparing. The computational problems
are in principle similar for both approaches because they depend on the problem that
has to be solved. Where a person applying a LFI is unable to choose the right set of
consistency statements, a person following the adaptive approach will presumably
be unable to figure out which consistency statements are in the adaptive consequence
set. The consequence set is well-defined, which is clearly a very positive feature, but
that does not make it available; its computational complexity may be just too high.
Next, the fact that the adaptive approach eliminates the triviality danger should not be
overestimated. The road through mistaken theories may very well be more efficient
than the safe road, provided we reach the destination. Nevertheless, studying several
approaches to the same problems may result in deeper insights and in improving one
or both of the approaches.

The initial application context of inconsistency-adaptive logics was that a theory
was intended as consistent and was given CL as its underlying logic, but later turned
out to be inconsistent. Inconsistency-adaptive logics were devised with the aim to
handle such situations by identifying and localizing the (minimal disjunctions of)
inconsistencies present in a theory in the aforesaid situation. The idea was to devise
a general means to ‘interpret’ such a theory as consistently as possible, viz. in such
a way that, on the one hand, it is not trivial and, on the other hand, it maximally
approaches the original intention (of those who devised the theory). The so obtained
non-trivial and ‘minimally inconsistent’ theory was never meant as the ultimate goal.
It is merely an intermediate goal on the road to consistency: once the inconsistencies
in the theory are located and isolated, one may try to remove them. Forging of
a consistent replacement, however, is not a logical matter. The central decisions
require empirical considerations or conceptual considerations, and very often deep
conceptual changes. Logics may guide this process, they may locate the interesting
questions and their interrelations, they may dismiss proposals as inadequate, etc., but
logics are unable to define the process.



330 D. Batens

Later inconsistency-adaptive logics turned out to have a second interesting appli-
cation context. Especially in view of the twentieth century changes in the ortho-
doxy in mathematics, it turned out that inconsistency-adaptive and other adaptive
mathematical theories have certain advantages over traditional CL-theories and,
more generally, semi-recursive theories. Not too much was published until now
[6, 20, 21], but even that seems to open interesting perspectives.

It seems to me that LFIs are not the right tools for any of the described application
contexts of inconsistency-adaptive logics. For many a premise set or theory the set of
consistency statements that need to be added is not only infinite but not even semi-
recursive. Moreover, the work on adaptive theories in particular is mainly important
from a theoretical point of view because it enables one to obtain sensible knowledge
about well-defined but computationally complex sets. It might be hoped, however,
that people committed towards LFIs would not be convinced by such arguments and
would try to devise an approach for the typical application contexts of inconsistency-
adaptive logics. Again, the interplay between competing approaches may lead to
deeper insights as well as to new techniques.

15.9 Some Comments in Conclusion

I hope to have shown that the study of LFIs may benefit from insights gained in
adaptive logics. The converse also holds but was not the topic of this paper. The
apparently weak or less elegant features of other approaches allow one to discover
weak or less elegant features of one’s own approach. Given this and given that so
much more can be said on the topic of this paper, I shall, by way of conclusion,
mention some more results and insights from the adaptive side in the hope that LFI
scholars will either locate flaws in my claims or will discover ways to profit from the
insights and integrate the results. Before doing so, allow me to refer to the work on
adaptive extensions of Jaśkowski’s logics [13–15], which might provide new links
between LFIs and Jaśkowski’s logics.

Several techniques were developed to obtain criteria for final derivability within
adaptive logics. Especially techniques in terms of prospective procedures seem to
be transparent and promising and they are available in a single paper [22]. It seems
likely that these techniques may be rephrased in terms of LFIs in order to cope with
the triviality danger and the maximality question. Moreover, this transfer may lead
to new insights and improved techniques.

In a similar vein, several arguments were developed in connection with adaptive
logics in order to justify acting on the insights offered by a dynamic proof stage, even
if one realizes that, given the defeasible character of the logics, these insights may be
overruled in the future. Note that such arguments concern a specific form of acting
under uncertainty. LFIs being deductive, they do not have to face difficulties related
to defeasibility. Nevertheless they face related problems, summarized before as the
triviality danger and the maximality question. Even if someone is not interested in
sets of consistency statements that are maximal with respect to a given premise set
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and LFI, consistency reclaims are always selected from infinitely many possibilities
and consistency decisions are not only selections, but may moreover cause triviality.
At the predicative level, the set of minimalDab-consequences of a decidable premise
set � is only semi-recursive. What seems to be a consistency reclaim may later turn
out to have been a consistency decision; disjuncts of a Dab-consequence may turn up
again as disjuncts of later derived different Dab-consequences; Dab-consequences
that count more than one disjunct may turn out not to be minimal in view of later
derivedDab-consequences. So our present estimate of�(�)—the estimate is defined
in terms of a stage s of a dynamic proof and is called �s(�)—may be very different
from�(�). But precisely our estimate of�(�) is our guide for consistency reclaims
and consistency decisions; see also Facts 15.30 and 15.31. As far as I can see, it is
our only guide.

Consider a paraconsistent logic L defined over a language L and suppose that
disjunction and conjunction are classical and that no consistency connective is defin-
able. Let L+ be obtained from L by adding the symbol ◦ and let L+ result from
extending L with the rule ◦A, A,¬A/B. Next define L+m by combining L+ with
the � from (15.9) and the Minimal Abnormality strategy. The adaptive consequence
set of a premise set � may contain consistency statements—all those that correspond
to a consistency reclaim—and actually also disjunctions of consistency statements
that are not themselves derivable. Moreover, these formulas will ‘have an effect’ on
the adaptive consequences that belong to the initial language L. Consider again the
simplistic �1 = {¬p,¬q, p ∨ q, p ∨ r, q ∨ s,¬t, u ∨ t} and let L be CLuN (or its
propositional fragment PI). The CLuN+m-consequence set will contain ◦p ∨ ◦q, as
well as ◦A for every sentential letter A different from p and from q.28 Next, ‘in line
with’ the presence of those consistency statements, the consequence will also contain
u, r ∨ s, t ⊃ A for all formulas A, as well as infinitely more formulas from L.

However, there is a little puzzle here. Suppose that we do not extend the language
and logic, but proceed in terms ofL andLm, the latter combiningLwith� = {∃(A ∧
¬A) | A ∈ X }.29 There is a rather easy proof that, if � ⊆ W , then CnL+m(�) ∩
W = CnLm(�). So a consistency connective does not seem to have much use with
respect to consistency statements that correspond to consistency reclaims. However,
roughly the same holds true for consistency decisions. If these are handled in terms of
plausibilities (as explained in the previous section), and the language is not extended
with a consistency operator, one may still take formulas of the form ♦¬(A ∧ ¬A) ∧
(A ∧ ¬A) as abnormalities. I did not spell out the proof that this adaptive logic gives
us the same formulas inW as the adaptive logic from the previous section. However,
it seems extremely likely that there is such a proof. I phrased this point as a challenge
in the hope that LFI scholars will show me wrong.

My final comment concerns the concentration on consistency. Remember the ini-
tial application context of inconsistency-adaptive logics: a theory was intended to be
consistent but turned out inconsistent. My claimwas that inconsistency-adaptive log-
ics interpret such theory in a way that is maximally consistent and that the resulting

28Actually for all formulas not in the set {p, q}, but never mind.
29The reasons for the X is as in (15.9); it would be tiresome to make this more precise here.
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adaptive theorymay be taken as a starting point for devising a consistent replacement
of the initial theory. It has turned out, however, that many theories may serve as the
desired starting point. On the one hand, lower limit logics, sets of abnormalities, and
strategies may be varied. But there is more. Inconsistencies may be seen as negation
gluts. One may also consider negation gaps (both A and¬A false) and combinations
of gluts and gaps. The same may be repeated for all other logical symbols. More-
over, non-logical symbols may be ambiguous. As was argued elsewhere [8], many
inconsistent theories come out non-trivial if handled by logics that do not allow for
negation gluts but allow for negation gaps, or for other types of gluts or gaps, or
for ambiguities, or for combinations of the things mentioned. Next, gaps and gluts
and ambiguities may be minimized, all at once or in a certain order. Each of these
choices lead, for some inconsistent theories, to a desired starting point. All such
starting points are in principle on a par. The idea that the only way out is minimizing
inconsistency is just a prejudice.

All those gluts and gaps leave ample room for variants and combinations. Let me
here just point to one such combination in connection with inconsistency [8, Sect. 4],
the other logical symbols being kept classical. Instead of considering a complex
inconsistency like (p ∨ q) ∧ ¬(p ∨ q) as a single abnormality, one might consider
three abnormalities instead: p ∧ ¬(p ∨ q), q ∧ ¬(p ∨ q), and (p ∨ q) ∧ ¬(p ∨ q).
In a sense, the first two offer a possible cause for the occurrence of the contra-
diction. The first and second abnormalities entail the third, but not vice versa. By
minimizing all three abnormalities, one obtains a different selection of (for example
CLuN-)models than when one minimizes only contradictions. This paragraph only
sketches the vague idea in terms of an example, but a systematic approach was
published.

What is common to all the cases just discussed is that the considered abnormalities
are notmatchedby consistency statements. Take for example a conjunction glut—that
A ∨ B is true while A is false or B is false. No consistency statement can eliminate it
or make it to cause triviality. Similarly, some consistency statements reduce all three
abnormalities from the previous paragraph to triviality, but if (p ∨ q) ∧ ¬(p ∨ q) is
true anyway and the logic is mbC, no consistency statement can rule out for example
p ∧ ¬(p ∨ q) without causing triviality.30 So the challenge to LFI scholars is to
devise and study operators that eliminate gluts and gaps that are not inconsistencies.
The fact that all gluts and gaps surface as inconsistencies shows that, in some cases,
inconsistency may be merely the symptom rather than the actual disease.

The diversity of approaches within the paraconsistent community has been over-
whelming from early on. We should not strive for unification. Actually, we will not
strive for unification for most of us are pluralists. Yet we may continue to learn from
each other—au choc des idées jaillit la lumière. This is why I hope that some com-
ments from this paper may arouse interest of LFI scholars and of scholars interested
in paraconsistency in general.

30If you frown here, realize that ¬p is not a mbC-consequence of ¬(p ∨ q).
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Chapter 16
Stipulation and Symmetrical Consequence

Bryson Brown

Abstract In this paper I lay some of the groundwork for a naturalistic, empirically
oriented view of logic, attributing the special status of our knowledge of logic to the
power of stipulation and expressing the stipulations that constitute the vocabulary
of formal logic by rules of inference. The stipulation hypothesis does nothing by
itself to explain the usefulness of logic. However, though I do not argue for it here, I
believe the selective adoption and application of stipulations can. My concern here
is with an issue that has already received a good bit of attention: it seems that we are
free to make whatever stipulations we care to make, but we also know that logical
stipulations must be carefully constrained, to avoid trivialization, as well as subtler
impositions on the already established inferential practices towhichwe apply our log-
ical vocabulary. I propose three increasingly stringent criteria that fully conservative
extensions of a language should meet, and apply them to evaluate three symmet-
rical, multiple-conclusion logics. A new result, proven first for classical multiple-
conclusion logics and then modified and extended to all reflexive, monotonic, and
transitive consequence relations, undergirds the focus on proof-theoretic approaches
to the consequence relation I adopt here.
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Empiricists have generally distinguished two kinds of knowledge, roughly
following Hume’s distinction between relations of ideas and matters of fact. For
Hume, our knowledge of mathematics and logic was knowledge about relations of
ideas, while matters of fact included individual experiences or observations and any
true generalizations about such experiences or observations [8, p. 26f]. According to
Hume, we can be certain about relations of ideas because we are directly aware of
our own ideas in a way that makes their relations something we are also immediately
aware of, whenever we think of the ideas in question. We can be similarly confident
of individual matters of fact, but only when they are being experienced (or, with less
vividness, remembered).

However, the special status of truths of mathematics and logic has occasioned
some controversy amongst empiricists; Mill, in particular, argued for collapsing
the distinction and subjecting all knowledge claims to the court of experience. In
this paper I will defend an empiricist view, while dropping Hume’s reliance on
individual awareness of the relations of ideas. Instead I attribute the special status of
our knowledge of mathematics and logic to the power of pragmatically constrained
stipulations. Finally, I will express the stipulations that constitute the vocabulary of
formal logic by rules of inference, rather than by appeal to some stipulated semantics.

Although the stipulationhypothesis does nothingby itself to explain theusefulness
of logic and mathematics, the selective adoption and application of stipulations that
help us express and systematize reliable inferential connections offers some insight
into bothwhy such systems are useful andwhatmakes us so confident about them.But
my concerns here begin with an issue that is already familiar. It is tempting to assume
that we are free, like Tweedledee, tomakewhatever stipulations we care tomake. But
logical stipulations must be carefully constrained, if we wish to avoid disasters like
A.N. Prior’s ‘tonk’ [10]. In [1] Nuel Belnap presented a broad account of the kinds of
constraint needed: the introduction of logical words with stipulated introduction and
elimination rules must respect (i.e., it must not change) the inferential connections
already in place in the language as it exists before the newword is added: “we are not
defining our connective ab initio, but rather in terms of an antecedently given context
of deducibility, concerning which we have some definite notions. By that I mean that
before arriving at the problem of characterizing connectives, we have already made
some assumptions about the nature of deducibility…(I)f we note that we already have
some assumptions about the context of deducibility within which we are operating,
it becomes apparent that by a too careless use of definitions, it is possible to create a
situation in which we are forced to say things inconsistent with those assumptions”
[1, p. 131]. Later, Belnap proposes a narrower, more specific view of the constraints
on stipulation, invoking the standard definition of a conservative extension due to
Post: “the extension must be conservative; i.e., although the extension may well have
new deducibility statements, these new statements will all involve plonk” [1, p. 132].
In what follows I consider the criteria conservative extensions must meet, in the
hope of capturing in more detail the broader account of the limits of stipulation that
Belnap’s paper begins with.

Following Belnap, I hold that we are free to stipulate whatever meanings we wish
in isolation, the only limitations being those of interest: for example, a system of
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stipulated inference rules that trivializes is generally uninteresting, except perhaps
as an illustration of how trivialization can arise. But when our aim is to apply some
stipulations in already established linguistic contexts, the stipulations must respect
commitments that are already in place. For example, if we wish to apply a formal
theory of arithmetic to systematize an established practice of counting various kinds
of things, comparing their quantities, and so on, the formal apparatus we add to
the language of counting must be compatible with the practice of counting.1 This
amounts to a restatement of Belnap’s initial, broader constraint, but in what follows
wewill identify some specific constraints that go beyondBelnap’s narrower definition
of conservative extension above, and that seem justified in the light of his broader
view of the limits a satisfactorily conservative extension must observe.

The idea that logic is stipulated rather than discovered may seem peculiar. After
all, natural languages do include words whose roles in inference correspond fairly
well to those played by logical words in formal systems of logic. For instance, the
English use of ‘not,’ ‘and,’ ‘or,’ ‘all,’ and ‘some’ come fairly close to the patterns
of use prescribed by formal logic for the usual corresponding symbols (here we will
use ‘¬,’ ‘∨,’ ‘∧,’ ‘∀,’ and ‘∃’), and of course we rely on these parallels in teaching
our students both to understand those symbols and to translate from English into the
language of formal logic and vice versa.

It would be surprising if this were not the case: reasoning and its presentation
are important aspects of our use of natural language, and words that conveniently
produce sentences bearing certain logical relations to other sentences often come in
handy. But the correspondence between the use of such words in natural language
and that of these symbols in a formal logic is not complete or regular enough to
justify the assumption that these words in natural languages have the same meanings
as their formal counterparts [9]. The conjunctive force of disjunction in some English
contexts, where ‘you may have A or B’ is understood to imply both ‘you may have
A’ and ‘you may have B,’ (though not ‘you may have A and B’) is one of many
cases where a regular and well-understood pattern of use of ‘or’ does not match the
formal ∨; the failed2 attempt to capture an exclusive use ‘or’ by means of a binary
connective expressing truth functional nonequivalence illustrates how easily we can
fool ourselves into seeing a closer relation between natural language use and a formal
stipulation than is really there.

Making a closely related point, Nuel Belnap3 once asked how we can tell what
logic a scientist is using: if we treat a logic as a theory of the meanings of words that

1This is not to say that some refinements of that practice may not result: as principles of arithmetic
are applied, newand reliableways of determining counts can emerge and becomepart of the practice.
But the practice of counting predates the emergence of formal theories of arithmetic; when we add
a theory of arithmetic to our rules for counting and comparing quantities of things, we want the
stipulations that theory embodies to be conservative: it should not conflict with our established
counting practices.
2Failed because iteration of such a connective to form n-ary ‘disjunctions’ gives a formula which is
true iff the number of sentences ‘disjoined’ is odd, while a natural exclusive disjunction produces
a sentence true iff exactly one of the disjoined sentences is true.
3In conversation.
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are already part of the natural language, we saddle ourselves with difficult epistemic
challenges. The imputed meanings will, at best, be imperfectly respected in natural
language use, andwhatmay seem to be ‘errors’ of logic on the part of natural language
users can be explained in ways that reconcile actual use with different formal logics.
Thus I believe it would be better to acknowledge that our formal logical vocabularies
are extensions of natural usage. Such formal vocabularies have the advantage of being
far more regular and systematic than the actual use of the words in natural languages
that, at least on occasion, do similar work.4 As already noted, this stipulative view
of formal logic requires that, when applying formal logic to real languages, natural
and scientific, we do so conservatively, i.e., in ways that do not impose on or make
questionable assumptions about the languages we add them to.

16.1 Starting Points

When it comes to logical stipulations, I prefer multiple-conclusion logics for several
reasons. They treat reasoning from assertions to further assertions and reasoning
from denials to further denials in an elegant, symmetrical way, a symmetry whose
preservation across a range of logical systems is one focus of this work. This allows
such systems the flexibility to systematize a wider range of reasoning patterns. In
particular, we do not always reason from assertions to further assertions: sometimes
we reason from denials to further denials, as when, looking into the cupboard but
failing to see either cups or saucers, we deny both ‘I see cups in the cupboard’ and
‘I see saucers in the cupboard’.5 Even if actual reasoning in some contexts does
involve asymmetries between assertion and denial and in the use of certain logical
words, a formal system that allows symmetrical inference patterns along with logical
words that enable us to express them elegantly does not impose this formal symmetry
on the actual practice we are extending with our proposed logical vocabulary and
rules. So a multiple-conclusion logic can still be conservative with respect to such
practices.6 On the other hand, imposing an asymmetrical formal logic on a language
that actually treats reasoning symmetrically would fail the test of conservatism.

In Sect. 16.2 we will develop a result about the relation between classical seman-
tics and multiple-conclusion proofs. Section16.3 draws on the Scott-Lindenbaum
Lemma to extend the result (with some qualification) to a wider class of multiple-

4In legal and scientific contexts, the use of natural language is more regimented, and often highly
redundant; I take this as evidence of efforts to achieve more uniform, shared understanding by
means of regimentation and repetition.
5The inference here is from the denial of “I see cups or saucers” to the denial of “I see cups” and “I
see saucers.” In classical logic we can translate such reasoning into one that runs from assertions of
negations as premises to a disjunction of negations that expresses our conclusion as an assertion.
However, such translations are awkward, and may simply fail to work if we are dealing with a
nonclassical negation.
6Similarly, the laws of classical physics are time-symmetric, but this symmetry allows for substantial
matter-of-fact asymmetries in the course of actual events.
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conclusion logics. Sequents of all these logics take the form � � �, where � and �

are sets of sentences. A natural reading of such sequents takes them to show that a
commitment to assert all γ ∈ � is incompatiblewith a commitment to deny all δ ∈ �,
i.e., that such commitments are incoherent. Restall [12] though other readings are
possible, Restall’s is a good place to start because it stays close to familiar applica-
tions of logic. The rest of the paper applies these results to argue that bi-intuitionistic
logic [4] provides a good example of a symmetrical, conservative collection of logical
words.

16.2 An Objection to Inferentialism in Logic

Before I present the result to be proven, there is some explaining and shoring up to
do. We will be specifying the stipulated meanings of logical words by appeal to
the inference rules that govern their use. But some have argued that this approach
is inadequate, and that the semantic approach is more revealing. So we begin by
defending the inferential approach to classical logic against one such critic. In [11]
Panu Raatikainen draws on [5] to argue that the classical syntactic consequence
relation does not adequately express the meanings of the classical logical words,
because the inference rules for a standard classical system of natural deduction do
not rule out the nonstandard valuations making all sentences true or making both A
and B false while making A ∨ B true. These nonstandard valuations are compatible
with the familiar single-conclusion natural deduction rules because these rules are
regarded as “satisfactory,” i.e., sound and complete, iff they capture truth-preserving
character of �, the semantic consequence relation, and the nonstandard valuations
do not impose any further constraints on the inferences that preserve truth:

• Any inference preserves truth when all sentences are true!
• No truth-preserving inference takes us from A ∨ B to either A or B (of course
this is why supervaluational semantics preserve the classical �, despite allowing
non-prime valuations).

Carnap’s nonstandard valuations are compatible with (classical) truth-
preservation, whether we characterize it in terms of either the syntactic � or the
semantic �. Raatikainen takes this fact to support a semantic understanding of the
connectives because the rules for standard semantics rule out Carnap’s nonstandard
valuations:

• A is true(false) iff ¬A is false(true);
• A ∨ B is false iff A is false and B is false.

However, this problem disappears if we adopt amultiple-conclusion proof system.
Consider first the � relation, a falsehood-preserving ‘proof’ relation. We obtain the
rules for � simply by forming the dual of the rules for �, and it is immediately
apparent that � imposes some constraints on acceptable valuations that � does not:
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1. The all-true valuation assigns truth to all sentences, including classical contra-
dictions. So the all-true valuation violates the falsehood-preserving inferences in
�, which derive these contradictions (showing they are correctly deniable) from
no premises.

2. The classical falsehood-preserving � also includes an inference from denial of
A, B to the denial of A ∨ B, a mirror image of the truth-preserving inference
from A and B to the truth of A ∧ B.

Of course � is merely falsehood-preserving. So it does not capture all the con-
straints of classical semantics either: the all-false valuation, along with valuations
making A ∧ B false but A and B both true are compatible with all the falsehood-
preserving inferences. But combining � and � to produce a multiple-conclusion
� relation that captures both truth-preserving inferences from left to right and
falsehood-preserving inferences from right to left provides a simple response to
Raatikainen’s critique of inferentialism: for every tautology A, we have � A; for
every contradiction B we have B �, for every disjunction we have A ∨ B � A, B,
and for every conjunction, we have A, B � A ∧ B. Carnap’s nonstandard valuations
and their duals violate these constraints, so multiple-conclusion systems provide a
straightforward resolution of this challenge.7

This response to Raatikainen illustrates a useful point, which leads to the main
lesson here: classical semantics is more elegantly linked to the inference rules of a
(classical) multiple-conclusion proof system than it is to either a multiple premise,
single-conclusion proof system or a single premise, multiple-conclusion proof sys-
tem. That said, how best to understand this link needs further explication. Multiple-
conclusion systems are rarely touched on in first or second logic courses, and when
students are first introduced to multiple-conclusion logics they are often puzzled
(even put off) by the long, indefinitely extendable conclusion sets that are declared
to ‘follow’ from a given premise set. These conclusion sets contrast sharply with the
simple, standard reading of what a single-conclusion consequence relation tells us
about the content of a set of premises �: the closure of � under �, i.e., the set of
all sentences that follow from �, captures everything we are ‘logically committed
to’ when we accept �. Nearby lies the standard definition of a theory, as a set of
sentences closed under the consequence relation. There is no immediately obvious
way to produce something similarly illuminating by ‘gathering together’ the conclu-
sion sets following from some set of premises. Consider three simple candidates for
this role:

7Raatikainen does recognize the potential of an appeal to multiple-conclusion logic here. His
response is to raise concerns about how one could rule out the possibility of sentences being
both true and false; we will not pursue his discussion any further here, though I do not see how
this response helps to support a semantic as opposed to a proof-theoretic perspective on logic, since
paraconsistent logics provide both proof theory and semantics tolerating such assignments.
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1. The union of the conclusion sets includes all of L .
2. The set of all conclusion sets is a jumble, including every superset of every

conclusion set.
3. The set of all minimal conclusion sets is better, but what it tells us about the

‘contents’ of the premise set is still obscure.

Happily, it turns out there is a more illuminating way to ‘gather together’ the
family of sets that follow from a given premise set, �. Let D be the family of sets
that follow from a premise set, �. Then for consistent �, we define F as the family
of least transverses8 of D, where a transverse of a family of sets S is a set T that
has a non-null intersection with every member ofS and a least transverse ofS is a
transverse of S that has no proper subset that is also a transverse of S:

1. ∀S ∈ S, S ∩ T 
= ∅

2. T ′ ⊂ T → ∃S ∈ S, S ∩ T ′ = ∅

Lemma
A ∈ F ⇔ A is a maximal consistent extension of �.
⇐:
Let A be a maximal consistent extension of �.
RTS: A is a transverse of D
(i.e., A has a non-null intersection with every � such that � � �.)

Suppose� � �∗. Then, given compactness of�, every maximal consistent exten-
sion (MCE) of � must include some member of �∗.

We need to show that if � � �∗, any consistent extension of � either includes
a member of �∗ or can be consistently extended by adding a member of �∗. Of
course every maximal consistent extension of �, G, will include at least one disjunct
from any disjunction G includes. But the disjunction of elements of �∗,

∨
(�∗) is

an element in every maximal consistent extension of �∗.
Therefore A includes an element of �∗.
⇒:
Suppose B is a transverse of {�:� � �}.
Consider a set X including some sentence from each MCE of � which is not in

B. By soundness and completeness of � each MCE of � includes all the sentences
satisfied by some model of �, and every model of � satisfies some MCE of �. So
every model of � satisfies at least one sentence in X . Thus by completeness and
compactness, � � X ′, for some X ′ a finite subset of X. So B must include some
member of X .

Therefore every transverse of �: � � � includes a maximal consistent extension
of �.

Corollary
The symmetry of � implies that the converse also holds:

8This use of ‘transverse’ derives from the use of hypergraph transverses in the semantics of weakly
aggregative logics [13, pp. 50–51].



342 B. Brown

For consistently deniable�, A is a transverse ofG, the family of sets {� : � � �}
iff A includes a maximal consistently deniable extension of �.

This result provides a direct answer to Raatikainen’s concerns by showing that a
classical multiple-conclusion consequence relation determines the semantic � along
with all the classical valuations on the language.

A related observation worth making here is that the symmetry of multiple-
conclusion consequence allows classical multiple-conclusion systems to give a
proper ¬ − intro rule, something not available in single-conclusion systems: sup-
pose that �,α � �. Then ‘pushing’ α from one side of the turnstile to the other
while adding a negation preserves the incoherence of asserting all the members of
�,α and denying all of � (of course the same goes for � � α,�). So we can pro-
duce a consequence involving a negation without needing to have a negation in our
premises. This example relies on the classical equivalence of asserting A and denying
¬A (and of denying A and asserting ¬A), so we might wonder just how far these
advantages of MC systems extend, and whether the result just presented generalizes.
But in fact, the advantages extend quite widely, as does the result just proven. But
before proceeding to show this, we consider an obvious objection.

Some might argue that I am making too much of this result. We can also express
the ‘aggregation’ of finite conclusion sets here by replacing the ‘,’ with ‘∨’: when
and only when � � � holds in a multiple-conclusion system, � � ∨

(�) also holds
(where

∨
(�) is the disjunction of all elements of�). Sowe can produce themaximal

consistent extensions of � by forming the minimal transverses of every
∨

(�) such
that � � ∨

(�). There is no need to appeal to multiple conclusions after all!
But this line of argument proves too much. It is just as easy to aggregate our finite

premise sets by forming their conjunctions. So we can discount the multiplicity of
premise sets just as easily, reducing the usual consequence relation to a relation
between individual sentences. This leaves us with a puzzle for those who object to
multiple conclusions but are happy with multiple premises: why eliminate one but
not the other, when the two are perfectly symmetrical?

Further, the syntactic expression of aggregation on the left and right can be carried
out in many ways, and takes different forms in different logics, while a multiple-
conclusion approach expresses whatever aggregation applies to premises and con-
clusions in a uniform way, simply by listing premises and conclusions: thus, in the
classical case, syntactic aggregation can be expressed in many ways, since any way
of producing sentences that are true when and only when all of some collection of
sentences are true will do (similarly for aggregation on the right, we need to produce
a sentence that is false when and only when all of some collection of sentences are
false). As another example, in fixed-level n-forcing we standardly aggregate (on the
left) by forming the disjunction of pairwise conjunctions amongst collections of n+1
sentences, but any non-n colourable hypergraph provides a ‘template’ for left-sided
level n aggregation [3].9

9The template is applied on the left by conjoining the edges and then disjoining the conjunctions,
and on the right by disjoining the edges and then conjoining the disjunctions.
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16.3 Consequence and 1, 0 Semantics

Lemma 16.3.1 Scott-Lindenbaum Lemma
Every reflexive, monotonic, and transitive (RMT) consequence relation � is such

that, for some collection of 1, 0 valuations, V on L:
� � � ⇔ ∀v ∈ V :, �v(γ) = 1 → ∃δ ∈ � : v(δ) = 1 [14].

The Scott-Lindenbaum Lemma tells us that for � an RMT consequence relation,
there is a set of allowed 1, 0 valuations determining a � such that � � � iff � �
�. So just as in the classical case, the minimal transverses of {� : � � �} and of
{� : � � �} are closely connected to the allowed 1, 0 valuations of the sentences
of L . This makes the result above very general, since reflexivity, monotonicity, and
transitivity are generally accepted as fundamental features of consequence relations
in general.

Let V be a set 1, 0 valuations on L that constitute a Scott-Lindenbaum semantics
for �, and w be any valuation in V . Then:

� � � iff ∀w: if ∀γ ∈ �, Vw(γ) = 1, then ∃δ ∈ �, Vw(δ) = 1
or (equivalently, given bivalence)
∀w : if ∀δ ∈ �, Vw(δ) = 0, then ∃γ ∈ �, Vw(γ) = 0.

• If some valuation assigns 1 to every member of �, A is a minimal transverse of
{� : � � �} iff A includes all and only the sentences assigned 1 at some 1-minimal
valuation where �’s members are assigned 1.

• If some valuation assigns 0 to every member of �, A is a minimal transverse of
{� : � � �} iff A includes all and only the sentences assigned 0 at some 0-minimal
valuation where �’s members are assigned 0.

Note: by a 1 (0)-minimal valuation w we mean a complete assignment to the
sentences of L such that there is no valuation w′ that assigns 1 (0) to a proper subset
of the sentences assigned 1 (0) at w.

As before we prove the first; the second follows by symmetry of �.
⇐: Suppose A includes all the sentences assigned 1 at some w (i.e., in some

allowed 1, 0 valuation), i.e., ∃w : ∀S ∈ �, Vw(S) = 1 and {S : Vw(S) = 1} ⊆ A
RTS: A is a transverse of {� : � � �}.
Suppose � � �∗.
Given soundness, if ∀s ∈ �, Vw(s) = 1, then ∃s ∈ �∗ : Vw(s) = 1.
So ∀γ ∈ �, Vwγ = 1 → ∃δ ∈ �∗ : Vwδ = 1. But then A ∩ �∗ 
= ∅, as required.
⇒: Suppose that A is a transverse of {�;� � �}.
RTS: ∃w : ∀γ ∈ Gamma, Vw(γ) = 1 and A ⊇ {s : Vw(s) = 1}.
Suppose for reductio that no valuation w is such that ∀γ ∈ �, Vw(γ) = 1 and

A ⊇ {s : Vw(s) = 1}. It follows that ∀w : γ ∈ � : Vw(γ) = 1 → ∃s : Vw(s) = 1 &
s /∈ A.

Now consider the set of sentences produced by selecting some such s ‘missing’
from A from each valuation satisfying �:
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X: s ∈X⇔ ∃w, s : ∀γ ∈ �, Vw(γ) = 1 & Vw(s) = 1 & s /∈ F. Ex hypothesi,
∀w[(∀γ ∈ � : Vw(γ) = 1 ) → (∃s ∈X:Vw(s) = 1)].
That is, everymodel of� satisfies some sentence inX. Therefore, given complete-

ness and compactness, � �X′, for X′ a finite subset of X. But then A must include
some member of X after all, contra our hypothesis.

16.4 A Preservationist Reading

It is natural for logicians to think of 1 and 0 here as expressing truth-at-w and
falsehood-at-w for the sentences of L;more liberally,we can adoptRestall’s readings,
correctly assertible at w and correctly deniable at w. However, a still more modest
(though also more abstract) reading is also available: we can take 1 and 0 in these
valuations to indicate whether or not a sentence of L has some unspecified property,
where what property that is depends on the consequence relation in question (and,
for applied logics in which we take L to express/translate sentences in a specific
language, on how it is applied in that language). As an offbeat example, consider the
property of being among the sentences asserted by a given speaker of L. The history
of each speaker S then determines a 1/0 valuation, and the resulting ‘consequence’
relation would be such that � � � iff ∀ S: either S failed to assert some sentence
in � or S asserted some sentence in �. Thus I take this result to be preservationist
in spirit: if we call classical any property that bipartitions its domain, then Scott’s
result tells us that any RMT relation on L is determined by the preservation of some
classical property of sentences.

In the introduction, following Belnap [1], I assumed that the logical words are
introduced as stipulative extensions of a preexisting language. Such extensions are
required to be conservative: they should not change how the language they are added
toworks. LikeBelnap’s first statement of this point,Dummett’s [6, p. 221f] discussion
of conservatism aims at broader results than the specific definition of conservatism
subsequently provided by Belnap: it is not just that adding some new words with
stipulated meanings to form L∗ should not allow us to derive new consequences
that involve only the vocabulary of the unextended language L . Dummett says the
extension must not conflict with the understanding we already have of the meanings
of sentences of L . In an effort to be more specific about what this broad notion
of conservatism might require, and drawing on Dummett’s insistence that we not
assume every sentence in the underlying language is either correctly assertible or
correctly deniable, I propose the following three ‘degrees’ of conservatism, raising
two distinct kinds of concern about how adding new logical words might alter our
understanding of the original language.
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16.5 Three Degrees of Conservatism

• First degree (minimal) conservatism requires that the addition of new logical words
to a language L , extending L to L∗, does not allow proof or disproof of conse-
quences in the ‘base’ language not already proven or disproven without them.10

• Second-degree conservatism imposes Dummett’s requirement that the addition of
our new logical words not imply that every sentence in the base language L is
either correctly asserted or correctly denied.11

• Third degree conservatism requires the addition of our new logical words not
imply that a consistently assertible (or deniable) set of sentences can be extended
to a maximal consistently assertible (or deniable) set whose complement is a
maximal, consistently deniable (assertible) set, unless the established use of L
already assumes this.12

The first of these is, of course, the standard definition of conservatism adopted
by Belnap, requiring that the original consequence relation of L be identical to the
subrelation of the consequence relation of L∗, the extended language, obtained by
restricting the consequence relation of L∗ to the vocabulary of L . In contrast, the
second and third focus on the relation between the semantics of L and L∗. Dum-
mett’s concern was that extending L to L∗ may have nonconservative implications
about what sort of meaning we take the sentences of L to have. Since consequence
relations do not generally determine a fixed semantics [2], an inferentialist may take
this concern with a grain of salt—but the close ties between the classical �, maxi-
mal consistent extensions and their complementary duals, the maximal consistently
deniable extensions of a conclusion set, suggest bivalence is a fundamental feature
of the classical consequence relation, not just of its standard semantics. (The contrast
here is with a consequence relation determined by 1/0 valuations that cannot always
be extended to valuations both assigning 1 to a maximal set, i.e., a set that is not a
proper subset of sentences assigned 1 by any other allowed valuation and assigning
0 to a maximal set, i.e., a set that is not a proper subset of the sentences assigned 0
by any other allowed valuation.) So it seems that classical logic is conservative in
only the first sense. Still, it is worth pausing to reflect on an alternative approach to

10This is the usual formal understanding of a conservative extension [1].
11Intuitively, this constraint rejects a bivalence condition; see again [6, p. 221f]. I propose to reconcile
this condition with the bivalence of Scott-Lindenbaum semantics by suggesting that we take a
sentence p to be ‘unsettled’ at a 1/0 valuation v iff v(p) = 0 and there is a valuation v∗ that
monotonically extends the set of sentences assigned the value 1 at v such that v ∗ (p) = 1.
12This condition is imposed because the consequence relation of L may not be determined by
valuations of L that are both 1 and 0-maximal, where a valuation V is 1 (0) maximal iff there is
no other valuation V ′ that gives the value 1 (0) to a proper superset of those assigned 1 (0) by V .
For example, a language interpreted in epistemic terms might interpret 1 as known and 0 as not
known for a non-omniscient being. Since themaximal ‘known’ assignments overlap all themaximal
‘not-known’ assignments, the consequence relation is not determined by what we might call the
‘dual-maximal’ assignments.
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classical logic: if the classical consequence relation can be freed from the semantic
assumption of complete valuations on L it may be more conservative than has been
supposed.

16.6 Symmetrical Supervaluations

Supervaluations were proposed by Bas van Fraassen [15] to accommodate sentences
including non-designating singular terms; their original logical function was to pre-
serve the classical consequence relationwhile allowing sentences such as ‘the present
King of France is bald’ to receive no truth value at all. They have been used in seman-
tics for vagueness and in other philosophical applications where the principle that
all sentences must receive a determinate truth value has seemed dubious. In general,
a supervaluation is formed by quantifying across a collection, V of classical assign-
ments to the sentences of a language L , and assigning 1 to all and only the sentences
assigned 1 by all members of V and 0 to all and only the sentences assigned 0 by all
members of V. The set of sentences assigned 1 by all supervaluations assigning 1 to
a set of premises � is the logical closure of � under the classical (single-conclusion)
�. But supervaluations do not produce a bipartition of L into truths and falsehoods,
since some sentences receive no value at all. Thus supervaluations appear to be a
promising candidate for ‘second-degree’ conservatism, since they do not assume all
sentences have a determinate truth value. Of course we know already that the result-
ing logic is conservative in our first sense, since the consequence relation that results
is just the classical �.

But our aim here is to produce symmetrical multiple-conclusion consequence
relations, treating premise and conclusion sets as duals of each other, so we still have
some distance to go. We require that � �S � if and only if, for every supervaluation
on L , if all of � receives the value 1, some δ ∈ � also receives the value 1 (i.e., that
no supervaluation assigns 1 to all members of � and 0 to all members of �). The
resulting multiple-conclusion consequence relation is given by the familiar classical
rules, and the use of supervaluations ensures that we can capture the familiar classi-
cal consequence relation without assuming that every sentence in L must be either
correctly assertible (or more generally, have the property indicated by being assigned
the value 1) or correctly deniable (have the property indicated by being assigned the
value 0).

However, our supervaluations still assume complete valuations on L as a starting
point, since they are produced by quantifying across a set of complete valuations,
rather than by directly assigning some sentences 1, others 0, and leaving some sen-
tenceswith neither value.13 Since they depend on these complete classical valuations,
supervaluations fail to achieve third degree conservatism. The close link between the

13This is why the familiar classical tautologies and contradictions always get the values 1 and 0,
respectively: every extension of a partial assignment to a complete one winds up imposing 1 (0) as
the value of a tautology (contradiction), even when some or all of its atoms wind up as ‘gaps.’
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classical multiple-conclusion consequence relation and maximal consistent/ consis-
tently deniable extensions of the premise and conclusion sets adds to the conviction
that complete valuations have not been exorcized. They are still there, in the com-
plementary pairs of least transverses of consequences of the null set on the left and
on the right: consider the family of sets � : ∅ � �: by the lemma above, a least
transverse of all such sets � is a maximal consistent set of sentences, and the family
of such transverses includes every maximal consistent set of sentences in L .

16.7 The Intuitionist Challenge to Symmetry

Thus far, we have noted some advantages of a symmetric, multiple-conclusion
approach to the classical consequence relation and extended that approach to some
other logics. But some logicians argue that the symmetries I regard as elegant and
illuminating are just mistaken. If, as they argue, the roles of assertion and denial
in reasoning are not really mirror images, then my attraction to symmetrical con-
sequence relations is misguided. To answer some of these worries, we will turn to
consider I L and related systems to see whether the concerns of their supporters can
be accommodated within a symmetrical, multiple-conclusion approach.

On Negation

Classical multiple-conclusion rules ensure a symmetrical treatment of negation very
simply:

�, A � �

� � ¬A,�

� � A,�

�,¬A � �

Applying these rules to a given classical MC consequence, we can arrive a set
whose assertion is incoherent, and another whose denial is incoherent.

Intuitionistic Negation

Intuitionists have questioned two assumptions that underpin this classical multiple-
conclusion approach:

1. The assumption that every atom is either correctly assertible or correctly deniable.
2. The assumption that the practice underlying correct assertion and denial treats

these two attitudes symmetrically.

Dispensingwith the first assumption requires at least second-degree conservatism.
Defending the second requires a modification of I L that restores symmetry without
undermining its conservatism. Intuitionistic negation restricts the left rule, applying
it only when � = ∅. This blocks the classical proof,

A � A
� ¬A, A
Thus the intuitionistic negation does not produce a subcontrary of the sentence it

is applied to. But it does preserve the other half of the classical reading, producing
a weakest contrary of A. That is,
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• A,¬A �I L (from A � A, by ¬ �)
• If A, B �I L , then B �I L ¬A (by � ¬) (Note the right-hand side of the premise
sequent is empty here.)

To remedy this asymmetry, we propose adding a mirror image ‘negation’,

¬

.

� � A,�
iff � = ∅

�,

¬

A � �

�, A � �

� � ¬

A,�

We retain the other Kleene rules for classical logic, including thinning on left and
right. The result is a symmetrical, multiple-conclusion logic.

As intended,

¬

is a strongest subcontrary forming operator:

A � A
� A,

¬

A
� A, B¬

A � B

The traditional intuitionist objection to � A ∨ ¬A has been that a proper proof of
a disjunction must prove at least one disjunct. Perhaps an intuitionist might insist on
this basis thatwe should not be able to prove� A,

¬

Awithout having a proof of either
A or

¬

A. In reply, a ‘tu quoque’ comes to mind: when it comes to denial, how can the
intuitionist justify her own negation’s role in A,¬A �? From our point of view this
amounts to denying A,¬A even though she has no grounds to deny either of A,¬A
individually! It may be that for some linguistic practices, assertions require a kind of
justificationnot demandedof denials—but a formal logic intended toprovide a tool kit
for systematizing our inferences and simplifying their expression should not assume
this. A symmetrical treatment of assertion and denial will provide the same kind of
‘flexibility’ to both reasonings concerning what to assert (as embodied, for instance,
in a practice of ‘proofs’) and reasonings concerning what to deny (as embodied in a
practice of ‘disproofs’): the monotonic progress of proofs envisioned by intuitionists
may suit somepractices (for example, that of an idealized mathematics), but a broader
examination of forms of inquiry reveals both advances and retreats in what we take
to be correctly asserted or denied. Further, reading

¬

A as ‘A is not proven at a point
less or equal to this point in the frame’ makes it hard to resist the conclusion that
(A ∨ ¬

A)will hold at every point, just as (A ∧ ¬A) fails at every point. I would also
like to emphasize here that the symmetrical/directional reading of Kripke frames
being suggested here requires that we do not take either ‘proofs’ or ‘disproofs’ to be
in general the last word; we can describe sentences receiving the value 1 as accepted
and sentences receiving the value 0 as rejected, but neither status is assumed to be
permanent, and epistemic ‘progress’ can involve accepting the heretofore rejected
or rejecting the heretofore accepted.

More directly, we have explicitly introduced ‘

¬

’ with rules that ensure it produces
a strongest subcontrary, just as ‘¬’ produces a weakest contrary. The language may
have lacked such sentences before, but it has them now. So long as this act of intro-
duction is conservative with respect to the consequence relation of the sublanguage
lacking

¬

and does not force us to say that every sentence is either correctly asserted
or correctly denied, or that it is, in principle, always possible to extend a consistent
partial assignment the values 1 and 0 to some subset of L to a correct bipartition of
the language into a maximal consistently assertable set of sentences and a maximal
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consistently deniable set of sentences, the addition is conservative in all three of our
senses.

Of course the points of a Kripke frame always do partition the sentences of L ,
assigning 1 to some and 0 to the rest. But we need not read the partition of L at a
given point as settled either with respect to sentences receiving 1 or those receiving
0: instead, we can adopt a symmetrical epistemic perspective in which, looking ‘up’
along the frame relation we find points where some as yet rejected sentences come
to be accepted, while looking down along the relation we find points where some
currently accepted sentences come to be rejected. In both directions the changes are
monotonic, expanding the set of sentences assigned the value 1 or expanding the set
of sentences assigned the value 0, and transitions in either direction can be epistemic
improvements on our current position. A key point here which distinguishes this
extended intuitionistic logic from classical logic is that changing the value of an
atom from 0 to 1 in intuitionistic logic does not, in general, require that any other
sentences change value from 1 to 0: monotonic increases in the set of sentences
receiving the value 1 occur in the ‘upward’ direction along the Kripke frame relation,
while monotonic increases in the set of sentences receiving the value 0 occur in the
downward direction. This feature makes our logic symmetrically conservative in all
of our three senses.

16.8 Janus-Faced Negation

Classical logic fails to be conservative in the second or third sense because it assumes
that the operator forming a weakest contrary and the operator forming a strongest
subcontrary are one and the same. This Janus-faced negation makes the sets of
sentences, {A,¬A} trivial on both sides of � and forces A, ¬A to have opposite
values in any 1, 0 semantics. Once we assume that these values stand for (correct)
assertibility we are forced to conclude that, since one of A or ¬A must receive the
value 1, and one must receive the value 0, the assertion of one (and the denial of the
other) must be correct. Further, however, we interpret the property of sentences that
is preserved (from left to right) by our consequence relation, from the point of view
adopted here, the assumption that every sentence is such that either it or its weakest
contrary must have the property remains a substantial assumption about the language
to which we propose to add these logical words.

Bi-intuitionistic logic [4] avoids both the Janus-faced negation of classical logic
and the asymmetrical negation of intuitionistic logic. We have a symmetrical con-
sequence relation while avoiding the assumption that every sentence will receive a
settled value: instead, the logic places us in medias res: our current commitments are
treated as tentative and an assignment of either the value 1 or the value 0 to a given
atom may be withdrawn. The familiar transitive, reflexive (Kripke) frame provides
an intuitively appealing semantics for bi-intuitionistic logic. At each point atoms
are evaluated into 1, 0 where 1 is heritable and 0 is ancestral for the atoms. But
the interpretation of 1 and 0 is quite different from the standard reading of Kripke
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semantics for intuitionistic or dual-intuitionistic logic: neither represents a ‘fixed’
commitment, because we do not think of inquiry in general as proceeding via the
monotonic accumulation of proven or disproven sentences. Instead, we think of the
values 1, 0 as representing in principle changeable commitments, with new asser-
tions arising along the direction of the frame relation, and new denials arising in the
opposite direction.

Of course the semantics for ¬ and

¬

are dual:

• ¬ :vs(¬φ) = 1 iff∀s ′ : Rss ′ =⇒ vs ′(φ) = 0
• vs(¬φ) = 0 iff∃s ′ : Rss ′∧vs ′(φ) = 1
• ¬:vs(

¬

φ) = 1 iff∃s ′ : Rs ′s∧ vs ′(φ) = 0
• vs(

¬

φ) = 0 iff∀s ′ : Rs ′s =⇒ vs ′(φ) = 1

As in intuitionistic logic, the usual extensional semantics applies to ∧ and ∨:
• ∧: vs(φ ∧ ψ) = 1 only if vs(φ) =vs(ψ) = 1, else vs(φ ∧ ψ) = 0
• ∨: vs(φ ∨ ψ) = 1 only if vs(φ) = 1 or vs(ψ) = 1, else vs(φ ∨ ψ) = 0

Kripke-style intuitionist and dual-intuitionist semantics are contained here as
sublogics, each of which involves only one of our negations along with its corre-
sponding conditional: these two systems, alongwith our system dividing the classical
negation into two distinct negations while ignoring conditionals, are sublogics of bi-
intuitionistic logic. The key constructivist results which hold for each are preserved
in the full logic (including the collapse of series of negations beyond two).14 By not
assuming that maximal consistent extensions of consistent premise sets are always
available, bi-intuitionistic logic achieves the third form of conservatism, while the
symmetry of the logic allows room for a fallibilistic epistemology, allowing epis-
temic changes including both denial of sentences once tentatively endorsed, and
endorsement of sentences once tentatively denied. I believe the conservative thing
to do is allow for both—if there are indeed any certainties, we can recognize them
individually, in due course, in the context of the particular language that underwrites
them.

As emphasized above, Scott’s result shows that any reflexive, monotonic, and
transitive multiple-conclusion logic can be given a semantics based on 1, 0 valua-
tions of the sentences of the language. The close linkwe have noted betweenminimal
transverses of the family of conclusion sets following from a given premise set and
the valuations assigning 1 to sentences in the premise set, and between families of
premise sets fromwhich a given conclusion set follows and the valuations assigning 0
to the conclusion set, helps to establish that such semantics are not more fundamental
to specifying a consequence relation than the rules of inference are. Bi-intuitionistic
logic shows that the elegant symmetries of multiple-conclusion logic can be had
without giving up the logical conservatism of intuitionistic logic. But our interpre-
tation of the frame needs to be subtler now that we have shifted to a bi-intuitionistic
logic. Intuitionistic logic and its dual involve a single-minded ‘forward look’ along

14A cut-free proof theory for bi-intuitionistic logic can be found in [4].
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a frame relation in which either more and more sentences are proven or more and
more sentences are disproven. Combining the two gives us what might be called a
Hempelian [7] logical perspective, allowing both that some accepted sentences may
later be rejected, and some rejected sentences may later be accepted. This is a logic
for fallible inquirers, not infallible provers.

Of course the adoption of two separate negations, each capturing half of the Janus-
faced classical negation, brings with it a straightforwardly paraconsistent negation.
Some have objected to the paraconsistent bona-fides of such negations, but this
divide-and-conquer approach to negation remains a tempting path to capturing both
a robust (weakest) contrary-forming operator and a robust (strongest) subcontrary-
forming operator without committing ourselves to classical negation. Since the stip-
ulation of both connectives is fully conservative, this approach offers no barrier to a
form of paraconsistency grounded in the dual-intuitionistic negation.

16.9 Conclusion

My aim here has been to arrive at a better understanding of what is required for a
logical system to be a truly conservative extension of any languagewemight add it to,
and therefore admissible as a stipulation extending a preexisting linguistic practice.
One element in this effort has been to develop at a more general understanding of the
relation between a syntactic consequence relation and a semantics for that relation.
For the first aim, I have argued that bi-intuitionistic logic is a step in the right direction.
It provides a symmetrical logical framework which is conservative in the usual sense
of not imposingnewconsequences in the language it is added to, and also conservative
in the stronger senses that it does not assume every sentence is either correctly
assertible or correctly deniable, and does not assume that every valuation can be
extended to a valuation, that is, both 1-maximal and 0-maximal. This latter property
seems particularly significant in the light of the incompleteness of arithmetic: the
density of the order of provability in arithmetic rules out the possibility of arriving
at a 1-maximal theory of arithmetic. For the second aim, transverses of conclusion
sets provide a new perspective on the relation between multiple-conclusion logics
and 1/0 semantics. In classical logic (and in its supervaluational variant) they are the
maximal consistently assertible extensions of the premise set, while the transverses
of the premise sets from which a given conclusion set follows are the maximal
consistently deniable extensions of the conclusion set. But in bi-intuitionistic logic,
transverses of conclusion sets are the 1-minimal extensions of valuations assigning
1 to all members of a given premise set, while transverses of the premise sets from
which a conclusion set follows are the 0-minimal extensions of valuations assigning
0 to all members of the conclusion set. These sets are not maximal (as they are
in the case of classical and supervaluational logic), that is, they are not such that
for each right-transverse C there is a left-transverse P such that C ∪ P = L . Thus
bi-intuitionistic logic truly avoids the assumption that every sentence must either
receive the value 1 or the value 0; it also avoids the dual-intuitionist assumption that
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every disjunction of a sentence with its negation must be trivial on the right, and the
intuitionistic assumption that every conjunction of a sentence with its own negation
is trivial on the left, by distinguishing two negations, each of which plays just one of
these roles.
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Chapter 17
Logic—The Big Picture

Ross T. Brady

Abstract The big picture is my big picture, as I see it, based on a lifetime of research
into logic.Wewill cover a reasonably wide range of topics, with some level of author
focus. The paper builds onmy earlier work [9, 11, 19] (with Rush). Indeed, it can also
be seen as an update of the approach to logic taken in [9]. We start with the issue of
what logic is about, identifying two inference concepts, one of meaning containment
(a connective) and one of deductive argument in general (a rule). Examining the
other connectives, we point out the difference between disjunction, as understood
in proof-theoretic systems, as opposed to that understood in standard semantics,
and show why distribution is not an instance of meaning containment. Negation is
judged as being incompletely captured, due to the non-recursive nature of deductive
systems in general, but with Boolean negation being the intended concept. We then
focus on the logicMCofmeaning containment, setting out its axiomatization, content
semantics and metavaluation. Quantification is added in a standard way, based on the
connectives. We finally deal with applications, focusing on set theory and arithmetic.
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17.1 Introduction

The first thing to note is that the big picture is my big picture, as I see it, based on
a lifetime of research into logic.1 The title should probably be “A Big Picture” but
the aim is to present it as a picture of logic that follows from a series of rational
arguments, to be presented in this paper. The big picture will attempt to cover a
reasonably wide range of topics, though not necessarily every topic the reader will
think of. There will be some level of author focus. Also, in order to provide such a
wide coverage, the depth and referencing will have to suffer a little as a result, but it
is hoped the reader will follow-up some of the given references to add clarity.

An earlier paper [11] covered some similar ground, by first presenting 23 concerns
about classical logic and then showing that a logic such as the author’s entailment
systemMCdeals with all of these. Also, Brady and Rush “Four Basic Logical Issues”
[19] deals with the following issues, which are also of relevance:

(i) The choice of logic between classical and non-classical logic,
(ii) The determination of the particular non-classical logic,
(iii) Classical deduction versus relevant deduction, and
(iv) Classical versus non-classical meta-logic.

These two papers provide useful background for the current enterprise and indeed
some of their arguments will find their way into the current paper. As in [11], we
will consider a wide range of issues, but update our thinking and make use of more
recent results. Further, this can also be seen as an update of the approach to logic
taken in [9].

17.2 What Is Logic About?

A natural starting point is the issue of what logic is. In textbooks, logic is split
into deductive and inductive reasoning. For deductive reasoning to be valid, the
conclusion must follow as a matter of certainty, given the premises. On the other
hand, for good inductive reasoning, the conclusion is not certain, but remains of a
high probability, given the premises. Uncertainty pervades inductive logic, not just
because that is what it deals with but also, I believe, in providing an acceptable theory
of it. Hence, our primary concern here is with deductive logic; we assume that logic
is deductive, unless otherwise indicated.

The scope of application of (deductive) logic should be restricted only by its
ability to deduce conclusions from premises, given what deductive logic is. As in

1This paper was presented to the Logic Seminar at the University of Melbourne, on 30th November,
2012. I would like to thank those present for their useful comments and discussion, in particular
Greg Restall, Lloyd Humberstone and Rohan French. I also wish to thank Che-Ping Su for his help
in getting the paper ready for presentation.
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the textbooks, valid deductive arguments, in pure logic anyway, adhere to patterns of
argument with the use of formula schemes. Some texts go further and put nonsense
terms into such patterns, such as follows:

All bodkins are claptens.
All claptens are goobies.
Hence, all bodkins are goobies.

This, I believe, goes too far, as the termsmust havemeanings in order to be applied.
So,meanings provide a natural outer boundary of deductive argument.Withoutmean-
ings, how can an argument be applicable?

The main other semantic concept of relevance to logic is that of truth. The role of
truth in deductive arguments is standardly encapsulated in the following definition
of a valid deductive argument:

A deductive argument is valid iff, whenever the premises are all true then the
conclusion is true.

However, there are three concerns that can be raised here:

(1) What if a premise is false?We can just as satisfactorily argue aboutMiddle Earth
as about Earth. The context is built up in a fictional novel, in a similar way to
the context that one might be aware of in the real world, i.e. through a body of
statements about characters, their discussions and their surrounds. It does not
appear to matter whether the premises are true or false in reality.

(2) Further, what if a premise is inconsistent? One would hope that the premises,
together with the entire context, are consistent. Also, there are paraconsistent (or
indeed relevant) concerns about deriving any formula from a contradiction.

(3) This definition is usually interpreted semantically with a classical meta-logic,
which seems to divorce it from deduction (and deductive logic). That is, a valid
deductive argument is determined by sheer truth-preservation (presumably in a
model of some sort, based on truth-conditions), rather than on the passage of
argument from premises to conclusion.

What such truth-preservation does do is to provide a criterion for assessing a
deductive argument. Indeed, every valid deductive argument should preserve truth.
The converse is what is the problem. Just because an argument preserves truth does
not mean to say that there is a piece of derivation getting one from the premises
to the conclusion, as the respective truths can be unrelated, i.e. irrelevant.2 Truth-
preservation is usually used, however, as a criterion for rules to satisfy, where what
is derivable from false premises is determined according to what is derivable from
true instantiations into the premise schemes of the rule. In a sense, we can say that
the false premises are assumed to be true for the sake of the deduction. To clarify
this, take the rule Modus Ponens, A, A → B ⇒ B, for example. It basically says

2However, Stephen Read, in his book [25], claims that relevance is already contained in truth-
preservation, rather than an added extra. Here, we follow the standard approach of separating the
two concepts.
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that, for any true entailment A → B, truth is preserved from A to B. Although based
on truth, this rule continues to be applied at any point in a logical deduction, even
when there are premises involved which may turn out to be false. Thus, we say that
such premises are assumed to be true for the sake of the deduction.

How does this latter definition relate to the earlier one where the conclusion is
certain, given the premises? The earlier one seems to have a different interpretation.
The “giving” of the premises means that one is assuming the premises, whether true
or not. The certainty seems to be obtained from somewhere, presumably from the
meanings of the premises, unless the conclusion is already certain. The “obtaining”
seems to involve some derivation process, based on these meanings. In the case of
the conclusion being already certain, its derivation would have already been done for
it as a theorem, whilst the premises would be irrelevant. This case, I think, should
be allowed, even though there is no likely derivation process involved. The reason is
that the definition of a valid deductive argument is conclusion-focussed. In contrast,
I do not think A,∼A ⇒ B follows, unless the system is consistent, in which case A
and ∼A cannot both be derived. In the inconsistent case, since instances of B are not
certain, B would have to be derived from A and∼A, which is not in general possible
in a non-trivial system.

Moreover, there is what might be called in-between cases where the conclusion is
certain, except for some piece of incidental information. In such a case, the meanings
of the premises might relate to only part of the conclusion. In this category, I would
put the substitution of identity, x = y ⇒ A(x) ↔ A(y), and the substitution of
equivalence, A ↔ B ⇒ C(A) ↔ C(B), arguments, where both the substitutions
are single-place. I would also put restricted quantification arguments of the form
∃x A(x) ⇒ (∀x A(x))B(x), representing ‘All As are Bs’, where A(x) provides the
non-empty restricted domain. Where the whole conclusion is meaning-dependent on
the meanings of the premises, we have what I have called meaning containment of
the conclusion in the premises. (We will continue this discussion in the next section
when we distinguish between rules and meaning containments.)

Thus, in the debate between the proof-theoretic and semantic approaches to logic,
we clearly favour the former, and our overall conclusion being that deductive logic
is about proof of conclusions from premises, making the exception for conclusions
already proved and thus taken as certain. The semantics comes afterwards when
trying to make sense of the deductive system.

17.3 The Two Inference Concepts

We take up the discussion from Sect. 17.2, where we distinguished between

(i) Conclusions whose whole meaning is dependent on that of the premises,
(ii) Conclusions that only in part are meaning-dependent on the premises, and
(iii) Conclusions that are certain, independent of the premises.
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Each of these cases is taken to satisfy the definition of a valid deductive argument,
but is there a case for an inference connective for case (i)?

There are reasons for an inference connective here, just as there are reasons for the
material ‘⊃’ which is essentially truth-preservation, though with classical negation
features applying to its antecedent. Truth and meaning are the two main semantic
concepts and, though there are some problems with truth-preservation as a determi-
nant for deductive inference (as above), meaning containment seems to be a better
alternative in providing a yardstick to determine the validity of the core deductive
arguments under (i). And, meaning is, at least prima facie, prior to truth, in which
one needs to be sure of the meanings of terms, or at least their salient parts, in order
to work out the truth of sentences, through examination of the real world and/or a
comparison of concepts. So, meaning containment would then be a tighter concept
than truth-preservation and so a meaning containment connective is justified if that
is so for truth-preservation. And, the classical negation encapsulated in ‘⊃’ is not
appropriate for meaning containment, as will be seen in Sect. 17.5.

It is important to note that there are two inference concepts developing here:
meaning containment, covered by (i) above, represented by a connective ‘→’ and
valid deductive argument in general, covered by (i), (ii) and (iii), represented by a
broader rule ‘⇒’. The latter is understood in meta-theoretic terms as it represents
broad-scale deduction in a logical system, as opposed to the more intimate meaning
containment of the former, which just relates antecedent and consequent as opposed
to the whole deductive system. We will see in Sect. 17.6 that such a logic of meaning
containment will be a weak relevant entailment logic, which we call MC.

We make two further points. It is hard to construct an axiomatic logic based on
meanings from the philosophical accounts of meaning as they are very general. I
do not think the philosophical accounts are precise enough to do the job and hence
further specification needs to be added. (More detail on this in Sects. 17.6. and 17.7.,
especially on “intensional set-theoretic containment”.)

Meanings may work well for well-defined concepts, as occur in arithmetic and
set theory, but how do we deal with meanings in more vague contexts? Considering
the vast literature on vagueness, we do not want to get locked into the very many
discussions there. Instead, we make a quick response that is related to the discussion
in hand. As such, we would have to rely on the premises of an argument to deter-
mine sufficient of the meanings of their components to make the respective valid
deductions. Carnap called such premises “meaning postulates”, which function as
axioms for the concepts concerned. (See [20].) Nevertheless, logic carries on quite
nicely without total meanings of all the concepts involved and not all questions need
be answered in the process. The same applies to vagueness, where there is a lack of
definition or specificity of concepts and it should be treated in the same way as far as
logical deduction is concerned. So, no special logic should be needed for vagueness,
as it fits in with normal logical deduction.
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17.4 Conjunction and Disjunction

We take conjunction as simply “both of” and disjunction as “at least one of”. Though
straightforward, there are some subtleties that need to be drawn out concerning
disjunction and the distribution laws.

Disjunction, as understood in natural deduction, does not require that one of
the disjuncts be proved in order for the disjunction to be proved, primarily within a
subproof. (Here, we take natural deduction as being the best representation of human
reasoning, though what is said can apply to Hilbert-style axiomatic systems as well.)
This can be seen from the ∨E rule, where a formula C is proved from both disjuncts
A and B, taken hypothetically, meaning that it does not matter whether a specific
disjunct has been proved or not, but it is assumed that at least one has, for the purposes
of understanding why the ∨E rule works. Note here that A ∨ B can be introduced
by hypothesis, rather than through applying ∨I .

However, in standard model theory, in order for A ∨ B to be true, a specific
formula A or B must first be shown to be true, which can be called a disjunctive
“witness”, analogously to the case of the existential quantifier. This is because the
evaluation structure is based on formula induction, as occurs in the truth-tables.
Here, the induction procedure starts with the atomic formulae and introduces each
connective, including∨, one by one, until thewhole formula is built. Thus, either A or
B is required in order to build A∨B. So, model theory does not represent disjunction,
as it occurs in proof-theoretic settings. For the sake of clarifying this point, let us
consider worlds in model theory as corresponding to subproofs in natural deduction
systems, where the worlds are inductively set up, whilst the subproofs can have
disjunctive hypotheses. (Also, see [13] for a witness-free semantics, which is natural
deduction based.)

One can see this in the Henkin-style proofs of completeness for classically based
logics upon which the Routley–Meyer proofs for relevant logics are based. (See
[21] and Chap.4 of [26].) Whereas Henkin was concerned about obtaining negation-
completeness for logics with the Law of Excluded Middle (LEM), A ∨∼A, Routley
and Meyer were concerned about disjunctive completeness or Priming: if A ∨ B ∈ a
then A ∈ a or B ∈ a, for theories a. (This is more general than Henkin, as logics
with the LEM would then have to satisfy A ∈ a or ∼A ∈ a, in particular.) Further,
the Henkin-style proof involves an extension obtained by adding witnesses to create
consistent theories, or, in the Routley–Meyer case, witnesses to satisfy priming. This
process shows that the starting point, usually obtained deductively, is expanded upon
to create the truth-tables for negation and disjunction within the canonical model
being built. Thus, this can separate deduction from the semantic extension. However,
the soundness theorem is fine, as this theorem extends to applications of logics as
well, but the completeness theorem is a result for the pure logic all right, but not
necessarily for applied logics such as Peano Arithmetic, and, as such, it is generally
oversold, I believe. (See Sect. 17.10. for further discussion.)

But, let us have a look at theorems, i.e. formulae provedwithout premises. If A∨B
is proved in a main proof, i.e. without hypothesis, one would expect there to be a
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proof of A or a proof of B, as otherwise how is A∨ B to be proved?∨I is the obvious
mode of proof, at least at a simplistic level, given that there is no LEM. (More on
the LEM and reductio arguments in Sect. 17.5., and constructivity in Sects. 17.6 and
17.8.) This proof-theoretic witness does then align with the model theory, at the level
of theorems.

We now look into the distribution laws to see in what forms they should hold,
keeping in mind the distinction between the rule ‘⇒’ and the meaning containment
connective ‘→’. Let us start with A & (B ∨ C) → (A & B) ∨ (A & C), asking the
question is this distribution law an instance of meaning containment?

Let us have a look at Schroeder-Heister’s work on his Proof-Theoretic Semantics,
introduced in his [27]. In his tutorial [28], he talked about the uniqueness of logical
connectives for classical logic. In particular, upon proving A ⊃ B � A ⊃′ B,
A ⊃′ B � A ⊃ B and hence� (A ⊃′ B) ≡ (A ⊃ B), with both ‘⊃’ and ‘⊃′’ having
the same introduction and elimination rules in natural deduction, he declared ‘⊃’ to
be unique. Indeed, ‘A ⊃ B’ and ‘A ⊃′ B’ are inter-substitutable in all contexts
within the logic. Moreover, this also applies to conjunction and to disjunction in
classical, intuitionist and relevant logic settings. So, the introduction and elimination
rules, & I , ∨I , & E and ∨E , suffice to uniquely characterize conjunction and
disjunction, but these rules can be seen to be independent of distribution. To prove
A & (B ∨ C) → (A & B) ∨ (A & C), one would need some structural rule or some
such consideration, over and above the standard introduction and elimination rules.
In Fitch-style natural deduction, one needs to conjoin A in a subproof α with B and
also with C in respective subproofs of α. This manoeuvre is not allowed in relevant
logic as it leads to irrelevance, as A → .B → A & B and hence A → .B → A
would be derivable. So, given that the meanings of conjunction and disjunction are
given by their introduction and elimination rules, (A & B)∨(A &C) does not follow
by meaning from A & (B ∨ C), and hence A & (B ∨ C) → (A & B) ∨ (A & C) is
not valid as a meaning containment. (See [17] for a detailed account.)

What nowabout the rule-form, A& (B∨C) ⇒ (A& B)∨(A&C)?This, however,
seems fine as the disjunctive meta-rule, if A, B ⇒ C then D ∨ A, D ∨ B ⇒ D ∨ C ,
suffices to prove it, and this is seen as an obvious extension to two premises of the
single premise disjunctive meta-rule, if A ⇒ B then C ∨ A ⇒ C ∨ B, which was
the previous meta-rule of a pre-tweaked version of MC.

What these meta-rules rely on, at base, is that for a disjunction B ∨ C to be a
theorem then either B is a theorem orC is a theorem. This also applies to the premises
which are assumed to be the case for the sake of the derivation. (See Sect. 17.2.)
This is what gives the certainty to (A & B) ∨ (A & C), given A & (B ∨ C), as
required for deductive validity. This also provides a way to give some restricted
Hilbert-style representation to the Priming Principle: � A ∨ B ⇒ � A or � B,
without adding a structural connective for the meta-linguistic disjunction. (See for
[17] further discussion of distribution.)
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17.5 Negation

Classically, negation is taken as just the fall-back for truth, i.e. ∼A holds precisely
when A fails to be the case. Thus, one has just the two values T and F, with negation
effectively changing the value, as per the truth-tables. This is the most immediate
and recognizable conception of negation, which is often called Boolean negation.

The problem occurs when one puts negation into a deductive context, and one
cannot avoid doing this as deduction can be applied to any meaningful sentences.
Then, one gets what Penelope Rush called the four deductive outcomes for a formula
A within a deductive system (see [12]):

(i) A, without ∼A,
(ii) ∼A, without A,
(iii) neither A nor ∼A, and
(iv) both A and ∼A.

This applies for both classical and non-classical logic, as indicated in [11], since case
(iii) applies for the Godel sentence G in Peano Arithmetic and case (iv) applies to
the Russell set R in naive set theory, both based on classical logic. So, the negation
of the truth-tables does not always align with what is provable, and there is a conflict
between the immediate Boolean concept and what is achievable in proof theory.
Further, the negation occurring in these four deductive outcomes could be virtually
any operator at all, as there is no relationship between the occurrence of A and that
of ∼A.

Let us consider the Russell set R, where x ∈ R iff x /∈ x , for all x . In almost all
cases one would be likely to consider x ∈ R will be classically true since relatively
few x would satisfy x ∈ x , i.e. x ∈ x is false and x /∈ x is true for almost all of
the likely cases of x . There would be relatively few cases where x ∈ x is true and
x /∈ x false—also classical. Of course, the familiar R ∈ R behaves non-classically,
but this case seems to be the only one, or at least rare and unusual, except perhaps
amongst logicians. The large bulk of cases is still classically behaved. This leads us
to believe that this negation is intended to be classical, but becomes non-classical
in this deductive context, due to the presence or absence of the LEM for R ∈ R.
[A → ∼A → ∼A would alternately suffice for outcome (iv).] That is, the LEM
yields outcome (iv), since R ∈ R ↔ R /∈ R is deductively equivalent to R ∈ R∨R /∈
R ↔ R ∈ R ∨ R /∈ R (given weak logical assumptions), and its absence will yield
outcome (iii), since the absence of R ∈ R ∨ R /∈ R will mean that neither R ∈ R
nor R /∈ R is present.

So, I believe the classical Boolean negation, which is the clear negation concept, is
intended, but the deductive systemsmay not bear it out because of the way they work.
This intention is due to the sheer simplicity and obvious usage of theBoolean concept,
in contrast with the lack of concept based on the four deductive outcomes. Why is
this so, though? The classical deductive outcomes (i) and (ii) are meta-theoretic.
That is, one needs to examine the whole deductive system to determine whether
∼A or A is absent in (i) or (ii), respectively, rather than just examining meanings



17 Logic—The Big Picture 361

of components within it. This is similar to what goes on in practice, usually over a
finite domain. The negation ‘I am not in the corridor’ is determined by examining the
domain consisting of the corridor and finding me not in it. Because of finiteness, one
concludes by negation-completeness that “I am not in the corridor” is true. So, we
are treating the deductive context much like the corridor, as it determines a domain to
be examined. However, in general, in deductive systems, this domain can be infinite
and checking whether some formula is absent can be non-recursive. This also applies
to outcome (iii), though outcome (iv) can be determined proof-theoretically and thus
by recursively enumerable means. Further, as seen in naive set theory, there can be a
non-classically determined domain of self-membered sets, as happens for the Russell
set R.

The forthcoming logicMChasDeMorgan negation rather than Boolean negation.
However, De Morgan negation is characterized by the principles of double negation,
∼∼A ↔ A, and contraposition, A ↔ B ↔ .∼B ↔ ∼A. From these two principles,
the De Morgan’s Laws for & and ∨, ∼(A & B) ↔ ∼A ∨ ∼B and ∼(A ∨ B) ↔
∼A&∼B, can easily be derived, rounding off the characterization. Thus, this concept
of negation specifically applies to the connectives, ∼, & and ∨, and not to atomic
sentences. (See [12] for further discussion.) So, one really needs some atoms, like
x /∈ ∅ in set theory or 0 �= x in Peano arithmetic, to kick start negations at an
atomic level, so that further negative sentences can be proved from the De Morgan
principles. Conceptually, De Morgan negation, by itself, is deficient and acts like a
shell for negation whilst the Boolean concept is better in this respect as it applies
to all sentences, atomic as well. Further, Boolean negation is applicable to atomic
sentences when there are no truth-value gaps or gluts, i.e. no instances of outcomes
(iii) or (iv) above.

In conclusion, since outcomes (i), (ii) and (iii) are meta-theoretic, as explained
above, negation, of all the connectives, does not have a complete concept. However, it
does have the (intended) Boolean concept, but this is restricted to classical contexts,
which are determinate, either due to finitude or recursion. More can be said about
negation, but we have focused on its concept and on its logical laws.

One last point to mention regarding negation concerns the use of reductio argu-
ments. There is a distinction between those that are really contrapositions, like
A → B,∼B ⇒ ∼A, and those that involve the derivation of a contradiction, like
A → B & ∼B ⇒ ∼A. The former are easily accommodated in the logic via contra-
position, but the latter involves the use of the LEM, i.e.∼(B &∼B) → ∼A ⇒ ∼A,
where ∼(B & ∼B) ↔ B ∨∼B. Further, reductio proofs of form: If A ⇒ B ↔ ∼B
then � ∼A also use the LEM, in that B ↔ ∼B is deductively equivalent to
B ∨ ∼B → B & ∼B, and the rule A ⇒ B & ∼B can be contraposed to the
form ∼(B & ∼B) ⇒ ∼A, subject to the LEM holding for A and the disjunctive
syllogism (DS), holding for B & ∼B, with help from the meta-rule MR1 of MC
below. (Here, the DS takes the form: ∼(B & ∼B), (B & ∼B) ∨ ∼A ⇒ ∼A.) Thus,
these two latter forms of reductio involve a certain level of classicality, which would
have to be independently argued for.



362 R.T. Brady

17.6 The Logic MC of Meaning Containment

This is an attempt to formally capture a logic based on the meaning containment
‘→’ with the more general use of the deductive rule ‘⇒’ as discussed in Sect. 17.3.
For logical purposes, the meaning containment is thought of as an intensional set-
theoretic containment. The idea is that logical contents represent the meanings that
are contained in one another, and that these contents are best represented as sets
of formulae, as appears in the canonical model of the content semantics initially
presented in [5], and also appearing in [9] in a slightly more complex form. (See
Sect. 17.7. for treatment of contents.) And, the set-theoretic containment needs to be
intensional rather than the usual extensional containment, as it is meanings that are
to be related after all. Note that [5, 9] contains distribution, but it was later removed
in [17] in favour of the rule-form, as discussed in 4. So, the following axiomatization
of the logic MC attempts to capture such a logic.

One should also note the difference between the logic MC and Anderson and
Belnap’s logic E of entailment in their [1]. MC is conceptualized independently of
necessitated implication, despite the ‘→’ of MC being a reasonable entailment in
itself in that necessity and analyticity are closely related. The main difference here is
the lack of an implication which, when necessitated, would yield such an entailment.

MC.
Primitives:

∼, &,∨,→.

Axioms:

1. A → A.
2. A & B → A.
3. A & B → B.
4. (A → B) & (A → C) → .A → B & C .
5. A → A ∨ B.
6. B → A ∨ B.
7. (A → B) & (B → C) → .A ∨ B → C .
8. ∼∼A → A.
9. A → ∼B → .B → ∼A.
10. (A → B) & (B → C) → .A → C .

Rules:

1. A, A → B ⇒ B.
2. A, B ⇒ A & B.
3. A → B, C → D ⇒ B → C → .A → D.

Meta-rule:

1. If A, B ⇒ C then D ∨ A, D ∨ C ⇒ D ∨ C .
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We can say that A is a classical formula when the LEM and the DS hold for A.
Note that A is classical iff the classical deduction theorem, A ⇒ B iff � ∼A ∨ B,
holds. Also, if both A and B are classical then ∼, A & B and A ∨ B are classical.
So, classical logic can be built up from a set of classical formulae, using conjunctive
normal forms with distribution in rule-form.

The logic MC is paraconsistent as the DS fails in general, although it can hold in
particular cases, as it does for classical formulae. This logic has been used to prove
the non-triviality of (inconsistent) naive set theory with the addition of the LEM, in
[4, 9] by three-valued modelling and in [14] by metavaluations. (Metavaluations are
introduced in Sect. 17.8.)

In the following sections, we introduce some other logics, which we axiomatize
below in relation to MC, as well as the system E, already mentioned in Sect. 17.6.

Additional Axioms:

11. A & (B ∨ C) → (A & B) ∨ (A & C).
12. A → B → .B → C → .A → C .
13. A → B → .C → A → .C → B.
14. A → .A → B → B.
15. A → .B → A.
16. (A → .A → B) → .A → B.
17. A → ∼A → ∼A.

Additional Rules:

4. A ⇒ ∼(A → ∼A).
5. A ⇒ A → B → B.

Other Systems.
(We assume these systems (except E) all have the meta-rule MR1, for the sake of

uniformity, thoughmost earlier versions did not include it, or included a one-premise
version.)

DW = MC + A11 − A10.
TJK = MC + A11 + A12 + A13 + A15.
RW = DW + A12 + A13 + A14.
RWK = RW + A15.
E = RW − A14 + A16 + A17 + R5 − MR1.

17.7 Content Semantics

What sort of semantics is appropriate for a logic based on meaning containment?
One needs to distinguish between the technical needs of a logic and its appropriate
semantics. Standard model theory tries to do both and certainly succeeds in the
technical sphere, e.g.with non-provability and conservative extension results. I do not
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think it succeeds in providing a “real” semantics, though. (See Sect. 17.4. regarding
disjunction and Sect. 17.9. regarding existential quantification.)

A “real” semantics ought to capture the essence of what the logic represents and as
such it ought to distinguish what axioms and rules should be included in the logic and
those that should not. It should not be a general semantics for a wide range of logics.
It should encapsulate the “one true logic” with appropriate distinguishing features,
which will be shown below. It may or may not be of much technical value. Indeed, as
it turns out, showing the non-provability of formulae will require an understanding
of what the contents are, rather than a knock-down technical argument as occurs in
standard model theory.3

The following content semantics for the logicMC aims to be such a “real” seman-
tics.We take this from [5, 9], though amore general content semanticswas introduced
earlier in two parts in [3, 4]. This general semantics covered a wide range of logics
from Lavers’ BB right through to classical logic (see [22] for BB). However, we do
wish to focus the semantics on just the one logic MC, as appears below. Further-
more, we will exclude the distribution property for content containments, following
the tweaking of the logic MC in [17].

Contents, as introduced in [5, 9], are analytic closures of a sentence or set of
sentences, whereby the meanings of the sentences are analysed and entailments
made until no further meaning can be drawn out from the sentences. Initially, in this
section, we focus on the formulae of MC to capture the semantics at the sentential
logical level, and then reach out to quantifiers and various application areas later.
Since contents are sets of formulae, content containment, which interprets the ‘→’
of MC, can then be understood as intensional set-theoretic containment. This is
what determines the semantic postulates below and thereby provides specificity for
entailment itself.

A content model structure (c.m.s.) consists of the five concepts 〈T, C,∪, ∗, c〉,
where C is a set of sets (called contents), T �= ∅, T ⊆ C (the non-empty set T of
all true contents), ‘∪’ is a 2-place function on C (the closed union of contents),‘∗’ is
a 1-place function on C (the ‘∗’ function on contents), and ‘c’ is a 1-place function
from containment sentences, c1 ⊇ c2 between contents c1 and c2 of C , to members
of C , subject to the semantic postulates p1–p15 below. Unlike other algebraic-style
semantics, the concepts ‘∩’, ‘=’and ‘⊇’, are taken from the background set theory,
‘∩’ being a 2-place function on C (the intersection of contents), ‘=’ being a 2-place
relation on C (identity) and ‘⊇’ being a 2-place relation on C (content containment).
This gives the semantics some specific contact with “reality”.

Whilst the intersection of two contents is always a content, this does not apply to
the union of contents. In this case, we form the closed union c1∪c2 of contents c1 and
c2, which is the analytic closure of their set-theoretic union. In [9], the ‘∗’ function
on contents takes contents to ranges, a dual concept to that of contents embracing
the De Morgan properties.

3I wish to thank Greg Restall for making the point that content semantics does not behave like
model theory in this respect and that this specialized content semantics requires an understanding
of what these contents are.
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Let c1, c2 and c3 be contents.

p1. c1∪c2 ⊇ c1, c1∪c2 ⊇ c2.
p2. If c1 ⊇ c2 and c1 ⊇ c3 then c1 ⊇ c2∪c3.
p3. c1 ⊇ c1 ∩ c2, c1 ⊇ c1 ∩ c2.
p4. If c1 ⊇ c3 and c2 ⊇ c3 then c1 ∩ c2 ⊇ c3.
p5. c∗∗

1 = c1.
p6. If c1 ⊇ c2 then c∗

2 ⊇ c∗
1.

We add the set T of all true contents, in order to define validity.We regard a content
as true when all of its elements are true. The following are straightforward, given the
conjunctive interpretation of content arising from its definition as an analytic closure:

p7. If c1 ⊇ c2 and c1 ∈ T then c2 ∈ T .
p8. If c1 ∈ T and c2 ∈ T then c1∪c2 ∈ T .
p9. If c1 ∩ c2 ∈ T then c1 ∈ T or c2 ∈ T .

(For p9, let c1 /∈ T and c2 /∈ T . Then, there are sentences p in c1 and q in c2
which are not true. In which case, p ∨ q in c1 ∩ c2 is not true and c1 ∩ c2 /∈ T .)

So, T is prime truth filter.

p10. c(c1 ⊇ c2)∪c(c2 ⊇ c3) ⊇ c(c1 ⊇ c3).
p11. c(c1 ⊇ c2)∪c(c1 ⊇ c3) ⊇ c(c1 ⊇ c2∪c3).
p12. c(c1 ⊇ c3)∪c(c2 ⊇ c3) ⊇ c(c1 ∩ c2 ⊇ c3).
p13. c(c1 ⊇ c2) ⊇ c(c∗

2 ⊇ c∗
1).

p14. c(c1 ⊇ c2) ∈ T iff c1 ⊇ c2.
p15. If c1 ⊇ c2 then c(c3 ⊇ c1) ⊇ c(c3 ⊇ c2) and c(c2 ⊇ c3) ⊇ c(c1 ⊇ c3).

(p15 follows due to the semi-substitution of meaning containment into consequent
and antecedent positions.)

An interpretation I on a c.m.s. is an assignment, to each sentential variable, of an
element of C.

Interpretations I are extended to all formulae, inductively as follows:

(i) I (∼A) = I (A)∗.
(ii) I (A & B) = I (A)∪I (B).

(iii) I (A ∨ B) = I (A) ∩ I (B).

(iv) I (A → B) = c(I (A) ⊇ I (B)).

A formula A is true under an interpretation I on a c.m.s. M iff I (A) ∈ T .
A formula A is valid in a c.m.s. M iff A is true under all interpretations I on M.
A formula A is valid in the content semantics iff A is valid in all c.m.s.
This can also be extended to an argument A1, A2, . . . , An ⇒ B, which preserves

truth under interpretation I on a c.m.s.Miff I (B) ∈ T whenever I (A1) ∈ T, I (A2) ∈
T, . . . , and I (An) ∈ T .

MC is sound and complete with respect to the above content semantics. Also,
the rules preserve truth under I on c.m.s. M, for all I and all M. Note that, in
the Lindenbaum-style completeness proof, instead of equivalence classes, canonical
contents [A] consist of the set of all formulae entailed by A, including itself.
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Importantly, keynon-theorems canbe rejected by the semantics throughour under-
standing of contents, thus pinning down the logicMC, e.g. I (A)∪c(I (A) ⊇ I (B)) ⊇
I (B)), and hence I (A & (A → B) → B) ∈ T , is rejected on account of the content
c(B) not being contained in the closed union of c(A) and c(A → B). The point here
is that c(B) can be any content whilst c(A → B) is a content containment statement,
which is a specific type of content, thus creating a mismatch. The same problem hap-
pens when trying to relate c(A)with c(A → B). Thus, I (A & (A → B) → B) /∈ T .
One can compare this with c(I (A) ⊇ I (B))∪c(I (B) ⊇ I (C)) ⊇ c(I (A) ⊇ I (C)),
where the content containment statements do properly interact (p10), yielding
I ((A → B) & (B → C) → .A → C) ∈ T .

The content semantics is doing an appropriate semantical job, picking out the
logic MC. However, being an algebraic semantics (without the algebra), there is not
a simple knock-down method of rejecting non-theorems. The normalized natural
deduction system would be best, as the Routley-Meyer semantics includes the dis-
tribution axiom. (See [10] for the neighbouring logic DW, and [13] for DW without
the distribution axiomA11.) Gentzen systems are very useful too, especially without
the distribution axiom. (See [6, 7] in two parts.) Note the usefulness of proof theory
generally over the standard model theory here.

17.8 Metavaluations

Without the Routley-Meyer semantics, we need to search around for other techni-
cal systems to prove results about the logic MC. This brief presentation will be a
general account of metavaluations and their applications, as an alternative to stan-
dardmodel-theoretic approaches. Thesemetavaluations are basically proof-theoretic,
even though they are set up in semantical style. Importantly, they are formula-
inductive, like model theory, and so they have some of the benefits of model theory,
but without having to leave the proof theory. So, some proof-theoretic results like
priming, ‘if� A∨ B then� A or� B ′, come out easily. (See [23] for the introduction
of metavaluations.)4

Metavaluations generally work for metacomplete logics which are roughly the
contraction-less relevant logics, with the possible additions of Conjunctive Syllo-
gism, (A → B) & (B → C) → .A → C , and the irrelevant, A → .B → A. (See
[29, 30] for the introduction ofmetacomplete logics with negation, including theM1-
andM2-logics distinguished below.) Importantly, the logicMC is included, as well as
surrounding systems, which can be generally characterized as entailment-focussed
logics. The entailment focus can be seen in the following inductive specification of
a metavaluation v and its star valuation v∗.

4One could try to base content semantics on metavaluations with a tight correspondence between
the semantic postulates of the content semantics and each of the metavaluations, substituting the
latter for the standard Hilbert-style axioms and rules. This metavaluation-driven content semantics,
however, has never been tried, to the author’s knowledge.
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We understand v(A) = T as ‘A is provable’ and v∗(A) = T as ‘∼A is unprovable’,
as can be seen from the soundness and completeness theorems to follow.

v(p) = F; v∗(p) = T, for sentential variables p.
v(A & B) = T iff v(A) = T and v(B) = T.
v∗(A & B) = T iff v∗(A) = T and v∗(B) = T.
v(A ∨ B) = T iff v(A) = T or v(B) = T.
v∗(A ∨ B) = T iff v∗(A) = T or v∗(B) = T.
v(∼A) = T iff v∗(A) = F.
v∗(∼A) = T iff v(A) = F.
v(A → B) = T iff � A → B and if v(A) = T then v(B) = T, and if v∗(A) = T then
v∗(B) = T.
v∗(A → B) = T, for M1-logics.
v∗(A → B) = T iff, if v(A) = T then v∗(B) = T, for M2-logics.

Completeness: if v(A) = T then � A, for all formulae A, and hence if v∗(A) = F
then � ∼A.

Consistency: if v(A) = T then v∗(A) = T.
Soundness: if � A then v(A) = T, and hence if � ∼A then v∗(A) = F.
Metacompleteness: � A iff v(A) = T, and hence � ∼A iff v∗(A) = F.
Priming Property: if � A ∨ B then � A or � B.
Negated Entailment Property: � ∼(A → B) (M1-logics); � ∼(A → B) iff � A

and � ∼B (M2-logics).
All logics from MC up to TJK are metacomplete M1-logics, and all logics from

MC + A ⇒ ∼(A → ∼A) up to RWK are metacomplete M2-logics.
We can use metavaluations to prove the simple consistency of naive set theory and

arithmetic (see Sect. 17.10.). We can also produce counter valuations for unprovable
formulae through substitution, as can be seen from these two examples:

(1) Put A as p and B as ∼(A → A) in A & (A → B) → B. This suffices to show
v(A & (A → B) → B) = F in M1- and M2-logics.

(2) Put A as p in A ∨ ∼A. Thus, v(A ∨ ∼A) = F, again in both types of logics.

17.9 Quantifiers

Wehave left the quantifiers until now to simplify the foregoing. There are some paral-
lels with conjunction and disjunction, the universal quantifier being a complication of
conjunction, and the existential quantifier having similar concerns to that of disjunc-
tion. Starting with the universal quantifier, there are three methods of establishing
∀x A(x), brought about by the prospect of infinite domains:

(1) A(x) holds over a finite domain.
(2) A(x) holds by recursion over a denumerable domain, or by transfinite induction

over an infinite well-ordered domain.
(3) A(x) holds by universal introduction ∀I .
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Method (1) is extensional, being a simple expansion of conjunction. Method (2)
is a constructive extension of extensionality, involving recursion with two steps or
transfinite induction with three steps. Method (3) is intensional, as it requires x to
be an unconstrained free variable, without a mention of the domain, usually within
a natural deduction system. It would apply to any domain, whether recursive or not.
Here, A(x) would have to hold for all x to start with, prior to introducing or re-
introducing the universal ∀. Further, method (3) is the form of universal quantifier
introduction used in soundness arguments, as it is completely general.

As with disjunction, there is a difference between the proof-theoretic interpreta-
tion of the existential quantifier and the model-theoretic interpretation. The natural
deduction rule ∃E does not require a witness, in subproofs anyway. For the main
proof, however, given metacompleteness (see below), the witness would be previ-
ously proved, even if it is a variable. For model theory there is always a witness, due
to the inductive procedure on formulae and this is followed up in the Henkin-style
completeness proofs, as with disjunction in Routley-Meyer completeness proofs.
Also, ∀I does not use a domain, whilst a domain is required for model theory, which
again differentiates proof theory and model theory.

We next examine the distribution laws. Clearly, ∀x(A ∨ B) → .A ∨ ∀x B fails
due to the failure of its sentential version over a two-element domain, and similarly
for A & ∃x B → ∃x(A & B). The rule ∀x(A ∨ B) ⇒ .A ∨ ∀x B also fails as it does
in intuitionist logic, since the ‘∀’ and ‘∨’ in MC and intuitionist logic are essentially
the same concepts, the differences between the two logics being in ‘∼’ and ‘→’. We
now make the required quantificational additions.

MCQ.
Primitives:

∀, ∃.
x, y, z, ... bound variables.
a, b, c, ... free variables.
s, t, u, ... terms, i.e. free variables, or constants that might be added in applications.

Axioms:

1. ∀x A → At/x
2. ∀x(A → B) → .A → ∀x B
3. At/x → ∃x A
4. ∀x(A → B) → .∃x A → B

Rule.

1. Aa/x ⇒ ∀x A, where a is not in A.

Meta-Rule.

1. If A, Ba/x ⇒ Ca/x then A, ∃x B ⇒ ∃xC , where R1 is not used to generalize on
any free variables occurring in the A nor in the B of the rule A, Ba/x ⇒ Ca/x .
This also applies to the rule A, B ⇒ C of MR1 for the sentential component.
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Note that the existential distribution rule, A & ∃x B ⇒ ∃x(A & B), follows from
R2 and QMR1. This form does hold in intuitionist logic, as well.

The quantificational additions for the content semantics are quite complex (See
[9] for details.). We proceed with the additional metavaluations:

v( ∀x A) = T iff v(At/x) = T, for all terms t .
v∗( ∀x A) = T iff v∗(At/x) = T, for all terms t .
v( ∃x A) = T iff v(At/x) = T, for some term t .
v∗( ∃x A) = T iff v∗(At/x) = T, for some term t .

Completeness, consistency, soundness and metacompleteness follow as for the sen-
tential logic, with the addition of the quantificational axioms, rule and meta-rule
above. Thus, by metacompleteness:

if � ∃x A then � At/x , for some term t . (The Existential Property)

Finally, we consider restricted quantification. Two attempts have been made here,
in [2, 8]. However, after talking with Sam Butchart, who raised the question, and
Hartry Field, who enforced the solution, I am currently of the view that the classical
restricting connectives of ‘⊃’and ‘&’ suffice for the two respective quantifiers ‘∀’ and
‘∃’ as they do for classical logic. This is because the restricting predicate needs to be
classical, i.e. satisfy theLEMandDS.This generally holds for the various universes of
discourse and, as with their non-emptiness, should extend to the restricted domains
as well. (See Sect. 17.2. for the formal setting out of this.) This classicality also
prevents fuzziness in the specification of the domain, which would then spread to
the restricted quantification.

17.10 Applications

Before focusing on set theory and arithmetic, we should consider broader-based
applications. Application in general depends on the premises that one chooses to
elucidate the concepts, together with all relevant background information. It is then
that one deductively derives conclusions. As pointed out at the beginning, we are not
doing inductive reasoning, based on the high probability of a conclusion holding.
Most studies of conditionals do not specify their assumptions fully, but rely on
ceteris paribus (other things being equal), which introduces a lack of certainty of
conclusions drawn. Thus, I think the general study of conditionals should belong
to inductive reasoning, though model theory can play a role in their analysis, as
neighbourhood semantics in particular has done.

Even if the concepts are somewhat vague, the premises are what drive a deductive
inference, however well theymight capture the intended concepts. Indeed, in the case
of vague concepts, certain positive and certain negative statements can be derived, but
there will be some statements that are unresolved either way, due to the vagueness.
So, derivation itself can be used to provide a dividing line between, say, the red
objects and the others, and between the non-red objects and the others.
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Generally,Carnap’s idea ofmeaningpostulates seems like a goodwayof providing
suitable premises or axioms for concepts, but it is in mathematics and computer
science where the high degree of specificity lies. In mathematics, the concepts and
objects are quite abstract, so much so that there can be little room for disagreement
and deductive reasoning can be used at its best. In computer science, it is what is
stored in the knowledge base that provides the premises and what is not explicit
cannot be used.

We now turn to set theory and arithmetic, which are the more logically accessible
parts of mathematics and where the most work is done. There are a number of
concepts of set, but the naive concept is the most immediate, the others involving
some retreat from paradox and this would include the classical sub-theory of [9].
The naive concept is based on the generation of sets from predicates, i.e. the set
y of all x such that ...x .... It is axiomatically represented by the Comprehension
Axiom, ∃y∀x(x ∈ y ↔ A), where y is not free in A, and the extensionality rule,
∀z(z ∈ x ↔ z ∈ y) ⇒ x ∈ w ↔ y ∈ w. Since the set y is contextually defined,
the equivalence involved should be a meaning equivalence, which is appropriately
represented by the ‘↔’ connective of MCQ. This naive set-theoretic concept is
simply consistent based on the logic MCQ, proved in [9] using models and in [16],
using metavaluations. The classical sub-theory in [9] needs more work to capture the
constructive approach adopted here.

Nevertheless, in reference to this sub-theory, in [18], it was argued that Can-
tor’s diagonal argument fails to go through for constructive (or, indeed, recursive)
functions f from the set of natural numbers N to its power set ℘(N). The Can-
tor argument takes the shape: 1 − 1C ⇒ k ∈ f (k) ↔ k /∈ f (k), subject
to a definition of k ∈ N, where 1 − 1C stands for ‘ f is a one-to-one corre-
spondence between N and ℘(N)’. Again, ‘↔’ is appropriate here to capture the
effect of the definition. In order to ensure that the classical Cantor argument goes
through, we can make some classicality assumptions along the way. We can use
the LEM for k ∈ f (k) to derive k ∈ f (k) & k /∈ f (k) and, to contrapose the
rule, we use the LEM for 1 − 1C and the DS for k ∈ f (k) & k ∈ f (k), arriv-
ing at the contraposed rule:∼(k ∈ f (k) & k /∈ f (k)) ⇒ ∼(1 − 1C). Given the
LEM for k ∈ f (k),∼(1 − 1C) follows, as required. However, what we dispute
here is the LEM for k ∈ f (k), used twice in the above argument, given that
this classical argument requires all functions f , rather than constructively gener-
ated functions such as recursive functions. And, in order to justify the LEM for
k ∈ f (k), k ∈ f (k) ∨ k /∈ f (k) would have to be proved by some constructive
proof, and that would normally mean that either k ∈ f (k) or k /∈ f (k) would be
constructively proven usingMCQ. This leaves Cantor’s theorem as an open question.
(See [18] for discussion on this.) However, sinceMCQ is weaker than classical logic,
what we can say is that a one-to-one correspondence between N and ℘(N) is not
provable using MCQ if it is not provable classically.

A similar concern occurs in Peano Arithmetic, based on a slight weakening of the
quantificational extension of MC, and proved simply consistent in [15] using finitary
methods. Here, the LEM needs to be proved, usually by mathematical induction, for
all instances where it is used. Generally, the Peano axioms are replaced by rules and,
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in order to apply mathematical induction, one needs to convert these rules into single
formulae. To do this, the LEM is used, since, if A ⇒ B then, by MR1, ∼A ∨ A ⇒
∼A ∨ B, yielding A ⊃ B, as the single formula. The method of proving simple
consistency is that of metavaluations, with use of the priming property: if � A ∨ B
then � A or � B. Thus, for the Godel sentence G, if � G ∨ ∼G then � G or � ∼G.
Since the logic is weaker than classical, Godel’s classically stated incompleteness
result still applies, as it concerns unprovability which is then projected down to the
weaker logic, assuming classical consistency. So, � G ∨ ∼G, and the LEM fails for
G. However, it can be seen in [15] that the LEM does hold for primitive recursive
functions, but general recursion is left to be completed.

The naive truth concept can be dealt with in a similar way to that of naive set
theory, as it also involves the use of a definition and a general schema. There, the
Liar sentence p is defined as ‘p is not-true’ and formalized as p ↔ ∼T p. Then,
since T p ↔ p, p ↔ ∼p. (See Chap.8 of [9] for examples, proofs and discussion
of semantic paradoxes.)

Meta-theory is just another application of the logic and, as such, need not be clas-
sical. There is quite some classical gain over the object theory as the whole deductive
system becomes an object with reasonably clear definition, and as a result the LEM
and the DS hold for many meta-theoretic concepts. Assignments to formulae can be
T or F, but not both, but the classicality of provability would require decidability of
the logic, given our constructive approach.

17.11 Conclusion

Please accept my apologies for the absence of modal logic and other intensional
logics, as these have not been in my core areas of research. Otherwise, we have
covered a lot of ground, even though relatively briefly.

The central thread is that logic is about deduction of conclusions from premises
and this induces a constructive proof-theoretic approach to logic, which in turn
requires a re-examination of many of the main proofs. Of particular interest are
those that use reductio arguments from the negation of the desired conclusion to a
conclusion which is of the form A & ∼A, or indeed A ↔ ∼A. This argument struc-
ture occurs in a number of contexts: Cantor’s diagonal argument, the proof of Godel’s
first theorem, and the undecidability of the Turing halting problem. (For the last, see
Chap.3 of [24].) We have discussed the first two of these, but the last one remains to
be dealt with in detail. We have seen in the first two that a classically proved negative
meta-theoretic result can be transmitted to a weaker logic such asMCQ, but this does
not apply to the last one, as decidability is “two-sided” as it affects both theoremhood
and non-theoremhood. For example, the sentential logic RW is decidable, whilst R
is undecidable (i.e. classically proved as such) and classical logic is decidable.

Whilst the paradoxes occurring in the object-language are solved using MCQ,
this does leave the questions regarding the extended paradoxes and semantic closure.
Briefly, the extended paradoxes involve some item which is in both the object- and
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meta-languages, and a solution consists simply in separating these two languages as
we normally do in the course of logical study. Nevertheless, there is a philosophical
preference for semantic closure which requires that a statement and the statement
of its truth occur in the same language. As argued above, the LEM and the DS
hold very widely in the meta-language, and this is due to the consideration of the
object-language as a whole, from outside of itself. Thus, the object-language has
sufficient specificity for many of its meta-theoretic statements to be classical. So,
these two languages cannot be meshed together. In response, one might wish to
achieve semantic closure at a limit point of an infinite sequence of meta-languages.
However, here, there must be some self-reference between languages to achieve this
closure, whereupon the LEM would fail, given the lack of separation of languages.
This would still apply if all the languages are somehow compacted into one.

It remains for us to briefly consider the scope of classical logic, as much of logical
investigation has focused on it and its use. In order for classical logic to be the only
logic used, the LEM and the DS must hold for every atomic statement. So, every
predicate, when applied to any object, must have such clarity of application so that it
must either apply or not, without overlap. The main examples of this would be with
a finite domain, where every predicate is specified as such. In the case of infinite
domains, the logic in its application would need to be decidable and also for each
sub-domain determined by a predicate the logic would also need to be decidable.
Each such sub-domain, if non-empty, would be usable for restricted quantification.
Thus, this is very restrictive.

Non-classical use of the logic MCQwould be required not only when there is any
vagueness or lack of specificity of concepts but also in the case of conceptual clash
resulting in overspecification rather than underspecification. In the former case, we
would have neither A nor ∼A in the system, for some A, but, in the latter case, we
would have both A and ∼A, for some A. And, these would commonly occur. Thus,
the use of the title “Universal Logic” in [9] is vindicated, in which it constitutes a
widening out of the application of classical logic to meaningful sentences. However,
such meaning need not be full meaning, as partial meaning may suffice to drive an
argument from premises to conclusion, as occurs in vague contexts.
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18.1 Introduction

A category can be thought of as a universe of objects and their transformations or
connections, calledmorphisms, subject to some very general conditions. An example
of a category is Set, whose objects are sets and its morphisms are functions between
sets. In Set there is a special kind of objects, namely objects with two elements. As
objects with two elements, all these objects are isomorphic to each, and each of them
has all and only those mathematical properties (as expressible in categorial terms)
as any other, so the sign ‘2Set’ can be used to denote any of them and speak as if
there were only one of them. We will say that an object with the property of having
exactly two elements is unique up to isomorphism. 2Set act as truth values object in
Set in the sense that suitable compositions with codomain 2Set serve to expresses
that certain sets are part of others. Hence, the two elements of 2Set are conveniently
called trueSet and falseSet.

Zero- and higher-order connectives can also be defined in Set. It can be proved
that the right logic to study the objects in Set, its internal logic, is that induced by
the algebra formed by 2Set and the connectives, which turns out to be classical. This
logic is called internal because it is formulated exclusively in terms of the objects
and morphisms of the topos in question and it is the right to reason about the topos in
question because it is determined by the definition of its objects and morphisms in a
way that using a different logic for that purpose would alter the definitory properties
of those objects and morphisms and thus it would not be a logic for the intended
objects and morphisms; it cannot be a canon imposed “externally” to reason about
the topos.

As in usual axiomatic membership-based set theories like ZFC, most of mathe-
matics can be interpreted and carried out in Set. However, a set theory developed
from a category-theoretic point of view is not based on the notion of membership,
but rather on those of function and composition (of functions).

There are other Set-like categories, called elementary toposes or simply toposes.
In a topos E there are objects which play the role of 2Set in the particular case of
Set, i.e., they serve to express that certain objects are part of others via suitable
compositions of morphisms. An object that plays such a role in a topos is also unique
up to isomorphism and any of them can be denoted by the sign ‘�E ’ and speak as if
there were only one of them. Logical notions like truth values and zero- and higher-
order connectives can also be defined in a topos. However, in general, �E has more
than two elements and, since �E has all the same universal properties as 2Set and
the latter can be considered a truth values object, so can the former. In addition, the
logic appropriate for dealing with the objects and morphisms in a topos, its internal
logic, is in general intuitionistic, not classical. This is precisely a logic arising from
objects and morphisms themselves, not from our devices to reason about them. Like
Set, toposes also allow for the interpretation of set-theoretical notions and hence of
significant parts of mathematics, but the reconstruction of mathematics carried out in
a topos corresponds to mathematics as done in an intuitionistic set theory. If toposes
can be considered universes of sets and, given that at least parts of mathematics can
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be reconstructed in a set theory, toposes also allow for the reconstruction of those
parts of mathematics, then the universal laws of mathematics are those valid across
all universes of sets, viz. the laws of intuitionistic logic.

This beautiful picture of logic in a topos can be summarized in the following
slogans1:

(S1) �E is (or at least can be seen as) a truth values object. (Common categorial
wisdom, see for example [18, 29–31].)
(S2) The internal logic of a topos is in general many-valued. (Common categorial
wisdom, but see [3–5, 18, 29, 30, 37].)
(S3) The internal logic of a topos is in general (with a few provisos) intuitionistic.
(This also is common categorial wisdom, just to name but two important texts where
this is asserted see [18, 31].)
(S4) Intuitionistic logic is the objective logic of variable sets. (A powerful metaphor
widely accepted, see [24, 25, 38].)
(S5) The universal, invariant laws of mathematics are those of intuitionistic logic.
(Cf. again [3–5].)

With the exception of (S5),2 which is a claim specifically due to Bell, these
slogans are theses so widely endorsed by topos-theorists as accurate readings of
some definitions, results and constructions in topos theory that it is hardly worth
documenting, but I have done it just to show that they appear in several major texts
by leading category theorists.

Slogans (S1) and (S2) can be challenged by invoking a family of results initiated by
Roman Suszko which state that every logic satisfying certain conditions—a Tarskian
structural logic in the case of Suszko, i.e., a logic whose consequence relation is
reflexive, transitive, monotoni, and structural—has a bivalent semantics. However, I
do not want to discuss (S1) and (S2) here, which is left for another paper (see [15]).

Let me use ‘(T)’ to denote a well-known theorem in topos theory, which is read
as stating as in one of the slogans:
(S3) The internal logic of a topos is (with a few provisos) intuitionistic.
Recent research on so-called complement-toposes (cf. [39, 40] or [13]) suggests that
(T) should not be paraphrased laxly as in (S3) nor as in (S4). Neither the rather
philosophical reading in (S5) proclaiming the intuitionistic character of the mathe-
matical universal laws would be justified. Mortensen and Lavers’ view implies that
certain (equalities expressed in) diagrams entail very abstract truth conditions which
do not determine a unique kind of logic. Whereas in standard topos theory, the cat-
egorial reconstruction of logic starts by naming “true” one of the elements �, in
complement-toposes it is called “ f alse.” The authors stress the fact that the very cat-
egorial structure of toposes supports different names for some crucial morphisms, so

1I use the word ‘slogan’ here pretty much in the sense of van Inwagen: “a vague phrase of ordinary
English whose use is by no means dictated by the mathematically formulated speculations it is
supposed to summarize” [51, p. 163], “but that looks as if it was,” I would add.
2And maybe also of (S4), due mostly to the appearance of Hegelian terminology (“objective”), very
frequent in Lawvere but not in other topos-theorists. Omitting that, one can add [2, 18] as supporters
of this slogan.
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the internal logic of a topos could be equally described as a kind of dual-intuitionistic,
paraconsistent logic. The difference is imperceptible in Set, where there are only two
truth values, but gives rise to different logics in more general cases. That bare struc-
ture of toposes which I referred to above seems to support different logics, so one
can even ask whether there is such a thing like the internal logic of a topos at all.
Moreover, if toposes are regarded as universes of sets where mathematics can be
reconstructed, the above question amounts to asking whether there is something like
the universal, invariant laws of mathematics at all.

Mortensen [40] talks about “a considerable Public Relations Exercise” done on
behalf of intuitionistic logic in topos theory leading to the denial of the latter inter-
pretation, but as I see it it is derived from a cognitive bias, the “prejudice towards
truth.” I take the expression “prejudice towards truth” from Marcos [34]. He there
rightly asks why theoremhood is going to be preferred over inference, truth over
falsity, single-conclusion over multiple-conclusion or acceptance over rejection. It
may be that the slant towards certain members of those pairs is due to some impor-
tant psychological, cognitive, historical, evolutive, and whatnot reasons, but it seems
that as far as logic is concerned both members of each pair deserve equal attention.
Thus, this is not changing one preference for another, but for the sake of symmetry:
Asymmetric considerations and preferences permeate from the definition of a topos
to the definition of logical consequence in the internal logic and then to theorems and
proofs, which finally leads to distorted philosophical claims based on those results,
as in (S1)–(S5).

This paper is, yes, an exposition of the basics of complement-toposes, but in the
end is thus a philosophicallymotivated logical discussion of topos logic.Myobjective
is threefold. First, to bring a clearer understanding of the philosophical foundations
of the common categorial wisdom regarding topos logic. Second, to show that the
notion of complement-topos allows to question certain philosophical associated to
topos theory, and especially to the theory of its internal logic—the aforementioned
slogans. Third, to show that, and how, the notion of complement-topos motivate
further steps into abstraction in topos-theoretic notions and constructions, and in
particular in the logic therein, mostly from a logical point of view but exploiting
the power of the conceptual clarification provided by category theory, to gain a
deeper conceptual understanding of what an internal logic is. More shortly, and in
Lawverean terms, it seems to me that complement-toposes show that there is still a
lot of “substance” in topos theory, and deeper “invariant forms” wait to emerge, and
that is what I want to show in this paper.

I have divided the paper into four main sections. Next section, Sect. 18.2, serves
to introduce all the required elements about the standard topos-theoretical analy-
sis of logic and the means to nailing down the aforementioned slogans, in a way
that philosophers familiar with first-order (classical) logic could be able to follow
the discussion. In Sect. 18.3 I describe complement-toposes. This is the core of the
paper, since the notion of complement-topos gives rise to doubts about the standard
description of the internal logic of a topos, it calls (S3), (S4), and (S5) into ques-
tion and opens the door for further abstraction. I show that complement-toposes can
be described as pretending that standard toposes do not exist, i.e., giving directly a
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complement reading of the categorial structure of toposes, as Mortensen and Lavers
did. Then I provide a proof theory for the internal logic of complement-toposes.
Finally, in Sect. 18.4 I analyze some objections against complement-toposes. One
of them says that complement-toposes are not categorically distinct from standard
toposes, which is true but does not imply that those alternative labelings give rise to
the same internal logic. Another objection says that complement-toposes contradict
some well-established results of topos theory, but those theorems presuppose one or
another feature of standard toposes, so they beg the question. The third objection is
a more general criticism against inconsistency in mathematics, which is answered
appealing basically to the free and pluralist nature of mathematics.

The presentwork has some limitationswhich deserve to bemade explicit. Perhaps,
the most important of them is that, although the new notions and constructions
introduced here do apply to first- or higher-order topos logic, for simplicity most
of my examples use only zero-order topos logic, so the reader will have to figure
out the higher-order cases. Another important omission is at least a sketch of a
paraconsistent set theory allowed by the notion of complement-topos, and thus a full
discussion of (S5). Most paraconsistent set theories thus far have been motivated by
the idea of doing justice to naïve set theory (in addition to being still membership-
based). It would be interesting comparing motivations and results, but I will leave
the investigation on this field for further work.3

Finally, the reader is assumed to know classical logic and to understand first-order
languages and naïve set-theoretic notation. Those are the prerequisites. A fluent read-
ing presupposes the knowledge of some category theory, order theory, and algebra.
In most cases, I will give definitions in a nice format and prove theorems only when
they are original contributions from this work. When presenting theorems already
proved I only state them and refer the reader to a text where they can find a proof
(even if not necessarily the original one). There is a convention to keep on mind: I
use the adjective “categorial” exclusively used as shorthand for “category theoretic,”
but note that this convention has not been applied to quotations.

18.2 Standard Toposes and Their Internal Logic

18.2.1 The Comprehension Axiom

For our convenience, think of an object O of a topos as a type, collection of things,
or generalized set—the O’s.4 Thus an object O is the objects of o’s, in the same way
that a product is the object of pairs 〈x, y〉 such that x is in X and y is in Y . The basic
means of getting logic in a topos will be by a generalized notion of comprehension

3A discussion of other topics in philosophy of logic, like the issue of meaning variance or the
discussion of the connections between degenerate categories and trivialism, is certainly worth, but
that is material for separate work.
4This elucidation of toposes in logical terms follows closely [1].
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of subobjects by “properties.” There are two things one needs to know about such
properties:

Properties are local: A property is always a property of o’s of some O , thus every
property has a fixed domain of significance.

Properties are variable propositions: Ifϕ is a propertywith domain of significance
O , and a is a constant element of type O , then ϕ(a) is a proposition.5

So, in a topos, a property with domain of significance X will be called a
propositional function on O . Every morphism must have a codomain, so a topos
will include an � of propositions or algebraic truth values. Its elements (if any)
p :1−→� are propositions, and its generalized elements ϕ : X −→� are vari-
able propositions, hence propositional functions. If the proposition p factors as
p = ϕ(a) : 1 −→ O −→ �, then p results from evaluating the propositional
function ϕ for the element a of O .

It is be assumed that there is a proposition true :1−→� satisfying a certain
comprehension axiom. Note that there are two very important assumptions here,
one categorial, “formal” or “structural,” merely concerning the existence of a certain
morphism

(i) There is a morphism ν :1−→� and the other “material” or more substantive
concerning a very loaded conceptualization of such a morphism:
(ii) it is better thought of as ‘true :1−→�’ provided a plausible conceptualization
of the properties it satisfies.

Let me unpack this idea. A morphism ν :1−→�, called (bare) subobject classi-
fier, has the following property:

(Bare) Comprehension axiom. For each ϕ : O −→� there is an equalizer of ϕ and
νO , and each monic m : M � O is such an equalizer for a unique ϕ. In diagrams, ν
is such that for every ϕ and every object T and morphism o :T −→ O , if m ◦ ϕ =
m ◦ νO and x ◦ ϕ = x ◦ νO , there is a unique h : X −→ M that makes the diagram
below commutative:

M >
m

> O
ϕ

>

νO

>
Ω

X

x

∧

h

<

The connection of these definitions with traditional logical notions is less myste-
rious than it appears at first sight.6 Consider the diagram for the (Bare) Comprehen-
sion axiom (which is a special case of the diagram corresponding to the definition
of equalizer):

5As Awodey has noted, this is Russell’s notion of propositional function, for example in The Prin-
ciples of Mathematics Sect. 22 or Principia Mathematica, pp. 14 and 161.
6Note by the way that, unlike many authors, I prefer the equalizers presentation of logic, not the
pullbacks one.
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M >
m

> O
ϕ

>

vO

>
Ω

X

x

∧

h

<

The only morphism from X to � which makes the diagram commutative is νX :

M >
m

> O
ϕ

>

νO

>
Ω

X

x

∧

vX

>

h

<

and the following diagram is obtained:

M >
m

> O
ϕ

> SΩ

X

x

∧

νX

>

h

<

Note that, according to the definition of equalizer, h must be the only morphism
that, among other things, x = m ◦ h. But this satisfies the definition of x ∈ m. Thus,
what the (Bare) Comprehension axiom says is that ϕ(x)= vX (by the right commu-
tative triangle) if and only if x ∈ m (by the left commutative triangle). This clearly
invites the reading of ν as true, if m is thought of as the extension of the prop-
erty ϕ, as is natural to think. In formal terms, this conceptualization is a particular
Skolemization of the (equational) formula describing the (bare) subobject classifier.

Assumption (ii), the “standard Skolemization” of ν, obligates certain names for
other categorial ingredients but let me state this more formally. Let ‘��’ denote an
instantiation device, such that ‘�x�’ denotes a constant which is the replacement of
x and thus ‘S�x�’ denotes the standard instantiation of x . Thus,
(Strue) S�ν :1−→�� = Strue :1−→ S�

According to this, ‘S�’ denotes that
(S�) for every f : X −→� in a given topos E , � f : X −→�� is standard according
to the initial Skolemization for ν :1−→�.
‘SE’ denotes something similar to ‘S�,’ but emphasizing the ambient topos ‘E’:
(SE) in a given topos E , for every f : X −→�, � f : X −→�� is standard according
to the initial Skolemization for ν :1−→�.
‘S f ’ denotes quite the same as the two symbols above but emphasizing the mor-
phism f :
(S f ) for the morphism f : X −→� in a given topos E , � f : X −→�� is standard
according to the initial Skolemization for ν :1−→�.

I must confess I do not know how to rinse the phrase ‘� f : X −→�� is standard
according to the initial Skolemization for ν :1−→�’ otherwise than by saying that
the � f : X −→��’s correspond with some prior knowledge or conception of logical
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notions which is coherent with the initial choice of name for ν :1−→�. Consider the
(partial) truth condition p#q = ν if and only if p = ν and q = ν: If one has chosen
the name ‘true’ for ν then the best name for # is ‘conjunction,’ not ‘disjunction,’ or
some other.

So, a (standard) topos is a category SE with equalizers, (binary) products, coequal-
izers, coproducts, exponentials, and a morphism Strue :1−→ S�, called (standard)
subobject classifier, which has the following property:

(Standard) Comprehension axiom. For each Sϕ : O −→ S� there is an equalizer
of Sϕ and StrueO , and each monic m : M � O is such an equalizer for a unique
Sϕ. In diagrams, Strue is such that for every Sϕ and every object T and morphism
o :T −→ O , if m ◦S ϕ = m ◦ StrueO and x ◦S ϕ = x ◦S trueO , then there is a unique
h : X −→ M that makes the diagram below commutative:

M >
m

> O
Sϕ

>

StrueO

> SΩ

X

x

∧

h

<

The propositional function Sϕ is also called “the (standard) characteristic (or classi-
fying) morphism of m,” denoted Sϕm for more convenience. A subobject classifier
is unique up to isomorphism and so is Sϕm .

Then, for any object O in a topos, the composite Strue◦!O : O −→1−→ S�

denotes a constant, Strue-valued propositional function on O , abbreviated to StrueO .
Propositional functions specify subobjects as follows. Given a propositional function
ϕ : O −→ S�, one gets the part of the o’s of which Sϕ is true, if any, as an equal-
izer m : M � O of Sϕ and StrueO . This subobject will be named accordingly the
extension of the propositional function Sϕ.

Let me make explicit the following two very important properties of S� and
Strue :1−→ S�:

1. If X is an object of SE and m : M � X is a subobject of X , then there is exactly
one morphism Sϕm : X −→ S� such that for every x :1−→ X , x ∈ m if and only
if Sϕm ◦ x = Strue.
(Succinctly, a subobject classifier says, for every object X and every subobject m
of X , what elements of X are included in the subobject m.)

2. If a morphism f has S� as codomain, then it is the characteristic morphism of
some other morphism g such that its codomain is the domain of f .
(A morphism to S� is fully determined by the part of its domain that it takes to
Strue, that is, by the subobject of its domain that it classifies.)

All the above supports the following slogan:

(S1) � is (or at least can be regarded) a truth values object.

It is well-known that the subobjects of a given object in a category form a par-
tial order. In particular, the elements of S� form a partial order, which means that
propositions form a partial order, i.e., for every propositions p, q, and r :
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• p ≤ p,
• If p ≤ q and q ≤ r then p ≤ r ,
• If p ≤ q and q ≤ p then p = q.

If ≤ is interpreted as a deducibility relation, �, the properties above say that
deducibility is reflexive, transitive, and that interdeducible propositions are equiva-
lent.

Given the notion of subobject classifier, one can define also S f alse : 1 −→ S�

as the character of 01, the only morphism from an initial object to a terminal one:

0
01

> 1
Sfalse =def. Sϕ01>

Strue1
> SΩ

The full commutative diagram for this equalizer looks like this:

0
01

> 1
Sfalse

>

Strue1
> SΩ

X

!X

∧

l

<

The only morphism from X to S� that makes the diagram above commutative is
StrueX :

0
01

> 1
Sfalse

>

Strue1
> SΩ

X

!X

∧

StrueX

>

l

<

Thus, the following diagram is obtained:

0
01

> 1 Sfalse
> SΩ

X

!X

∧

StrueX

>

h

<

What the diagram above expresses is that S f alse = StrueX (because of the right
commutative triangle) if and only if 0 has a generalized element (because of the left
commutative diagram). Note that this would obtain at least once, namely considering
the maximal element of 0 : 0 itself. But this does not count yet as a case where there
is a proper element of 0 such that it equates S f alse and StrueX . Is there any such
case?

Suppose that X is a terminal object, 1:

0
01

> 1 Sfalse
> SΩ

1

id1

∧

Strue

>

γ

<
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Given that this diagram commutes, what it expresses is that S f alse = Strue
(because of the right commutative triangle) if and only if 0 has at least one ele-
ment (because of the left commutative triangle). But if 0 has an element other than
the generalized element that is the identity morphism, then all the objects of the
category are isomorphic, so for any mathematical purpose is as if there were only
one object (and only one morphism) in the category. Only in that case, a “degen-
erate category,” one obtains S f alse = Strue.7 Now, if 0 has no elements, not all
objects of the category are isomorphic and S f alse 	= Strue. In that case, either
S f alse < Strue, or Strue < S f alse or they are incomparable. They are not incom-
parable since Strue is the greatest element in the order formed by propositions. This
also excludes Strue < S f alse. Then the only option for a nondegenerate category
is S f alse < Strue.

Example 18.2.1 Let Set be the (standard) category of (abstract constant) sets as
objects and functions as morphisms. S�Set has only two elements with the order
SfalseSet < StrueSet. Hence, in this category S�Set = 2SSet. Thus, for every element
t of O , t :1−→ O , t ∈ O if and only if Sϕ ◦ t = StrueSet, and t /∈ O if and only
if Sϕm ◦ t = SfalseSet, since SfalseSet is the only morphism distinct from StrueSet.
According to the aforementioned convention, I will use ‘SSet’ to denote that �Set is
S�Set. A similar convention will be used for the categories below.

Example 18.2.2 SSet→ is the standard category of functions. A terminal object in
this category, 1SSet→ , is the identity function from 1SSet to 1SSet.

Consider two objects of Set→, f :: A−→ B and g :: C −→ D. If f is a subobject
of g, then A ⊆ C , B ⊆ D and f is the restriction of g, that is, f (x) = g(x) for x ∈ A.
To the question “Is a given element x of C also an element of B?” there are only two
possible answers: Either it is or it is not, so the codomain of a function playing the
role of a subobject classifier can be S�SSet. But before giving that definite answer,
one must compute whether x is in A or not. One has then three options:

(i) Either x ∈ A, so the final answer to original question is “Yes,” because g(x) ∈
B; or

(ii) x /∈ A, but the final answer to the original question will be “Yes,” because
g(x) ∈ B after all; or

(iii) x /∈ A, but the final answer will be “No” because x /∈ B too.

Then, the domain of a function playing the role of a subobject classifier will be
any three-element set to represent these three options. Let me use ‘1,’ ‘ 12 ,’ and ‘0’ to
denote each of those elements, respectively. So S�Set→ looks like this:

t :3SSet −→S �Set

with t (0) = SfalseSet and t ( 12 ) = t (1) = StrueSet.
Thus, a subobject classifier in this category is StrueSet→ :1Set→ −→ S�Set→ , i.e.,

a pair of morphisms 〈t ′
Set, trueSSet〉 from id1Set :1Set −→ 1Set to S�Set→ . There are

7This is not as odd as it might seem at first sight; see [14].
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Fig. 18.1 Truth values
object in SS↓↓

only two truth values in this category. The calculation is straightforward and can
be left to the reader (Hint: There seems to be an additional value, let us denote it
SαSet→ = 〈t ′′

Set, trueSSet〉. Note that although t
′ 	= t

′′
, SαSet→ = StrueSet→ ).

Example 18.2.3 S S↓↓ is the category of (standard irreflexive directed multi-) graphs
and graph structure preserving maps.8 An object of S S↓↓ is any pair of sets equipped

with a parallel pair of maps A
s

>

t
> V where A is called the set arrows and V is the

set of dots (or nodes or vertices). If a is an element of A (an arrow), then s(a) is
called the source of a, and t (a) is called the target of a.

Morphisms of SS↓↓ are also defined so as to respect the graph structure. That

is, a morphism f :(A
s

>

t
> V )−→(E

s ′
>

t ′ >
P) in SS↓↓ is defined to be any pair of

morphisms of Set fa : A−→V , fv : E −→ P for which both equations

fv ◦ s = s ′ ◦ fa

fv ◦ t = t ′ ◦ fa

are valid in SSet. It is said that f preserves the structure of the graphs if it preserves
the source and target relations.

A terminal object in this category, 1
S S↓↓ , is any arrow such that its source and

target coincide.
This topos provides a simple yet good example of a truth values object with more

than two elements. S�S↓↓ has the form of a graph like that in Fig. 18.1. There are
exactly three morphisms 1

S S↓↓ −→ S�S↓↓ in this category, which means that S�S↓↓

has three truth values with the order SfalseS↓↓ < S(
s
t )S↓↓ < StrueS↓↓ .

Now, these examples show that, in general, S� has more than two elements, and
it is thus that one comes with the slogan

(S2) The internal logic of a topos is in general many-valued.

18.2.2 The Connectives

Before studying the internal logic of standard toposes let me introduce some notions
that will prove very helpful in what follows.

8Nice introductions to this category can be found in [30, 53].
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Let i : XY −→ X , o : XY −→ Z , t :W −→ X be morphisms in a category C. i , o
and t are called operations in X , on X , and to X , respectively. An operation of X is
any of these kinds of operations.

If X is an object of a standard topos, I shallwrite�X : X −→ X ×X for thediagonal
of X , i.e., the uniquemorphismwhose composite with both projections is the identity
on X . In particular, from pi ◦ �X = 1X one can deduce that�X is a monomorphism.
The (standard) “equality” on an object X of a topos is the characteristic morphism
S =X: X ×X −→S � of the diagonal �X : X −→ X ×X .

The product/exponential adjunction states that to every morphism f : X ×
Y −→ Z corresponds a morphism λx . f : X −→ ZY . In particular, to =X: X ×X −→
S� corresponds a morphism λx .S =X: X −→ S�

X . This latter morphism is called the
(standard) singleton on X .

For anobject X of a topos, the (standard) membership relation S ∈X on X is the sub-
object S ∈X� X ×S�

X whose characteristic morphism, still written S ∈X : S�
X ×

X −→ S�, corresponds to the identity on S�
X by the product/exponential adjunction.

The internal logic of a standard topos will be the algebra of operations of S�,
that is, the algebra of operations of its object of propositions. Variable propositions
or propositional functions have been defined as morphisms ϕ : X −→ S�, i.e., as
operations to S�. One defines next operations in S� or, more commonly, (standard)
connectives.9

In a standard topos, a morphism k :(S�×· · ·×S�)S�
..
.S�X

−→ S�

(with S� × · · · ×S� n times and S�
. .
.S �

t times, n, t ≥ 0), abbreviated to
k : S�

nm −→ S�, will be said to be a (standard) n-ary connective of order m, where

m = 0 if and only if S�
. .
.S�X

∼= 1 and m = (t + 1) otherwise.10

This enables us to define the more usual standard connectives, three binary
(∧, conjunction; ∨, disjunction; ⊃, conditional) and three unary (¬, negation; ∀,
universal quantifier; ∃, particular quantifier). Propositions, i.e., morphisms 1−→
S�, can be thus considered 0-ary connectives (and can be of any order) with
(S� × · · · × S� ) ∼= 1. The above-mentioned standard connectives can be defined
as follows.11

Negation. Let be Strue :1−→ S�. Then ¬: S�−→ S� is the characteristic mor-
phism of S f alse:

1 Sfalse
> SΩ

¬ =def. Sϕ
Sfalse

>

Strue
SΩ

> SΩ

9I will omit operations on S� for simplicity, since it does not constitute a fundamental missing in
the theme of the internal logic.
10For brevity, I often will talk only of “connectives,” since their standard character can be obviated
in this chapter, and their arity and order will be made explicit only when needed.
11See for example [18, Sect. 6.6].
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The full commutative diagram for this equalizer is as follows:

1 Sfalse
> SΩ

¬
>

Strue
SΩ

> SΩ

1

p

∧

id1

<

The only morphism from 1 to S� that makes the diagram above commutative is
Strue:

1 Sfalse
> SΩ

¬
>

Strue
SΩ

> SΩ

1

p

∧

Strue

>

id1

<

Thus, the following diagram is obtained:

1 Sfalse
> SΩ

¬
> SΩ

1

p

∧

Strue

>

id1

<

Given that this diagram commutes, what it expresses is that¬ ◦ p = Strue (because
of the right commutative triangle) if and only if p = S f alse (because of the left
commutative triangle). In fact, the full truth condition implied by this definition is
that ¬ ◦ p = Strue if and only if p = S f alse and ¬ ◦ p = S f alse otherwise.

Conjunction. Conjunction∧: S�×S�−→ S� is defined as the characteristicmor-
phism of 〈Strue, Strue〉 :1−→ S�×S�:

1
〈Strue, Strue〉

> SΩ ×S Ω
∧ =def. Sϕ〈Strue, Strue〉

>

Strue
SΩ×SΩ

> SΩ

The full commutative diagram for this equalizer is as follows:

1
〈Strue, Strue〉

> SΩ ×S Ω
∧

>

Strue
SΩ×SΩ

> SΩ

1

〈p,q〉
∧

id1

<
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The only morphism from 1 to S� that makes the diagram above commutative is
Strue:

1
〈Strue, Strue〉

> SΩ ×S Ω
∧

>

Strue
SΩ×SΩ

> SΩ

1

〈p,q〉
∧

Strue

>

id1

<

Thus, the following diagram is obtained:

1
〈Strue, Strue〉

> SΩ ×S Ω
∧

> SΩ

1

〈p,q〉
∧

Strue

>

id1

<

Given that this diagram commutes, what it expresses is that ∧ ◦ 〈p, q〉 = Strue
(because of the right commutative triangle) if and only if 〈p, q〉 = 〈Strue, Strue〉,
and hence p = Strue and q = Strue (because of the left commutative triangle).
∧ ◦ 〈p, q〉 is more commonly written ‘p ∧ q’ and I will do so throughout the rest
of this work. In fact, the complete truth condition implied by this definition is that
p ∧ q = inf(p, q) (with respect to the partial order formed by the elements of S�).

Disjunction. Disjunction ∨: S�×S�−→ S� is defined as the characteristic mor-
phism of the image of [〈Strue, idS�〉, 〈idS�, Strue〉]:

SΩ +S Ω
Im[〈Strue, id

SΩ〉,〈id
SΩ, Strue〉]

> SΩ ×S Ω

∨ =def. Sϕ
Im[〈Strue, id

SΩ〉, 〈id
SΩ, Strue〉]

>

Strue
SΩ×SΩ

> SΩ

The full development of the corresponding equalizer for this and the remaining
connectives can be left to the reader. The truth condition implied by this definition
is that p ∨ q = sup(p, q) (again with respect to the partial order formed by the
elements of S�).

Conditional. Conditional⊃: S�×S�−→ S� is defined as the characteristic mor-
phism of e : S ≤−→ S�×S�, where e is the equalizer of ∧: S�×S�−→ S� and the
first projection, p:

S ≤ >
e

> SΩ ×S Ω
⊃ =def. Sϕe

>

Strue
SΩ×SΩ

> SΩ

An immediate consequence of this definition is that (p ⊃ q) = Strue if and only
if (p ∧ q) = p (as can be noted, the equalizer e expresses the condition on the
right: It equals conjunction and the first projection). The complete truth condition is
that (p ⊃ q) = Strue if and only if p ≤ q and (p ⊃ q) = q otherwise.

Recall that the product/exponential adjunction states that to every morphism
f : X ×Y −→ Z corresponds a morphism λx . f : X −→ ZY . As a particular case,
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λx . f :1−→Y X is the element corresponding to f : X −→Y under such “expo-
nential transposition.” Thus, each element x :1−→ S�

X corresponds uniquely to a
propositional function Sϕ : X −→ S�, and hence to a subobject m : M � X . Accord-
ingly, λx .ϕ :1−→�X is the element corresponding to the propositional function
ϕ : X −→�. Now the universal quantifier can be defined as follows:

Universal quantifier. Universal quantifier ∀X : S�
X −→ S� is defined as the

characteristic morphism of λx .StrueX , that is, of the exponential transposition of
StrueX ◦ prX : 1 × X −→ X −→ S�:

1
λx.StrueX

> SΩX
∀X =def. Sϕλx.StrueX

>

Strue
SΩX

> SΩ

The universal quantifier has the property that ∀Xϕ(x) = Strue if and only if ϕ(x) =
Strue, for all x . The exact truth condition implied by the definition above is∀X ϕ(x) =
inf(ϕ(x)).

Particular quantifier. Particular quantifier ∃X : S�
X −→ S� is defined as the char-

acteristic morphism of the image of the composite S pX◦S ∈X (∈) :∈� S�
X × X −→

S�
X (where S pX is the first projection and S ∈X is the subobject of S�

X × X whose
character is the evaluation morphism eX : S�

X ×X −→ S�):

SpX◦ ∈X (∈)
Im(SpX◦ S∈X)

> SΩX
∃X =def. SϕIm(SpX ◦S∈X )

>

Strue
SΩX

> SΩ

The particular quantifier has the property that ∃Xϕ(x) = Strue if and only if ϕ(x) =
Strue, for some x . The exact truth condition implied by the definition above is
∃Xϕ(x) = sup(ϕ(x)).

Given that SE is a category with exponentials, one has S�
X , S�S�

X
, etc. for any

X in SE , which may be regarded as representing collections of properties, properties
of properties, etc. defined over X , so one can also have higher-order propositions.

18.2.3 The Internal Logic of a Standard Topos

There is a correspondence between classical logic and Boolean algebra, to wit, such a
logic can be represented as a two-elementBoolean algebra inwhich operations satisfy
certain conditions. Roughly, those two elements are truth values, operations are the
connectives, and the conditions they must satisfy are determined by the well-known
truth conditions. Taking into account the categorial generalization over algebraic truth
values, one can define the internal logic of a topos as follows: Given a standard topos
SE , its internal logic is the algebra induced by its object of propositions or algebraic
truth values, S�E , and the connectives. This logic is called internal because (i) it is
formulated exclusively in terms of the objects andmorphisms of the topos in question
and (ii) it is the right to reason about the topos in question, since it is determined by
the definition of its objects and morphisms. It is not a canon imposed “externally”
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to reason about the topos: Using a different logic for that purpose would alter the
definitory properties of those objects and morphisms and thus it would not be a logic
for the intended objects andmorphisms. Below I will offer an example of how a logic
distinct of the internal would alter those definitory properties.

Logical consequence is defined in the usual, “Tarskian” way: Let S p |= SE Sq
denote that whenever the morphism S p is the same morphism as Strue in SE , so
is Sq, and we will say that Sq is a (Tarskian) logical consequence of S p (|= f SE S p
means that S p is the same morphism as Strue in SE).

There is a theorem establishing necessary and sufficient conditions for a propo-
sition S p being the same morphism as Strue in a given standard topos SE . Let ‘|=I ’
indicate that logical consequence gives the results as in intuitionistic logic. Then the
following theorem holds:

Theorem 18.2.4 For every proposition S p, |=SE S p for every topos SE if and only if
|=I S p.

i.e., S� is a Heyting algebra.12 Hence, the slogan
(S3) The internal logic of a topos is, in general, intuitionistic.

Summarizing, the standard categorial analysis of logic implies the following:

(IL1) Propositions form a partial order, i.e., for every propositions p, q, and r :
(IL1a) p ≤ p,
(IL1b) If p ≤ q and q ≤ p then p = q,
(IL1c) If p ≤ q and q ≤ r then p ≤ r .
(IL2) There is a truth value called Strue with the following property:

For every proposition p, p ≤ Strue

(IL3) One can define a truth value called S f alse that has the following property:

S f alse ≤ Strue

and

For every proposition p, S f alse ≤ p

(IL4) Connectives obey the following truth conditions:
¬p = Strue if and only if p = S f alse, otherwise ¬p = S f alse,
(p ∧ q) = inf(p, q),
(p ∨ q) = sup(p, q),
(p ⊃ q) = Strue if and only if p ≤ q, otherwise (p ⊃ q) = q,
∀Xϕ(x) = inf(ϕ(x)),
∃Xϕ(x) = sup(ϕ(x)).

12I have made a little abuse of notation, for I used ‘S p’ in both |=SE and |=I . In rigor, S p is a
morphism which corresponds to a formula (S p)∗ in a possibly different language, but there is no
harm if one identifies them. A proof can be found in [18, see Sect. 8.3 for the soundness part and
Sect. 10.6 for the completeness part].
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(IL5) The categorial analysis of logic does not imply, but rather assume, the tradi-
tional, “Tarskian,” notion of logical consequence:
Let ‘p |=SE q’ denote that q is a logical consequence of p in a standard topos E , i.e.,
that whenever p is the same morphism as Strue in SE , so is q. Equivalently, if q
is not the same morphism as Strue, p neither is. |=SE p means that p is the same
morphism as Strue in SE .
(IL6) From (IL1)–(IL5), the internal logic of a standard topos is in general intuition-
istic.

Example 18.2.5 The internal logic of SSet is classical. For example, in SSet, every
proposition p is the sameas one andonly one of StrueSet and SfalseSet.¬ ◦S trueSet =
SfalseSet and ¬ ◦S falseSet = StrueSet. Hence, for any p, ¬¬p = p. Also, for any p
(p ∨ ¬p) = ∨ ◦ 〈p,¬p〉 = sup(p,¬p) = StrueSet.

Example 18.2.6 Even though it is many-valued, the internal logic of SSet2 is classi-
cal: S�Set2 is a Boolean algebra with four elements, which in turn is the Cartesian
product of a two-element Boolean algebra with universe {Strue�Set, false�Set

} with
itself (i.e., operations act coordinatewise). For example, negation gives

¬StrueSet2 = 〈¬trueSSet,¬trueSSet〉 = 〈false
SSet, false

SSet〉 = StrueSet2

¬SαSet2 = 〈¬trueSSet,¬false
SSet〉 = 〈false

SSet, trueSSet〉 =S βSet2

The cases of SαSet2 and SfalseSet2 are left to the reader. It is easy to verify that for
every p in SSet2, ¬¬p = p and that (p ∨ ¬p) = StrueSet2 .

Example 18.2.7 As I have mentioned, S�S↓↓ has three truth values with the order
S f alseS↓↓ < S(

s
t )S↓↓ < StrueS↓↓ . Negation gives the following identities of mor-

phisms:

¬StrueS↓↓ = SfalseS↓↓ , ¬S(
s
t )S↓↓ = falseS↓↓ , ¬SfalseS↓↓ = StrueS↓↓

Since (p ⊃ q)= Strue if and only if (p ∧ q) = p, in general (¬¬ p ⊃ p) 	= Strue
in S↓↓ because even though (¬ ¬ p⊃ p)= StrueS↓↓ either when p = StrueS↓↓

or when p = SfalseS↓↓ , (¬ ¬ p ∧ p) 	= ¬ ¬ p when p =S (s
t )S↓↓ . Given that

(¬¬ p ⊃ p ) 	= StrueS↓↓ but there is no formula 	 such that 	 = true in clas-
sical logic and 	 = f alse in intuitionistic logic, (¬¬p ⊃ p) = S(

s
t )S↓↓ when

p = S(
s
t )S↓↓ . Moreover, p ∨ ¬p fails to be the same morphism as StrueS↓↓ since

(p ∨ q) = Strue if and only if either p = Strue or q = Strue. If p = S(
s
t )S↓↓ ,

¬p = SfalseS↓↓ , so neither p = StrueS↓↓ nor¬p = StrueS↓↓ and hence (p ∨ ¬p) 	=
StrueS↓↓ .
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18.2.4 Internal Logic and the Algebras of Subobjects
and of Operations of S�

In the literature there is a somewhat erratic usage of the expression ‘internal logic.’
Something similar happens with ‘subobject classifier’: Some authors use it to name
the object S�, whereas others use it to name the morphism Strue :1−→ S� and
reserve the name ‘truth values object’ for S�.

Intuitively, an internal logic is a logic which is internal to the category in question
in the following two senses:

(ILC 1) It is exclusively formulated in terms of the objects and morphisms of the
category in question, and
(ILC 2) it is the logic adequate to reasoning about that category.

But at first sight at least two things could be called ‘internal logic’:

• The algebra of subobjects of the objects in a category (AS);
• The algebra of operations of � (A�).

The basic ideas of the internal logic induced by a given category C via the algebra
of subobjects are these:

• An object X of C is regarded as a collection of things of type X ;
• morphisms X →Y are regarded as terms of type Y containing a free variable of
type X ;

• a subobject p : P � X is regarded as a proposition, i.e., as indicating a certain part
P of the things of type X for which a property is true;

• the maximal subobject of X (the identity morphism of X ) is the proposition always
true (of X ), �X ;

• the minimal subobject of X (0−→ X ) is the proposition always false (of X ), ⊥X ;
• one proposition implies another (with regard to X ) if p ≤ q in the poset of sub-
objects of X ;

• other connectives are obtained by means of constructions on subobjects: The con-
junction of p and q is their product, their disjunction is their coproduct, and so
on.13

Against the second interpretation, (A�), and in favor of (AS) is the fact that
not all categories possess such an � but still have something like an internal logic.
This is expressed most naturally in the “hierarchy of doctrines”: One starts with
categories with very simple features and then enriches them, so that certain logical
notions and properties arise as the enrichment progresses. For example, if one starts
with categories with products and equalizers, one will have the constant � and

13It must be said that some categories might not have enough structure to support some of the logical
notions mentioned here. For example, an object in a category might have no minimal subobject
distinct from the maximal one (so no proposition always false is distinct from always true) or might
have no coproducts (and therefore, would lack disjunctions), etc.
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conjunctions for all p and q; if one also allows that coequalizers exist under certain
conditions and that epimorphisms be the coequalizers of certain kind of morphisms,
the particular quantifier arises, and so on, all this without a subobject classifier. The
logic adequate to reason about those categories is the logic so obtained, satisfying
thus the requisite (ILC 2). But, as nice as all this appears, the logic in this sense is
not completely internal as required by (ILC 1): The collection of subobjects of an
object X might not be an actual object of the category in question.14

However, in the case of toposes there is a rather simple argument for (A�) and
against (AS). Lawvere (see [27]) and Reyes and his collaborators (see [44–46]) have
shown that the algebra of subobjects of a given object (in, say, a standard topos) can
be described as a Heyting algebra (and thus supports intuitionistic logic) but also as
a Brouwerian algebra (an algebra dual to Heyting algebra and thus supports a dual-
intuitionistic logic).15 But this is not true for the algebra of operations of S�. They
have proved that if certain Brouwerian laws hold in the algebra of operations of S�

then it would be a Boolean algebra and thus classical reasoning would be allowed.
But reasoning classically in certain categories, like some standard toposes, would
alter the identity of their objects. In that case, it would fail to be an internal logic in
the sense (ILC 2). Moreover, an internal logic based on (AS�) is fully internal in the
sense (ILC 1), unlike (AS): The collection of subobjects of an object constitutes an
actual object of the category due to the presence of exponentials. Then (AS�) and
not (AS) would be the internal logic of a topos.

Let me say a word on what does it mean to say that reasoning about a category
with a logic different to the internal one would alter the identity of the objects and
morphisms of the category. Suppose that the internal logic of S S↓↓ was other than an
intuitionistic logic, say, classical logic. If Fx ∨ ¬Fx were to hold for all x (and F)
in S S↓↓, then there would be some x such that would not be an object of S S↓↓, and so
this lawwould not be a law for the objects of S S↓↓. Let memake this clearer bymeans
of an example. Consider a graph G and a part S �G of it, the S’s. There is another
part N �G such that its (generalized) elements are those which are completely out
S �G, the not S’s. Consider a (generalized) element E of G consisting of an arrow
and its two vertexes, such that one of its vertexes (a graph on its own) is in S �G
and the other is in N �G. Requiring that the S’s and the not S’s be exhaustive with
an empty intersection would lead to “break up” E , since having the arrow either in
S �G or in N �G would alter the identity of E : No matter where the arrow stays
at the end, there would be something in those subobjects that it is not an object of
S S↓↓, namely an arrow without one of its vertexes. Thus, Fx ∨ ¬Fx does not hold
in general for the objects of S S↓↓.

14The difference is clearly explained in [18, Sect. 7.3].
15For more on this, see Sect. 18.3.
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18.2.5 Intuitionistic Logic and Variable Sets

Colin McLarty has addressed the question of why topos logic is so close to intuition-
istic logic (cf. [36–38]). His favorite answer is that of Lawvere, namely that if toposes
are regarded as universes of variable sets then it is not surprising that intuitionistic
logic is their internal logic, for Kripke models for intuitionistic logic can be adapted
to toposes in a way that its objects can be considered set varying over a preorder
(see [24, 25]). Moreover, for Lawvere such logic is “objective,” in the sense that it
reflects how variable sets are and thus establishes how to reason about them.We have
then another slogan grounded on some mathematical results:

(S4) Intuitionistic logic is the objective logic of variable sets.
This is by far the most difficult slogan in terms of exposition, so I have decided

to set up the necessary machinery to motivate it, although not for explaining it
in all exactness, by employing a strategy halfway between the use of powerful
metaphors (very common among those who reproduce the slogan) and enough tech-
nical detailing (albeit by no means exhaustive) of the Kripke semantics to ground
those metaphors. First, I quickly expound what Lawvere understands by ‘objective
logic’ and ‘variable set’ in “intuitionistic logic is the objective logic of variable sets.”
Then I study a special (standard) unary connective called Lawvere–Tierney topol-
ogy, which is central to several topos-theoretical constructions and has important
consequences for the study of intuitionistic logic and some of its modal extensions
that are expounded after that.

Lawvere distinguishes (more or less following Hegel) between (i) the connections
between (conceptual) universes, their objects (concepts) and their parts, on one hand,
and (ii) the (inference) relations between statements (see [28, p. 43f]). According to
Lawvere, the former are “structures” and “invariant mathematical content” which are
“objective,” whereas the latter are “presentations” which “reflect” that content and
may vary. (i) would be the “objective logic” (of the connections between universes,
objects, and parts) and (ii) the “subjective logic” (of the reflex of those connections).16

16In Hegel’s Science of Logic, logic is divided into two parts, one of which is the logic of Being, the
objective logic. Being is thought of here as an outer world beyond any particular subjective mind but
still conceptually informed (and thuswith a logic): It is “objectified spirit.” The other part is the logic
of thinking, the subjective logic (Hegel calls it thus because thinking requires a thinking subject,
more or less like a subjective right is the right of a subject). Hegel’s subjective logic is what today
(and also in Hegel’s times) is commonly called ‘logic.’ An excellent treatment of the connections
between Lawvere’s and Hegel’s views on logic can be found in [47]. Further clarification of the term
‘objective’ as applied to logic by Lawvere comes also from Hegel, but not from his work in logic
but from his work on ethics, especially in Philosophy of Right (intended to be read with his Science
of Logic as background), which is essentially a developed version of the section “Objective Spirit”
in the Encyclopaedia of the Philosophical Sciences’ Philosophy of Spirit. According to Hegel, the
objective spirit consists of collective, social practices, whereas the subjective spirit is the individual.
Part of Lawvere’s “historical and dialectical realism” is that mathematical entities exist objectively,
like being in the Logic, but that existence is determined in mathematical experience as a whole,
including its collective practice (like the objective spirit)—not in a Platonic realm independent of
any subject, nor in merely subjective, individual, experience.
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Sometimes, presentations introduce noninvariant, nonobjective content in the
sense that mathematical practice strongly suggests that such content does not belong
to the given universes, their objects, and their parts. For example, taking membership
as primitive in the study of sets and functions introduces some oddities like debates
over whether the members of the natural number 5 are 0, 1, 2, 3, 4, or not. One may
wonder whether categorial mathematics does not fail too in studying merely mathe-
matical content. It might be so but, as in the case of foundations, neither categorial
theories nor methods are committed to fixedness on this issue and in a sense they
foresee their own improvement.

On its side, the term ‘variable set’ is sometimes explained in a waywhichmight be
not clear enough for those unfamiliar with topos theory, namely in terms of sheaves.
One of the best and most concise characterizations for those acquainted with the
notions of this paper is the following one:

(…) while non-standard analysis, the forcing method in set theory, and Kripke semantics all
involved (…) sets varying along a poset X, it was [the work of several algebraic geometers]
who, by developing topos theory, made the qualitative leap (…) to consideration of sets
varying along a small category X and at the same time emphasized that the fundamental
object of study is the whole category of sets so varying. Those insisting on formal definitions
may thus (…) consider that “variable set” simplymeans an object in some (elementary) topos
(…). [25, p. 102]

A neat example of what Lawvere means is the (standard) category of functions
(between sets) SSet→ from Example18.2.2 above. In an object of this category,
f :: St −→ Sn , St can be considered the “state” of the variable set f at stage t and
Sn as its state at a “later” stage n. The set may be thought of having undergone, via
f , a change from what it was at t to what it is at n. Any element x of St , that is,
of f at t , becomes the element f (x) of St at n. Pursuing this informal description,
and because f is a morphism, two elements at t may become one at n (unless f is
monic), or a new element may arise at n, but no element at t can split into two or
more at n or vanish altogether. These latter options would be allowed and variation
would be more complex if f were a relation. Let make more precise the connection
between intuitionistic logic and variation.

Let P = (P, R) be a poset. A set A ⊆ P is hereditary in P if for all x , y, if x ∈ A
and x Ry then y ∈ A, i.e., if it is closed “upwards” under R. Let Ph be the collection
of hereditary subsets of P. A P-valuation is a functionV : F −→Ph , where F stands
for a collection of formulas on a usual zero-order language, such that to each pi is
assigned an hereditary subset V(pi ) ⊆ P .

A model based on P is a triple M = 〈P, R,V〉, where V is a P-valuation. The
idea that A is true at x , in symbols M�x A, is defined recursively as follows17:

For every x ∈ P:

M, x �t A if and only if x ∈ V(pi );
M, x �t ¬A if and only if for all y with x Ry, M, y �x A;
M, x �t A ∧ B if and only ifM, x �t A and M, x �t B;

17For simplicity I will omit quantifiers here and in the following section.
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M, x �t A ∨ B if and only if either M, x �t A or M, x �t B;
M, x �t A ⊃ B if and only if for all y with x Ry, ifM, y �t A then M, y �t B.

A is true in a model M, denoted M� A, if A is true at every x ∈ P in M. A
formula A is valid on P, denoted P� A, when it is true in every model based on P.

Informally, P represents a collection of states of, say, possible mathematical
knowledge. The truth value of a proposition depends on the knowledge established
at a certain state, so their truth value is relative to a certain state. However, once a
proposition is true at a state, it is true at all later states. This conveys the idea that once
a proposition is established as true in a given evidential situation then it remains true.
One state comes after, or is later than, another, but the order is not necessarily linear
because the states are not merely of actual but of possible mathematical knowledge,
so immediately later than a state of knowledge may come several other states, each
with a different value for a certain proposition: Due to the persistence of truth, if a
proposition is true at a state later than a certain state and false at another later state,
these later states cannot be connected. The logic valid for this variation on states
happens to be intuitionistic logic.

For example, take P = ({0, 1},≤) (with 0 ≤ 1 as usual) and V(p) = {1}, which
is hereditary. Then with M = 〈{0, 1},≤,V〉 one has that M, 0�t p. But M, 1�t p
and 0 ≤ 1, soM, 0�t ¬p. Thus,M, 0�t p ∨ ¬p, so p ∨ ¬p is not valid on this P.

Operations of S�E with the order SE ≤ between them constitute a frame to provide
a categorial version of the above.18 What the Comprehension axiom says is that
Sϕ(x) = StrueX if and only if x ∈ m, i.e., it specifies when a generalized element x
belongs to a partm of O (that part of the O’swhich satisfyϕ, described as {y |Sϕ(y)}).
As above, these specifications depend on the way the formula Sϕ(x) is built up from
connectives and are formulated in terms of the relation “X makes Sϕ(x) true,” or
also “X forces ϕ(x),” written X �S T ϕ(x) and defined as follows:

For every x : X −→ O with its image I mx ∈S �X
E :

X �S T Sϕ(x) if and only if x ∈ m = {y | ϕ(y)}
that is

X �S T Sϕ(x) if and only if Sϕ(x) = StrueE
For brevity, ‘pX ’ will denote Sϕ(x), i.e., a (generalized) proposition about a

certain (generalized) element x of an object O; ‘qX ’ will be then Sψ(x), i.e.,
another (generalized) proposition about x . Accordingly, ‘pXY ’ and ‘qXY ’ stand for
ϕ (x ◦ y) : Y −→ X −→ O −→ S�E andψ (x ◦ y) : Y −→ X −→ O −→ S�E ,
respectively.
X �S T ¬pX if and only if, for every morphism y :Y −→ X such that Y �S T pXY ,
Y ∼= 0;
X �S T (pX ∧ qX ) if and only if X �S T pX and X �S T qX ;
X �S T (pX ∨ qX ) if and only if there are morphisms y :Y −→ X and w :W −→ X
such that y + w :Y + W � X is an epimorphismwhile both Y �S T pXY and W �S T

qX W ;
X �S T (pX ⊃ qX ) if and only if, for every morphism y :Y −→ X such that Y �S T

pXY , also Y �S T qXY .

18For more details on what follows, see [31].



18 The Evil Twin: The Basics of Complement-Toposes 397

A is true in a (standard) topos SE , denoted �SE A, if A =S trueE at every x
in SE . A formula A is (standardly) valid, denoted �S T A, when it is true in every
(standard) topos. As I mentioned before, the theorems of intuitionistic logic are
those standardly valid propositions; it would be then the logic holding across all the
variations on objects, properties of objects and elements of objects.

Let me conclude this survey of standard topos logic Kripke-style describing a
Lawvere–Tierney topology. Define a standard local operator on an algebra A with
meets (∩) as any operation j that is
multiplicative: j (x ∩ y) = j x ∩ j y
idempotent: j ( j x) = j x
inflationary: x ≤ j x
and call the pair (A, j) a standard local algebra. In the present context A can be
restricted to Heyting algebras.

Macnab [32, 33] showed that standard local operators on a Heyting algebra can
be alternatively defined using relative pseudocomplement → by the single equation

(x → j y) = ( j x → j y)

A (standard) Lawvere–Tierney topology is amorphism j :S � −→ S� in a standard
topos SE such that
( j1) j ◦ ∧ = ∧ ◦ ( j × j);
( j2) j ◦ j = j ;
( j3) j ◦ Strue = Strue;
( j1) and ( j2) say that j is multiplicative and idempotent. It can be proved that
( j4) pS ≤ j ◦ p
so j is also inflationary and hence a standard Lawvere–Tierney topology is a standard
local operator. Following Macnab’s result, j can be defined using the conditional by
the single equation

⊃ ◦〈p, j ◦ q〉 =⊃ ◦〈 j ◦ p, j ◦ q);

Let J � S� be the subobject classified by j . Every subobject f : P � X of any
object X has a j-closure, defined as the subobject classified by j ◦S ϕ f (where Sϕ f

classifies f ), denoted ‘ f̄ : P̄ � X .’
A subobject f : P � X is called j-dense if its j-closure is all of X , that is, if

f̄ = idX .
For any standard topos SE and standard Lawvere–Tierney topology on it, an object

S of SE is a sheaf for j if and only if for every object X and j-dense subobject f :
P � X and every g : P −→ S, there is a uniqueh : X −→ S with g = h ◦ f . Intuitively,
since f is j-dense, it is j-true that f is all of X and a sheaf for j , S, is an object that
“sees” f as all of X , and hence that a morphism from P to S completely determines
a morphism from X to S. The pair (SE, j) is called a (standard) elementary site.
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Putting j = ¬ ◦ ¬ defines a topology on any standard topos SE for which the
associated standard topos SE¬¬ of sheaves is a model of classical logic.19

Let SE be SetX (X = (X, R)). In the case that X is an appropriate set of “forcing
conditions,” the topos SE¬¬ of “double-negation sheaves” becomes a model showing
that the continuum hypothesis (for example) is independent of the axioms for topos
theory including classical logic (see [49]).

If j : S�−→ S� is a standard Lawvere–Tierney topology on a standard topos
SE , then the site (SE, j) can be used to interpret modal formulas as truth values
1−→ S� in SE . The morphism j induces a local operator on the Heyting algebra
S� of truth values in SE . If a formula is satisfied by the resulting local algebra then
it is said to be valid in the site (SE, j). The modal propositions that are valid in
all (standard) sites correspond to intuitionistic logic supplemented with the corre-
sponding axioms for the modality j (see [17]), for example intuitionistic logic plus
(p ⊃ ∇ q) ⇔ (∇ p ⊃ ∇ q) (where ∇ is the counterpart of j outside toposes).

Lawvere [23] has suggested reading the topology j as a geometricmodality saying
“it is cofinally the case that.” Given two subsets X and Y of a partially ordered set,
Y is cofinal with X if and only if for all x ∈ X there is a y ∈ Y such that x ≤ y.
Actually, the Kripke modeling sketched above implies thatM, x �t ¬¬A if and only
if A is cofinal with {y : x ≤ y} and remember that the double negation is a case of a
Lawvere–Tierney topology j .

18.2.6 Proof Theory for Topos Logic

Sound rules of inference can be given to characterize topos logic. A sequent is an
expression � : p, where � is a finite (possibly empty) set of formulas and p is a
formula. A sequent is true if and only if � does imply p. When a sequent � : p is
true we write

� � p

(for example, one has ¬¬p � p in classical logic, but not in intuitionistic logic,
and one has p,¬p � q in both classical and intuitionistic logic, but not in an
inconsistency-tolerant logic).

First are the structural rules. From the sequent(s) above the line one can infer the
one below. An asterisk shows that the sequent below follows from an empty set of
assumptions:

∗Trivial sequent: p : p

19These constructions are mathematical manifestations of the double-negation translation of clas-
sical zero-order logic into intuitionistic zero-order logic which works by inserting ¬¬ in relevant
places. See the first section of [9] for more about these translations.
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∗True and false: : true
∗

f alse : p

� : p
Thinning:

�, q : p

�, q : p and � : q
Cut:

� : p

There is one reversible connective rule for each connective. From the sequent(s)
above the double line one can infer the sequent below, and from the one below one
can infer the either of the two above:

�, p : f alse

� : ¬p

� : p and � : q

� : p ∧ q

�, p : θ and �, q : θ

�, p ∨ q : θ

�, p : q

� : p ⊃ q

and if the variable x is not free in � or q:

� : p

� : (∀x)p

�, p : q

�, (∃x)p : q

It is worth noting that the structural rule for f alse and the connective rules for
negation and disjunction are derived, just as the corresponding morphisms f alse, ¬
and ∨ needed the other ones in order to be defined. The proof is straightforward; see
[37, Chap.15].

Colin McLarty has rightly pointed out that the internal logic coincides with no
intuitionistic logic studied before toposes (cf. [37, p. vii] and [36, pp. 153ff]). The
internal logic strikingly resembles intuitionistic logic, indeed there is no difference
at the zero-order level. Differences lie at the higher-order level, where traditional
intuitionistic principles like the existence property (∃x Fx is accepted only if for
some constant c Fc is accepted) or the disjunction property (accept a disjunctive
statement p ∨ q only if either p or q is accepted) do not hold.
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18.3 Complement-Toposes

18.3.1 A Categorial Approach to Inconsistency: Bi-Heyting
Toposes

A bi-Heyting algebra is a distributive lattice which is both a Heyting algebra and a
Brouwerian algebra (the dual of a Heyting algebra, also called ‘co-Heyting algebra’).
Clearly, aBoolean algebra is a bi-Heyting algebra. Let c() be the operation ofBoolean
complement. Define then a → b = c(a) b and a − b = a c(b). In this case
−a =�a = c(a).

A bi-Heyting topos is a standard topos for which the algebra of subobjects of any
object is a Brouwerian algebra. Since the algebra of subobjects of any object in a
standard topos is a Heyting algebra, a bi-Heyting topos can be defined as a standard
topos for which the algebra of subobjects of any object is bi-Heyting.

There might be objects in a standard topos whose algebra of subobjects is a co-
Heyting algebra. In [46], following the work in [27], some examples in the category
S S↓↓ are given. This is the closest one which will get paraconsistency in standard
toposes, though. The internal logic of a bi-Heyting topos is never dual to an intu-
itionistic or superintuitionistic logic. Remember that the internal logic of a topos is
determined by the algebra of S� and the connectives, not by the algebra of its sub-
objects, and it is a co-Heyting algebra only if it is a Boolean algebra. This is assured
by the following theorems:

Theorem 18.3.1 Let δ : S�−→ S� a morphism such that δ ≤ idS� and δ ◦ Strue =
Strue. Then δ = idS�.

(This is Corollary 1.12 in [44] or Proposition 4.1 in [46], where a proof is given.)

Theorem 18.3.2 In any topos SE the following conditions are equivalent:

(a) SE is Boolean.
(b) ¬ ◦ ¬ = idS�.

(This is proved as Theorem 7.3.1 in [18].)

Theorem 18.3.3 If SE is Boolean, then its internal logic is classical.

(This is proved as Theorem 7.4.1 in [18].)
However, these results rely heavily on the standard character of a topos, i.e.,

on a particular description of its categorial structure. In what follows I will show
that the same categorial structure can be described in an alternative, coherent way,
such that the internal logic of a topos can also be described as dual intuitionistic or
paraconsistent.
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18.3.2 Introducing Complement-Toposes

Mortensen’s argument for developing an inconsistency-tolerant approach to category
theory is that every topological space gives a topos (the category of pre-sheaves on
the space), mathematically

(…) specifying a topological space by its closed sets is as natural as specifying it by its open
sets. So it would seem odd that topos theory should be associated with open sets rather than
closed sets. Yet this is what would be the case if open set logic were the natural propositional
logic of toposes. At any rate, there should be a simple ‘topological’ transformation of the
theory of toposes, which stands to closed sets and their logic [i.e., inconsistency-tolerant],
as topos theory does to open sets and intuitionism. [39, p. 102]

If the duality between intuitionistic logic and CSL is as deep as topological, then
a representation of CSL as the internal logic of a topos should be equally natural.
So Mortensen’s remark amounts to this: The same categorial structure described as
supporting intuitionistic logic should also be describable as supporting inconsistency-
tolerance. Note that the crucial motivation is topological, and does not turn on para-
consistent ideology (even thoughMortensen subscribes to the latter). In what follows
I expound Mortensen and Lavers’s dualization of logical connectives in a topos.20

Think of the objects of complement-toposes as the objects of standard toposes in
Sect. 18.2 and retain the definition of propositional functions. It will be assumed that
there is a proposition f alse :1−→�. This assumption will obligate certain names
for other morphisms. “D�” will denote this initial assumption about the name of a
certain morphism with codomain� (“ f alse” in this case) and from now on, D f will
denote that there is a monomorphism from D� to the codomain of f and DE that
the morphisms with codomain the object of propositions of E receive their names
according to this initial assumption, which is an alternative Skolemization for the
purely equational structure of a topos.

20It is important to set their individual contributions. Of the ten diagrams in [39, Chap. 11],
Mortensen drew the first one and the final five, while Lavers drew the remaining four. The dia-
gram for the dual-conditional never was explicitly drawn, but it was discussed in [39, p. 109]. The
full story, as told by Mortensen in personal communication, is as follows. Mortensen gave a talk at
the Australian National University (Canberra) in late 1986, on paraconsistent topos logic, arguing
the topological motivation for closed set logic. He defined a complement-topos, drew the first three
diagrams from Inconsistent Mathematics, Chap.11, that is including the complement versions of
Strue and paraconsistent negation, and criticized Goodman’s views on the conditional. But it was
not seen clearly at that stage how the logic would turn out. Peter Lavers was present (also Richard
Routley, Robert K. Meyer, Michael A. McRobbie, Chris Brink and others). For a couple of days in
Canberra, Mortensen and Lavers tried without success to thrash it out. Mortensen returned home
to Adelaide and two weeks later Lavers’ letter arrived in Adelaide, in which he stressed that invert-
ing the order is the key insight to understanding the problem, drew the diagrams for conjunction
and disjunction, and pointed out that subtraction is the right topological dual for the conditional.
Mortensen then responded with the four diagrams for the S5 conditional, and one for quantification
(last five diagrams in Inconsistent Mathematics, Chap.11). A few months later (1987) Mortensen
wrote the first paper, with Lavers as co-author, and sent it to Saunders Mac Lane and William
Lawvere (also Routley, Meyer, Priest). Mac Lane replied but Lawvere did not. A later version of
that paper became the eleventh chapter of Inconsistent Mathematics. I thank Prof. Mortensen for
providing me this information.

http://dx.doi.org/10.1007/978-81-322-2719-9_11
http://dx.doi.org/10.1007/978-81-322-2719-9_11
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Then, for any object X in a complement-topos, the composite
D f alse ◦ !X : X −→ 1 −→ D� denotes a constant, Dfalse-valued propositional
function on X , abbreviated to DfalseX . Propositional functions will specify subob-
jects as follows. Given a propositional function Dϕ : X −→ D�, one gets the part of
the x’s of which Dϕ is false, if any, as an equalizer m : M � X of Dϕ and DfalseX .
This subobject will be named the anti-extension of the propositional function Dϕ. A
morphism D f alse :1−→ D�, called dual classifier, has the following property:

Anti-comprehension axiom. For each Dϕ : O −→ D� there is an equalizer of Dϕ

and DfalseO , and each monic m : M � O is such an equalizer for a unique Dϕ.
In diagrams, D f alse is such that for every Dϕ and every object T and morphism
o :T −→ O , if m ◦ Dϕ = m ◦ DfalseO and x ◦D ϕ = x ◦ DfalseO , then there is a
unique h : X −→ M that makes the diagram below commutative:

M >
m

> O
Dϕ

>

DfalseO

> DΩ

X

x

∧

h

<

The propositional function Dϕ is also called “the dual characteristic (or classify-
ing) morphism of m,” denoted Dϕm for more convenience. A dual classifier is unique
up to isomorphism and so is Dϕm . Now a complement-topos can be definedmore pre-
cisely: A category DE with equalizers, (binary) products, coequalizers, coproducts,
exponentials, and a dual classifier is called elementary complement-topos.21

The connection of these definitions with more traditional logical notions is much
less mysterious than it might appear at first sight. Consider the diagram in the defi-
nition of an equalizer:

W
i
> X

f
>

g
>
Y

Z

j

∧

k

<

As a particular case for the Anti-comprehension axiom one has:

M >
m

> O
Dϕ

>

DfalseO

> DΩ

X

x

∧

h

<

21Mortensen and Lavers use the names complement-classifier and complement-topos, which are
now the names set in the literature (cf. [13, 39, 40, 52]). Although the use of ‘dual topos’ would
be appropriate here but misleading given the usual understanding of ‘dual category,’ I think there
is no similar problem for the classifier of a complement-topos.
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The only morphism from X to D� such that makes the diagram above commutative
is DfalseX :

M >
m

> O
Dϕ

>

DfalseO

> DΩ

X

x

∧

DfalseX

>

h

<

Thus, the following diagram is obtained:

M >
m

> O
Dϕ

> DΩ

X

x

∧

DfalseX

>

h

<

Note that, according to the definition of an equalizer, h must be the only morphism
that, among other properties, x = m ◦ h. But this suffices to satisfy the definition of
x ∈ m.Hence,whatAnti-comprehension states is that Dϕ(x) = DfalseX (because of
the right commutative triangle) if and only if x ∈ m (because of the left commutative
diagram). It is nice and expectable that Dϕ(x) = DfalseX if and only if x ∈ m, since
M is (thought of as) the anti-extension of Dϕ and the elements belonging to M are
those which would make Dϕ false.

Let me make explicit the following two very important properties of D� and
D f alse :1−→ D�:

1. If X is an object of DE and m : M � X is a subobject of X , then there is exactly
one morphism Dϕm : X −→ D� such that for every x :1−→ X , x ∈ m if and only
if Dϕm ◦ x = D f alse.
(Succinctly, a dual classifier says, for every object X and every subobject m of
X , what elements of X are included in the subobject m.)

2. If a morphism f has D� as codomain, then it is the dual characteristic morphism
of some other morphism g such that its codomain is the domain of f .
(A morphism to D� is fully determined by the part of its domain that it takes to
D f alse, that is, by the subobject of its domain that it classifies dually.)

Given the notion of dual classifier, one can define also Dtrue : 1 −→ D� as the
dual character of 01, the only morphism from an initial object to a terminal one:

0
01

> 1
Dtrue =def. Dϕ01>

Dfalse1
> DΩ

The diagram above implies that Dtrue = DfalseX (because of the right commutative
triangle) if and only if 0 has a generalized element (because of the left commutative
diagram). 0 has non-generalized elements only in a degenerate category, so only then
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one obtains Dtrue = D f alse.22 The situation for nondegenerate categories can be
easily dualized.

Finally, it is well-known that the subobjects of a given object form a partial order.
In particular, the elements of D� form a partial order, which means that propositions
form a partial order, i.e., for every propositions p, q and r :

• p ≥ p
• If p ≥ q and q ≥ r then p ≥ r
• If p ≥ q and q ≥ p then p = q

Mutatis mutandis, one can use ≤ instead of ≥. Such order relation can be inter-
preted as a deducibility relation, �, and the properties above say that deducibility is
reflexive, transitive and that interdeducible propositions are equivalent.

n-ary connectives of order m are defined as in Sect. 18.2.2. 23 This enables us to
define connectives dual to the standard ones, namely three binary (�, disjunction;	,
conjunction; −, subtraction) and three unary (∼, negation; E , particular quantifier;
A, universal quantifier). The definitions go as follows.

Negation. Let be D f alse :1−→ D�. Then∼: D�−→ D� is the dual characteristic
morphism of D f alse:

1 Dtrue
> DΩ

∼ =def. Dϕ
Dfalse

>

Dfalse
DΩ

> DΩ

The full truth condition implied by this definition is that ∼ ◦p = D f alse if and
only if p = Dtrue and ∼ ◦p = Dtrue otherwise.

Disjunction. Disjunction� : D�×D�−→ D� is defined as the dual characteristic
morphism of 〈D f alse, D f alse〉 :1−→ D�×D�:

1
〈Dfalse, Dfalse〉

> DΩ ×DΩ
� =def. Dϕ〈Dfalse, Dfalse〉

>

Dfalse
DΩ×DΩ

> DΩ

The complete truth condition implied by this definition is that p � q = sup(p, q)

(with respect to the partial order formed by the elements of D�).
Conjunction. Conjunction 	 : D�×D�−→ D� is defined as the dual character-

istic morphism of the image of [〈D f alse, idD�〉, 〈idD�,D f alse〉]:

DΩ +DΩ
Im[〈Dfalse, id

DΩ〉,〈id
DΩ, Dfalse〉]

> DΩ ×DΩ

� =def. Dϕ
Im[〈Dfalse, id

DΩ〉, 〈id
DΩ, Dfalse〉]

>

Dfalse
DΩ×DΩ

> DΩ

The truth condition implied by this definition is that p 	 q = inf(p, q) (again with
respect to the partial order formed by the elements of D�).

22The same remark on note 7 in Sect. 18.2 applies here.
23Again, for brevity I oftenwill talk only of “connectives,” since their dual character can be obviated,
and their arity and order will be made explicit only when needed.
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Dual-conditional, subtraction or pseudo-difference. Subtraction − : D� × D�

−→ D� is defined as the dual characteristicmorphismof ē : D ≥−→ D�×D�, where
ē is the equalizer of � : D�×D�−→ D� and the first projection D p1, so it makes
the following diagram a pullback:

D ≥ >
ē

> DΩ ×DΩ
− =def. Dϕē

>

Dfalse
DΩ×DΩ

> DΩ

FollowingMortensen andLavers’methodof dualization, this is the right complement-
topos connective corresponding to the conditional in standard toposes. Remember
that (p ⊃ q) = Strue if and only if (p ∧ q) = p, and it is dualized (q − p) =
D f alse if and only if (p � q) = p, which is expressed by the equalizer above.

An immediate consequence of this definition is that (q − p) =D f alse if and
only if (p � q) = p (as can be noted, the equalizer ē expresses the condition on
the right: It equals disjunction and the first projection). The complete truth condition
is that (q − p) = D f alse if and only if pD ≥ q and (q − p) = q otherwise.

The dualization of the conditional is a delicate matter, though. To begin with,
the conditional in usual topos theory may be defined in several ways, for example
by considering it the characteristic morphism of e′ :≤−→�×�, the equalizer of
disjunction and the second projection, which would lead to several different dual-
izations. Goodman [19] proved that in CSL no connective definable in terms of the
connectives �,	,∼,− has � as semantic assignment if and only if the assignment
of its antecedent is less or equal than the assignment of its consequent. It can be
argued that a connective like − cannot be regarded as a conditional at all, since
(p − p) = f alse for every p and does not satisfy modus ponens, that CSL lacks of
a reasonable conditional and therefore it is not a serious logic and much less a logic
strong enough for developing some mathematics based on it. Certainly, − might not
be regarded as a conditional, in the same way that the dual of conjunction is not
even a kind of conjunction. − should be regarded rather as an “anti-implication,” as
Popper once suggested (cf. [41]).

Mortensen has argued against this alleged deficiency of CSL. He points out that
it is not clear how much of mathematics depends on an object-language conditional.
What mathematics needs, he says, is a deducibility relation, but that is provided by
ordering and an adequate proof theory; Goodman himself proved that derivability
in CSL respects the natural semantic ordering of set inclusion.24 Moreover, nothing
in the above rules out the possibility of defining a reasonable conditional in CSL or
in complement-topos theory. That a conditional cannot be defined in terms of the
other connectives is not a strong argument; after all connectives in, e.g., intuitionistic
logic, are not interdefinable and it is not thought of as defective. Mortensen proposed

24This is a controversial point. Mortensen thinks that functionality is mathematically prior to,
and a more important matter than some logical notions. Someone might object to this by saying
that ordinary math books use conditional constantly, and for example use definitions stated as
conditionals so that one constantly quantifies into conditional contexts, and every time one proves
that some object does not have a defined property one is negating a conditional. Seemingly, this
cannot all be pushed into the metalanguage without severe contortions.
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a conditional for complement-toposes which, however, should not be regarded nec-
essarily as a dualization of usual conditional, but a more general case. I will discuss
it in the following sections.

Particular quantifier. Particular quantifier EX : D�X −→ D� is defined as the dual
characteristic morphism of λx .DfalseX , the exponential transposition of DfalseX ◦
prX :1×X −→ X −→ D�:

1
λx.DfalseX

> DΩX
EX =def. Dϕλx.DfalseX

>

Dfalse
DΩX

> DΩ

The particular quantifier has the property that EXϕ(x) = D f alse if and only if
ϕ(x) = D f alse, for all x . The exact truth condition implied by the definition above
is EXϕ(x) = sup(ϕ(x)).

Universal quantifier. Universal quantifier AX : D�X −→ D� is defined as the dual
characteristicmorphismof the imageof the composite D pX◦D ∈X (∈ ) :∈ � D�X ×
X −→ D�X (where D pX is the first projection and D ∈X is the subobject of �X × X
whose dual character is the evaluation morphism ēX : D�X × X −→ D�) so it
makes the following diagram a pullback:

DpX◦ ∈X (∈)
Im(DpX◦ D∈X)

> DΩX
AX =def. DϕIm(DpX ◦D∈X )

>

Dfalse
DΩX

> DΩ

Theuniversal quantifier has the property that AX ϕ(x) = D f alse if andonly ifϕ(x) =
D f alse, for some x . The exact truth condition implied by the definition above is
AXϕ(x) = inf(ϕ(x)).

Given that DE is a categorywith exponentials, one has D�X , D�D�X
, etc. for any X

in DE , which may be regarded as representing collections of properties, properties of
properties, etc. defined over X , so one can also have higher-order dual propositions.

If SE is a standard topos and DE is the category obtained by assuming not the name
Strue, but D f alse for a given morphism with codomain � and making the corre-
sponding suitable choice of names for connectives, then DE and SE are categorically
indistinguishable since equalizers, (binary) products, coequalizers, coproducts and
exponentials are notions and constructions prior to the characterization of classifiers
and connectives. Moreover, Mortensen proved the following.

Theorem 18.3.4 (Duality Theorem) Let S be a statement about DE obtained by the
above relabeling method from a statement S’ about SE . Then S’ is true of SE if and
only if S is true of DE .

A proof can be found in [39, p. 106].
Clearly, Heyting algebras and Brouwerian algebras, on one hand, and the log-

ics they give rise to, on the other, are dual. Nonetheless, toposes SE and DE are
not dual in the traditional categorial sense, so this other kind of duality has to be
studied. A categorial characterization of the “duality” between standard toposes and
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complement-toposes would be most welcome, but for now I will describe in more
detail the internal logic of complement-toposes.25

The internal logic of a complement-topos DE is the algebra induced by the object
of propositions or algebraic truth values, D�, and the connectives (∼, 	, etc.). Con-
sequence is defined as usual: Let D p |=DE Dq denote that whenever the morphism
D p is the same morphism as Dtrue in DE , so is Dq (|=DE D p means that D p is the
same morphism as Dtrue in DE).

There is a theorem establishing necessary and sufficient conditions for a propo-
sition D p being the same morphism as Dtrue in a given complement-topos DE . Let
|=C SL be the consequence relation of closed set logic. Then the following theorem
holds:

Theorem 18.3.5 For every topos DE and proposition D p, |=DE D p if and only if
|=C SL D p.

i.e., D� is a Brouwerian algebra (by Theorem 18.2.4 and the Duality Theorem
above).26

Summarizing, the complement-categorial analysis of logic implies the follow-
ing27:
(DIL1) Propositions form a partial order, i.e., for every propositions p, q and r :
(DIL1a) p ≥ p;
(DIL1b) If p ≥ q and q ≥ p then p = q;
(DIL1b) If p ≥ q and q ≥ r then p ≥ r .
(DIL2) There is a truth value called D f alse with the following property:

For every proposition p, p ≥ D f alse.

(DIL3) One can define a truth value called Dtrue that has the following property:

Dtrue ≥ D f alse.

and

For every proposition p, Dtrue ≥ p.

(DIL4) Connectives obey the following truth conditions:
∼ p = D f alse if and only if p = Dtrue, otherwise ∼ p = Dtrue,
(p � q) = sup(p, q),
(p 	 q) = inf(p, q),
(q − p) = S f alse if and only if qD ≤ p, otherwise (q − p) = q,
EXϕ(x) = sup(ϕ(x)),
AXϕ(x) = inf(ϕ(x)).

25I have attempted such a categorial description of this kind of duality in [12].
26Again, I have made a little abuse of notation, for I used ‘D p’ in both |=DE and |=I . In rigor, D p
is a morphism which corresponds to a formula (D p)∗ in a possibly different language.
27By abuse of notation but to simplify reading I will not indicate that the order here is dual to that
in standard toposes, unless there is risk of confusion.
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(DIL5) The categorial analysis of logic in complement-toposes assumes the Tarskian
notion of logical consequence too:

Let ‘p |=DE q’ denote that q is a logical consequence of p in a complement-topos
DE , i.e., that whenever p is the samemorphism as Dtrue in DE , so is q. Equivalently,
if q is not the same morphism as Dtrue, p neither is. |=SE p means that p is the same
morphism as Dtrue in DE .

(DIL6) From (DIL1)–(DIL5), in the internal logic of a complement-topos hold at
least the laws of dual-intuitionistic, as shown in Theorem18.3.5.28

Example 18.3.6 Since classical logic is its own dual (just as a Boolean algebra is
its own dual), the internal logic of Set is not modified by the renaming and thus
complement-Set (DSet) is the same as Set.29

Example 18.3.7 Complement-S↓↓ or D S↓↓ has, mutatis mutandis, the same three
truth values with its original order,30 but negation gives now the following identities
of morphisms:

∼ DfalseS↓↓ = DtrueS↓↓ , ∼ D(s
t )S↓↓ = DtrueS↓↓ , ∼ DtrueS↓↓ = DfalseS↓↓

In S↓↓ one has (p ∨ ¬p) 	= StrueS↓↓ , and in the alternative labeling one obtains
(p	 ∼ p) 	= DfalseS↓↓ . Remember that in a complement-topos (p 	 q) = D f alse if
and only if either p = D f alse or q = D f alse. If p = D(s

t )S↓↓ then∼ p = DtrueS↓↓ ,
so neither ∼ p = DfalseS↓↓ nor p 	= DfalseS↓↓ and hence (p	 ∼ p) 	= DfalseS↓↓ .
Besides, in a Heyting algebra (like the algebra S�) in general it is not the case
that q ≤ (p ∨ ¬ p), which in the alternative labeling corresponds to the
fact that in a Brouwerian algebra (like D�) in general it is not the case that
(p	 ∼ p) ≤ q. So, the internal logic of complement-S↓↓ is not classical (nor intu-
itionistic!), but inconsistency-tolerant. Moreover, in complement-S↓↓ both p� ∼ p
and ∼(p	∼ p) are the same morphism as DtrueS↓↓ , unlike their standard counter-
parts. In standard S↓↓(p ∧ ¬p) = SfalseS↓↓ , which in the alternative labeling gives
(p� ∼ p) = DtrueS↓↓ . In standard S↓↓¬(p ∨ ¬p) = SfalseS↓↓ (for in intuitionistic
logic the negation of a classical theorem is always false), and the alternative labeling
gives ∼ (p	 ∼ p) = DtrueS↓↓ .

28Inconsistency-tolerant categorial structures are studied further in [39,Chap.12,written byWilliam
James] and in [22].
29Thus, as Vasyukov [52, p. 292] points out: “(…) in Set we always have paraconsistency because
of the presence of both types of subobject classifiers (…)” just as we always have in it (at least)
intuitionistic logic. The presence of paraconsistency within classical logic is not news. See for
example [7], where some paraconsistent negations in S5 and classical first-order logic are defined.
30It is easy to verify that after making all the necessary changes, i.e., changing StrueS↓↓ for
DfalseS↓↓ , etc., the names are ordered in the same way as they are in S S↓↓.
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18.3.3 Complement-Toposes and Variable Sets

Bell says, maybe with a wink to the Marxist Lawvere (and perhaps also to his former
student friend of contradictions Graham Priest):

Certain philosophers —notably Hegel and Marx— believed that achieving a true under-
standing of the phenomenon of change would require the fashioning of a dialectical logic or
“logic of contradiction,” in which the law of noncontradiction —“no statement can be both
true and false”— is repudiated. It is a striking fact that, so far at least, rather more light has
been thrown on the problem of variation by challenging the law of excluded middle than by
questioning the law of noncontradiction. [6, p. 179]

But complement-toposes, with their paraconsistent internal logic, also challenge
Lawvere’s idea that intuitionistic logic is the objective logic of variable sets. Intu-
itionistic logic may be the objective logic of some variable sets, but not of all of
them. Furthermore, variable sets taken together might be so variable that no logic is
preserved under such variation, but I am not going to press that point. My aim here
is just to indicate the objects of a topos can be described as varying in a way such
that they are also variable sets yet their internal logic is not intuitionistic.

Let me present first the formulation of Kripke semantics for CSL. Let P = (P, R)

be a poset. A set A ⊆ P is anti-hereditary or rooting in P if for all x , y, if x ∈ A and
x Ry then y ∈ A, i.e., if it is closed “downwards” under R. Let Pr be the collection
of anti-hereditary subsets of P. A P-valuation is a function V : F −→Pr , where F
stands for a collection of formulas on a usual zero-order language, such that to each
pi is assigned an anti-hereditary subset V(pi ) ⊆ P .

A model based on P is a triple M = 〈P, R,V〉, where V is a P-valuation. The
idea that A is false at x , in symbols M, x � f A, is defined recursively as follows:
For every x ∈ P:

M, x � f A if and only if x ∈ V(pi ),
M, x � f∼ A if and only if for all y with x Ry, M, y � f A,
M, x � f A � B if and only ifM, x � f A and M, x � f B,
M, x � f A 	 B if and only if either M, x � f A or M, x � f B,
M, x � f B − A if and only if for all y with x Ry, ifM, y � f A then M, y � f B.

A is false in a model M, denoted M� f A, if A is false at every x ∈ P in M. A
formula A is invalid on P, denoted P� f A, when it is false in every model based
on P.

Take P = ({1, 0},≥) (with 1 ≥ 0 as usual) and V(p) = {0}, which is anti-
hereditary. Then with M = 〈{1, 0},≥,V〉 one has that M, 1� f p. But M, 0� f p
and 1 ≥ 0, so M, 1� f ∼ p. Thus, M, 1� f p	 ∼ p, so contradictions are not auto-
matically refuted in this model.

Informally, P represents a collection of states, say, of possible mathematical
knowledge. The truth value of a proposition depends on the knowledge established
at a certain state, so their truth value is relative to a certain state. However, once a
proposition is false at a state, it is false at all earlier states. One state comes before,
or is earlier than, another, but the order is not necessarily linear because the states
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are not merely of actual but of possible mathematical knowledge, so immediately
earlier than a state of knowledge may be several other states, each with a different
value for a certain proposition: Due to the rooting of falsity, if a proposition is false
at a state earlier than a certain state and true at another later state, these later states
cannot be connected. This conveys the idea that if it is established that p is false in
a given evidential situation then it has been false always in the past of that situation.
Goodman [19] thought that dualization of “any formula, once true, remains true”
should be “Popperian,” i.e., preservative of falsity: “any formula, once false, remains
false.” But Goodman gives no further details about the semantics for his logic besides
this short remark. I have opted here for systematically inverting the order, so the dual-
ization of the intuitionistic preservation of truth would be the rooting of falsity: “any
formula, once false, was always false.”31

Operations of D� with the order D ≤ between them constitute a frame to provide
a categorial version of the Kripke semantics above in terms of complement-toposes.
What the Anti-comprehension axiom says is that Dϕ(x) = DfalseX if and only if
x ∈ m, i.e., it specifies when a generalized element x belongs to a part m of O (the
o’s for which ϕ is false). These specifications depend on the way the formula ϕ(x) is
built up from connectives, but this time formulated in terms of the relation “X makes
ϕ(a) false,” or also “X refutes ϕ(a),” written X �D F ϕ(x) and defined as follows:

For every x : X −→ O with its image I mx ∈D �X :
X �D F Dϕ(x) if and only if x ∈ m

that is
X �D F Dϕ(x) if and only if Dϕ(x) = D f alse.

In what follows ‘pX ,’ ‘qX ,’ ‘pXY ,’ and ‘qXY ’ (just changing ‘S�’ by D�) are as
in 4.4:
X �D F∼ pX if and only if, for every morphism y :Y −→ X such that Y �D F ϕ

(a ◦ v), Y ∼= 0
X �D F (pX � qX ) if and only if X �D F pX and X �D F qX

X �D F (pX 	 qX ) if and only if there are morphisms y :Y −→ X and w :W −→ X
such that y + w :Y + W � X is an epimorphism while both Y �D F ϕ(a ◦ y) and
W �D F ψ(a ◦ w)

X �D F (pX − qX ) if and only if, for every morphism y :Y −→ X such that Y �D F

ϕ(a ◦ v), also V �D F ψ(a ◦ v).
Now, applying the Mortensen–Lavers dualization and using the Duality The-

orem, it is possible to make explicit some categorial constructions in complement-
toposes and some facts about CSL and some of its modal extensions. In particular,
dualization also extends to topologies. Note that one of the conditions of a standard
Lawvere–Tierney topology is typical of an interior operator (that it is multiplicative),
other is typical of a closure operator (that it is inflationary), and the remaining one

31A dualization of Kripke semantics for intuitionistic logic similar to that presented herewas studied
in [48]. Shramko maintains the Popperian reading to provide a “logic of refutation”; the crucial
distinction lies in the condition for∼. Moreover, Shramko, like Goodman, also omits the discussion
of subtraction. Goré [20, p. 252] even says that “[Goodman] annoyingly fails to give the crucial
clause for satisfiability for his ‘pseudo-difference’ connective.”
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is both (that it is idempotent).32 Then, following the Mortensen–Lavers method, the
dualization proceeds by changing the typical interior condition by a closure one, the
typical closure condition by an interior one, and changing the idempotent condition
of an interior operator from the idempotent condition of a closure operator (that is,
leaving it unchanged).

Thus, dual Lawvere–Tierney topology is then a morphism ϑ :D �−→D � in a
complement-topos DE such that
(ϑ1) ϑ ◦ � = � ◦ (ϑ + ϑ),
(ϑ2) ϑ ◦ ϑ = ϑ ,
(ϑ3) ϑ ◦D f alse = D f alse,
(ϑ1) and (ϑ2) say that ϑ is additive and idempotent. It can be proved that
(ϑ4) pD ≥ ϑp,
so ϑ is also deflationary.

DualizingMacnab’s proof, it can be proved thatϑ can be defined using subtraction
by the single equation

− ◦ 〈ϑ ◦ q, p〉 = − ◦ 〈ϑ ◦ q, ϑ ◦ p).

There are a number of topics which resemble situations in intuitionistic logic and
the modality j ; let me give just two examples on how to push forward the study of
ϑ . As I have said, the (standard) topos SE¬¬ of double-negation sheaves is a model
showing that, for example, the continuum hypothesis is independent of the axioms
for topos theory including classical logic. What does the complement-topos DE∼∼
show, say, about (models of set theory based on) complement-toposes, classical logic
and the continuum hypothesis? On the other hand, Gödel used a double-negation
translation to make some connections between classical and intuitionistic theories of
natural numbers. Maybe there is another double-negation translation giving hints
about classical and paraconsistent theories of natural numbers. All this requires
further separate work.

Finally, note that if j is a geometric modality meaning “it is cofinally the case
that,” ϑ is also a geometric modality but meaning “it is coinitially the case that”
(dualization is left to the reader) which, incidentally, happens to be conceptually
closer to forcing through the notion of density.

18.3.4 Proof Theory for Complement-Topos Logic

When studying dual-intuitionistic logic from the topos-theoretical perspective,
Mortensen and Lavers did not present a sequent calculus. In this section, I will
present a sequent calculus for complement-topos logic, which completes the one
sketched in [13]. Just as the dualization of connectives in a topos, the rules for

32An interior operator is an operator which is multiplicative, idempotent, and deflationary, i.e.,
x ≥ j x . A closure operator is additive ( j (x ∪ y) = j x ∪ j y), idempotent and inflationary.
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complement-toposes logic also mirror the “topologico-algebraic” dualization. That
is, any occurrence of ∧, ∨, true, f alse on a formula must be replaced by ∨, ∧,
f alse, true, respectively. To dualize a given formula a ⊃ b, replace the antecedent
by the consequent and vice versa and then replace ⊃ by −. Since a ≤ b can be
interpreted as a sequent a : b and the dual of a ≤ b is b ≤ a (or a ≥ b), the dual of
a : b is b : a.33 Thus, the corresponding rules for complement-toposes logic are the
following ones:

Structural Rules:

∗Trivial sequent: p : p

∗False and true:
f alse :

∗
p : true

p : �
Thinning:

p : �, q

p : �, q and q : �
Cut: p : �

if every variable free in q is free in � or in p. The restriction is due to the fact that
if q has free variables over empty objects then the upper sequents are trivially true
even if the lower one is false.

p : �
Substitution:

p(x/s) : �(x/s)

for any term s free for x in all the formulas.

Connective rules:

true : �, p

¬p : �

p : � and q : �

p ∨ q : �

θ : �, p and θ : �, q

θ : �, p ∧ q

q : �, p

q − p : �

33Such dualization is (the zero-order part of) the mapping � discussed in [50, p. 444], which builds
upon one described in [10].
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and if the variable x is not free in � or q:

p : �

(Ax)p : �

q : �, p

q : �, (Ex)p

Dually to the case of toposes, the structural rule for true and the connective rules for
negation and conjunction are derived, just as the corresponding morphisms true, ¬
and ∧ needed f alse and ∨ in order to be defined. A soundness proof for these rules
can be adapted from the original soundness proof for the rules for standard topos
logic as presented, for example, in [37, 15.2], and the remarks there on completeness
also apply here.

18.4 Some Objections to the Legitimacy
of Complement-Toposes

In this section, I address three potential objections to the mathematical legitimacy of
complement-toposes. The first one, “The Just Definitional Variants Objection,” says
that the definition of a complement-topos does not differ from the usual definition of
a topos and thus the relabelings involved in complement-toposes are uninteresting
and pointless. The second one, “The Theorems Objection,” says that the alterna-
tive reading of the categorial structure of toposes giving rise to complement-toposes
conflicts certain well-known theorems in topos theory. The third one, “The Working
Mathematician Objection,” asks for the importance of complement-toposes in partic-
ular, and of inconsistency-tolerances and paraconsistency in general, for the working
mathematician. I will show that the first two objections do not take the dualization
seriously, and thus judge complement-toposes from the pre-dualization point of view.
About the third objection I will make the point that there is more to mathematics
than current, actual practice and mainstream research lines, and even thus the study
of inconsistency-tolerance has found its place among leading mathematicians.

18.4.1 The Just Definitional Variants Objection

Given that complement-toposes have been practically unnoticed, there are no public
statements of the first objection I am going to discuss here.34 A topos- or category-

34As I have said before, Mac Lane knew about complement-toposes via Mortensen. His stance was
that they were just the old toposes, but he gave no argument. I have been trying to figure out why
did Mac Lane thought that and this is the best I can imagine. I think this would be part of what
a mainstream topos- or category-theorist would say at first glance on complement-toposes (and in
my experience, this is what they invariably say).
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theorist might think of complement-toposes as just definitional variants of the already
well-known toposes. Given that they share all the categorial ingredients, toposes and
complement-toposes could not be different (kinds of) categories; in particular, they
do not have different internal logics.

Themainstream topos-theorist can correctly insist on the categorial indistinguish-
ableness between standard toposes and complement-toposes, but this amounts rather
to a proof that both kinds of toposes equally deserve the name “topos,” since for all
mathematical purposes they have the same constituents independently of Skolemiza-
tion for the morphisms whose codomain is �. However, the internal logic induced is
in fact different in each case, true, not by differences in the categorial structure, but
in the way that categorial structure is described.

Although it sounds repetitive, it must be emphasized that the claim is not that
complement-toposes are categorically different from toposes, nor to say that stan-
dard connectives acquire further categorial properties qua morphisms after the being
renamed, but rather to stress the fact that the same categorial stuff, which is essen-
tially equational with variables, can be described in at least two different ways. The
categorial reconstruction of logic in a standard topos starts with a certain object O
thought of as the extension of a propositional function ϕ and that a certain element
belongs to O is thought of as making ϕ true. Hence, in a standard topos the basic
proposition is Strue. What complement-toposes say is that one can start the categor-
ial reconstruction of logic with the same categorial data but interpreted in a different
way. A certain object O is thought of as the anti-extension of a propositional func-
tion ϕ and that certain element belongs to O is accordingly thought of as making ϕ

f alse. Hence, in a complement-topos the basic proposition is D f alse. Neither of the
labelings is imposed by the categorial structure of toposes itself so, in its current and
mainstream form, there is more than just categorial structure in the study of toposes,
ex. gr. there are particular Skolemizations of it.

One could also start with complement-toposes and then obtain standard toposes
by proposing an alternative description of the underlying of the equational structure.
This means that, even if at first glance, the categorial structure invites to be con-
ceptualized in certain ways, and it does not force them. All this helps to solve the
initial perplexity: If SE and DE should be indistinguishable because they are cate-
gorically indistinguishable, how can one in fact distinguish between them, as one
does by noting their different internal logics? The answer is this: To date, there is
more than categorial structure in the study of toposes, to wit, special, intuitive names
conceptually laden for some of the morphisms, invited, yes, but not necessitated, by
the categorial structure. Neither of the names is imposed by the categorial structure
of toposes itself so, in its current form, there is more than just categorial structure in
the study of toposes.

Another reason to deny the difference in the internal logic might be that topos-
theorists think that one is using the traditional modeling of intuitionistic logic using
Brouwerian logic with the least element as designated (as in [35]). But it is not the
case. It is clear that � can support the structure of a Brouwerian algebra (otherwise,
the usual semantics for intuitionistic logic using them would not be possible) and, in
order to use not the least element but the top one as designated one has to introduce
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some conceptual changes, but not in the categorial structure. That is why the internal
logic of a complement-topos is different.

This is not a mere play with labels and, even though the underlying dualities
between Heyting algebras and Brouwerian algebras are well-known, the choice of
names affects what we are considering as the internal logic of a topos because the
names are conceptually laden. Even if from a mathematical point of view all this
might be regarded as uninteresting (which is not, for it invites us to rethink an
important theorem), preferring one way of naming above the other may have (and
has had) important philosophical consequences. As I have said, complement-toposes
bring in question, for example, Lawvere’s “Intuitionistic logic is the objective logic
of variable sets” (slogan (S4)), as well as John Lane Bell’s claims that “The universal,
invariant laws of mathematics are intuitionistic” (slogan (S5)) or that “Intuitionistic
logic sheds more light on the issue of mathematical variation than paraconsistent
logics.” The categorial structure of toposes support paraconsistent logics as well,
so any philosophical claim aiming to emphasize the mathematical supremacy of
intuitionistic logic has to take into account this fact.

18.4.2 The Theorems Objection

Now, there might be a worry concerning a potential conflict between the alternative
names for certain parts of the structure of toposes giving rise to complement-toposes
and certain well-known theorems in topos theory. In particular, those theorems imply
that, if�were aBrouwerian algebra as it is in complement-toposes, then their internal
logic should be classical. But the internal logic of a complement-topos in general is
not classical, so this tension should be explained away.

In his doctoral dissertation, Giovanni da Silva de Queiroz [11] argues against the
possibility of toposes whose internal logic is dual to the intuitionistic one. He begins
his Chap.5, “Categories, topos and duality” in this way:

It is known that for every elementary topos ξ , the object � (subobject classifier) has the
structure of a Heyting algebra. It can be guessed that, by duality, to every topos can be
associated a dual topos such that � has also the structure of a Brouwer algebra. This is not
true, though.We are going to show that (…) a “Brouwerian” negation, distinct from Boolean
negation, cannot be defined.

and in the introduction he had said “We also show that a negation defined in aBrouwer
algebra cannot be “captured” by the truth values object. If that happened, the internal
logic of a topos comes to be the Boolean logic (henceforth, classical)” [11, p. 5].

Reyes andZolfaghari [45, 46] have given the conditions underwhich the subobject
algebra of a topos is a Brouwerian algebra. Nonetheless, most authors agree that �
cannot be but a Heyting algebra. de Queiroz makes a case based on the following
theorems already mentioned at the end of Sect. 18.3.135:

35Although de Queiroz does not make explicit his use of the last of them. As a side remark, the
converse of that theorem does not hold.

http://dx.doi.org/10.1007/978-81-322-2719-9_5
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Theorem 18.4.1 Let δ : S�−→ S� be a morphism such that δ ≤ idS� and
δ ◦ Strue = Strue. Then δ = idS�.

Theorem 18.4.2 In any topos SE the following conditions are equivalent:

(a) SE is Boolean.
(b) ¬ ◦ ¬ = idS�.

Theorem 18.4.3 If SE is Boolean, then its internal logic is classical.

But in Brouwerian algebras ∼∼ p ≤ p and ∼∼ true = true, and hence, by the
theorems above, Brouwerian negation would collapse into classical negation. So, the
internal logic of a topos with a Brouwerian negation would not be of a new kind, but
classical. This is precisely de Queiroz conclusion: There cannot be a topos whose
internal logic is dual to intuitionistic logic, unless its logic is classical, which is not
an interesting case.

If the alternative reading is possible and the internal logic of a topos can be
described as a paraconsistent one, as showed in the preceding sections, what about
de Queiroz’s argument? The answer is that the proofs of these theorems presuppose
the standard names for certain morphisms with codomain �. Even though it is true
that in a Brouwerian algebra both ∼∼ p ≤ p and ∼∼ true = true hold, it does not
make it to collapse into Boolean algebra, in the same way that a Heyting algebra does
not collapse intoBoolean algebra just because in it p ≤ ¬¬p and¬¬ f alse = f alse
hold. ABrouwerian algebrawould collapse into aBoolean one if it has added to it that
p≤ ∼∼ p, and a Heyting algebra would collapse if it is added to it that ¬¬p ≤ p,
i.e., each would become into a Boolean algebra if their respective double negations
where the same as the identity. What the argument by de Queiroz shows is that
once true, f alse and negation are defined in the usual, standard way, Brouwerian
negation cannot be added unless the internal logic is classical. However, the argument
does not work once these notions have been defined in the wayMortensen and Lavers
have suggested, and what one has then is the following theorem (by the Duality
Theorem18.3.4 above):

Theorem 18.4.4 Let Dδ : D�−→ D� be a morphism such that idD� ≤ Dδ and
Dδ ◦ D f alse = D f alse. Then Dδ = idD�.

Then, by Theorems 18.4.4, 18.3.2 and 18.3.3, the only complement-toposes with
intuitionistic features (p≤ ∼∼ p and ∼∼ f alse = f alse) would be those whose
internal logic is classical.36

So, the categorial structure of a topos supports separately both kinds of connec-
tives. What de Queiroz’s arguments prove (or at least imply) is that the internal logic
of an arbitrary topos, be it standard or complement, and under the given character-
ization of logical consequence, cannot be H-B logic, intuitionistic logic plus two

36There is another problem in de Queiroz’s analysis of Brouw-
erian connectives in a topos. For example, the following diagram
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connectives satisfying the dual conditions for the conditional and negation.37 It is
clear since H-B algebras38 have both negations without being necessarily Boolean,
while in topos theory the only toposes in which one can have both intuitionistic and
paraconsistent features are the Boolean ones, with the shortcoming that they do not
have two negations, like H-B logic, but just one. Summarizing, Theorems 18.3.1,
18.3.2 and 18.3.3 say that if � is a Heyting algebra, it cannot be also a Brouwerian
algebra unless � is Boolean (and therefore, the internal logic cannot have paracon-
sistent features unless it is classical). Theorems 18.4.4, 18.3.3 and the dual of 18.3.2
(for that just put ∼ instead of ¬) say that if � is a Brouwerian algebra, it cannot be
also a Heyting algebra unless it is Boolean (and therefore, the internal logic cannot
have intuitionistic features unless it is classical). Together, they say that � cannot be
a B-H algebra unless it is Boolean (and therefore, the internal logic cannot have H-B
logic features unless it is classical).

A similar diagnosis applies to a criticism based on the following theorem:

Theorem 18.4.5 For every object X in a topos, the power object P X is an internal
Heyting algebra in the topos. When X = 1, P1 is �. So � is an internal Heyting
algebra in the topos.

(A proof of this can be found in [31, IV.8, Theorem 1 (internalversion)], or in [8,
Proposition 6.2.1]).

A careful examination of the standard proofs of this theorem reveals that what
the topos structure implies is not enough to determine a Heyting algebra. Let me

(Footnote 36 continued)

≤ >
e1

> Ω × Ω

1

!

∨

true
> Ω

− =def. χe1

∨

given as definition of Brouwerian subtraction in [11, p. 131] makes no sense. de Queiroz’s definition
implies that the equalizer of p ∨ q and the first projection p is e1 :≤�� × �, but it is not correct
for when one dualizes

(p ⊃ q) = true if and only if (p ∧ q) = p

one obtains
(q − p) = f alse if and only if (p � q) = p,

and not
(p − q) = true if and only if (p ∨ q) = p.

Briefly, de Queiroz’s definition gives us that Brouwerian subtraction is true in crucial cases where
it should be false. Note that one cannot save de Queiroz’s proposal by reverting p − q as q − p in
his suggested truth condition: In that case the truth conditions of ⊃ and − would coincide and no
connective different from ⊃, let alone its dual, would have been defined.
37This logic and the corresponding algebra were defined in [42] and extensively investigated in [43,
46] and now in practically every text on “dual intuitionistic logic” (although it is not properly a
dual-intuitionistic logic). A gentle introduction can be found in [21].
38Or bi-Heyting algebras, as has been widely called recently mainly by influence of Reyes and
Zolfaghari. See for example [45].
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analyze how McLarty [38] explains the theorem to see more clearly what is wrong
with its alleged consequences. The topos structure implies that for any object O in
a topos E there is a top element idO , a bottom element 0−→ O , and that for any
two subobjects i :: S −→ O and j :: T −→ O of O there is an intersection S ∩ T (the
largest subobject of O contained in both S and T )

S ∩ T > > T

S
∨

∨

>
i

> O

j

∨

∨

and a union S ∪ T (the smallest subobject of O containing both S and T )39

S > > S ∪ T < < T

O
∨ j

<

<

i

>

>

Now, if the negation of a subobject i , ¬i , is defined as the largest subobject of O
disjoint from i , any subobject i of an object O has a negation:

S ∩ ¬S = 0 > > ¬S

S
∨

∨

>
i

> O

¬i

∨

∨

Aconsequence of this is that¬¬S ⊆ S and that the unionof¬i and i is not necessarily
equal to O .

But such a definition of negation is not forced by the topos structure! It is intuitive
indeed, but not forced. If one defines the negation of i , ∼ i , as the smallest subobject
of O such that joint with i it is the whole of O

S > > S∪ ∼S = O < < ∼S

O
∨ ∼i

<

<

i

>

>

39A proof that every pair of subobjects in a topos has a union can be found in [8, Proposition
5.10.1]. Here is a sketch. Consider any two subobjects i :: S −→ O and j :: T −→ O of O in a topos
E . Take their coproduct S + T and the morphism f : S + T −→ O . As every morphism in a topos,
f factors uniquely into an epimorphism followed by a monomorphism (see [8, Corollary 5.9.4])
f = k ◦ p : S + T � I �O . Morphisms from S and T to I , composedwith i and j , imply that these
are included in k (I, k is thus the smallest subobject of O which contains both S, i and T, j .) A
similar reasoning can be applied to show that every pair of subobjects in a topos has an intersection
using products.
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what fails then is S ⊆∼∼ S and the intersection of ∼ i and i is not necessarily
empty.40

Making a few moves more in the proofs, one has the consequence that there
must be a conjunction morphism classifying intersections such that it is the (same
morphism as the) infimum of its conjuncts, and a disjunction classifying unions such
that it is the (same morphism as the) supremum of its disjuncts. But one has ∧ and
∨ in standard toposes and 	 and � in complement-toposes doing exactly that. In
order to obtain a Heyting algebra for �, i.e., intuitionistic logic, what follows in the
standard proofs are definitional matters. One defines ⊃ and ¬, and all these data
already induce a Heyting algebra. Nonetheless, neither ⊃ nor ¬ are implied by the
topos structure: They can be defined, i.e., they are merely allowed. Of course, once
they are defined, nothing else altering the Heyting algebra structure can be added or
defined. This heavily relies on the assumed morphism 1−→�. If one thought of it
as true, the alternative definitions do not run, but nothing in the categorial structure
prevents interpreting it as f alse and then, given top and bottom elements, as well
as meets and joins, one can define a subtraction − instead of ⊃ and a negation ∼
instead of ¬ to obtain a Brouwer algebra.

Shortly, what Theorem18.4.2 asserts is that � has the structure of a Heyting
algebra, but not that it is the only structure it can have. A more accurate reading of
the theorem is that the power object of X can have the structure of a Heyting algebra,
or certain data induce a Heyting algebra over the power object of X . From this does
not follow that the power object of X must have the structure of a Heyting algebra,
nor that no other data can induce a different algebraic structure over the power object
X .41

There is nothing wrong with filling in it with certain names so as to produce a
Heyting algebra. What is wrong is forgetting that those names have been chosen by
hand, so to speak, and that different names can be chosen. Again, names or labels
are not determined by the categorial structure itself.

I have already dealt with the theorem stating that the internal logic of a topos is
intuitionistic. Just to recall it, the theorem holds when the standard definitions are
given, and not when the categorial structure is described in the alternative way. This
must suffice to show that certain theorems of topos theory using standard names
cannot be used against complement-toposes.

40The next objection can be seen as trying to defend the original definition of negation against the
suggested by complement-toposes, but this time using extra-categorial considerations.
41Yet in [22] it is argued, with [27], that inconsistency-tolerant constructions in sheaf categories in
general are not categorically natural (are not preserved by pullbacks along morphisms). A similar
point was behind de Queiroz’s objection and the theorems by Reyes et al. I do not know whether
there are still hidden “standard” assumptions behind the results in [22]; I will leave the investigation
of that for future work.
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18.4.3 The Working Mathematician Objection

The working mathematician might say at this point: “OK. You can provide an
alternative description of the internal logic of a topos such that it turns out to be
dual-intuitionistic or paraconsistent rather than intuitionistic. All that is formally
right. However, there is no guarantee that the alternative reading returns something
meaningful. In particular, a paraconsistent logic cannot be regarded as a logic for
mathematics at all, as would be required for the reconstruction of mathematics in a
complement-topos. Inconsistency has no place in mathematics.”

I think this worry is misguided, although I am not going to go very deep into
this issue. Inconsistent mathematics is the study of mathematical objects, like sets,
numbers, functions, etc. where some contradictions are allowed. Tools from formal
logic are used to make sure that any contradictions are contained and that the overall
theories remain coherent. Although there are several examples of what can be seen as
inconsistencies tolerated in mathematics in spite of classical logic (pre-Weierstrass
calculus, Bohr theory of atom, delta functions, identification in quotient structures,
etc.), inconsistent mathematics began in its actual form as a response to the set-
theoretic and semantic paradoxes such as Russell’s and the Liar—the response being
that the premises of those reasonings seem true, the proofs seem valid, and the
conclusions seem true is because they are so—andhas so far been of interest primarily
to logicians and philosophers. More recently, though, the techniques of inconsistent
mathematics have been extended into wider mathematical fields, such as analysis,
vector spaces, and topology, to study inconsistent structures for their own sake.

How can it be? Mainstream research lines and current practice do not necessarily
dictate what is mathematically legitimate. These are different questions. Even if a
mathematical theory were not worth of study because of its lack of profound results
or applications, it could still be a mathematical theory. A mathematical theory is a
collection of formulas, the theorems, which are obtained through logical proofs. A
contradiction is a formula together with its negation, and a theory is inconsistent if
it includes a contradiction. Inconsistent mathematics considers inconsistent mathe-
matical theories and requires then careful attention to logic. There is not only one
logical way to obtain a result, for onemay use, say, the full force of classical or opt for
an intuitionistically valid proof. In many logics, such as classical and intuitionistic,
a contradiction implies every other formula. A theory containing every formula is
called trivial, and is considered absurd. Classical and intuitionistic logics therefore
make nonsense of inconsistency and are inappropriate for inconsistent mathematics.
A paraconsistent logic guides proofs so that inconsistencies do not necessarily lead
to triviality. With a paraconsistent logic, mathematical theories can be both inconsis-
tent and interesting. So inconsistency, or at least inconsistency-tolerance, has place
in mathematics. It is there. True, it is not mainstream nor widely known, but that
does not make inconsistent mathematics unintelligible. As Mortensen says, the idea
is not necessarily to deny or replace the obviously excellent corpus of traditional
mathematics, but to expand it. That the categorial structure of toposes supports a
paraconsistent logic as readily as it supports intuitionistic logic should not be viewed
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as an objection to intuitionism, however, so much as an argument that inconsistent
theories are equally reasonable as items of mathematical study.

Finally, I think that ultimately I have conceded too much to the working math-
ematician. Leading mainstream category theorists have devoted several pages to
the issue of inconsistency-tolerance in topos theory, like the aforementioned Reyes,
Zolfaghari and Zawadowski, as well as Lawvere, who has advocated its study in
order to broaden our insights into the connections between logic and geometry to
recapture, for example, the geometric notion of boundary (cf. [26, 27]).

18.5 Conclusions

I have expounded some important topos-theoretical notions and results, and have
showed how they seem to support some philosophical claims. I first described a
subobject classifier and how its codomain, �, can be thought of as a truth values
object. In general, � has more than two elements, and thus mathematical statements
are essentiallymany-valued. The notion of a subobject classifier allows to define zero-
, first-, and higher-order connectives. The standard definitions imply certain truth
conditions that make the internal logic of a topos intuitionistic. Given that ordinary
mathematics can be interpreted in an arbitrary topos just as it is interpreted in Set
and usual membership-based set theories, the intuitionistic laws are the invariant or
universal laws of mathematics.

The usual theory of toposes leads to set the following slogans:

(S1) � is (or at least can be thought of as) a truth values object.
(S2) In general, the internal logic of a topos is many-valued.
(S3) In general, the internal logic of a topos is (with some provisos) intuitionistic.
(S4) Intuitionistic logic is the objective logic of variable sets.
(S5) The universal, invariant laws of mathematics are intuitionistic.

Mortensen and Lavers’ notion of complement-topos constitute an audacious
approach to topos logic. They give a different but sound interpretation of certain
basic categorial situation in a topos, and they show how to describe the internal
logic of a topos as dual-intuitionistic or paraconsistent. I have presented the essential
notions, dualizations, techniques, constructions—including a sequent calculus for
complement-topos logic—of the theory of complement-toposes, and showed that
complement-toposes have the same categorial structure of standard toposes, but it
is given different names for some crucial morphisms and constructions. It is worth
noting that nothing in the categorial structure of toposes forces one labeling above
the other. Furthermore, I have discussed three objections against the legitimacy of
complement-toposes, all based on subtlemisunderstandings and hidden assumptions.

The theory of complement-toposes implies that current topos theory gives just part
of the concept of topos, that some common theorems on topos logic tell just part of
the relevant story, and that in a further, more abstract development the slogans above
have just limited application. Thus, a topos, and especially its internal logic, is a truly
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Protean categorial creature which can accommodate the most diverse descriptions
and support an enormous variety of logics besides that mentioned in the slogans. The
main obstacle to any attempt of thinking differently about topos logic seems to be
Theorem 18.2.4. Like most mathematical theorems, Theorem 18.2.4 is the case only
under certain conditions c1, . . . , cn , among them the name of the initial morphism or
the presupposed notion of logical consequence. However, c1, . . . , cn are just one way
among many others to describe certain parts of the categorial structure of toposes,
andwhen philosophical consequences are drawn from amathematical theorem, these
assumptions domatter, especiallywhen are so deeply internalizedwithin theworking
mathematician as to be forgotten as important assumptions.

However, I think the philosophical significance of complement-toposes is much
broader than I have been able to showhere. In Lawverean terms, complement-toposes
show that there is still a lot of “substance” in topos theory, and deeper “invariant
forms" wait to emerge. Complement- toposes bring in question, for example, John
Lane Bell’s (S4) “The universal, invariant laws of mathematics are intuitionistic” but
also his idea of “local mathematics” and his claim “Intuitionistic logic sheds more
light on the issue of mathematical variation than paraconsistent logics,” as well as
Lawvere’s (S5) “Intuitionistic logic is the objective logic of variable sets.” I have not
given a study of paraconsistent set theories based on complement-toposes but I hope
to deal with such issues in further work.

Thus, the notion of complement-topos goes against (S3)–(S5), but I think it is
possible to advance further. The main morals of Mortensen and Lavers’ study of
complement-toposes seem to be the following:

(a) There is a “bare” or “abstract” categorial structure of toposes that can filled in
at least two ways (the standard way and the way suggested by Mortensen and
Lavers).

(b) The theorem stating the intuitionistic character of the internal logic should be
read rather as follows: Under certain conditions c1, . . . , cn , most of them extra-
categorial, (S1) is the case.

(c) The universal, invariant laws of mathematics are not those of intuitionistic logic.
They seem to be so only when c1, . . . , cn are adopted.

This leaves some questions open, though. Among them I can mention the follow-
ing ones:

• Does the categorial structure of toposes support other logics as readily as it supports
intuitionistic logic and its topologico-algebraic dual?

• What are all those conditions c1, . . . , cn? The names of certain morphisms are
clearly among them, but perhaps the underlying notion of logical consequence
should be also taken into account.

• Does the categorial structure of toposes supports a minimal logic, stable under all
changes of conditions c1, . . . , cn?

• If intuitionistic laws cannot be regarded as the universal laws ofmathematics, what
are these, if any?
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Chapter 19
Topological Semantics for da Costa
Paraconsistent Logics Cω and C∗
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Abstract In this work, we consider a well-known and well-studied system of para-
consistent logicwhich is due toNewton daCosta, and present a topological semantics
for it.
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19.1 Introduction

In a paraconsistent logic, contradictions do not entail everything. Namely, in a para-
consistent logic, there are some formula ϕ,ψ such that {ϕ,¬ϕ} � ψ for a logical
consequence relation�. In this work, wewill focus on awell-known andwell-studied
paraconsistent logic, which is due to Newton da Costa, and present a topological
semantics for it.

Da Costa’s hierarchical systems Cn and C∗
n are one of the earliest examples of

paraconsistent logic [7]. DaCosta systemsCn where n < ω are consistent and finitely
trivializable. Yet, for the limit ordinal ω, it is possible to obtain a logic Cω which is
not finitely trivializable [8]. In this work, we focus on Cω and its first-order cousin
C∗

ω both of which are paraconsistent.
Da Costa systems are not unfamiliar. As Priest remarked, the logic Cω can be

thought of as the positive intuitionistic logic with dualized negation to give truth
value gluts [21]. We define Cω with the following postulates [7, 8].
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1. ϕ → (ψ → ϕ)

2. (ϕ → ψ) → ((ϕ → (ψ → χ)) → (ϕ → χ))

3. ϕ ∧ ψ → ϕ
4. ϕ ∧ ψ → ψ
5. ϕ → (ψ → ϕ ∧ ψ)

6. ϕ → ϕ ∨ ψ
7. ψ → ϕ ∨ ψ
8. (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))

9. ϕ ∨ ¬ϕ
10. ¬¬ϕ → ϕ

The rule of inference that we need is modus ponens: ϕ,ϕ → ψ ∴ ψ.
Based on this axiomatization, Baaz gave a Kripke-type semantics for Cω [3].

Baaz’s Cω-Kripke model is a tuple M = 〈W,≤, V, T 〉 where W is a nonempty set,
≤ is a partial order on W , and V is a valuation that returns a subset of W for every
propositional variable in the language. We will call the members of W as possible
worlds or states. By accessible states from w ∈ W , we will mean the set {v : wRv}.
The additional component T is a function defined from possible worlds to the sets of
negated propositional forms. The imposed condition on T is themonotonicity:w ≤ v

implies T (w) ⊆ T (v). Monotonicity condition resembles the hereditary condition
of intuitionistic logic. The valuation respects the monotonicity and is assumed to
return upsets. In this context, an upset U is a subset of W such that if w ∈ U and
w ≤ v, then v ∈ U .

Also note that the relation ≤ is a partial order rendering the frame 〈W,≤〉, an
S4-frame. The fact that the frame of Baaz’s model is S4 and will be central in our
topological investigations later.

One of the most interesting properties of da Costa systems is the principle of
nonsubstitution for negated formulas. For instance, even if p and p ∧ p are logically
equivalent, i.e., p ≡ p ∧ p, we do not necessarily have that ¬p ≡ ¬(p ∧ p) in da
Costa systems, where ≡ denotes logical equivalence. In Baaz’s construction, the
function T returns a set of formulas which are negated at that possible world. Yet,
for a possible world w, the set T (w) is not necessarily a theory as it need not be
closed under logical equivalence. In short, at w, we can have ¬p ∈ T (w), but this
does not imply that¬(p ∧ p) ∈ T (w). Monotonicity of T , on the other hand, reflects
the intuitionistic side of da Costa systems. In the partially ordered Kripkean frame
for Cω , children nodes have the same formulas as their parents and possibly more
under T .

Baaz gave a Kripkean semantics for Cω as follows [3]. But first, let us set up some
notation. We put ¬0ϕ ≡ ϕ and ¬n+1ϕ ≡ ¬(¬nϕ) for a formula ϕ which does not
include a negation sign in the front.
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w |= p iff for all v such that w ≤ v, v |= p for atomic p
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ
w |= ϕ ⊃ ψ iff for all v such that w ≤ v, v |= ϕ implies v |= ψ
w |= ¬1ϕ iff ¬1ϕ ∈ T (w) or ∃v.v ≤ w and v �|= ϕ
w |= ¬n+2ϕ iff ¬n+2ϕ ∈ T (w) and w |= ¬nϕ, or

∃v.v ≤ w and v �|= ¬n+1ϕ
w |= ϕ1, . . . ,ϕn → iff ∀v.w ≤ v, w |= ϕ1, . . . , w |= ϕn imply

ψ1, . . . ,ψn v |= ψ1 or …or v |= ψn

Let us now briefly comment on the semantics. First of all, the above semantics
admits the hereditary condition for propositional variables. The truth of propositional
variables persists throughout the accessible states. This is an interesting property that
resembleswhat is commonly known as the hereditary condition of intuitionistic logic.
Another similarity between daCosta systems and the intuitionistic logic is theway the
semantics of implication is defined. Perhaps the most interesting and distinguishing
part of the above semantics is the semantics of negation. A negated formula is true
at a state w if it is in T (w) or there is a predecessor state at which the formula does
not hold. It is important to underline that the function T renders the negation as a
nonfunctional operator. This is another way of saying that substitution principle for
negated formulas does not hold in da Costa systems. Finally, in the syntax of the
operator →, we can very well have the empty set as the antecedent. The statement
∅ → p, q will be shortened as → p, q.

Using the proof theory of (propositional) intuitionistic logic and Gentzen style
calculus, Baaz showed the soundness, completeness, and decidability of this system
[3]. We will henceforth denote this system as K Cω .

19.2 Topological Models T Cω

In this section, we give a topological semantics for da Costa’s system Cω , and call
our formalism as T Cω . The topological semantics precedes the Kripke semantics,
and was first presented in early 1920s [12]. The major developments in the field of
topological semantics for (modal) logics have been initiated by J.C.C.McKinsey and
Alfred Tarski in 1940s in a series of papers [14–16].

A topology σ is a collection of subsets of a set S that satisfies the following
conditions. The empty set and S are in σ, and σ is closed under arbitrary unions and
finite intersections. The elements of σ are called opens. Complement of an open set
is called a closed set. A topological space is defined as the tuple (S,σ). For a given
set U , the interior operator Int returns the largest open set contained in U whereas
the closure operator Clo returns the smallest closed set that contains U . For a set U ,
we define the boundary of U as Clo(U ) − Int(U ), and denote it as ∂(U ). Therefore,
by definition, closed sets include their boundary whereas open sets do not.

In the classical modal case, McKinsey and Tarski associated the modal operator
� with the topological interior operator (and, dually ♦ with the closure operator),
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and observed that the interior and closure operators behave as S4 modalities (normal,
reflexive, and transitive). The well-known McKinsey–Tarski result showed that S4
is the modal logic of topological spaces, in fact, of any metric, separable, dense-
in-itself space. This result has been extended to various other nonclassical logics,
and the topological semantics for intuitionistic and some paraconsistent logics have
also been given [4, 13, 17].

In this section, we first give a topological semantics for Cω based on the Kripkean
semantics, and then we discuss various topological notions that relate topological
spaces and T Cω .

19.2.1 Topological Semantics

The language of T Cω is the language of propositional logic with the usual Boolean
conjunction, disjunction, and implication, and we will allow iterated negations. We
denote the closure of a set X by Clo(X). If a set {x} is a singleton, we write Clo(x)

instead of Clo({x}) provided no confusion arises. Also note that in this case Clo(x)

is the intersection of all closed sets containing x .
The language of T Cω is built using a countable set of propositional variables

which we denote by P. Now, we start with defining T Cω models.

Definition 19.2.1 A T Cω model M is a tuple M = 〈S,σ, V, N 〉 where S is a non-
empty set, σ is an Alexandroff topology on S, V : P → ℘(S) is a valuation function,
and N is a (full) function which takes possible worlds s ∈ S as inputs and returns
sets of negated propositional forms (possibly empty) in such a way that w ∈ Clo(v)

implies N (w) ⊆ N (v).

Here, we resort to the standard translation between topological models andKripke
frames. Given a topological space, we put w ≤ v for w ∈ Clo(v) to obtain a par-
tially ordered tree, which produces the Kripke frame. Conversely, given a Kripke
frame with a partial order, we consider the upward closed (or dually, downward
closed) branches of the tree as open sets (dually, closed sets) to construct a topol-
ogy. The topology we obtain from a given Kripke frame is an Alexandroff topology
which is closed under arbitrary intersections. In other words, since the Baaz’s frames
are already S4, the topology we obtain (after translating the given S4 frame) is an
Alexandroff topology. We refer the reader to [23] for a detailed treatment of the
subject from a modal logical perspective.

Interestingly, the fact thatwe obtainAlexandroff spaces in T Cω raises the question
of handling non-Alexandroff spaces in the topological models of Cω . This is a very
interesting question in-self, and can help us identify a variety of formalisms that are
weaker than Cω . In order not to digress from our current focus, we leave it for a
future work.

Now, we give the semantics of T Cω as follows. We abbreviate ¬0ϕ := ϕ, and
¬n+1ϕ := ¬(¬nϕ) for a ϕ which does not include a negation sign in the front.
Similarly, we assume that the valuation function V returns closed sets [4].
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w |= p iff ∀v.w ∈ Clo(v), v |= p for atomic p
iff w ∈ V (p)

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ
w |= ϕ ⊃ ψ iff ∀v.w ∈ Clo(v), v |= ϕ implies v |= ψ
w |= ¬1ϕ iff ¬1ϕ ∈ N (w) or ∃v.v ∈ Clo(w) and v �|= ϕ
w |= ¬n+2ϕ iff ¬n+2ϕ ∈ N (w) and w |= ¬nϕ or

∃v.v ∈ Clo(w) and v �|= ¬n+1ϕ
w |= ϕ1, . . . ,ϕn → iff ∀v.w ∈ Clo(v), v |= ϕ1, . . . , v |= ϕn imply

ψ1, . . . ,ψn v |= ψ1 or …or v |= ψn

Following the usual representation, we denote the extension of a formula ϕ in a
model M by [ϕ]M , and define it as follows [ϕ]M := {w : M, w |= ϕ}.

Nowwecandiscuss the satisfiability problem (SAT) and its complexity in logicCω

and K Cω . First of all, note that the complexity of SAT for basic modal logic is known
to be PSPACE-complete. In Kripkean frames, searching for a satisfying assignment
may not be efficient timewise, but it uses the space efficiently yielding a PSPACE-
complete complexity. This procedure can be thought of as searching the branches of
a Kripke model (which is a tree or a forest) starting from the root. Once you are done
with one branch, you do not need to remember it, thus you can reuse the same space.
And, the extent of the tree you need to search, i.e., the depth, solely depends on the
length of the formula. Therefore, the given formula determines the space you need
to check. In K Cω, the only issue is checking the satisfiability for negation. However,
a careful examination shows that it has a rather immediate solution. The case for ¬1

requires two operations: check whether a given ¬1 is in the image set of T at the
given state, and check if there exists a state that is accessible from the current state
with the desired condition. The latter part is PSPACE considering the standard modal
argument for SAT. The prior part is also polynomial—it is a sequential check for
membership. Moreover, one can easily construct a polynomial transformation from
modal SAT with topological semantics to K Cω satisfiability yielding the fact that
SAT for K Cω is also PSPACE. Considering ¬n as a nested (intuitionistic) modality,
one can come up with the obvious translation giving the PSPACE-completeness of
the satisfiability problem for K Cω . In order to show the complexity of T Cω , we need
to reduce it to K Cω . Yet, we already saw how to obtain a topological model given a
Kripke model, and this translation reduces K Cω to T Cω .

Now, based on the above-mentioned argument, and the efficient model transfor-
mations between topological spaces and Kripke frames which we discussed earlier,
it is immediate to observe that SAT for T Cω is also PSPACE-complete.

Theorem 19.2.2 The satisfiability problem for both K Cω and T Cω is PSPACE-
complete.

Corollary 19.2.3 Both K Cω and T Cω are decidable.

In his work, Baaz gave several results using Kripke semantics [3]. Here, we
observe that they hold in T Cω as well. Our aim is to clarify the use of topological
concepts in T Cω , andmake sure that the function N works as expected. The following
results will also exemplify the behavior of negation in T Cω .
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Proposition 19.2.4 w |= ϕ iff for all v such that w ∈ Clo(v), we have v |= ϕ.

Proof The proof is by induction on the length of the formula. The only interesting
case is the negation. We assume ϕ ≡ ¬1ψ. Then, let us suppose w |= ¬1ψ. By
definition, either ¬1ψ ∈ N (w) or there exists a x such that x ∈ Clo(w) and x �|= ψ.
Now, let v be such thatw ∈ Clo(v). Then, by the definition of N , we observe N (w) ⊆
N (v). Thus, ¬1ψ ∈ N (v). On the other hand, w ∈ Clo(v) implies that Clo(w) ⊆
Clo(v). Therefore, w ∈ Clo(w) ⊆ Clo(v) with v �|= ψ. Then, we have either ¬1ψ ∈
N (w) or there exists x such that x ∈ Clo(v) with x �|= ψ. Thus, v |= ¬1ψ.

The cases for ¬n+1 are similar using the induction hypothesis. �

Proposition 19.2.5 w �|= ϕ implies that there is no v ∈ Clo(w) such that v �|= ¬ϕ.

Proof Let w �|= ϕ. Toward a contradiction, we assume that there is a v ∈ Clo(w)

with v �|= ¬ϕ. On the other hand, by Proposition 19.2.4, v �|= ¬ϕ means that for all
w such that v ∈ Clo(w), we havew �|= ¬ϕ. Thus, we concludew �|= ϕ andw �|= ¬ϕ.
Contradiction. �

Proposition 19.2.6 w |= ¬¬ϕ → ϕ.

Proof We will show that w �|= ϕ implies w �|= ¬¬ϕ. Let w �|= ϕ. Then, by
Proposition 19.2.5, there is no v ∈ Clo(w) with v �|= ¬ϕ. Then, by definition of
¬2, we conclude that w �|= ¬¬ϕ. �

Substitution principle for negated formulas ¬ϕ ↔ ¬(ϕ ∧ ϕ) does not hold in
K Cω . Next, we observe that it does not hold in T Cω as well.

Proposition 19.2.7 ¬ϕ ↔ ¬(ϕ ∧ ϕ) is not valid.

Proof Let us take a statew such thatClo(w) ⊆ [ϕ] and¬ϕ ∈ N (w). Thus,w |= ¬ϕ.
We now stipulate further that ¬(ϕ ∧ ϕ) /∈ N (w) to get a countermodel. �

Proposition 19.2.8 w |=→ ϕ,¬ϕ.

Proof We recall that→ ϕ1, . . . ,ϕn means thatϕ1 ∨ · · · ∨ ϕn holds. Then, the result
follows from the axiomatization of Cω . �

For the completeness of our arguments in this work, we now present the seman-
tical counterpart of cut elimination. The proof is a straightforward manipulation of
formulas, hence, we skip it.

Proposition 19.2.9 w |= � → �,ϕ and w |= ϕ,� → � imply w |= �,

� → �,�.

We now state the soundness theorem without a proof.

Theorem 19.2.10 � ϕ → ψ implies |= ϕ → ψ.
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Baaz used Gentzen style sequent calculus to show the completeness of his system.
He then concluded that if� → � is not provable without cuts, there is a K Cω-Kripke
model M = 〈W,≤, v, T 〉 such that 0 ∈ W and 0 �|= �′ → �′ where�′ ≡ �,� and
�′ ≡ �,�. Namely, M �|= � → �. Here, 0 is the lowest top sequent in the reduction
tree of � → �.

Now, in order to show the completeness of our system T Cω , we will resort
to the model translation which we mentioned earlier. Given a K Cω model M =
〈W,≤ , v, T 〉, we can construct a T Cω model M ′ = 〈S,σ, V, N 〉 as follows. Let
S := W , and V := v. Now, we need to define the topology σ, and the open and
closed sets in σ. Define closed sets as the upsets, and observe that v ∈ Clo(w)when-
ever v ≤ w. For a tree model, it is easy to observe that the closed sets we defined
produces an Alexandroff topology, as we already observed. Furthermore, we put
N (w) := T (w). Therefore, given a T Cω model, we can effectively convert it to
K Cω which is known to be complete. This is the immediate method to show the
completeness of T Cω . Alternatively, we can start with the logic T Cω , and give a
topological completeness proof. This is what we achieve next.

For the completeness of T Cω , we use maximal nontrivial sets of formulas. A set
X is called trivial if every formula in the language is deducible from X , otherwise
it is called nontrivial. A nontrivial set X is called a maximal nontrivial set if ϕ /∈ X ,
then X ∪ {ϕ} is trivial, for an arbitrary formula ϕ.

We start by observing the following:

Proposition 19.2.11 If � is a maximal nontrivial set of formulas, then we have
� � ϕ iff ϕ ∈ �.

Using canonical sets, we construct the canonical T Cω model 〈S′,σ′, V ′, N ′〉.
Let us first start with the canonical topological space. The canonical topological
space is the pair 〈S′,σ′〉 where S′ is the set of all maximal nontrivial sets, and
σ′ is the set generated by the basis B = {¬̂ϕ : any formula ϕ} where we define
ϕ̂ := {s ′ ∈ S′ : ϕ ∈ s ′}. Here, our construction is very similar to the classical case:
instead of (classical) modal formula, we use negated formulas in the construction of
the canonical model (and its topology). The reason for this choice is the fact that in
T Cω negated formulas resort to the closure operator—similar to the modal operators
in the classical case.

In order to show that B is a basis for the topology σ′, we need to show that

1. For any U, U ′ ∈ B and any x ∈ U ∩ U ′, there is Ux ∈ B such that x ∈ Ux ⊆
U ∩ U ′,

2. For any x ∈ S′, there is U ∈ B with x ∈ U .

For the first item, we observe that ¬ϕ̂ ∧ χ = ¬̂ϕ ∧ ¬̂χ. Therefore, U ∩ U ′ ∈ B
which argues for finite intersection.

For the second item, we observe that ¬⊥ ∈ x for any maximal consistent set x in
the canonical T Cω . Therefore, for any x ∈ S′, there is a ¬̂⊥ ∈ B that includes x .

This argument shows that B is a basis for the topology of the canonical model.
Now, the valuation V ′ is defined in the standard way: V ′(p) := {s ′ ∈ S′ : p ∈ s ′}.

Similarly, we define N ′ from S′ to sets of formulas, and put, N ′(s ′) ⊆ N ′(t ′) if
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s ′ ∈ Clo(t ′) for s ′, t ′ ∈ S′. Additionally, we impose that N ′(s ′) ⊆ s ′ to handle the
negated formula correctly. Another way of looking at it is to include N ′(s ′) into s ′
in the construction of the maximal nontrivial set s ′. Therefore, we close maximally
consistent sets under logical connectives and also under the N ′ function. This simply
reflects how the negation is defined in T Cω .

The truth of classical Booleans are defined as usual in the canonical models. For
negation, we put the following.

s ′ |= ¬1ϕ iff ¬1ϕ ∈ N ′(s ′) or ∃t ′ ∈ Clo(s ′) such that t ′ �|= ϕ

For the truth lemma, we only need to observe that, s ′ |= ϕ if and only if ϕ ∈ s ′.
The standard Boolean cases are immediate. So, let us take ϕ = ¬1ψ for some ψ.

For “truth to membership” direction, if ¬1ψ ∈ N ′(s ′), then we are done as N ′(s ′) ⊆
s ′. Otherwise, we need to find a t ′ in Clo(s ′) which does not satisfy ψ. Since the
topologyσ is constructed using a basis with opens, we can select t ′ from the boundary
∂(s ′) which is not in the interior of the extension, but in the closure of the extension
by definition.

For instance, if the space is discrete and the boundary is empty, then we can take
any point from s ′ as each subset of the space is clopen (both closed and open) so
that Clo(s ′) = s ′ = Int(s ′). Therefore, let us here argue assuming that the boundary
is not empty (if it is, we still know what to do as described above).

Take such a t ′ ∈ ∂(s ′) such that t ′ �|= ψ. Then, by the induction hypothesis,ψ /∈ t ′.
The set t ′ is maximal and nontrivial, so ¬1ψ ∈ t ′. Recall that t ′ ∈ Clo(s ′), thus
¬1ψ ∈ Clo(s ′).

This was the direction from “truth to membership”. The direction from “mem-
bership to truth” is similar using some properties of closure operators, so we skip it.
Similarly, we leave the case ϕ = ¬n+2ψ to the reader as it only requires an inductive
proof.

After establishing the truth lemma, we have the following completeness result.

Theorem 19.2.12 For any set of formulas � in T Cω , if � |= ϕ then, � � ϕ.

Proof Assume � � ϕ. Then, � ∪ {¬ϕ} is nontrivial, and can be extended to a max-
imal nontrivial set �′. By the truth lemma, �′ |= ¬ϕ yielding �′ �|= ϕ. This is the
countermodel we were looking for. �

So far,we have showed thatBaaz’s results in K Cω can be carried over to T Cω with-
out much difficulty. This is achieved relatively easily as a consequence of the imme-
diate and effective translation between K Cω and T Cω , and the similarity between the
classical modalities and the da Costa negation operator. Such similarities between
classical modalities and paraconsistent operators were also addressed in some other
work [5, 6].
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19.2.2 Further Results

In this section, we reconsider T Cω models in various topological spaces, and inves-
tigate how topological properties and T Cω models interact. Here, our focus will
be separation axioms, regular spaces, and connected spaces. The main motivation
behind choosing these structures is the fact that the semantics of the negation opera-
tor in T Cω deals with the closure (and then indirectly, with the boundary) of the sets.
Thus, topological notions that are relevant to the boundary become our main subject
in this section.

We also remind the reader that our treatment is by no mean exhaustive. Various
other topological, mereotopological, and geometrical notions can further be inves-
tigated within the framework of da Costa logics or paraconsistent logics in general.
Nevertheless, in this work, we confine ourselves to the aforementioned issues, and
leave the rest for future work.

19.2.2.1 Separation Axioms

Let us first recall some of the well-known separation axioms for topological spaces.
Two points are called topologically indistinguishable if both have the same neighbor-
hoods. They are topologically distinguishable if they are not topologically indistin-
guishable. Indiscrete space (trivial topology) is perhaps the simplest example where
any two points are topologically indistinguishable. Moreover, two points are sep-
arated if each of the points has a neighborhood which is distinct from the other’s
neighborhoods. Two points x, y are distinct if x �= y.

Separation axioms present an interesting perspective to analyze paraconsistent
models. Traditionally, paraconsistent logics are known as the logics with truth value
gluts as opposed to intuitionistic logics which have truth value gaps. Theory of truth
value gluts suggests that somepropositions can havemultiple (including inconsistent)
truth values. Topological models then identifies the superimposed truth values with
the intersection of sets that denote the truth and falsity of logical formulas. Separation
axioms become relevant when we want to separate the superimposed truth values in
order to render the model and the formulas consistent.

Let us now define the separation axioms that we need. A topological space is
called

• T0 if any two distinct points in it are topologically distinguishable,
• T1 if any two distinct points in it are separated,
• R0 if any two topologically distinguishable points are separable,
• T2 if any two distinct points in it are separated by neighborhoods,
• T21/2 if any two distinct points in it are separated by closed neighborhoods.

While discussing the semantics of T Cω above, we made use of the relation w ∈
Clo(v) quite often. This relation is called the specialization order:w ≤ v if and only
if w ∈ Clo(v). It is a partial order if and only if the space is T0. In this case, if the
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relation≤ is symmetric, then the spacewe obtain isR0. Throughout the paper, wewill
call a model a Tx-model if its topological space is a Tx space for x ∈ {0, 1, 2, 21/2}.

We do not force T Cω models to beT1 models or evenR0 models. Then the natural
question is the following: Can we have T Cω models which are not even T0 or T1?

Proposition 19.2.13 Given a K Cω model M, the T Cω model M ′ obtained from M
is T0.

Proof Given a K Cω model M , the specialization order that we defined above, gen-
erates a T Cω model M ′. In this case, the topology we obtain in M ′ is an Alexandroff
topology as the specialization order of the Alexandroff topology is precisely the
partial order that comes from the Kripke model. Therefore, since the specialization
order is a preorder, the space we obtain is T0, so is M ′. �

InProposition 19.2.13, themodel M ′ is proved to beT0. Therefore, it isworthwhile
to note that M ′ is not necessarily T1. Alexandroff spaces are T1 if only if they are
discrete—each s having a neighborhood of {s} only [1].

Now, we focus onT21/2 spaces as the closed sets and closure operator play a central
role in paraconsistent semantics. Our main theorem is the following:

Theorem 19.2.14 Let M = 〈S,σ, V, N 〉 be a T21/2 T Cω model which admits true
contradictions, then N cannot be empty.

Proof In T Cω (and similarly in K Cω) models, N (or T ) function tracks the negated
formulas in an ad hoc way. In this fashion, nonemptiness of N means that the model
cannot have superimposition of truth values which can produce inconsistencies. Intu-
itively, this is because of the assumption of the separation axiom. Let us now see the
proof.

Let M = 〈S,σ, V, N 〉 be a T21/2 T Cω model. Assume N is empty. Let w be a
state where we have a true contradiction ϕ ∧ ¬ϕ for some ϕ. Thus, w |= ϕ, and
moreover, since N is empty, there is v ∈ Clo(w) such that v �|= ϕ. Since we are in a
T21/2 space, w and v must be separable. However, since v ∈ Clo(w), it means that v
is in the intersection of all closed sets in σ containingw. Thus, they are not separable
by closed neighborhoods. Contradiction. Thus, N cannot be empty, and such a point
v cannot exist in a T21/2 space that admit true contradictions. �

The contrapositive of Theorem 19.2.14 can also be useful, let us specify it here.

Proposition 19.2.15 Let M = 〈S,σ, V, N 〉 be a T Cω space with true contradic-
tions. If N is empty, then M cannot be T21/2.

In order to see the correctness of the above proposition in an example, we will
construct the following model. Now, under the assumption that N is empty, let us
consider a formula ϕ and its negation ¬ϕ. Then, we choose w,w′ in a way that
w ∈ [ϕ] and w′ ∈ [¬ϕ], and also that the only closed sets around w and w′ will be
[ϕ] and [¬ϕ], respectively. Let S = {1, 2, 3}, and σ = {∅, S, {1, 2}, {2, 3}, {2}}. Let
[ϕ] = {1, 2}, and [¬ϕ] = {2, 3}. (Consider the formula ϕ ∧ ¬ϕ at 2.) Then, observe
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that the points 1 and 3 are not separable by closed sets. Thus, this model cannot be
T21/2. However, if N was not empty, in an ad hoc way, we would have defined the
truth of negated formula¬ϕ in a way to overcome this issue by letting N (2) = {¬ϕ}.

Mortensen, in an earlier paper, investigated the connection between similar sepa-
ration axioms and paraconsistent theories where he made several observations about
discrete spaces, and T1 and T2 spaces [19].

Moreover, similar connections can be made between paraconsistent logics, topo-
logical semantics, and the topological properties of connectedness and continuity.
We refer the reader to [4] where such properties are studied in detail.

19.2.2.2 Regular Spaces

Regular (open) sets are the sets which are equal to the interior of their closure. They
play an important role not only in topology but also in mereotopology where the
relationship between parts and the whole is investigated [20].

Even if we do not dwell on it further in this paper, it is important to underline
that the algebra of closed sets and the topological models for paraconsistent logic
do have the same algebraic structure, they both are co-Heyting algebras. Co-Heyting
algebras are duals of Heyting algebras which were first proposed as the algebraic
counterpart of intuitionistic logics. Some region-based logics, on the other hand,
utilize bothHeyting and co-Heyting algebras [18, 22]. From an algebraic perspective,
we observe that regular sets play an important role in paraconsistency. Now we will
consider the matter from amodel theoretical perspective, and focus on T Cω . We start
with definitions.

Definition 19.2.16 Let 〈S,σ〉 be a topology. A subset X ⊆ S is called a regular open
set if X is equal to the interior of its closure, namely if X = Int(Clo(X)). Similarly,
a subset Y ⊆ S is called a regular closed set if Y is equal to the closure of its interior,
namely if Y = Clo(Int(Y )). We call a space regular open (closed) if all the open sets
(or dually, closed sets) are regular. A model is regular open (closed) if its topological
space is regular open (closed).

For example, regular open sets in the standard topology of R
2 are the open sets

with no “holes” or “cracks”. Also note that the complement of a regular open is a
regular closed and vice versa.

We now observe the following:

Proposition 19.2.17 Let M = 〈S,σ, V, N 〉 be a T Cω model with discrete topology
σ. If N = ∅, then we have w |= ¬ϕ if and only if w �|= ϕ, for all w ∈ S and for all ϕ.

Proof It is a well-known fact that in a discrete topology every subset is closed (or
open dually). In this proof, similar to our earlier remarks for the same issue (such
as in the proof of Theorem 19.2.14), we assume that N is empty. Let us see the
proof now.
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First, we assume that N is empty. Then, let us suppose, for an arbitrary w ∈ S, an
arbitrary formula ϕ, we have w |= ¬ϕ. Then, by definition, considering the discrete
topology and the emptiness of N , we havew �|= ϕ. Converse direction is also similar,
and we leave it to the reader. �

Clearly, the converse of the above statement is not necessarily true, as it is very
much possible to add “redundant” elements to N to make it nonempty.

19.2.2.3 Connectedness

A topological space is called connected if it cannot be written as the disjoint union of
two open sets. We define connected component as the maximal connected subset of a
given space.Moreover, in a connected topological space 〈S,σ〉, the only subsets with
empty boundary are S and ∅. This fact, together with the semantics of the negation,
plays an important role in T Cω .

Proposition 19.2.18 Let M = 〈S,σ, V, N 〉 be a T Cω model that admits a true
contradiction whose extension is in the topology. If the space is disconnected and
|M | > 1, then N cannot be empty.

Proof Proof follows from the fact that in disconnected spaces, there are sets with
empty boundary other than S itself and the empty set. So, we briefly mention the
proof idea here. Let a contradiction ϕ ∧ ¬ϕ satisfied in the model. Then, in this case,
the positive ϕ and negative ϕ conjuncts of the contradiction will lie in the different
connected components. However, if N is empty, it means that the extensions of each
conjunct is connected via the boundary—which creates the contradiction as the space
is assumed to be disconnected. �

Again, the contrapositive of the above theorem can help clarify the matter.

Proposition 19.2.19 If N is empty, and M admits true contradictions whose exten-
sions are in the topology, then M cannot be disconnected.

19.3 Topological First-Order Models T C∗
ω

The logic Cω can be extended to first-order level by introducing quantifiers, and the
resulting first-order da Costa logic is calledC∗

ω [7]. In his work, Baaz considered only
the propositional case for K Cω , and did not take the next step to introduce a Kripke
semantics for C∗

ω . Priest, later on presented a Kripke semantics and tableaux style
completeness for first-order da Costa logic [21]. Here, we introduce a topological
semantics for C∗

ω , and call our system T C∗
ω .

First, let us set a piece of notation. For a formula ϕ, we abbreviate ϕ◦ := ¬(ϕ ∧
¬ϕ). Moreover, we let, ϕ(1) := ϕ◦, ϕ(n) := ϕ(n−1) ∧ (ϕ(n−1))◦ for 2 ≤ n ≤ ω. We
will often abuse the notation, and write ϕn instead of ϕ(n) for easy reading.
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Let us now start with introducing the axioms for C∗
ω . The axioms of C∗

ω are the
axioms of Cω together with the following additional axioms [7].

1. ∀x F(x) → F(y).
2. F(y) → ∃x F(x).
3. ∀x(F(x))(n) → (∀x F(x))(n) for n ≤ ω.
4. ∀x(F(x))(n) → (∃x F(x))(n) for n ≤ ω.
5. Given F and F ′, if either one is obtained from the other by replacing bound vari-

ables or by suppressing vacuous quantification (without confusion of variables),
then F ↔ F ′ is an axiom.

The rules of inference are modus ponens, ϕ → F(x) ∴ ϕ → ∀x F(x), and
F(x) → ϕ ∴ ∃x F(x) → ϕ. Based on the given axiomatization, C∗

n is finitely trivi-
alizable for n < ω whileC∗

ω is not. Also, it is important to note thatC∗
0 is the classical

first-order logic.
Our goal now is to give a topological semantics for C∗

ω . In order to achieve this,
we will make use of denotational semantics akin to Awodey and Kishida’s work
on topological first-order classical modal logic. In their work, they used sheaves to
express the quantification domain of predicated modal formulas [2]. Their semantics
is elegant, and simply explains how we should read predication in a natural way in
the case of topological modal models. The use of denotational semantics will also be
helpful for T C∗

ω as it presents a quite natural way to handle the non-truth functional
behavior of the negation.

We start by introducing T C∗
ω models, and the related denotational interpretation

function.

Definition 19.3.1 Afirst-order topological da Costamodel T C∗
ω is given as the tuple

〈S, D, | · |, N ∗,σ〉 where S is a nonempty set with topology σ on it, ∅ �= D ⊆ S is
called the domain of individuals, | · | is a denotational interpretation function that
assigns denotations in S to formulas, and N ∗ is the extension of the propositional
negation function N to the first-order case defined over S.

Let us now give a brief explanation of T C∗
ω models here. The denotational inter-

pretation function | · | takes formulas (with or without free variables), and returns
individuals from S. Domain D, on the other hand, is given to precise the quantifi-
cation. Similar to first-order classical modal logic, we use the domain set in the
definition of the semantics of the quantifiers [11]. Here, we take D as a subset of S,
so that we can make use of the topology σ defined on S for the objects in the domain.
Alternatively, domain D and the topological space S can be taken as disjoint, and
there can be defined a homeomorphic map from D to S [2]. Nevertheless, for sim-
plicity, we choose the former. Finally, the function N ∗ is similar in purpose to the
propositional N , and makes the semantics for negation non-truth functional, which
we need in da Costa systems.

For variables x1, . . . , xn of appropriate arity n in the formula F , the vector x is the
function that maps all free variables in F to some objects.We denote the denotational
interpretation of F with x by |x; F |, which is a tuple in Sn . For the formulas with
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different arity for free variables, we simply adjust the arity of the function x for each
of its occurrence. The complement of |x; F | will be denoted by |x; F |c. By a slight
abuse of the notation, |x; N ∗| will denote set of denotations of the formulas returned
by N ∗. Therefore, |x; N ∗| := ⋃

F∈N ∗ |x; F |.
The variable assignment is denoted by v. The function v assigns objects of the

model to the variables present in a logical term, and this construction is a familiar
one from first-order logic matching individual atoms with objects in the model. For a
formula F , by a slight abuse of notation, v(F)will denote the objects assigned to the
variables of F . Moreover, we also define terms following the standard construction
in first-order logic.

As we have remarked earlier, da Costa negation, in both propositional and first-
order cases, is not truth functional. Note that there are, however, some paraconsistent
logics with topological semantics where negation behaves truth functionally [13]. In
such systems, the extension of each and every propositional variable is associated
with a closed set while this condition is not a requirement in the topological semantics
for classical modal logics. The reason for this is that in classical modal logics, only
modal formulas are forced to have open or closed extensions. Propositional formulas
do not necessarily have such extensions in classical case. Then, the negation in
paraconsistent logics with topological semantics is defined as the closure of the
complement [13]. The reason for this is quite immediate. While attempting to take
the negation of a given formula, the usual way is to consider the set theoretical
complement of the extension of the given formula. However, the complement of a
closed set (which is the extension of the given formula) may not be closed, thus,
may not be in the topology since the topology in question is a closed set topology.
Therefore, in order to maintain the closed set topological structure, negation needs
to be defined in that way to produce a closed set.

This idea, however, does not work in da Costa logics. For instance, assume that
we endorse the aforementioned definition of negation for T C∗

ω . Namely, consider the
following definition for the denotational interpretation of the negated formula ¬F
with respect to variables x : |x; ¬F | = Clo(Sn − |x; F |).

A closer inspection immediately reveals that the above semantics for negation is
indeed truth functional. In order to see the failure of this definition within the context
of T C∗

ω , consider the logically equivalent formulas ¬p and ¬(p ∧ p). Based on the
proposed semantics, the denotations of ¬p and ¬(p ∧ p) are necessarily the same.
However, in da Costa systems, recall that the extensions of both¬p and¬(p ∧ p) are
not necessarily identical. Therefore, the proposed (standard) topological semantics
for paraconsistency does not work for da Costa systems.

Here, we suggest a working topological semantics for C∗
ω .

• |x; c| ∈ S for a constant c,
• |x; F | ⊆ Sn for a n-place predicate F ,
In particular, take an atomic sentence F(t1, . . . , tn) with terms ti for 1 ≤ i ≤ n. If
d1, . . . , dn are the evaluation of the terms t1, . . . , tn under the variable assignment
v, then we have the following in S: |t; F(t1, . . . , tn)| = v(F)(v(t1), . . . v(tn)),

• |x; F ∧ G| = |x; F | ∩ |x; G|,
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• |x; F ∨ G| = |x; F | ∪ |x; G|,
• |x; ¬F | = |x; N ∗| ∪ Clo(|x; F |c),
• |x; ∃yF | = ⋃

d∈D |d, d; F | where d ∈ Dn ,
• |x; ∀yF | = ⋂

d∈D |d, d; F | where d ∈ Dn .

We can furthermore define the truth in a T C∗
ω model M . We say that a formula

F(x) is true in the denotational interpretation | · |, if |x; F | = S.
Let us now explicate the given semantics a bit further. The denotational semantics

for the negation ensures that the negated denotation is among the formulas determined
by N ∗ function. So, |x; N ∗| can be thought of as the collection of the denotations of
the formulas returned by N ∗. The closure operator Clo in the definition functions as
the classical (or standard) part of the semantics. Similarly, the denotational semantics
for the quantifier varies over the objects in the domain even though the denotation
of the formula in question will eventually be in S.

As an illustration, let us consider the denotational semantics of the formula
∃y(¬F ∧ F) with a variable x .

|x; ∃y(¬F ∧ F)| =
⋃

d∈D

|d, d ′; (¬F ∧ F)|

=
⋃

d∈D

{|d, d ′; ¬F | ∩ |d, d ′; F |}

=
⋃

d∈D

{(|d, d ′; N ∗| ∪ Clo(|d, d ′; F |c)) ∩ |d, d ′; F |}

=
⋃

d∈D

{(|d, d ′; N ∗| ∩ |d, d ′; F |) ∪ ∂(|d, d ′; F |)}

where ∂(·) is the topological boundary operator. In this example, the individuals
d ∈ D which exist and satisfy the contradictory formula F ∧ ¬F lie in the boundary
of the denotation of F , or in the intersection of the denotation of F and the denotation
of the formulas returned by N ∗.

Also, it is worth noting that quantified DeMorgan’s laws are not valid in da Costa
systems—even if the set theoretical De Morgan’s laws hold [9]. As an illustration,
we consider the following classical first-order logical equality ∀x Fx ↔ ¬∃x¬Fx .
Let us first see the denotation of ¬∃x¬Fx .

|x; ¬∃x¬Fx | = |d; N ∗| ∪ Clo(|d; ∃x¬Fx |c)
= |d; N ∗| ∪ Clo((∪d∈D|d; ¬F |)c)

= |d; N ∗| ∪ Clo((∪d∈D(|d; N ∗| ∪ Clo(|d; F |)c))c)

Therefore, if |d; N ∗| is not empty, we cannot generally obtain
⋂

d∈D |d; F |, which
is the denotation of ∀x Fx . Other quantified De Morgan laws can be given similar
arguments [10].
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Soundness of the axioms of T C∗
ω with respect to the given semantics above is a

straightforward symbolic manipulation. However, we will still consider some of the
axioms which are unique to da Costa systems, and show their soundness.

Now, as the first case, we take the following formula as an instantiation of the
axiom scheme (3) with n = 1.

∀x F1x → (∀x Fx)1

In order to have an idea of what to expect, let us first note the following logical
equalities.

∀x F1x = ∀x F◦x = ∀x¬(Fx ∧ ¬Fx)

and
(∀x Fx)1 = (∀x Fx)◦ = ¬(∀x Fx ∧ ¬∀x Fx).

So let us now assume, ∀x F1x , which is equivalent to ∀x .¬(Fx ∧ ¬Fx). Then,
we have the following:

|x; ∀x .F1x | = |x; ∀x .¬(Fx ∧ ¬Fx)|
=

⋂

d∈D

|d; ¬(Fx ∧ ¬Fx)|

=
⋂

d∈D

{|d; N∗| ∪ Clo(|d; Fx ∧ ¬Fx |c)}

=
⋂

d∈D

{|d; N∗| ∪ Clo((|d; Fx | ∩ |d; ¬Fx |)c)}

=
⋂

d∈D

{|d; N∗| ∪ Clo((|d; Fx | ∩ (|d; N∗| ∪ Clo(|d; Fx |c)))c)}

=
⋂

d∈D

{|d; N∗| ∪ Clo((|d; Fx | ∩ |d; N∗|) ∪ (|d; Fx | ∩ Clo(|d; Fx |c)))c)}

(as intersection operation commutes with closure operator)

=
⋂

d∈D

|d; N∗| ∪ ∩d∈DClo(|d; Fx | ∩ |d; N∗|)c ∪ (|d; Fx | ∩ Clo(|d; Fx |c))c))

=
⋂

d∈D

|d; N∗| ∪ Clo(∩d∈D |d; Fx | ∩ |d; N∗|)c ∪ ∩d∈D(|d; Fx | ∩ Clo(|d; Fx |c))c))

(as the interior of a set is its subset)

⊆ |d; N∗| ∪ Clo(∩d∈D |d; Fx |)c ∪ (∩d∈D(|d; Fx | ∩ Clo(|d; Fx |c))c))

⊆ |d; N∗| ∪ Clo(∩d∈D |d; Fx |)c ∪ ((|d; Fx | ∩ Clo ∩d∈D (|d; Fx |c))c))

⊆ |d; N∗| ∪ Clo(∩d∈D |d; Fx | ∩ ((|d; Fx | ∩ Clo ∩d∈D (|d; Fx |c)))
⊆ ¬(∀x Fx ∧ ¬∀x Fx)

⊆ (∀x Fx)1

Thus, we obtain ∀x F1x → (∀x Fx)1.
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As the second case, let us take the axiom scheme (4) instantiated with n = 1.
Thus, we consider the following implication,

∀x F1x → (∃x Fx)1

Now, below is what follows from the above statement.

|x; ∀x .F1x | = |x; ∀x .¬(Fx ∧ ¬Fx)|
=

⋂

d∈D

{|d; N∗| ∪ Clo(|d; Fx ∧ ¬Fx |c)}

=
⋂

d∈D

{|d; N∗| ∪ Clo(|d; Fx | ∩ |d; ¬Fx |)c}

=
⋂

d∈D

{|d; N∗| ∪ Clo(|d; Fx |c ∪ |d; ¬Fx |c)}

=
⋂

d∈D

{|d; N∗| ∪ Clo(|d; Fx |c ∪ (|d; N∗| ∪ Clo(|d; Fx |c))c))}

=
⋂

d∈D

{|d; N∗| ∪ Clo(|d; Fx |c ∪ (|d; N∗|c ∩ Int(|d; Fx |)))}

⊆
⋂

d∈D

|d; N∗| ∪ Clo(∩d∈D |d; Fx |c ∪ (∩d∈D |d; N∗|c ∩ Int(∩d∈D |d; Fx |)))

⊆ |d; N∗| ∪ Clo(∩d∈D |d; Fx |c ∪ (|d; N∗|c ∩ Int(∪d∈D |d; F |)))
by set theoretical De Morgan’s Laws

⊆ |d; N∗| ∪ Clo(∪d∈D |d; Fx | ∩ (|d; N∗| ∪ Clo(∪d∈D |d; F |c)c))

⊆ |d; N∗| ∪ Clo((∃x Fx ∧ ¬∃x Fx)c)

⊆ ¬(∃x Fx ∧ ¬∃x Fx)

⊆ (∃x Fx)1

Finally, we obtain ∀x F1x → (∃x Fx)1.
The remaining axioms can also be given rather straightforward arguments for

their soundness, thus we leave them to the reader.

∗

This was soundness. However, we still do not have a completeness result (or lack
thereof) for T C∗

ω . We leave it for further work.
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Philosophical Aspects and Applications of
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Chapter 20
Perceiving and Modelling Brightness
Contradictions Through the Study
of Brightness Illusions

Ashish Bakshi and Kuntal Ghosh

Abstract In this paper, we argue in the light of visual perceptual experience in
favour of the fact that true contradictions are very much perceivable and happen to
be an inherent part of the real world. We first describe the phenomenon of perception
of two contrary types of brightness illusions, termed as the brightness–contrast and
the brightness assimilation type illusions. Next, we present a model of brightness
induction which can envisage the above-mentioned contradictions in visual bright-
ness perception. The proposed model, called DDOG (Difference of Difference of
Gaussians) is based on two aspects. First, two Difference of Gaussians (DOG) func-
tions acting in opposition in two complementary channels, Magno & Parvo, in the
central visual pathway and second, a two-pass model of attentive vision. Although
the Oriented Difference of Gaussian (ODOG) model of Blakeslee et al. (Vis Res
45:607–615, 2005) can already account for most of these types of illusions, our
model is significantly simpler, more consistent than ODOG and biologically more
plausible as a neurocomputational model for explaining brightness contradictions in
the brain.
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20.1 Introduction

One of the most intriguing questions raised by sections of the paraconsistency
research community, is whether contradictions are at all perceivable through our
sense organs, or in other words, whether true contradictions do actually exist in the
observable world [1, 2, 16]. The present work attempts to address this issue in the
light of what it claims to be one such class of perceivable contradictions in visual
perception. This may be referred to as the occurrence of brightness contradictions.
Like the example from Graham Priest, in which by wearing filters of the oppos-
ing colours, viz. red and green on a special pair of glasses, a colour contradiction
becomes perceivable, where red may be seen as green and green as red [1]—here
the same pair of objects that appear dark and bright, respectively, because of their
surroundings, may be sensed oppositely, in apparently unaffected surroundings, thus
giving rise to brightness contradiction.

Graham Priest [16] has argued that the observable world is consistent, but for the
odd visual illusion. Herewe attempt to demonstrate that on the contrary, the existence
of the visual illusions actually provide the indication that the observable world is both
consistent and inconsistent, or in other words it is neither consistent nor inconsistent;
theworld is what it is. The eye–brain system is one sense organ system throughwhich
we perceive the world and build up an opinion of it. Accordingly, like any other
system, it is endowed with its own contradictions which are expressed through such
phenomenon as brightness contradictions which may be looked upon as an example
paraconsistency too. There are other well-known visual contradictions leading to
paraconsistent statements like for instance, looking at a 170cmwoman one concludes
that she is both tall and not tall, a purplish blue object is both blue and not blue to the
observer and so on [2]. The very observation that the observable real world do not
display true contradictions is itself contradictory. Let us take the case of subatomic
world. Is it observable and perceivable? The answer will be no if we consider only
our five sense organs, but the answer is yes if these sense organs or one or some of
them take the help of some sophisticated instruments from experimental physics, and
in that world under the observation through such instruments, one shall come across
contradictory experiences when compared with those perceived and observed by the
five sense organs only. This is the well-known contradiction between classical and
quantum physics. Numerous such examples can be given that historically gave rise to
such crises in physics like the experimental observations of Rutherford, Becquerel,
Roentgen and so on. But none of these should actually be considered as crises, since
it is the experience of such contradictions only that give birth to new theories which
in turn again lead to new contradictions in observations with the passage of time,
seeking further development of theory. Hence contradictions are an inherent part of
the world. The present work on brightness contradictions also demonstrates the need
to develop new theories in visual psychophysics compared to the present ones. The
paper tries to propose one such neurobiologically plausible theory for explaining the
contradictions in brightness perception.
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Brightness contradictions are found to occur in a type of visual illusions in which
various surfaces of perfectly equal luminance have different apparent brightness
[9, 12]. It so seems that, what apparent brightness those surfaces will have, depends
on the nature of the rest of the field of view. A few examples of such illusions are
shown in Fig. 20.1: the Simultaneous brightness–contrast (SBC) illusion, the White
effect, the Checkerboard illusion and the Grating induction (GI) illusion. In all these
illusions the grey regions have the same real intensity but apparently look differently
bright, depending on their surroundings and on the background.

There are two basic and contrary types of brightness illusions. These are the
brightness–contrast and brightness assimilation types. In the brightness–contrast
type, the apparent brightness of a region changes in the opposite direction to the
brightness of its surrounding regions. This increases the apparent contrast of the
region with respect to its surroundings. Examples of this include the SBC illusion
(Fig. 20.1a) and the GI illusion (Fig. 20.1d). In the SBC stimulus, the left-hand side
grey patch, being on a brighter background, looks darker, compared to the right-hand
side grey patch which has a darker surrounding, though both the grey patches are
of same luminance. Similarly, in the GI illusion, the uniform grey test patch in the
foreground looks brighter over dark stripes and darker over white stripes. Therefore,
the grating in the background appears to have been inducted in opposite phase into
the uniform foreground patch. On the other hand, in the brightness assimilation type
of illusions, the apparent brightness of a region changes in the same direction as

Fig. 20.1 Some brightness induction illusions. a Simultaneous brightness–contrast illusion. b
White effect. c Checkerboard illusion. d Grating induction illusion
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its surroundings. This reduces the apparent contrast of the region with respect to
its surroundings. Examples of this include the White effect [21] (Fig. 20.1b) and
the Checkerboard illusion (Fig. 20.1c). In the White effect, the test patch on the
left, shares a brighter neighbourhood to a greater extent than that on the right, and
yet appears brighter than the latter, which is contrary to the previously mentioned
brightness–contrast phenomenon. Same is the case for the two grey patches in the
Checkerboard illusion. In both Fig. 20.1b, c the grey patch on the left appears brighter
than the grey patch on the right.

Why does the human brain perceive brightness illusions of such opposing natures
and what factors influence the type of illusion perceived, is still unknown. It is also
possible to gradually transform the input stimulus in a continuous fashion so that the
illusion changes from one type to the other. Howe’s stimulus represents an interim
position in one such type of smooth transition in which the White effect can be
smoothly converted into SBC [4, 11].

20.2 Modelling Brightness Induction Illusions

Traditionally, some of these illusions have been explained using a spatial filtering
function applied on the input stimulus. Such models have been supported by the
experimental observation of lateral inhibition within the retina of the eye and the
LGN [19]. Lateral inhibition is the phenomenon inwhich the nerve response of a spot
of light falling on the retina is inhibited by a neighbouring spot of light falling within
a zone known as the receptive field of the original nerve cell. Lateral inhibition can be
modelled using the convolution operation in signal processing. The image falling on
the eye can be considered as the input signal. The response produced by the receptor
nerves is the output signal. Using a convolution function, which takes positive values
at the centre and negative values at the surroundings, we can simulate the effect of
lateral inhibition on the response signal. Thus a strong signal on the surrounding
parts will inhibit the response signal at the centre. A typical spatial filtering function,
expressed here in one dimension for simplicity, that has been frequently used to
model lateral inhibition is the DOG function defined as:

DOG(x; A1,A2,σ1,σ2) = A1exp(−x2/σ2
1) − A2exp(−x2/σ2

2) (20.1)

The parameters σ1 , σ2 represent spatially the widths of the two Gaussian functions,
and A1, A2 represent the maximum responses in the central and the surround regions,
respectively. When σ2 > σ1 and A1 > A2, the DOG function looks as shown in
Fig. 20.2. This function has a positive central region (spatially limited by σ1) and a
negative value in the surrounding regions (limited by σ2).

Although lateral inhibition can partially explain some brightness–contrast illu-
sions such as SBC, it cannot explain brightness assimilation illusions such as the
White effect. In fact, any simple linear spatial filtering algorithmhas not yet explained
the opposing natures of various brightness illusions simultaneously. The most
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Fig. 20.2 Typical shape of
the DOG function. The
x-axis is the spatial distance
from a given point. The
y-axis is the response
produced at the origin by a
spot of light falling at a
distance x from the origin

successful attempt in the direction of explaining brightness contradictions in visual
perception has been the Oriented DOG (ODOG) model of [4]. The ODOG model
consists of a set of 42 anisotropic DOG functions with seven different length scales
and six different orientation directions. The outputs from the ODOG filters are then
nonlinearly combined to produce the final output. But the ODOG algorithm has its
own weaknesses and is computationally complex and also has no known neural cor-
relate, i.e. biological analogue in the brain [12]. We describe below our attempt to
model brightness induction phenomena, by the use of what we have termed as the
DDOG function (Difference of Difference of Gaussians). Hence we may call our
model the DDOG model.

20.3 Description of DDOG Model

We have combined the DOG function, as expressed in Eq.20.1, with another DOG
function each having different spatial widths. This we term as the Difference of DOG
function (DDOG).

The DDOG function is a difference of two DOG functions:

DDOG(x, y; A1,A2,A3,A4,σ1,σ2,σ3,σ4)

= DOG(x, y; A1,A2,σ1,σ2) − DOG(x, y; A3,A4,σ3,σ4) (20.2)

We shall use two different versions of the DDOG function to explain the above-
mentioned contrary behaviour of brightness–contrast and brightness induction. Each
of the two versions has a different set of parameter values A1 , A2 , A3 , A4, etc.

The two sets of DDOG functions are called the P-channel andM-channel, respec-
tively, (explained later) and differ only by the values of the coefficients A1, A2, A3, A4

and the spatial sampling interval used to implement the digital filters. The parameter
values used are summarized in Table20.1.

We take σ1 =0.7, σ2 =3σ1, σ3 =3σ1, σ4 =9.3σ1 for both filters. These parameter
values have been arrived at through trial and error based on several neurobiolog-
ical inputs related to low-level vision [6] that justifies the combination of a DOG
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Table 20.1 Parameter values of DDOG filter

A1 A2 A3 A4 Sampling
interval

M-channel 10 0.5 0.5 0.07 0.5

P-channel 10 0.25 0.25 0.01 0.25

representing a very localized receptive field (which is the first DOG on the right-
hand side of Eq. (20.2), above) with another DOG that represents a comparatively
wider receptive field (the other DOG in Eq. (20.2)). Some other neurophysiologi-
cal inspirations, like the values of sampling interval, will be elaborated later in this
section. These values mostly work only for spatial widths between 10 and 30 pixels
in size, demonstrations of which have been shown in this paper. For very large or
very small sizes these parameter values will have to be changed appropriately. This
has also been explained later in this paper through appropriate plots.

The M and P filters are graphically shown and compared in Fig. 20.3. It is to be
noticed that although the M/P filters in Fig. 20.3a roughly look just like the DOG
function (Fig. 20.2), there are small but crucial differences, too. The M/P filter func-
tions are found to cut the x-axis at four points whereas DOG cuts the x-axis only at
two points. This is clearly seen in Fig. 20.3b, which represents magnified views of the
x-axis region of Fig. 20.3a. The M/P filters have five local extrema unlike the DOG,

Fig. 20.3 a Graphs of P-&M-channel filter functions (superimposed for comparison). bMagnified
view of same graphs. c Frequency domain graphs
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which has only three local extrema, although the local maxima farthest from the
origin are so small that they are not visible in Fig. 20.3a, and almost remains so for P
filter, even in Fig. 20.3b. Figure20.3c displays the frequency response curves of M&
P channels respectively. Even though the frequency response curves largely resem-
ble a sort of combination, of a low-pass and a band-pass filters but the frequency
response of M-channel shows an extra depression at very low frequencies. These
differences turn out to be important for our model to work properly in explaining
brightness contradictions.

It has previously been observed by [6–8] that some brightness illusions could
be explained by a linear combination of Gaussians (called the ECRF filter) with
certain parameter values while some other brightness illusions could be explained
by different parameter values. But the decision of when to apply which filter has
to be made by the user in the ECRF model. Our new model, here, builds upon the
above-mentioned works by Ghosh et al. by dynamically combining the M-channel
and P-channel functions in a proportion which itself is a function of the input image.
In this way our algorithm is effectively nonlinear in nature. With our model we have
been able to explain both the SBC and White effect illusions through an automated
algorithm. Our algorithm also uses isotropic filters, so that if the input stimulus is
rotated by certain angle then the output also rotates by the same angle. The simplicity
of our model also makes it a much more plausible model for the neural networks
involved with low-level vision. The method of combination of the above-mentioned
two sets of filters is inspired by a two-pass model of attentive vision according to
which the visual process is divided into two stages [5, 10], based on the anatomy of
the parallel pathways in the central visual system [15]. In the light of this proposed
model, in the first stage called vision at a glance, the brain first interprets the contents
of themagnocellular pathway. If it can find sufficient detail in this stage then it mostly
ignores the contents of the parvocellular pathway,which is called visionwith scrutiny.
If it cannot find sufficient detail then it gives more importance to this second stage. In
this stage the brain examines the contents of the parvocellular pathway to find further
details in those regions of the Magno output where sufficient details were not found.
It is well known that the parvocellular pathway carries much more detail than the
magnocellular pathway. But the magnocellular pathway can carry information much
faster than the parvocellular pathway and therefore it is processed in the first stage of
the process. In ourmodelwe implement themagnocellular and parvocellular pathway
using the M and P filters as described in Table20.1 above. These two channels vary
only slightly in the values of their coefficients, but a major difference between them
is in the sampling interval used to implement the filters digitally. The M-channel
has a larger sampling interval reflecting the fact that the magnocellular pathway has
lower spatial resolution whereas the P-channel has much finer spatial resolution just
as in the biological visual system [15]. So the above-mentioned two-stage process
can be described as follows:
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If
(the initial M-channel output identifies that the background around
the test patch is uniform)

Then
the brightness percept is formed mostly by contribution from P.

Else
M-channel contributes maximally to produce the final percept.

The condition of background uniformity under the If clause can be implemented
in a variety of ways.We take recourse to a very simple way of evaluating background
uniformity based on Marr–Hildreth’s operator [14] that is supposed to produce the
raw primal sketch in the primary visual cortex. First, we calculate the Laplacian at
every pixel of the M-channel output image and take its squared value. This gives
us a positive number at every pixel. We then compute its average value per pixel.
This gives us a single positive number λ for every image. If this number λ is very
low then the background must be very uniform and therefore the P-channel must
play the major role to determine the output. On the other hand if λ is large then the
background must be highly non-uniform. So the M-channel must be more important
to form the output. Instead of choosing any threshold value of λ to simply switch
from P- to M-channel, we thus choose to have a more gradual transition from P to
M by linearly combining both the M-output and the P-output in some proportion
f (λ) depending on λ. f (λ) must be such that if λ is small the proportion of M is
small whereas if λ is high then the proportion of M is high. After trial and error we
therefore chose the following form of f (λ) (Fig. 20.4):

f (λ) = λ/(λ + 4) (20.3)

Therefore, the final output is determined by the following equation:

FINAL OUTPUT = f (λ) ∗ (M-OUTPUT) + (1 − f (λ)) ∗ (P-OUTPUT) (20.4)

Fig. 20.4 Graph of the function f (λ) = λ/(λ + 4)
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20.4 Results

The results shown in this section were produced using the space constant values,
σ1 =0.7, σ2 =3σ1, σ3 =3σ1, σ4 =9.3σ1.We tried various values of σ1 before settling
at the value of 0.7, as this value seems to work, more or less, for all illusions. If the
length scale (i.e. strip width for White effect, patch length for SBC, grating period
for the grating illusion, etc.) of the input stimulus is changed then σ1 also needs to be
changed appropriately. Other space constants, i.e. σ2, σ3 and σ4 are kept in constant
proportion to σ1. For the purpose of illustration, we show below how the results vary
with typical length scale, in the cases of White’s illusion and SBC.

The DDOG algorithm was implemented in the language C whereas for ODOG
we have used Alan Robinson’s MATLAB implementation [17, 18]. The same input
images were fed into the two algorithms to produce the results shown in this section.
Below we show some input stimuli and the corresponding brightness profiles of both
input and outputs.

20.4.1 White Effect

The image in Fig. 20.5b shows the output profile of our model when applied to the
stimulus in Fig. 20.5a, which shows the White effect. The input profile has also been
shown for comparison. It is well known and can also be seen in Fig. 20.5a that in
White’s illusion the grey patch over a black stripe appears brighter than the grey
patch over a white stripe. This is correctly predicted by the DDOG filter, as shown
in Fig. 20.5b. We can also observe that, as expected, the brightness of the patches
has shifted in the same direction as the stripes on either sides of the patches, i.e.
brightness has been assimilated. Figure20.5c shows the ODOG output profile for
the image in Fig. 20.5a. The ODOG filter also correctly predicts the direction of
brightness change for the two grey patches. The output brightness levels of the grey
patches, although in the correct direction, are less pronounced in the ODOG model
than in the DDOG model (Fig. 20.5c).

As already stated, the result shown in Fig. 20.5b correspond to the space constant
values of σ1 =0.7, σ2 =3σ1, σ3 =3σ1, σ4 =9.3σ1. The length scale of the input
stimulus in this case happens to be 16 pixels. If a different length scale input is used
we do not always get our desired output. For example, for the values of the space
constants as given above, if we plot the grey patch intensities of the output as a
function of the length scale, then we obtain a graph as shown in Fig. 20.5d. It can
be seen from this graph that the brightness assimilation effect is more pronounced
at some length scales while being very small at other length scales. This implies that
our algorithm gives good results only for a certain range of length scales. This fact
is even clearer for the SBC illusion.
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Fig. 20.5 a Input stimulus for the White effect. b Output profile of our model (green) and the input
profile (red). c Output profile of ODOG model (red) and input profile (dotted blue). d Graph of the
grey patch intensities with our proposed model as a function of input length scale (strip width). Left
grey patch is green while the right grey patch is red

20.4.2 SBC

The image in Fig. 20.6b shows the output result of our model for the SBC stimulus
in Fig. 20.6a. As expected we get a brightness–contrast effect, i.e. the patch with a
brighter surrounding looks darker while the patch with a darker surrounding looks
brighter. This is also reflected in the DDOG output profile shown in Fig. 20.6b where
the predicted brightness level for the grey patch on bright background is lower than
the other grey patch. The ODOG output shown in Fig. 20.6c also shows the same
brightness–contrast effect, i.e. the brightness level of the grey patch on black back-
ground is higher than its counterpart. Hence in the case of SBC illusion, both ODOG
and DDOG produce equally good results.

Similarly as in Fig. 20.5d above, Fig. 20.6d shows the variance of patch intensities
as a function of length scale, for the space constant values given above. It can be
seen that we get desirable results (i.e. in accordance with brightness–contrast) only
for length scales between 10 and 30 pixels. Beyond this range the space constants
need to be changed, since the direction of brightness induction is not found to change
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Fig. 20.6 a Input stimulus of the SBC illusion. b Output profile of our model (green) and the input
profile (red). c Output profile of ODOG model (red) and input profile (dotted blue). d Graph of the
grey patch intensities as a function of input length scale (square size). Left grey patch is red while
the right grey patch is green

beyond this range, as is seen in the graph. It is to be noted that this range has already
been found to work perfect for the contrary type of illusion also, i.e. White effect as
evident from Fig. 20.5d.

20.4.3 Checkerboard

The Checkerboard illusion shows a brightness-assimilation effect as seen in
Fig. 20.7a. The Checkerboard illusion is known to be a brightness assimilation illu-
sion, i.e. the grey patch surrounded by white squares appears brighter than the grey
square surrounded by black squares. The output of the DDOG model, as shown in
Fig. 20.7b, shows an overall shift in patch brightness in the same direction as the
surroundings, although the amount of shift is quite small. In the case of the Checker-
board illusion the ODOG output shows a shift in the brightness levels of the grey
patches in the opposite direction as their surroundings, although the shift is small in
magnitude. Thus the ODOG here clearly fails to explain the Checkerboard illusion,
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Fig. 20.7 a Input stimulus of the Checkerboard illusion. b Output profile of our model (green) and
the input profile (red). c Output profile of ODOG model (red) and input profile (dotted blue)

and incorrecly predicts a brightness–contrast effect. The proposed DDOG model
therefore, for the case of the Checkerboard illusion, performs better than the ODOG
model.

20.4.4 Sine Grating Induction

The Sine grating stimulus as shown in Fig. 20.8a consists of a sinusoidally varying
background over which a thin uniformly grey strip is placed. The grey patch shows
an apparent brightness that varies in the opposite direction as the background bright-
ness. Therefore, this is a brightness–contrast type of illusion. The output profile of
our model as shown in Fig. 20.8b correctly shows the background sinusoid peaks
coinciding with the output troughs and vice versa. The ODOG model also success-
fully explains this illusion, as is evident fromFig. 20.8c, where the peaks of the output
profile coincide with the troughs of the input profile.
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Fig. 20.8 a Input stimulus of the Sine grating illusion. bOutput profile of ourmodel (green) and the
background sinusoid profile (red). c Output profile of ODOG model (red) and background profile
(dotted blue)

20.4.5 Howe’s Illusion

Howe’s illusion [11] represents an interim stage in a gradual transition of the White
effect into the SBC illusion [4] (Fig. 20.9c). As the stimulus gradually changes from
White’s illusion to SBC (Fig. 20.9a–g), the illusory effect also changes gradually
from brightness assimilation to brightness–contrast. In particular it must be noted
that during the transition the left and the right edges of both the grey patches, which
form the major portion of the edge boundary, do not change any colour. Only the top
and bottom edges, which form a minor portion of the edge boundary, change their
colour. Yet the apparent brightness of the two grey patches gets inverted. Fig. 20.9h
plots theDDOGpredicted brightness of the twogrey patcheswith respect to transition
stage. The DDOG predicted that intensity curves reflect the observed crossover in
brightness of the two grey patches. This can also be seen in the ODOG predicted
intensity plots (Fig. 20.9i). Therefore for this illusion also, the DDOG model is just
as good as the ODOG model.
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Fig. 20.9 a–g Howe’s transition from White effect to SBC. h Plot of output intensities for our
model. i Plot of output intensities for ODOG model

20.5 Discussion and Conclusions

In this work, we have simultaneously dealt with two distinct but highly correlated
domains, viz. visual psychophysics and neurobiophysics in general, and correspond-
ingly, brightness perception and receptive field structure in particular. While thus
proposing an alternative neurophysiologically plausible model of perceiving bright-
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ness contradictions, we have actually expounded the concept that, not only are con-
tradictions real, but they actually represent the mode and mechanism by which we
perceive the visual world. Let us consider the phenomenon of lateral inhibition in
receptive field for instance. It consists of two oppositely acting concentric regions the
excitatory centre and the inhibitory surround, that has been modelled by the physi-
ologists by two Gaussian functions in opposite phase. Such a DOG model, we have
seen, though capable of explaining brightness–contrast, cannot predict the brightness
assimilation. We have here proposed the existence of a higher level of contradiction
in the visual system to provide a unified explanation to these two contrary types of
brightness phenomena. The proposed model envisages two DOGs acting in opposi-
tion to each other, which we call the DDOG model. In fact, neurobiologically, these
two opposing DOGs may be looked upon as the neural correlates of the two opposite
types of neurons called the on-centre cell and the off-centre cells actually existing
in different layers of the eye–brain system, with the former having an excitatory
centre and inhibitory surround that is vice versa for the later. Neuroscientists have
pointed out several times that such on–off type of contradictions are present through-
out in visual computational process having different other manifestations [3]. One
such manifestation has been mentioned in the present paper too. These are the mag-
nocellular (M) and parvocellular (P) channels which represent two complimentary
pathways in visual signal processing. The former comprises of parasol neurons with
large receptive fields, high temporal and low spatial and colour sensitivity. The latter
comprising what are called the midget neurons represent just the opposite character-
istics. Some of these facts and also the fact that the former channel (M) is having a
much higher signal conduction velocity compared to the later (P), has actually been
utilized in our proposed model in fixing the role of M-channel as the candidate for
the initial vision at a glance in the 2-pass mechanism.

The ODOGmodel also cannot account for the Checkerboard illusion, as shown in
a previous section, where ODOG predicts brightness–contrast instead of brightness
assimilation. Although many parameter values of our model are yet to be substan-
tiated strongly from neurophysiological data, we have been able to define a scale
range, within which, the DDOG model, works at least as good as ODOG in most
cases, and better than ODOG in some cases such as the Checkerboard illusion.

The ODOG filter uses 42 DOGs of varying widths and orientations. The fact that
ODOG has filters involving seven different length scales suggests that it will require
several layers of ganglia to implement ODOGwith neurons and therefore is unlikely
to be a model of low-level vision. Indeed as pointed out by [12] there is no known
physiological analogue, i.e. neural correlate of theODOGfilter. This is especially true
for the contrast normalization step of the ODOGfilter, which is primarily responsible
for producing the response to brightness assimilation illusions (e.g. White effect).
On the other hand, compared to the ODOG filter, the DDOG filter has the distinct
advantage of being much simpler with far fewer number of DOG filters. DDOG
only uses 4 DOGs, 2 each for the M- and P-channels. Also, the DOG-like centre–
surround response profiles have long been known to be present in neural responses
[19]. So a difference of two DOGs can easily be performed within low-level vision.
Even the background uniformity detection step can easily be performed with DOG
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functions since the LOG-DOG equivalence has already been shown by [14] and
others [6]. The DDOG model is therefore not only neurobiologically plausible, it
substantiates the fact pointed out by several neuroscientists, like Rudolfo Llinas and
Mriganka Sur that, computations in nature in general, and also the brain in particular,
are actually carried out through a series of contradictions only [13], and that there
is nothing ‘intrinsically visual about visual thalamus and cortex’ in the brain [20].
The two DOGs in the DDOG model, represent a unity of opposites, with variable
degree of opposition (as indicated by the parameters in Table20.1), such variability
being responsible for giving birth yet again to two opposite mechanisms, viz. the M-
and P-channels in the central visual pathway and so on. Thus, through a continuous
process of contradiction, builds up our perception of the world which itself is always
in a state of change and hence always in contradiction.
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Chapter 21
Truth, Trivialism, and Perceptual Illusions

Otávio Bueno

Abstract Dialetheism is the view according to which some contradictions (i.e.,
statements of the form, A and not-A) are true. In this paper, I discuss three strategies
to block dialetheism: (i) Contradictions cannot be true because some theories of truth
preclude them from emerging. (ii) Contradictions cannot be true because we cannot
see what it is like to perceive them. Although that does not undercut the possibility
that there are true contradictions that we cannot perceive, it makes their introduction
a genuine cost. (iii) Contradictions cannot be true because if they were, we would
end up sliding down into believing that everything is true (trivialism). Even if the
dialetheist is not committed to that slippery slope, it is crucial that the dialetheist
establishes that trivialism is unacceptable; but it is not clear how that could be done
successfully. Graham Priest has considered these strategies (in his Doubt Truth to be
a Liar), but I argue that none of his responses successfully block them.
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21.1 Introduction

According to dialetheism, some contradictions that is, statements of the form A and
not-A are true (Priest [14, 15]). Few would be naturally disposed to agree with the
view, but Graham Priest has defended it with great ingenuity and care. And Priest
is certainly right in emphasizing the significant role that inconsistency plays in our
understanding of logic, rationality, and various methodological issues. Even if you
are not prepared to follow Priest all the way down, and believe that there are true
contradictions, the encounter with the dialetheist is bound to make you rethink some
of your deepest held assumptions.
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It is not easy to argue with dialetheists, and some, such as David Lewis, have
noted that one cannot argue against them, since there is no foothold on uncontested
ground (Lewis [12]). Whether this is right or not is not an issue I need to address here
(see, e.g., Bueno and Colyvan [5]). What I would like to explore are some strategies
in terms of which one could resist dialetheism. Priest has considered them in Doubt
Truth to Be a Liar (Priest [14]), but it is not clear tome that he has adequately blocked
them. In particular, I will discuss three such strategies:

(a) First strategy: Contradictions cannot be true because some theories of truth
preclude them from emerging. A serious commitment to these theories rules out
the commitment to dialetheism.

(b) Second strategy: Contradictions cannot be true because we cannot see what is
like to perceive them. Although that does not undercut the possibility that there
are true contradictions that we cannot perceive, it makes their introduction a
genuine cost.

(c) Third strategy: Contradictions cannot be true because if they were, we would
end up sliding down into believing that everything is true (trivialism). Even if the
dialetheist is not committed to that slippery slope, it is crucial that the dialetheist
establishes that trivialism is unacceptable. But it is not clear how that could be
done successfully.

Let me consider each of these strategies in turn.

21.2 First Strategy: Resisting True Contradictions from
Some Theories of Truth

Here is a line of argument that someone who is committed to certain theories of
truth could invoke in order to resist dialetheism. Consider the traditional coherence
theorist who believes that truth is ultimately a matter of having a coherent belief
system. There is, of course, the familiar issue as to whether this is indeed an account
of truth or rather an account of justification. However the issue is resolved, the
traditional coherence theorist would insist that there are independent reasons to think
that consistency is a necessary component in a coherent system. On the traditional
coherence picture, without consistency, we obtain triviality, and a trivial system—
in which everything is true—would not be coherent, since it would both have and
lack every conceivable property. This is a good reason for the traditional coherence
theorist to keep consistency as a requirement. In otherwords, given that the traditional
coherence theorist has no independent reason to believe that a coherent belief system
can be inconsistent, or thatwe can be justified in believing in inconsistent systems, the
coherence theorist has no reason to entertain the possibility of inconsistent coherent
systems. This provides the resources for the traditional coherence theorist to avoid
being committed to dialetheism.



21 Truth, Trivialism, and Perceptual Illusions 467

Of course, the traditional coherence theorist did not have any knowledge of para-
consistent logics. Such logics would only be explicitly developed much later. Con-
sider then an enlightened coherence theorist, who is now aware that inconsistency
and triviality should be distinguished. With a paraconsistent logic in place, an incon-
sistent system need not be trivial. There is no need to keep consistency as a necessary
requirement for a coherent system if what we really want to avoid is triviality. Is the
enlightened coherence theorist a dialetheist?

Not necessarily. After all, even though an inconsistent coherent system is enter-
tained, the enlightened coherence theorist need not be committed to the conclusion
that there are true contradictions. Strictly speaking, in a coherence theory, truth is a
property of overall systems rather than individual statements. Thus, even though an
inconsistent coherent system may be true, on the coherence theory it does not follow
that there are true contradictions.

The idea is that the enlightened coherence theorist can resist dialetheism without
begging the question. At no point has the enlightened coherence theorist assumed
that contradictions cannot be true. In fact, given that a paraconsistent logic has been
invoked, the central logical resource for dialetheism is in place. So, the dialethe-
ist can no longer complain that the position has been illegitimately excluded from
consideration. Rather, the enlightened coherence theorist has an argument to resist
dialetheism, since on her conception truth (or justification) is a property of whole
systems, not of individual statements.

It may be objected that this response is not adequate. After all, what is at issue now
is whether according to the enlightened coherence theorist there are inconsistent but
true coherent systems. So the issue has moved to the level of whole systems rather
than particular statements. But are there reasons to think such systems exist in the
first place? Nothing from the enlightened coherence account—as an account of truth
(or justification)—settles the matter. The world would have to be such that it allowed
for true but inconsistent coherent systems. But the argument now turns on how the
world is rather than on what is required from a theory of truth. So a very different
kind of argument than the one provided by the dialetheist needs to be offered.

But is this not precisely the dialetheist’s argument, namely, that nothing in the
enlightened coherence theory rules out dialetheism? To answer this question, it is
important to be clear about what we expect from a theory of truth. Clearly, theories
of truth have been formulated quite independently of dialetheism. So why should
they suddenly be required to rule out this particular philosophical view? Consider
an analogous argument. A coherence theory of truth—as a theory of truth—does
not rule out Aristotelian physics, Newtonian mechanics, alchemy, or a number of
other false theories. If these theories are ruled out, it is because they are ultimately
false; but that is the outcome of the relation these theories bear to the world. It is
not a feature of the coherence theory alone. So just because the coherence theory
does not rule out alchemy, that does not mean, of course, that we should now all be
alchemists, any more than Aristotelian natural philosophers, Newtonian physicists,
or dialetheists. In the end, it is unclear what exactly the dialetheist gains by insisting
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that certain theories of truth do not rule out dialetheism. Why should anyone expect
that dialetheism—or any other philosophical or scientific theory—be ruled out on
the basis of a theory of truth alone?

Clearly, this general response is similarly open to the traditional coherence theo-
rist. If coherence is taken seriously—and it is by coherence theorists—then contradic-
tions cannot be true. Since contradictions are individual statements, and not features
of overall systems, they are not the kinds of things that, according to the coherence
theorist, truth can be suitably assigned to. And whether there are true inconsistent
whole systems turns on how the world ultimately is rather than on particular commit-
ments emerging from one’s theory of truth—and this is as it should be. (Of course,
a paraconsistent logic would be needed to accommodate such inconsistencies at the
level of entire systems without triviality.)

It should be noted that, on this coherentist conception (enlightened or not), the
statement “snow is white” is similarly not truth-apt, even though it is part of a
coherent system. Some may argue that this consequence shows that the version of
the coherence theory I am considering is just inadequate, since it flies in the face of
ordinary practice and common use of the truth predicate. But I take it that, at least in
a context where dialetheism is at issue, flying in the face of ordinary practice is not
an objection that has much force. What counts is the overall explanatory balance of
the resulting view, and, in this particular case whether there are suitably formulated
versions of the coherence theory of truth that block dialetheism.

I insist that thismove does not beg the question against the dialetheist. Dialetheism
was not even a possibility when the traditional coherence theories were first formu-
lated. One would need to wait until the development of paraconsistent logics before
dialetheism could be seriously entertained. Without a paraconsistent logic explicitly
in place, we would immediately obtain triviality if we were to be committed to an
inconsistent system.

It might be objected that all that the dialetheist needs is an implicit paraconsistent
logic, in the way in which the Aristotelian syllogistic system is paraconsistent. There
is no need for an explicit, fully articulated paraconsistent logic to be developed in
order for dialetheism to get going. Consider, for instance, the syllogism:

(P1) All men are mortal.
(P2) Some men are not mortal.
Therefore, all men are blue.

This is, of course, an invalid argument according to Aristotelian logic. The premises
are contradictory, but not everything follows from them. Explosion (the principle
according to which everything follows from a contradiction) is then blocked. Since
blocking explosion is considered a central feature for a logic to be deemed paracon-
sistent, and given that Aristotelian logic has that feature, it is indeed paraconsistent
(see da Costa and Bueno [7], and Priest [13]). Despite being minimally paraconsis-
tent, Aristotelian logic was not developed as a way of providing resources to handle
reasoning involving inconsistencies. In this sense, such a logic—whatever its para-
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consistent status—would not be of much help to the dialetheist. It is not surprising
that dialetheism only emerged when the suitable resources of paraconsistent logic
were in place.

The point here is that, by taking into closer account the particular features of
the coherence theory of truth, this proposal—both in the traditional and enlightened
forms—has the resources to block dialetheism. The dialetheist may complain that
the coherence theory is inadequate for other reasons. But this means changing the
argumentative strategy. The argument no longer can be: the coherence theory of truth
does not block dialetheism, and so, if you are a coherence theorist, there is no reason,
based on your theory of truth alone, for you not to be a dialetheist. The argument
needs to be: the dialetheist rejects some features of the coherence theory of truth
(such as, the fact that it relies on consistency as a requirement for coherence), and
by rejecting these features, the resulting theory no longer blocks dialetheism.

This raises the issues as to whether the resulting coherence theory, without the
consistency requirement on coherence, would still count as a coherence theory, and
whether the changes envisaged by the dialetheist are independently motivated. These
are points that the dialetheist would still need to argue for. But one may wonder
what would be gained from this exercise. After all, it would not be philosophically
surprising that a reformulation of the coherence theory that is offered so that it
becomes compatible with dialetheism turns out to be so compatible!

A similar style of argument applies to other theories of truth. For example, ac-
cording to Priest, the semantic conception of truth does not block dialetheism (see
Priest [14, pp. 45–47]). In order to avoid the semantic paradoxes, Tarski introduced
a hierarchy of languages in which the truth predicate of the object language could
not be defined in that language. As a result, the liar sentence is not expressible in any
language of the hierarchy, and the paradox is blocked.

On Priest’s view, such a hierarchy is not essential to the semantic conception of
truth, and should be rejected (see Priest [14, p. 46], and [15, Chap.1]). Of course, by
rejecting the hierarchy of languages, the semantic conception is unable to block the
semantic paradoxes. It is no longer surprising that dialetheism could not be resisted
anymore.

The problem here should now be familiar. Similarly to what happened in the last
point made in the discussion of the coherence theory, Priest has rejected the feature
of the semantic conception of truth that allowed the theory to resist the paradox.
By substantially weakening that theory, it is not surprising that dialetheism can no
longer be avoided. But anyone who takes the semantic conception of truth seriously,
as Tarski did, is unlikely to recognize the weakened version of the theory as still a
candidate for a semantic conception. For a distinctive feature of that conception, at
least as Tarski developed it, is the acknowledgement that semantically closed lan-
guages, such as English, are ultimately inconsistent. In order to ensure that the formal
languages under consideration are not semantically closed, and thus are not open to
semantic paradoxes, Tarski formulated the now familiar hierarchy of languages. As
a result, such a hierarchy is indeed constitutive of the semantic conception, which
would thereby be entirely disfigured without it. So, the conclusion that the seman-
tic conception of truth does not avoid dialetheism is not warranted. And it should
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be expected that if one reformulated that conception by excluding the hierarchy of
languages, it would become compatible with dialetheism. But little would be gained
by this exercise. It is a much more controversial point to claim that one should reject
the hierarchy of languages—a point that the dialetheist does make— but which the
defender of the semantic conception is unlikely to concede, for the reason just noted.

I think that the same point applies to all of the other theories of truth that Priest
considers in Chap.2 of Doubt Truth to Be a Liar (Priest [15]). Properly developed,
and perhaps a little more sympathetically presented, each of these theories has the
resources to resist dialetheism. The only exception is the deflationist theory. This
theory, as presented, for example, by Horwich [11], since it does not impose any
constraintswhatsoever on the disquotational schema, does seem to invite dialetheism.
It is not surprising then that those who are sympathetic to deflationism about truth
end up working so hard to develop a well-motivated account of how the semantic
paradoxes can be resisted (see, e.g., Field [8]).

21.3 Second Strategy: Can We Perceive Contradictions?

A second strategy to resist dialetheism insists that contradictions cannot be true
because we cannot see what is like to perceive them. Although that does not undercut
the possibility that there are true contradictions that we cannot perceive, it makes
their introduction significantly more costly. After all, given that we have no access
to what contradictions are like, it is just expected that some would try to resist being
committed to their existence.

The dialetheist, however, argues that we can perceive contradictions—or, at least,
we can know what is like to perceive them (Priest [14, pp. 57–61]). Various kinds of
perceptual illusions illustrate that. Consider, for instance, the Penrose figure. These
are ascending stairs, and by starting at any point in the figure and moving upward
anti-clockwise, you return to the same spot where you started. Thus, you end up at a
point that is higher than itself (and that is also not higher than itself). At this moment,
you have perceived a contradiction.

The Penrose figure should be distinguished from the Schuster figure. According
to Priest ([14, p. 59]), the latter is not a case of perceiving a contradiction, since it
does not depict an inconsistent situation. Rather, the picture is constituted by two
different perfectly consistent drawings (a three-legged object and a two-legged one)
pasted together. We cannot visually parse the whole drawing, but we can clearly see
each of its two parts. Priest takes the situation with the Penrose figure to be different,
given that the whole object can be perceived: we perceive here a truly inconsistent
object.

It is not clear, however, that the two cases are different. In both examples, rules
of perspective are violated. In the Schuster figure, convention codes about how to
draw a three-legged object and a two-legged one are violated. A central principle
that governs the representation of an object under perspective is that one should not
draw what cannot be seen from the point of view that is adopted when picturing that

http://dx.doi.org/10.1007/978-81-322-2719-9_2
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object (see Gombrich [10]). This principle is clearly violated in the Schuster figure,
in which two different perspectives are simultaneously adopted in order to produce
the image. It is not surprising that we have trouble parsing it. The same point applies
to the Penrose figure, since it also adopts two distinct perspectives: one according
to which the point you started ascending the stairs is lower than the other points in
the stairs, and one according to which that point is higher. The trick, once again,
emerges from the simultaneous combination, in a perfectly symmetric way, of two
different perspectives. The figure can be perfectly divided into two planes: a right one
and a left one, crossing vertically the stair that is closest to the viewer. The careful
symmetry used in the composition of the image gives the sense that it is an ordinary
stair.

Note that the point here is not to state that, in the Schuster figure, there is an
object that has two legs from one perspective and three from another. I have no
reason to believe that any such object exists. Rather, the point is that the Schuster
figure involves two distinct perspectives that are brought together in order to produce
the image—quite independently of the issue as to whether there is any object that
the figure represents. (Priest presumably will not disagree with this point.)

Can we say that the Penrose figure is an inconsistent object? It is not clear to
me that we can. The figure violates a central principle of perspective, since two
different perspectives are used simultaneously to produce the image. But within
each plane of perspective, the rules of perspective are thoroughly followed. This
explains the perfect sense of familiarity that the image initially has. It is in virtue of
this symmetry that the image initially just seems to be an unremarkable arrangement
of stairs. In this sense, the Penrose figure yields a slightly different phenomenology
than the Schuster figure. But in the end it also generates some dissonance—a sense of
puzzlement—when after always walking down a set of stairs one suddenly reaches
the highest point of those stairs! Now, clearly, the fact that an image is composed
in terms of two different perspectives does not entail that the object that is being
depicted is inconsistent. Picasso’s drawings of Dora Maar violate the same principle
of perspective that the Penrose image does. But clearly, this gives us no reason to
believe that Picasso’s lover was an inconsistent object. At best, a different convention
code is invoked to produce the image.

Now,what is the significance of realizing that the Penrose figure does not depict an
inconsistent situation? If we are not really looking at an inconsistent object, then the
argument to the effect that we knowwhat is like to perceive a contradiction no longer
seems persuasive. Remember that the dialetheist is trying to offer us an account of
what is like to perceive an inconsistent situation (a contradiction). If we can find
that out without effectively looking at an inconsistent object, one may wonder how
reliable the answer is.

But perhaps it is enough for the dialetheist’s purposes simply to address the
phenomenology of the perception of an inconsistent situation—whether that situation
is indeed inconsistent or not. To the question: “What would it be like to perceive a
contradiction?” the dialetheist replies: It would be like getting trapped in the situation
depicted in the Penrose figure, where one finds oneself both at a point higher and
lower than itself. Even if the object depicted in the figure is not really inconsistent, we
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know what is like to perceive a contradiction by examining carefully what happens
when we look at the Penrose image.

I do not think this response succeeds, though. The difficulty here is that how can
we know that contradictions do look theway the dialetheist reports them as looking—
unless we already have reason to believe that (a) the object that we are looking at is
indeed inconsistent, and (b) perception works reliably in the presence of inconsistent
objects?With regard to (a), if the object in question is not inconsistent, what grounds
wouldwe have to think that the phenomenology described corresponds to the relevant
sort of object? Being trapped in the situation depicted by the Penrose figure is not
phenomenologically unlike perceiving an anamorphosis (a distorted drawing that
appears correctly only when viewed from a particular point). Both cases involve
careful, perverse manipulation of the rules of perspective. And both fail to guarantee
that the objects in question are inconsistent. With regard to (b), what grounds do we
have to believe that perception works reliably in the presence of inconsistent objects?
If the observable world is consistent, as Priest argues it is (Priest [14, pp. 62–64]), it
does not seem that we have even grounds to determine whether perception functions
reliably in an inconsistent context. We lack the opportunity to do that. So, more
needs to be said before we can be reassured that we know what is like to perceive an
inconsistent situation.

JC Beall and Mark Colyvan [3] argue that we do have good reason to believe
that the world—including, in particular, its observable parts—is inconsistent, and
that contradictions in fact abound. Their considerations are not based on drawings
of presumably impossible objects—they explicitly mention, and disregard, Escher’s
drawings—but on the pervasive vagueness of language and the assumption that a
paraconsistent approach to vagueness is the only one that does not fail (Beall and
Colyvan [3, p. 565]). On their view:

You might think that some Escher’s drawings apparently represent inconsistent objects but
that these drawings do not give us reason to believe that the world is inconsistent. There’s
an important difference, though, between the Escher-like figures and our case: it’s hardly
plausible that Escher’s drawings are the best representations of the world. (Indeed, most
people don’t think they represent at all.) On the other hand, the language of our best scientific
theories is supposed to not only represent, but accurately represent. Thus, if the language
of our best scientific theories (indispensably) involves vague predicates, then as naturalistic
philosophers we have good reason to believe that this vagueness is a feature of the world.
[. . .] This is not intended to be an argument for vagueness-in-the-world, we merely wish
to show that considerations of vagueness provide a significantly better case for observable
contradictions than Escher-like drawings (Beall and Colyvan [3, p. 568]).

Sowheneverwe experience a Sorites-like patch of colors ranging fromblue to purple,
“the purplish-blue object is both blue and not blue” (Beall and Colyvan [3, p. 565]).
Contradictions, Beall and Colyvan insist, do abound!

Does this argument go through? I do not think it does. It relies on two assumptions
that turn out to be highly problematic. The first is that a paraconsistent approach to
vagueness is the only that is not ruled out. But what reasons dowe have to believe that
this assumption is true? Let us return toBeall andColyvan’s purplish-blue object. The
phenomenology of seeing such an object has none of the puzzlements we experience
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when we look at allegedly inconsistent objects, such as the Penrose or the Schuster
figures. In contrast with experiencing these figures, there is no difficulty to parse a
purplish-blue object: no cognitive dissonance is involved there. (A related puzzlement
emerges when we reason through a contradiction, such as the one involved in the liar
paradox: we experience conflicting conclusions that we derive—prima facie, the liar
sentence is true and it is not true.) The fact that experiencing the purplish-blue object
is not accompanied by any such corresponding cognitive phenomenology suggests
that rather than exemplifying a contradictory vague entity, we have more reason to
consider it as a consistent vague object: it is not determined that the object is blue
and it is not determined that the object is not blue. That is all. No contradiction is in
fact needed—or invoked—here. To assume a paraconsistent approach of vagueness
in this case just seems unmotivated.

The second assumption that Beall and Colyvan rely on is the indispensability ar-
gument. According to this argument, we ought to be ontologically committed to all
and only the entities that are indispensable to our best theories of the world (Colyvan
[6]). And, they continue, since our best scientific theories invoke vague predicates,
we should conclude that there are vague objects in the world. But clearly we quantify
over all kinds of things—even indispensably so—we have no reason to believe exist:
fictional objects, average moms, and perfectly frictionless planes are obvious exam-
ples. Quantification and ontological commitment are, thus, best kept apart (Azzouni
[1]). To mark ontological commitment, one needs an existence predicate. Quantifi-
cation only indicates the range of the objects that one is considering—whether they
exist or not is a separate matter (Bueno [4]).

As a result, even if we granted, for the sake of argument, that a paraconsistent
approach to vagueness were the only workable solution to the problem of vagueness,
we cannot conclude that vagueness is a feature of the world. Thus, the intended con-
clusion that there are observable contradictions in the world is, once again, blocked.

21.4 Third Strategy: Sliding Down into Trivialism

A source of worry against dialetheism—although definitely not a good one—is that
if we accept that some contradictions are true, we will end up having to believe that
everything is true. Of course, this would only be the case if we adopted classical
logic. Since the dialetheist does not do that, but adopt instead a paraconsistent logic,
this worry does not get off the ground. But once it is claimed that some contradictions
are true, it is important for the dialetheist to distance the view from the claim that all
contradictions are true. After all, under very reasonable assumptions, this is equiva-
lent to the claim that everything is true. This is trivialism. To make sure that there is
no slippery slope from dialetheism to trivialism, it is important for the dialetheist to
resist that view.

Given that the trivialist does not discriminate anything, since he or she takes
everything to be true, trivialism is obviously not very plausible. But how can it be
refuted? It turns out to be something far from trivial. One would need to show that



474 O. Bueno

something is untrue. But the trivialist would agree with that, since “something is
untrue” is also true, given that everything is true!

To refute the trivialist, Priest provides a transcendental argument, according to
which the conditions of possibility of choosing something is that one believes that
certain actions will have certain effects. This means believing certain things and not
believing others. And this is precisely what the trivialist is unable to do, given that
he or she takes everything to be true. As Priest notes:

To choose how to act is to have a purpose: to (try to) to bring about this rather than that. [. . .]
Choosing is an irredeemably goal-directed activity. And [. . .] such an action is incompatible
with believing everything. It follows that I cannot but reject trivialism. Phenomenologically,
it is not an option for me. This does not show that trivialism is untrue. As far as the above
considerations go, it is quite possible that everything is the case; but not for me—or for any
other person. (Priest [14, p. 70])

This is an intriguing argument. It concedes that one cannot refute trivialism. But
it tries instead to undermine the existence of trivialists. It is not clear, however, that
the argument succeeds. The phenomenology of the trivialist may actually not be all
that different from the dialetheist’s. The dialetheist believes that some contradictions
are true, but decides to act on some other beliefs: the consistent beliefs, not the
contradictory ones. Of course, the dialetheist has a story to offer here. Since the
observableworld—in particular, the parts of theworld inwhichwe act—is consistent,
the dialetheist will typically not face a situation in which a course of action requires
commitment to an inconsistent state of affairs.

But precisely the same argument also applies to the trivialist. The trivialist also
selects the beliefs he or she will act on. Some will seemmore appropriate than others
for certain tasks. The trivialist can even tell a story—exactly the same story as the
dialetheist’s—about the consistency of the observable world. This would explain the
phenomenology of the trivialist’s choice, in exactly the same way as the dialetheist
explains it.

One may resist this conclusion by insisting that Priest is not constrained at all
to act only on consistent beliefs, since actions depend on beliefs about more than
just what is directly observable. Even if we grant this last point, the objection still
would not go through. For whatever the sources of one’s actions—whether they are
grounded on beliefs about the observable or not—given that these actions can only
be realized in the observable part of the world (which is the only part we inhabit), and
since that part, according to the dialetheist, is consistent, the dialetheist will never
face a course of action that requires the realization of an inconsistency. And precisely
the same point goes for the trivialist.

It might be argued that this cannot be right. After all, the trivialist will also believe
in the negation of every aspect of the story just told. That is right. But, of course,
that does not undermine the trivialist’s account! In an interesting way, believing
everything is remarkably similar to not believing anything, which is often taken
to be a skeptical position.1 Interestingly enough, the phenomenology of choice in
Pyrrhonian skepticism won’t be much different from the descriptions given so far.

1Priest in fact considers the skeptic in this context (see Priest [14, p. 69]).
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The Pyrrhonist acts without beliefs in anything having to do with the ultimate nature
of things (since the skeptic suspends judgment about these matters). But this does not
prevent the Pyrrhonist from acting, since similarly to the dialetheist and the trivialist,
it seems to the Pyrrhonist that certain courses of action are better than others. This
does not require the skeptic to be committed to any substantive belief about the way
things are. It is enough that things just seem to be in a certain way.

Note also that the dialetheist’s response to the trivialist, which is content with
just describing the dialetheist’s own phenomenology, would be welcomed by the
Pyrrhonist, who similarly just describes, in a non-dogmatic way, the content of his or
her own experience. Trivialism, although obviously not a plausible view, has still to
be undermined. Unless the dialetheist is able to do that, the plausibility of dialetheism
can always be questioned.

21.5 Conclusion

I discussed three strategies that one could invoke to resist dialetheism: one based on
the theory of truth, another on perceptual illusions, and a third on trivialism. In each
case, the dialetheist’s arguments were found wanting. In the end, despite all of the
alleged benefits brought by the view, dialetheism can still be resisted.
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Chapter 22
Being Permitted, Inconsistencies,
and Question Raising
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Abstract A semantic relation of being permitted by a set of possible worlds is
defined and analysed.We call it “permittance”. The domain of permittance comprises
declarative sentences/formulas. A paraconsistent consequence relation which is both
permittance-preserving and truth-preserving is characterized. An application of the
introduced concepts in the analysis of question raising is presented.
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22.1 Introduction

We are often confronted with a number of alternative accounts of how things are,
yet without knowing which of the accounts, if any, is the right one. These accounts
disagree on some issues and agree on others. Despite discrepancies, however, some
facts still remain known, some states of affairs are considered impossible, and some
statements are permitted while other are not.

In this paper we define the relation “a declarative sentence is permitted by a set of
possible worlds” and we analyse its basic properties. The possible worlds in question
are supposed to represent alternative accounts of how things are. We dub the relation
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“permittance”. The definition proposed is an explication of the corresponding intu-
itive notion of permitting, taken in one of its meanings. Our intuitions are presented
in Sect. 22.1.2. For clarity, we start with a short description of the basic logical tools
used throughout the paper.

22.1.1 Logical Preliminaries

We remain at the propositional level only. We consider a non-modal propositional
language, L . The vocabulary of L includes a non-empty set P = {p, q, r, . . .} of
propositional variables, the propositional constant⊥ (falsum), and the connectives¬,
∨,∧,→. Well-formed formulas (wffs for short) of L are defined in the usual manner.
We shall use the letters A, B, C, . . . , with subscripts if needed, as metalanguage
variables for wffs of L . The letters X, Y, . . . are metalanguage variables for sets of
wffs of L .

The connectives, as well as ⊥, are understood, at the truth-functional level, as in
Classical Propositional Logic. By an L-model wemean an ordered pairM = 〈W,V〉,
where W �= ∅ and V : P × W 
−→ {1, 0} is a valuation of propositional variables
in P w.r.t. elements of W . As usual, the elements of the domain, W , are called
possible worlds. The concept of truth of a wff A in a world w ∈ W of M, in symbols
M, w |= A, is defined in the standard manner. The inscription M |= A means “A is
true in M”, that is, A is true in each world of the domain of M.

Elements of domains of L-models, the possible worlds, will be intuitively thought
of here asalternative accounts of how things are. This has no impact on the formalism,
however. As long as we remain at the propositional level, the only condition imposed
on W is non-emptiness. It follows that the domain of an L-model need not contain
all the relevant alternatives.

By a statewewill mean a non-empty set of possibleworlds. In view of the intuitive
interpretation of possible worlds adopted above, a non-singleton state comprises a
number of alternative accounts of how things are.

Let M = 〈W,V〉 be an L-model.

Definition 22.1 (Truth set of a wff in an L-model) |A|M = {w ∈ W : M, w |= A}.
Of course, |⊥|M = ∅.

Definition 22.2 (M-state) An M-state is a non-empty subset of W .

Note thatW is (also) an M-state, and that, for each w ∈ W , the singleton set {w}
is an M-state.
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22.1.2 Intuitions

Our basic intuition concerning the analysed concept of being permitted is:

(I) A declarative sentence/wff γ is permitted by a state σ iff it is not the case that σ
rules out γ.

However, what “rules out” means depends on the form of γ.
γ can be positive that is not of the form¬ζ (where¬ stands for sentential negation

and ζ is a declarative sentence/wff). It is natural to postulate:

(II) Let γ be positive. State σ rules out γ iff γ is false in each world of σ.

For example, “Andrew is a bachelor” is ruled out by a state which comprises
(only) possible worlds in which Andrew is married.

γ can be negative that is of the form ¬ξ, where ξ is positive.1 We seem justified
in saying:

(III) Let γ be negative and γ = ¬ξ. State σ rules out γ iff ξ is true in some world
of σ.

For instance, a state that contains a possible world in which Andrew is a bachelor
rules out the sentence “It is not the case that Andrew is a bachelor”.

Assuming bivalence, by (I) and (II) we get:

(II*) A positive, γ, is permitted by a state σ iff γ is true in some world of σ.

By (I) and (III), in turn, we get:

(III*) A negative, γ, is permitted by a state σ iff γ is true in each world of σ.

An analogy can be of help. A civil servant is permitted to issue a positive decision
if there is a rule that entitles him/her to do so, and is permitted to decide to the
negative if the disputed activity is forbidden by each rule that is applicable to the
case. Similarly, a negative is permitted by a state if there is no world of the state
that makes the negated sentence true, while for a positive being permitted by a state
amounts to the existence of a world of the state which makes it true. Our usage
of “being permitted” is thus akin to that of its deontic cousin. Yet, we do not aim
at analysing “being permitted” deontically construed. Permittance in our sense is a
relation between a declarative sentence/wff on the one hand, and a state on the other.
What is (or is not) permitted is a declarative sentence/wff, and what permits it (or
does not permit) is a set of possible worlds, where possible worlds are intuitively
thought of as alternative accounts of how things are.2

1Observe that ¬¬ξ is neither negative nor positive. We will come back to this issue later on.
2Looking from a formal point of view, permittance belongs to the same category as support analysed
in Inquisitive Semantics (see, e.g., [1, 2, 7]). However, the underlying intuitions are different.
Moreover, Inquisitive Semantics conceives states/sets of possible worlds as information states.
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The paper is organized as follows. In Sect. 22.2, we define the concept of per-
mittance, characterize its basic properties, and show how knowledge and epistemic
possibility can be modelled in our framework. Section22.3 is devoted to permittance
of inconsistencies. In Sect. 22.4 we analyse a paraconsistent consequence relation of
transmission of permittance. Section22.5 addresses the issue of question raising, in
particular the problem of question raising by inconsistencies.

22.2 Permittance

22.2.1 Definition and Basic Properties

Let M = 〈W,V〉 be an arbitrary but fixed L-model. “σ � A” reads: “wff A is
permitted by an M-state σ”. “�” is thus the sign of the permittance relation.

Given the considerations presented above, the following definition comes with no
surprise.

Definition 22.3 (Permittance)

1. σ � p iff |p|M ∩ σ �= ∅, for any propositional variable p;
2. σ � ¬A iff σ �� A;
3. σ � (A ∨ B) iff |(A ∨ B)|M ∩ σ �= ∅;
4. σ � (A ∧ B) iff |(A ∧ B)|M ∩ σ �= ∅;
5. σ � (A → B) iff |(A → B)|M ∩ σ �= ∅;
6. σ � ⊥ iff |⊥|M ∩ σ �= ∅.

Observe that permittance is not defined inductively. This is intended.
For positivewffs, being permitted by a state amounts to being true in someworld(s)

of the state. To be more precise, as an immediate consequence of Definition22.3 we
get:

Corollary 22.1 Let σ be an M-state and let A be a positive wff. Then σ � A
iff M, w |= A for some w ∈ σ.

However, the case of negative wffs is different. By Corollary22.1 and clause (2)
of Definition22.3 we have:

Corollary 22.2 Let σ be an M-state. Let D be a wff of any of the forms: p, ⊥, (B ∨
C), (B ∧ C), (B → C). Then σ � ¬D iff M, w �|= D for each w ∈ σ.

Hence:

Corollary 22.3 Let σ be an M-state and let A be a negative wff. Then σ � A
iff M, w |= A for each w ∈ σ.
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Corollary22.3 shows that negatives behave in the context of permittance as it has
been required in Sect. 22.1.2.

But what about wffs which are neither positive nor negative? As for L , there is
only one kind of such wffs, namely wffs falling under the general schema:

¬ . . . ¬D (22.1)

where D is positive and the number of negations preceding D is greater than 1. If
the number is even, we say that (22.1) is a ¬e-wff; otherwise (22.1) is a ¬o-wff. By
DA we designate the positive wff which occurs in a ¬e-wff A or in a ¬o-wff A after
the string of negations.3

One can prove:

Corollary 22.4 σ � ¬¬A iff σ � A.

Proof By the clause (2) of Definition22.3 we have:

σ � ¬¬A iff σ �� ¬A

σ �� ¬A iff σ � A

and hence σ � ¬¬A iff σ � A. �
Thus, taking into account Corollaries22.1, 22.2 and 22.4 we get:

Corollary 22.5 1. Let A be a ¬e-wff. Then σ � A iff M, w |= DA for some w ∈ σ
iff M, w |= A for some w ∈ σ.

2. Let A be a ¬o-wff. Then σ � A iff M, w �|= DA for each w ∈ σ iff M, w |= A
for each w ∈ σ.

For brevity, let us introduce:

Definition 22.4 (p-wffs and n-wffs)

1. A p-wff is a positive wff or a ¬e-wff.
2. A n-wff is a negative wff or a ¬o-wff.

As we have shown, the categories of p-wffs and n-wffs are semantically homoge-
neous: a p-wff is permitted by a state iff it is true in at least one world of the state,
while a n-wff is permitted by a state iff it is true in eachworld of the state. Permittance
could had been concisely defined in terms of p-wffs and n-wffs. However, doing this
would require an ad hoc acceptance of the claim of Corollary22.4.

22.2.1.1 Remarks

Remark 22.1 For a singleton state permittance amounts to truth in the only world of
the state. As an immediate consequence of the above corollaries we get:

3When A is neither positive nor negative, DA is in the scope of the rightmost negation of the string.
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Corollary 22.6 Let M = 〈W,V〉 be an L-model and {w} be a (singleton) M-state.
Then {w} � A iff M, w |= A.

Remark 22.2 Permittance becomes intensional when non-singleton states enter the
picture. It happens thatwffswhichhave equal truth sets (i.e. are classically equivalent)
are not simultaneously permitted by a state. For example, we have:

|¬(p → q)|M = |p ∧ ¬q|M
Now take an L-model and its state {w1, w2} such that:

• V(p, w1) = 1 and V(q, w1) = 0,
• V(p, w2) = 0 and V(q, w2) = 0.

We get:
{w1, w2} �� ¬(p → q)

{w1, w2} � p ∧ ¬q

Remark 22.3 Note that wffs of the forms:

¬A (22.2)

A → ⊥ (22.3)

do no differ as to their truth conditions in a world, but can differ with respect to
permittance by states. When A is a p-wff, (22.2) is permitted only by a state in which
A is false in each world of the state, whereas (22.3) can be permitted by a state in
which A is false only in some, but not allworlds. This does notmean, however, that the
negation connective ¬ has a non-classical meaning in L . Its meaning is determined
by the standard truth condition. But ¬ behaves in a somewhat non-standard way in
the context of permittance.

Remark 22.4 Observe that for any wff A, any L-model M, and any M-state σ we
have:

σ � (¬A → ⊥) iff σ � A ∧ A (22.4)

Hence we are able to express in terms of permittance, and without using ⊥, that a
n-wff, B, is true in at least one, but not necessarily all worlds of a state σ; this holds
just in case the wff B ∧ B is permitted by σ.

Note also that in general permittance is neither downward closed (if A is a p-wff,
permittance of A by σ need not yield permittance of A by a proper subset of σ) nor
upward closed (a n-wff permitted by a state need not be permitted by an extension of
the state). However, permittance is upward closed for p-wffs and downward closed
in the case of n-wffs.
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22.2.2 Modalization

Let us now augment the initial language L with the modalities � (necessity) and
♦ (possibility). Wffs of the enriched language are defined in the standard manner.
We label the new language as L. We use φ,ψ, . . . as metalanguage variables for
wffs of L, and �,�, . . . as metalanguage variables for sets of wffs of the language.
Whenever � or ♦ precedes a metalanguage expression referring to wffs of L , it is
understood that the wff in the scope of a modality belongs to L (i.e. is a wff of L in
which no modality occurs).

Definition 22.5 (S5-model) An S5-model is a structure:

〈W,R,V〉

where W �= ∅, V is a valuation of P w.r.t. elements ofW , and R = W × W .

Thus by S5-models we will mean here only these relational models in which the
accessibility relation R is universal. In the case of S5-models we have:

M, w |= �φ iff M, w |= φ for each w ∈ W, (22.5)

M, w |= ♦φ iff M, w |= φ for some w ∈ W. (22.6)

It is well known that S5 is sound and complete w.r.t. the class of models of the above
kind.

Definition 22.6 (Accompanied S5-model) Let M = 〈W,V〉 be an L-model, σ be
an M-state, and R = W × W . Let Mσ be an S5-model such that:

Mσ = 〈σ,R|σ,V|σ〉

Mσ is called the S5-model accompanied with M w.r.t. state σ.

It is obvious that for each L-model M and each state of the model there exists
exactly one S5-model accompanied with M w.r.t. the state. For each wff A of L we
have:

Corollary 22.7 Let M be an L-model, σ be an M-state, and w ∈ σ. Then M, w |=
A iff Mσ, w |= A.

The following is true as well:

Lemma 22.1 For each M-state σ:

1. if A is a p-wff, then: σ � A iff Mσ |= ♦A,
2. if A is a n-wff, then: σ � A iff Mσ |= �A.
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Proof As for (1), it suffices to recall that for a p-wff A we have σ � A iff A is
true in at least one world of σ. On the other hand, the accessibility relation inMσ is
universal and thus Mσ |= ♦A iffMσ, w |= A for at least one w ∈ σ.

Clause (2) is an immediate consequence of Corollary22.3 and the fact that R|σ
is universal in σ. �

Let us also prove:

Lemma 22.2 Let A be a wff of L. For each M-state σ:

1. σ � ¬(A → ⊥) iff Mσ |= �A,
2. σ � (A → ⊥) iff Mσ |= ♦¬A,
3. σ � (¬A → ⊥) iff Mσ |= ♦A.

Proof As for (1), ¬(A → ⊥) is a n-wff and hence, by Corollary22.3, σ � ¬(A →
⊥) iff for each w ∈ σ: M, w �|= (A → ⊥), that is, Mσ, w |= A for any w ∈ σ,
which, due to the universality of R|σ gives Mσ |= �A.

Concerning (2): σ � (A → ⊥) iff |(A → ⊥)|M ∩ σ �= ∅ iff for some w ∈ σ :
M, w |= ¬A iffMσ |= ♦¬A.

(3) is a direct consequence of (2). �

22.2.3 Epistemization

As it is well known, S5 can be interpreted as an epistemic logic, where the box,
�, represents the knowledge operator, and the diamond, ♦, represents, generally
speaking, epistemic possibility. This suggests a kind of purely epistemic readings of
some metalanguage expressions of the form “σ � A”.

Consider:

σ � ¬(A → ⊥) (22.7)

Due to clause (1) of Lemma22.2, this can be read:

A is known in state σ (22.8)

where “A is known in state σ” means:

Mσ |= �A (22.9)

that is, �A is true in an S5-model whose domain is σ (more precisely: �A is true in
the S5-model whose domain is the M-state σ and which agrees with M on the values
of propositional variables w.r.t. worlds in σ).

Observe that, by Lemma22.2, “being known in σ” does not differentiate between
n-wffs and p-wffs.
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Example 22.1 Let us consider the case of implication. In our setting (A → B) is
said to be known in a state σ iff:

σ � ¬((A → B) → ⊥) (22.10)

It follows that:

Mσ |= �(A → B) (22.11)

and:

for each w ∈ σ : M, w |= (A → B) (22.12)

Thus an implication constitutes an item of knowledge in a state if, and only if it
is true in each world of the state. Or, to put it differently, an implication is known in
a state just in case it is a strict implication w.r.t. the state.

Example 22.2 Now consider the case in which the negation of an implication, i.e.
¬(A → B), is known in state σ. This means:

σ � ¬(¬(A → B) → ⊥) (22.13)

which gives:

Mσ |= �¬(A → B) (22.14)

Hence:

for each w ∈ σ : M, w �|= (A → B) (22.15)

So a negated implication is an item of knowledge in a state just in case the implication
itself is false in each world of the state. It follows that a negated implication is known
in a state if, and only if it is permitted by the state.

Let us consider expressions of the form:

σ � (A → ⊥) (22.16)

By Lemma22.2 we have:

σ � (A → ⊥) iff Mσ |= ♦¬A (22.17)

Hence an expression of the form (22.16) can be read:

¬A is epistemically possible in σ (22.18)

again uniformly for all the wffs of L .
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Now let us consider:
σ � (¬A → ⊥) (22.19)

By Lemma22.2 we get:

σ � (¬A → ⊥) iff Mσ |= ♦A (22.20)

Thus one can read (22.19) as:

A is epistemically possible in σ (22.21)

For convenience, we introduce:

Definition 22.7 (“Epistemic” modalities)

1. �A =d f ¬(A → ⊥)

2. ⊕A =d f (¬A → ⊥)

3. �A =d f (A → ⊥)

Observe that � is not the S5 necessity/knowledge operator. Let A be a wff of
L and let M = 〈W,R,V〉 be an S5-model. Consider an arbitrary but fixed world
w ∈ W . Clearly, �A is true in w iff A is true in w, while �A is true in w just in
case A is true in each world ofW . Thus �A and �A have different truth conditions
in worlds.4 But � behaves similarly as the S5 knowledge operator. One can easily
prove:

Corollary 22.8 Let A, B be wffs of L.

1. The following:
� (A → B) → (�A → �B) (22.22)

� A → A (22.23)

¬ � A → �¬ � A (22.24)

are true in each L-model.
2. If A is true in each L-model, then �A is true in each L-model.

However, σ � �A only means Mσ |= �A (or equivalently: 〈σ,V|σ〉 |= ¬(A →
⊥)). Thus, a wff known in a state σ of an L-model 〈W,V〉must be true in each world
of the state σ, but not necessarily in each world of the whole model. In other words,
knowledge in a state is factive w.r.t. worlds of the state, but need not be factive with
regard to all worlds of the model. Yet, when one considers a singleton state, it is
impossible that a wff A is known in the state (in the sense of �) when A is false in
the (only) world of the state.

4However, sinceR is supposed to be universal, �A in true in an L-model or in an S5-model iff �A
is true in the model(s).
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22.2.3.1 A Philosophical Comment

The standard philosophical concept of knowledge conceives it as a true justified
belief about the actual world. In the framework of an epistemic logic supplemented
with a relational semantics “being known in a world w of a model” is explicated by
“being true in each world w∗ of the model such that w∗ is accessible from w”. When
S5 is used as an epistemic logic, this amounts to being true in each world of the
model. Since we usually assume that the actual world is among the possible worlds
considered (or is represented by a certain possible world of a model), the truth of
�A in a model yields the truth of A in the actual world, and �A is true in the actual
world only if A is true in the world.

Knowledge in a state behaves differently. If A is known in a state σ, it is true in
each world of the state and thus also in the actual world if the actual world “is” in
σ. This, however, need not be the case.

22.3 Permittance and Inconsistency

As above, we assume that M = 〈W,V〉 is an arbitrary but fixed L-model. The M-
permittance class of a wff A of L , in symbols: ‖A‖M, comprises all the M-states
that permit A. The M-permittance class of a set of wffs X , ‖X‖M, in turn, is the
intersection of M-permittance classes of elements of X . More formally:

Definition 22.8 (Permittance class)

1. ‖A‖M = {σ ⊆ W : σ �= ∅ and σ � A}
2. ‖X‖M = {σ ⊆ W : σ � B for each B ∈ X}.
Definition 22.9 X has a non-empty permittance class iff there exists an L-model M
such that ‖X‖M �= ∅.

When {A} has a non-empty permittance class, we will be saying briefly: “A has
a non-empty permittance class”.

One can show that some inconsistent sets of wffs have non-empty permittance
classes. For clarity, let us first introduce:

Definition 22.10 (Inconsistent sets) A set of wffs X of L is:

1. inconsistent iff
⋂

B∈X
|B|M = ∅ for each L-model M;

2. plainly inconsistent iff:

(a) for some wff A, both A ∈ X and �¬A� ∈ X , or
(b) for some wff A ∈ X , {A} is inconsistent.
Clearly, permittance classes of plainly inconsistent sets are always empty. How-

ever, the situation is different in the case of some sets of wffs which are inconsistent,
but not plainly inconsistent.
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For example, {A, A → ⊥} is inconsistent. But the following holds:

Corollary 22.9 Let A be a p-wff of L such that �♦A → �A� /∈ S5. Then there
exists an L-model M such that ‖{A, A → ⊥}‖M �= ∅.

Proof When �♦A → �A� /∈ S5, there exists a S5-model M = 〈W,R,V〉 and
a world w ∈ W such that M, w |= ♦A and M, w |= ♦¬A. So for some w1 ∈
W : M, w1 |= A, and for some w2 ∈ W : M, w2 |= ¬A. Consider the following
L-model M:

〈{w1, w2},V|{w1, w2}〉

As both A and (A → ⊥) are p-wffs, it is easily seen that for the state {w1, w2} of
the model we have:

{w1, w2} � A

{w1, w2} � (A → ⊥)

Hence ‖{A, (A → ⊥)}‖M �= ∅. �

In particular, the permittance class of {p, p → ⊥} is non-empty.
Thus the following is true:

Corollary 22.10 There exist: inconsistent sets of wffs of L and L-models such that
the sets have non-empty permittance classes in the models.

Here is another example of an inconsistent set which has a non-empty permittance
class.

Example 22.3 The set {p → q, p,¬q} is inconsistent, but not plainly inconsistent.
Let M = 〈W,V〉 be an L-model such that for some w1, w2 ∈ W:

• V(p, w1) = 0,
• V(q, w1) = 0,
• V(p, w2) = 1,
• V(q, w2) = 0.

Clearly we have:

• M, w2 |= p and hence {w1, w2} � p,
• M, w1 |= (p → q) and thus {w1, w2} � (p → q),
• M, w1 |= ¬q as well as M, w2 |= ¬q; therefore {w1, w2} � ¬q.

Thus ‖{p → q, p,¬q}‖M �= ∅.
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22.4 Transmission of Permittance

22.4.1 Definition and Basic Properties

Let us now introduce:

Definition 22.11 (Transmission of permittance) X ↪→L A iff for each L-model M
and each M-state σ:

if σ ∈ ‖X‖M, then σ ∈ ‖A‖M.

The intuitive content of the above concept is: if each element of X is permitted by
a state, then A is permitted by the state. This condition is supposed to hold for each
L-model and each state of the model.

Let “σ � X” abbreviate “for each B ∈ X : σ � B”.

Corollary 22.11 X ↪→L A iff the following condition:

if σ � X, then σ � A (22.25)

is fulfilled by each state σ of any L-model.

↪→L is a consequence relation. One can easily prove:

Corollary 22.12 ↪→L has the following properties:

(Overlap): If A ∈ X, then X ↪→L A.
(Dilution): If X ↪→L A and X ⊆ Y , then Y ↪→L A.

(Cut for sets): If X ∪ Y ↪→L A and X ↪→L B for every B ∈ Y , then X ↪→L A.

↪→L is not structural, however. The following examples illustrate this5:

Example 22.4
{¬(p ∧ ¬q), p} ↪→L q (22.26)

To prove (22.26) suppose that for some state σ of an L-model M it holds that:

(1) σ � ¬(p ∧ ¬q), and
(2) σ � p.

By (2) there existsw ∈ σ, say,w1, such that M, w1 |= p. But since (1) holds as well,
we have M, w1 |= ¬(p ∧ ¬q) and hence M, w1 |= q. Thus σ � q.

Example 22.5
{¬(p ∧ ¬¬q), p} �↪→L ¬q (22.27)

To see this it suffices to consider an L-model M = 〈{w1, w2},V〉 in which
V(p, w1) = 1, V(q, w1) = 0, V(p, w2) = 0, and V(q, w2) = 1. We get:

5For brevity, we use, here and below, object-level language expressions instead of their metalin-
guistic names.
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• M, w1 |= p,
• M, w1 |= ¬(p ∧ ¬¬q)),
• M, w2 |= ¬(p ∧ ¬¬q))

Thus {w1, w2} � {¬(p ∧ ¬¬q), p}. On the other hand, since M, w1 �|= ¬q, we
have {w1, w2} �� ¬q.

Generally speaking, ↪→L is not structural because substitution can change the
categories of wffs, that is, can turn p-wffs into n-wffs, or n-wffs into p-wffs.6

22.4.2 Transmission of Permittance Versus Entailment

Entailment in L , |=L , can be defined by:

Definition 22.12 (Entailment in L) X |=L A iff for each L-model M:

⋂

B∈X

|B|M ⊆ |A|M

Entailment in L amounts to entailment determined by Classical Propositional Logic.
Transmission of permittance is a special case of entailment. By Corollary22.6 we

get:

Corollary 22.13 If X ↪→L A, then X |=L A.

Hence ↪→L is a truth- preserving consequence relation.
The converse of Corollary22.13 does not hold. The following examples illustrate

this:

Example 22.6
¬p ∨ ¬q �↪→L ¬(p ∧ q) (22.28)

For, consider an L-modelM = 〈{w1, w2},V〉 such thatV(p, w1) = 0,V(p, w2) = 1,
andV(q, w2) = 1. Since¬p∨¬q is a p-wff, {w1, w2} � ¬p∨¬q.On the other hand,
¬(p ∧ q) is a n-wff and we have {w1, w2} �� ¬(p ∧ q) because M, w2 |= (p ∧ q).

Example 22.7
{p → q,¬q} �↪→L ¬p (22.29)

To see this it suffices to consider an L-model M = 〈{w1, w2},V〉 in which
V(p, w1) = 0, V(q, w1) = 0, V(p, w2) = 1, and V(q, w2) = 0. Since M, w1 |=
(p → q), we get {w1, w2} � (p → q). Clearly, {w1, w2} � ¬q. But {w1, w2} ��
¬p because V(p, w2) = 1.

6This can happenwhen thewff being substituted is a propositional variable or has the form¬ . . . ¬p,
where p is a propositional variable.
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22.4.3 Paraconsistency

As we have shown in Sect. 22.3, some inconsistent sets have non-empty permittance
classes. It follows that ↪→L is paraconsistent in the following sense of the word: it is
not the case that for every inconsistent set X and every wff B it holds that X ↪→L B.

Example 22.8 The set {p → q, p,¬q} has a non-empty permittance class (see
Example22.3). Hence, in particular:

{p → q, p,¬q} �↪→L r (22.30)

Example 22.9 The set {p, p → ⊥} is inconsistent, but has a non-empty permittance
class. One can easily show that:

{p, p → ⊥} �↪→L q (22.31)

Observe, however, that we still have:

{p,¬p} ↪→L q (22.32)

22.4.4 Translation ( )∗

The operation ( )∗ assigns to a wff of L the corresponding wff of L. It is defined as
follows:

Definition 22.13 1. If A is a p-wff, then (A)∗ = ♦A.
2. If A is a n-wff, then (A)∗ = �A.

Let us stress that A in ♦A or in �A represents a wff of L . The operation ( )∗ is
performed on A only once; the subformulas of A remain unaffected. In other words,
( )∗ is a kind of “surface translation” of wffs of L into wffs of L.7

For convenience, we put:

(X)∗ =d f {(A)∗ : A ∈ X}

Let us now prove:

Lemma 22.3 IfM = 〈W,R,V〉 is a S5-model such thatM |= (X)∗, thenW � X.

7The idea of using translations into S5 in constructing paraconsistent logics goes back to Jaśkowski
(cf. [3], or [4] for an English translation). However, Jaśkowski’s translation is defined recursively
and enables an introduction of “discussive” connectives. The operation ( )∗ behaves differently.
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Proof First observe that M is the S5-model accompanied with an L-model M =
〈W,V〉 w.r.t. the M-stateW .

The elements of (X)∗ are either of the form ♦B or of the form�B, where B ∈ X .
If ♦B ∈ (X)∗, then, by Lemma22.1, M |= ♦B yields W � B.
The case in which �B ∈ (X)∗ is analogous. �

The following holds:

Theorem 22.1 X has a non-empty permittance class iff there exists a S5-model M
such that M |= (X)∗.

Proof (⇒). LetM be an L-model forwhich ‖X‖M �= ∅. Letσ ∈ ‖X‖M.We consider
the S5-model Mσ accompanied with M w.r.t. σ, and we apply Lemma22.1.

(⇐). By Lemma22.3. �

Example 22.10 As we have shown (see Example22.3), the inconsistent set {p →
q, p,¬q} has a non-empty permittance class. The following takes place on themodal
side:

M{w1,w2} |= {♦(p → q),♦p,�¬q} (22.33)

whereM{w1,w2} is theS5-model accompanied (w.r.t. state {w1, w2})with the L-model
considered in Example22.3.

However, the following holds:

Corollary 22.14 If X is inconsistent and each element of X is a n-wff, then the
permittance class of X is empty.

Proof Suppose that the permittance class of X is non-empty. Then, by Theorem22.1,
for some S5-model M we have M |= (X)∗. But the elements of (X)∗ are of the
form �A, where A ∈ X . Since W is non-empty, there exists a world w of M such
that M, w |= X . It follows that X is consistent. �

The situation can be different when X contains some p-wffs.

22.4.5 Transmission of Permittance Versus Global
S5-Entailment

Recall that � stands for a set of wffs of L (i.e. the modal extension of L), and φ is a
metalanguage variable for wffs of L.

Let us introduce:

Definition 22.14 (Global S5-entailment) � |=S5 φ iff for each S5-model M: if
M |= �, then M |= φ.

We will now prove:
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Theorem 22.2 (Reduction modulo ( )∗) X ↪→L A iff (X)∗ |=S5 (A)∗

Proof Suppose that X ↪→L A, but (X)∗ �|=S5 (A)∗. Thus for some S5-model M =
〈W,R,V〉 we have M |= (X)∗ and M �|= (A)∗. But M is accompanied with the
L-modelM = 〈W,V〉w.r.t.W , that is,M = MW . By Lemma22.3 we getW � X
and hence, due to the transmission of permittance, W � A. If A is a p-wff, then,
by Lemma22.1, M |= ♦A, that is,M |= (A)∗. A contradiction. Similarly, if A is a
n-wff, by Lemma22.1 we get M |= �A, i.e. M |= (A)∗. A contradiction again.

Now suppose that (X)∗ |=S5 (A)∗, but X �↪→L A. Then there exists a state σ of a
certain L-model M such that σ � X and σ �� A. We consider the S5-model Mσ

accompanied with M w.r.t. σ. By Lemma22.1 we getMσ |= (X)∗ andMσ �|= (A)∗.
A contradiction. �

According to Theorem22.2, transmission of permittance amounts to (global) S5-
entailment among the relevant ∗-wffs. This does not mean that transmission of per-
mittance can be identified with global S5-entailment. Recall that the ∗-wffs are either
of the form �A or of the form ♦A, where A is a wff of the non-modal language L
(and thus does not involve modal operators).

Remark 22.5 Necessity and possibility are, in a sense, expressible in L (cf.
Sect. 22.2.2). But when we have φ |=S5 ψ for L-wffs φ, ψ which are of neither
of the forms: �A, ♦A, the systematic replacement in φ and ψ of �A by ¬(A → ⊥)

as well as of ♦A by (¬A → ⊥) need not turn S5-entailment between φ and ψ into
the transmission of permittance between the resultant wffs of L . For example, we
have:

¬�p |=S5 �¬�p (22.34)

By the systematic replacement we get:

¬¬(p → ⊥) ↪→L ¬(¬¬(p → ⊥) → ⊥) (22.35)

(22.35)does not hold, however.To see this let us take an L-modelM∗ = 〈{w1, w2},V〉
such that V(p, w1) = 0 and V(p, w2) = 1. Clearly, we have:

{w1, w2} � ¬¬(p → ⊥) (22.36)

since M∗, w1 |= ¬¬(p → ⊥). At the same time we have:

{w1, w2} �� ¬(¬¬(p → ⊥) → ⊥) (22.37)

because M∗, w2 �|= ¬(¬¬(p → ⊥) → ⊥).

To sum up: Theorem22.2 does not reduce the “logic of permittance” to S5, but
shows that one can “calculate” transmission of permittance by well-known means.
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22.4.6 What is Retained and What is Lost

22.4.6.1 The Case of Single Wffs

Let us first prove:

Lemma 22.4 If B |=L A and (a) B and A are p-wffs, or (b) B and A are n-wffs, or
(c) B is a n-wff and A is a p-wff, then B ↪→L A.

Proof If B |=L A, then |=L (B → A) and hence ��(B → A)� ∈ S5.
Assume that B and A are p-wffs. Suppose that ♦B �|=S5 ♦A. So there exists an

S5-model M = 〈W,R,V〉 such that M |= ♦B and M �|= ♦A. Hence M, w �|= A
for each w ∈ W , andM, w |= B for some w ∈ W . It follows that for some w ∈ W
we have M, w �|= (B → A) and therefore ��(B → A)� /∈ S5. A contradiction.
Thus ♦B |=S5 ♦A and hence, by Theorem22.2, B ↪→L A.

Assume that B and A are n-wffs. Suppose that �B �|=S5 �A. So for some S5-
model M = 〈W,R,V〉 we get: M, w |= B for any w ∈ W , and M, w �|=
A for some w ∈ W . Thus ��(B → A)� /∈ S5. A contradiction. Therefore, by
Theorem22.2, B ↪→L A.

Finally, assume that B is a n-wff and A is a p-wff. Suppose that �B �|=S5 ♦A.
Thus, for some S5-model M = 〈W,R,V〉, M, w |= B for any w ∈ W , and
M, w �|= A for each w ∈ W . Hence ��(B → A)� /∈ S5. A contradiction again.
Therefore, by Theorem22.2, B ↪→L A. �

Thus, for instance, the following hold:

p ↪→L ¬¬p (22.38)

¬¬p ↪→L p (22.39)

(p → q) ↪→L (¬q → ¬p) (22.40)

(¬q → ¬p) ↪→L (p → q) (22.41)

p ↪→L (q → p) (22.42)

(p → q) ∧ p ↪→L q (22.43)

(p ∨ q) ∧ ¬q ↪→L p (22.44)

(p ∨ ¬q) ∧ q ↪→L p (22.45)

(p → (q → r)) ↪→L ((p → q) → (p → r)) (22.46)

(p → (q → r)) ↪→L (p ∧ q → r) (22.47)
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(p ∧ q → r) ↪→L (p → (q → r)) (22.48)

(p → (q → r)) ↪→L (q → (p → r)) (22.49)

((p → q) ∧ (q → r)) ↪→L (p → r) (22.50)

¬(p ∧ q) ↪→L (¬p ∨ ¬q) (22.51)

¬(p ∨ q) ↪→L (¬p ∧ ¬q) (22.52)

¬(p ∧ ¬q) ↪→L (p → q) (22.53)

¬(p → q) ↪→L (p ∧ ¬q) (22.54)

Observe, however, that the converses of (22.51)–(22.54) do not hold. The coun-
terpart of Modus Tollendo Tollens does not hold either, i.e.:

((p → q) ∧ ¬q) �↪→L ¬p (22.55)

because:
♦((p → q) ∧ ¬q) �|=S5 �¬p (22.56)

Hence:

Corollary 22.15 There are cases in which: B is a p-wff, A is a n-wff, B |=L A, and
B �↪→L A.

Yet, the following holds:

((p → q) ∧ ¬q) ↪→L ⊕¬p (22.57)

(Recall that ⊕¬p claims that ¬p is epistemically possible in a state.) This can be
generalized.

Corollary 22.16 If B |=L A, B is a p-wff and A is a n-wff, then B ↪→L ⊕A.

Proof If B |=L A, then ��(B → A)� ∈ S5. Suppose that ♦B �|=S5 ♦ ⊕ A. So for
some S5-model M = 〈W,R,V〉 there exists w1 ∈ W such that M, w1 |= B and,
at the same time, M, w �|= ⊕A for any w ∈ W . Recall that ⊕A =d f (¬A → ⊥).
Hence for each w ∈ W we have M, w �|= A. Therefore ��(B → A)� /∈ S5. A
contradiction. �
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22.4.6.2 The Case of Sets of Wffs

The direct counterpart of Modus Ponens holds for ↪→L (cf. 22.43). But we have8:

{p → q, p} �↪→L q (22.58)

So conjunction behaves is a non-standard way in the context of ↪→L : A1 ∧ . . . ∧
An ↪→L B need not be tantamount to {A1, . . . , An} ↪→L B. The reason is that a
permittance class of a set of wffs need not be equal with the permittance class of a
conjunction of all the wffs in the set.9

Yet, the following is true:
{p → q,�p} ↪→L q (22.59)

Recall that �p can be read “p is known in a state in question”.
Here are further “negative” examples:

{p, q} �↪→L (p ∧ q) (22.60)

{p, p → ⊥} �↪→L (p ∧ ¬p) (22.61)

{p ∨ ¬q, q} �↪→L p (22.62)

{p → q, q → r} �↪→L (p → r) (22.63)

Observe, however, that the following hold:

{�p, q} ↪→L (p ∧ q) (22.64)

and similarly for q,
{�p,�q} ↪→L �(p ∧ q) (22.65)

{p ∨ ¬q,�q} ↪→L p (22.66)

{¬(¬p ∧ q), q} ↪→L p (22.67)

8Since {♦(p → q), ♦p} �|=S5 ♦q. (22.43) holds because ♦((p → q) ∧ p) |=S5 ♦q.
9For example, take an L-model M = 〈{w1, w2},V〉 such that V(p, w1) = 0, V(q, w1) = 0,
V(p, w2) = 1, and V(q, w2) = 0. Clearly, {w1, w2} ∈ ‖(p → q), p‖M, but {w1, w2} /∈ ‖(p →
q) ∧ p‖M. In general, a conjunction of p-wffs carries information that the conjuncts are simul-
taneously true in some world(s) of a state, while the information carried by the set of conjuncts
amounts to the claim that each conjunct is true in a certain world of the state. When we have a
“mixed” conjunction (that is, involving both p-wff and n-wffs), the information carried by n-wffs
“weakens”: the consecutive conjuncts, n-wffs included, are supposed to simultaneously hold in a
certain world of a state.
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{�(p → q),�(q → r)} ↪→L �(p → r) (22.68)

{¬(p ∧ ¬q),¬(q ∧ ¬r)} ↪→L ¬(p ∧ ¬r) (22.69)

It happens that conjunction behaves in the “standard” way in the context of ↪→L

although the conjuncts belong to diverse categories, as in:

{p → q,¬(q ∧ ¬r)} ↪→L (p → r) (22.70)

{¬p → q,¬p} ↪→L q (22.71)

{p ∨ q,¬q} ↪→L p (22.72)

{¬p → q,¬q} ↪→L p (22.73)

Let us now turn to inconsistent sets. As we have shown, ↪→L is paraconsistent.
But, for instance, we still have:

{p → q, p,¬q} ↪→L (¬p ∨ q) (22.74)

{p → q, p,¬q} ↪→L (¬(p → q) ∨ ¬p) (22.75)

{p → q, p,¬q} ↪→L ((¬(p → q) ∨ ¬p) ∨ q) (22.76)

{r, s, (r → p), (s → ¬p)} ↪→L (p ∨ ¬p) (22.77)

{r, s,�(r → p),�(s → ¬p)} ↪→L (�r ∨ �s) (22.78)

22.5 Question Raising

22.5.1 Questions

Let us now augment the language L with questions. In order to achieve this we
enrich the vocabulary of L with the following signs: {, }, ?, and the comma. The new
language is labelled as L?. Declarative well-formed formulas of L? are simply the
wffs of L . Questions of L? are expressions of the language falling under the schema:

? {A1, . . . , An} (22.79)
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where n > 1 and A1, . . . , An are nonequiform, i.e. pairwise syntactically distinct,
wffs of L . An expression of the form (22.79) can be read:

Is it the case that A1, or . . . , or is it the case that An? (22.80)

If ? {A1, . . . , An} is a question, then each of the wffs A1, . . . , An is called a direct
answer to the question, and these are the only direct answers to the question. A
direct answer is a possible answer. Moreover, it constitutes a sufficient answer: a
direct answer is supposed to provide neither less nor more information than it is
requested by the corresponding question. It is not assumed that a direct answer must
be true.10

We shall use Q, Q1, . . . as metalanguage variables for questions. The set of direct
answers to a question Q will be denoted by dQ.

22.5.1.1 Soundness of a Question

We do not assign truth or falsity to questions. However, we introduce the concepts
of soundness of a question in a world of an L-model and in a state of an L-model.11

Definition 22.15 (Soundness of a question)

1. A question Q is sound in a world w of an L-model iff at least one direct answer
to Q is true in w.

2. A question Q is sound in a state σ of an L-model iff Q is sound in at least one
world of the state σ.

Clearly, there are questions which are not sound in some worlds of certain L-
models. Similarly, there are questions which are not sound in any states of some
L-models. For example, ? {p, q} is not sound in any state of an L-model in which
for each world w of the model it holds that V(p, w) = V(q, w) = 0. On the other
hand, ? {p,¬p} is sound in each state of any L-model, and in each world of the
model.

22.5.2 From Permittance to Soundness: Proto-raising

Let us now define the following relation between sets of declarative formulas of L?

(i.e. wffs of L) and questions of L?.

Definition 22.16 (Proto-raising) A set of wffs X proto-raises a question Q (in sym-
bols: RP(X, Q)) iff for each L-model M and each M-state σ:

10For details of this approach to propositional questions of formal languages see, e.g. [11], Chap.2.
11Cf. [9].
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(•) if σ ∈ ‖X‖M, thenM, w |= A for somew ∈ σ and A ∈ dQ.

The underlying intuition is: if all the wffs in X are permitted by a state, then Q is
sound in the state, that is, at least one direct answer to Q is true in at least one world
of the state.

We have:

Lemma 22.5 Let n > 1. RP(X, ? {A1, . . . , An}) iff X ↪→L A1 ∨ . . . ∨ An.

Proof (⇒). Suppose that X �↪→L A1 ∨ . . . ∨ An . So there exist an L-model M and
an M-state σ such that σ � X and σ �� A1 ∨ . . . ∨ An . Since n > 1, A1 ∨ . . . ∨ An

is a p-wff. Thus there is no w ∈ σ such that M, w |= Ai , where 1 ≤ i ≤ n. Hence it
is not the case that RP(X, ? {A1, . . . , An}).

(⇐) Take an L-model M = 〈W,V〉 and an M-state σ. Let σ � X . Then σ �
A1 ∨ . . .∨ An . Since n > 1, A1 ∨ . . .∨ An is a p-wff. ThusMσ |= ♦(A1 ∨ . . .∨ An).
Hence there existsw ∈ σ such thatMσ, w |= A1∨. . .∨ An . ThereforeMσ, w |= Ai

for some 1 ≤ i ≤ n and thus M, w |= Ai for some 1 ≤ i ≤ n. It follows that
RP(X, ? {A1, . . . , An}). �

Lemma22.5 together with Corollary22.13 yield:

Corollary 22.17 If RP(X, ? {A1, . . . , An}), then X |=L A1 ∨ . . . ∨ An.

Thus, if X proto-raises Q, a disjunction of all the direct answers to Q is (classically)
entailed by X . Hence:

Corollary 22.18 Let w be a world of an L-model. If RP(X, Q) and all the wffs of
X are true in w, then Q is sound in w.

In other words, proto-raising secures the transmission of truth into soundness (w.r.t.
worlds), which, in turn, constitutes the basic criterion of adequacy of an explication
of the intuitive notion “a question Q arises from a set of declaratives X” (cf. [9–11]).
However, Definition22.16 cannot be regarded as providing an adequate explication
of the concept. Proto-raising allows for a situation which seems forbidden in view
of the intuitive notion: the permittance of all the elements of X in a state transforms
into knowledge of some direct answer(s) to Q in the state. But if Q arises from X ,
the permittance of (all the elements of) X by a state is insufficient for knowing a
direct answer to Q in the state; otherwise X would resolve Q and thus Q would not
arise from X .

22.5.3 Giving Rise

The following definition can be regarded as providing an explication of the intuitive
notion “a question arises from a set of declaratives”. Again, we assume that X is a
set of declarative formulas of L?, and Q is a question of the language.
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Definition 22.17 (Giving rise)A set ofwffs X gives rise to a question Q (in symbols:
R(X, Q)) iff RP(X, Q) and for each A ∈ dQ : X ��L A.

Thus X gives rise to Q just in case X proto-raises Q, but there is no transmission of
permittance between X and direct answers to Q.

We have:

Corollary 22.19 If X ��L A, then X ��L �A.

Thus the permittance of all the elements of X by a state does not yield the knowledge
of any direct answer to Q in the state. To be more precise, there is no transmission
of permittance between X and formulas which express that direct answers to Q are
known.

By Lemma22.5 and Definition22.17 we get:

Corollary 22.20 Let Q = ? {A1, . . . , An}. Then R(X, Q) iff

1. X ↪→L A1 ∨ . . . ∨ An, and
2. X �↪→L Ai for i = 1, . . . , n.

Therefore, by the Reduction Theorem (i.e. Theorem22.2):

Corollary 22.21 R(X, ? {A1, . . . , An}) iff

1. (X)∗ |=S5 ♦(A1 ∨ . . . ∨ An) and
2. (X)∗ �|=S5 (Ai )

∗ for i = 1, . . . , n.

Hence, the following examples come with no surprise12:

R(p, q, ? {p ∧ q,¬(p ∧ q)}) (22.81)

R(¬p ∨ ¬q, ? {¬(p ∧ q),¬(p ∨ q)}) (22.82)

R(¬p ∧ ¬q, ? {¬(p ∨ q), p ∧ q}) (22.83)

R(p → q,¬q, ? {p,¬p}) (22.84)

Observe that the raised questions have direct answers which are classically entailed
by the raising sets. This is not a general rule, however.

R(p ∨ ¬p, ? {p,¬p}) (22.85)

R(p ∨ q, ? {p,¬p}) (22.86)

R(p ∨ q, ? {p, q}) (22.87)

12For brevity, we simply list the elements of sets of wffs.
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R(p ∨ q, ? {p ∧ q,¬(p ∧ q)}) (22.88)

R(p ∨ q, ? {p ∧ q, p ∧ ¬q,¬p ∧ q}) (22.89)

R(p → q ∨ r, ? {p → q, p → r}) (22.90)

R(p → q ∨ r, p, ? {q, r}) (22.91)

R(¬(q ∧ r), ? {¬q,¬r}) (22.92)

R(p ∧ q → r, ? {p → r, q → r}) (22.93)

R(p ∧ q → r,¬r, ? {¬p,¬q}) (22.94)

R((p ∨ q) ∨ r, ? {p, q ∨ r}) (22.95)

R(p, ? {⊕¬p,�p}) (22.96)

R(p → ⊥, ? {⊕p,�¬p}) (22.97)

22.5.4 Question Raising by Inconsistencies

Questions often arise from inconsistencies. The presented account of question raising
does justice to that. To be more precise, we are able to model the case in which ques-
tions arise from inconsistent sets with non-empty permittance classes. The following
holds:

Corollary 22.22 If R(X, Q), then the permittance class of X is non-empty.

Proof By assumption, dQ �= ∅. Let A ∈ dQ. If R(X, Q), then X �↪→L A, so there
exist an L-model M and an M-state σ such that σ � X as well as σ �� A. Therefore
X has a non-empty permittance class. �

Hence plainly inconsistent sets do not give rise to (in the sense of Definition22.17)
any questions. Similarly, by Corollary22.14, inconsistent sets which comprise only
n-wffs do not give rise to questions. The case of inconsistent sets having non-empty
permittance classes in different, however.

Let us start with examples. The following hold:

R(p → q, p,¬q, ? {¬(p → q),¬p, q}) (22.98)

R(p → q, p,¬q, ? {¬(p → q),¬p}) (22.99)

R(p → q, p,¬q, ? {¬(p → q), q}) (22.100)
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R(p → q, p,¬q, ? {¬p, q}) (22.101)

R(r, s, r → p, s → ¬p, ? {p,¬p}) (22.102)

R(r, s,�(r → p),�(s → ¬p), ? {�r,�s}) (22.103)

Let us now introduce:

Definition 22.18 (Complement)

1. If A is of the form ¬C , then A is C .
2. If A is not of the form ¬C , then A is ¬A.

Recall that, by Theorem22.1, X has a non-empty permittance class iff (X)∗ has
a S5-model.

Theorem 22.3 If {A1, . . . , An}, where n > 1, is inconsistent, but has a non-empty
permittance class, then R({A1, . . . , An}, ? {A1, . . . , An}).
Proof If {A1, . . . , An} is inconsistent, then for each L-model M = 〈W,V〉 and each
w ∈ W we have M, w �|= {A1, . . . , An} and hence M, w |= A1 ∨ . . . ∨ An . Suppose
thatRP({A1, . . . , An}, ? {A1, . . . , An}) does not hold. Thus {A1, . . . , An} �↪→L A1∨
. . . ∨ An and hence ({A1, . . . , An})∗ �|=S5 ♦(A1 ∨ . . . ∨ An). So there exists a world
w of an S5-model M such that M, w �|= ♦(A1 ∨ . . . ∨ An). Thus the argument
of ♦ is false in each w ∈ W . Therefore M, w |= ¬(A1 ∨ . . . ∨ An), that is,
M, w |= ¬A1 ∧ . . . ∧ ¬An . But M, w |= ¬Ai iff M, w |= Ai for 1 ≤ i ≤ n. It
follows that there exists a L-model M for which it holds that M, w |= {A1, . . . , An}
and thus the analysed set is consistent. A contradiction.

Since {A1, . . . , An} has a non-empty permittance class, there exist: an L-model
M′ = 〈W ′,V ′〉 and an M′-state σ such that σ � Ai for 1 ≤ i ≤ n. Suppose that
{A1, . . . , An} ↪→L Ai for some 1 ≤ i ≤ n. Thus σ � Ai and hence σ �� Ai . A
contradiction. �

According to Theorem22.3, an at least two-element finite inconsistent set of wffs
gives rise to a question whose direct answers are complements of the wffs in the
set—provided that the set has a non-empty permittance class. For instance:

R(p ∨ q → r, p ∧ ¬r, ? {¬(p ∨ q → r),¬(p ∧ ¬r)}) (22.104)

R(p, p → ⊥, ? {¬p,¬(p → ⊥)}) (22.105)

R(r, s, r → p, s → ¬p, ? {¬r,¬s,¬(r → p),¬(s → ¬p)}) (22.106)

The “complement“ question is also raised by the empty set. In order to show this
we need an auxiliary concept and two lemmas.

Definition 22.19 Let Q be a question andC be awff. By QC we designate a question
such that dQC = dQ ∪ {C}.
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When C /∈ dQ, any QC may be called an extension of Q by C .13

Lemma 22.6 If RP(X ∪ {B}, Q), then RP(X, Q B).

Proof Let Q = ? {A1, . . . , An} and Q B = ? {A1, . . . , An, B}.
Suppose that RP(X, ? {A1, . . . , An, B}) does not hold. Then, by Lemma22.5,

X �↪→L A1∨. . .∨An∨B. Hence for some L-modelM = 〈W,V〉 and someM-stateσ
wehave:σ � X andσ �� A1∨. . .∨An∨B. It follows thatM, w |= A1∧. . .∧An∧B
for each w ∈ σ. Therefore Mσ |= �(A1 ∧ . . . ∧ An ∧ B) and hence Mσ �|=
♦(A1 ∨ . . .∨ An) as well asMσ |= �B. ThusMσ |= (B)∗ regardless of whether B
is a p-wff or a n-wff, andMσ �|= (A1∨. . .∨An)

∗. Sinceσ � X , we haveMσ |= (X)∗
and hence Mσ |= (X ∪ {B})∗. Therefore (X ∪ {B})∗ �|=S5 (A1 ∨ . . . ∨ An)

∗. Thus,
by Theorem22.2, X ∪ {B} �↪→L A1 ∨ . . . ∨ An . Since ? {A1, . . . , An} is a question,
n > 1 and thus Lemma22.5 applies. Hence RP(X ∪ {B}, ? {A1, . . . , An}) does not
hold as well.

We have assumed that B is the “last” direct answer to Q B . Yet, nothing essential
changes when we place B at some other position. �

Lemma 22.7 (Deduction) If R(X ∪ {B}, Q), then R(X, Q B).

Proof If R(X ∪ {B}, Q), then X ∪ {B} has a non-empty permittance class. Let σ be
an element of the class. Since σ � B, we get σ �� B and hence X �↪→L B. Clearly
X �↪→L A for any A ∈ dQ. On the other hand, by Definition22.17 and Lemma22.6,
R(X ∪ {B}, Q) yields RP(X, Q B). �

Lemma22.7 enables us to derive new examples from already established ones.
Thus, for instance, from (22.101) we get:

R(p → q, p, ? {¬p, q}) (22.107)

while (22.99) gives:

R(p → q,¬q, ? {¬(p → q),¬p}) (22.108)

From (22.100) we get:

R(p → q, p, ? {¬(p → q), q}) (22.109)

However, the most important consequence of Lemma22.7 is:

13Despite of their form, questions of L? are not sets of direct answers, but object-language expres-
sions. Thus, for example, ? {p, q} �= ? {q, p}, although {p, q} = {q, p}. Hence QC denotes a class
of expressions.
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Theorem 22.4 Let {A1, . . . , An}, where n > 1, be an inconsistent set which has a
non-empty permittance class. Then R(∅, ? {A1, . . . , An}).
Proof By Theorem22.3 and Lemma22.7 (since {A1, . . . , An} ∪ {Ai } = {A1, . . . ,

An}). �

Thus, for instance:
R(∅, ? {¬(p → q),¬p, q}) (22.110)

R(∅, ? {¬p,¬(p → ⊥)}) (22.111)

By the way, the following holds as well:

R(∅, ? {�p,�¬p}) (22.112)

because we have:

R(p → ⊥,¬p → ⊥, ? {¬(p → ⊥),¬(¬p → ⊥)}) (22.113)

22.5.5 Some Comparisons

The intuitive notion “a question arises from a set of declaratives” is explicated in
Inferential Erotetic Logic14 by the concept “a set of declaratives evokes a question”.
Leaving aside the general schema of definition of evocation,15 in the case of the
language L evocation can be defined as follows:

Definition 22.20 (Evocation of questions) A set of wffs X evokes a question Q iff
X entails a disjunction of all the direct answers to Q, but does not entail any single
direct answer to Q.

By “entails” we mean “entails in L”; cf. Definition22.12. We write E(X, Q) for “X
evokes Q”.

Clearly we have:

Corollary 22.23 Let Q = ? {A1, . . . , An}. Then E(X, Q) holds iff

14Generally speaking, Inferential Erotetic Logic (IEL for short) is a logic that analyses inferences in
which questions play the role of conclusions and proposes criteria of validity for these inferences.
For IEL see, e.g. [9–11].
15Formulated in terms of multiple-conclusion entailment (mc-entailment for short): a set of wffs
X evokes a question Q iff X mc-entails the set of direct answers to Q, but does not mc-entail any
singleton set whose element is a direct answer to Q. The concept of mc-entailment generalizes the
concept of entailment. Mc-entailment is a relation between sets of wffs. Roughly, X mc-entails Y
iff the truth of all the wffs in X warrants the existence of a true wff in Y . For mc-entailment see [8].
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1. X |=L A1 ∨ . . . ∨ An, and
2. X �|=L Ai for i = 1, . . . , n.

For examples of evocation see, e.g. [9–11].
Since no direct answer to an evoked question is (classically) entailed by the evok-

ing set, we get:

Corollary 22.24 If E(X, Q), then X is consistent.

So evocation behaves differently than giving rise understood in the sense of Def-
inition22.17; as we have shown, some inconsistent sets give rise to questions.

However, evocation can be defined in terms of giving rise. Let us introduce:

Definition 22.21 �X =d f {�A : A ∈ X}
Recall that �A abbreviates ¬(A → ⊥) and thus can be read “A is known”.

Theorem 22.5 E(X, ? {A1, . . . , An}) iff R(�X, ? {A1, . . . , An}).
Proof For conciseness, let us write “A1 ∨ . . . ∨ An” as “

∨
A1,n”.

(⇒) If E(X, ? {A1, . . . , An}), then X |=L
∨

A1,n .
Suppose that RP(�X, ? {A1, . . . , An}) is not the case. Thus �X �↪→L

∨
A1,n . So

there exists an L-model M = 〈W,V〉 such that for some M-state σ: σ � �X
and σ �� ∨

A1,n . Since
∨

A1,n is a p-wff, it follows that M, w �|= ∨
A1,n for any

w ∈ W . The elements of �X are n-wffs of the form ¬(B → ⊥). Hence M, w |= X
for any w ∈ σ. Thus X �|=L

∨
A1,n . A contradiction.

Since E(X, ? {A1, . . . , An}), then X �|= Ai for 1 ≤ i ≤ n. Thus for each i , where
1 ≤ i ≤ n, there exists an L-model M = 〈W,V〉 such that for some w ∈ W:
M, w |= X and M, w �|= Ai . Hence {w} � �X and {w} �� Ai , that is,�X �↪→L Ai .

Therefore R(�X, ? {A1, . . . , An}).
(⇐). Assume that R(�X, ? {A1, . . . , An}). Hence �X ↪→L

∨
A1,n . Suppose

that X �|=L
∨

A1,n . So there exists a singleton state, {w} of a certain L-model such
that {w} � �X and {w} �� ∨

A1,n . Thus �X �↪→L
∨

A1,n . A contradiction.
SinceR(�X, ? {A1, . . . , An}), we have�X �↪→L Ai for 1 ≤ i ≤ n. Thus for each

Ai , where 1 ≤ i ≤ n, there exists a state σi of an L-model M such that σi � �X and
σi �� Ai . Recall that states are, by definition, non-empty sets. Suppose that Ai is a
p-wff. Hence for anyw ∈ σi we have M, w |= X and, at the same time, M, w �|= Ai .
Thus X �|=L Ai for 1 ≤ i ≤ n. Now suppose that Ai is a n-wff. Since σi �� Ai , we
get σi � ¬Ai , where ¬Ai is a p-wff. Hence for some w ∈ σi we have M, w �|= Ai

and thus X �|=L Ai .
Therefore E(X, ? {A1, . . . , An}). �

Thus, generally speaking, evocation is just giving rise by premises supposed to
be known. This explains why Corollary22.24 holds.
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22.6 Final Remarks

SinceEx Falso Quodlibetholds inClassical Logic, in order tomodel the phenomenon
of the arising of questions from inconsistencies we have to use some non-classical
tools. The concept of permittance analysed in this paper is useful in this respect,
although the solution offered is not fully general. An advantage of the solution lies in
staying closer to the standard logical format than the alternative solutions proposed
within the adaptive logic programme (see [5, 6]).

Besides its applicability in the area of questions, the concept of permittance seems
interesting on its own. As we pointed out in Sect. 22.2.3, one can express the fact
that A is known in a state directly in a non-modal language. The relativization to
states, in turn, seems to resolve the old philosophical problem: one can legitimately
claim that A is an item of knowledge in some initial state and ceases to constitute
knowledge as the initial state is enriched with a new possible world/ a new account
of how things are in which A is not true anymore.16 Moreover, let us consider the
case of conflicting hypotheses being general statements of the form ∀xiA. Assuming
that they are treated semantically as we have treated p-wffs, conflicting hypotheses
can be simultaneously permitted by a state and this is not tantamount to falling into a
contradiction. A hypothesis of this kind constitutes an item of knowledge in a state if
it is true in each world of the state, and extending the state with a new world in which
the claim of the hypothesis does not hold only changes its epistemic status, but does
not require the rejection of the hypothesis: it remains an item of knowledge in the
“old” state and becomes (only) permitted in the “new” state. Permitted counterparts
of n-wffs, in turn, perform the role of state-constraints, since in their case permittance
by a state equals being true in each world of the state.

Last but not least: ↪→L seems to be an interesting truth-preserving paraconsistent
consequence relation and the logic determined by it is worth further study.
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impredicative. Subsequent work shows that £ in combination with further arguably
plausible assumptions is very much stronger in its interpretative power.

In [1] we showed that if ZF�− = ZF minus extensionality plus ‘there are
omega inaccessible cardinals’ is consistent then £ has an interpretation of ZF�−
which £ believes is a standard (i.e., well founded) model of ZF�−. As a consequence
£ has an interpretation of ZF with extensionality given theorem 1 of [8], which shows
that a system S slightly weaker than ZF minus extensionality—with collection in lieu
of replacement—has an interpretation of ZF with extensionality.

In [4] we prove that £ plus the Skolem-Fraenkel Postulation (SFP) interprets ZFC
by an extension of Friedman’s interpretation of ZF just referred to. Notice well that
£ does not by itself commit to the consistency of something as strong as ZFC, and it
may be that we should rest with £ as a much weaker system in the spirit of Feferman’s
attitude that classical set theory is as problematic as medieval theology. On the other
hand, £ + SFPX , where SFPX is an arguably plausible extension of SFP, may even
interpret ZFC + ‘there are X inaccessible cardinals’ (if such systems are consistent)
in an essential countable framework—on the last point compare [2] and superseded
publications dating back to 2004 as well as [12]; recent results show that X may be
replaced by arbitrary Mahlo-cardinals.

In [3] we showed how to isolate the definable real numbers in £. It is noteworthy
that this cannot be done in classical set theories, so £ is in some important respects
stronger than them; regarding issues of strength, compare its negjunction complete-
ness discussed below. The isolation of the definable real numbers becomes possible
inter alia because of the presence of a nontypical truth predicate in £, and we can
have such a truth predicate in £ because £ importantly resists Cantor’s conclusion
that there are uncountable infinities (for this, see again also [2]). Note well that we do
not claim that Cantor’s arguments are invalid, as they are eminently and undeniably
logally valid arguments. Nevertheless, Cantor’s reductio arguments involve properly
paradoxical objects as premises when adapted in the librationist setting, and so the
arguments turn out to not be sound according to the librationist points of view.

We adopt a limitative attitude and go a step further with postulating a bijection
e from a set of finite von Neumann ordinals to a universal set of £; notice the use
of indefinite articles on account of the essential and pervasive non-extensionality of
sets in £ (see [5], pp. 345–346). Given e we adopt a nominality interpretation of
what are standardly taken as free variables and take them as noemata which serve as
standard names of sets. Given the noemata and that there are only countably many
objects we define a parametrized coding of the language so that the truth predicate
can serve its proper nontypical role. We remark that the isolation of definable real
numbers mentioned above becomes possible also on account of the availability in £
of a peculiar fixed point construction going back to [6], p. 76 with a crucial precedent
in [13], which we call manifestation points.

Incidentally, as this question has been raised in conversation, we point out that £
has choice-principles akin to the axiom of choice for kinds (non-paradoxical sets)
on account of e. Given Gödel’s result that any model of ZF has a model of ZFC,
this state of affairs is not so important as one would otherwise assume; the fact that
£ + SFP has an interpretation of ZFC is also of relevance here. It is of interest to
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consider the possible role of principles akin to the Axiom of Determinacy (AD) in
the context of £ as the refutation of AD as carried out in ZFC cannot be transferred
to £.

In the following we concentrate on how £ deals with the paradoxes in a novel
manner, and we present an external way of thinking about the situation which cannot
be matched by just gleaning upon theses of £. This external viewpoint involves the
definition of a series of novel concepts and we introduce corresponding neologicisms.

Distinguish between theorems about a system and theorems in a system by adopt-
ing “thesis” for the latter usage and maintaining the previous usage. As becomes clear
below we use slightly deviant names for connectives in order to forestall irrelevant
philosophical objections appealing to something like their one and only true mean-
ing; in particular we use the novel term “negjunction” in lieu of “negation”. Formula
A is an antithesis of a system iff the negjunction ¬A is a thesis of it, and A is a
nonthesis of a system iff it is not a thesis of it. S is an extension of T iff all theses of
T are theses of S and some thesis of S is a nonthesis of T . S is a sedation of T iff no
thesis of S is an antithesis of T . S is a sedate extension of T iff it is a sedation and an
extension of T . Sedationism is the view that we should only accept sedate extensions
of classical logic. £ is a sedate extension of classical logic.

The austere alphabet of £ is | and ., and symbols of £ just those strings of these that
count as powers of two if | is taken as ‘1’ and . as ‘0’ in the binary numerical system;
combining the Peirce arrow (dualized later by Sheffer) and Łukasiewicz’ notation
strategy we understand the formulas £ posits by the appropriate strings of symbols (as
by the definitions and formation rules and elementary number theoretic concatenation
definition) of £ to be the finite von Neumann ordinals of Lς so denoted where ς is
the level of Gödel’s constructible hierarchy needed for our semantic construction
à la [6] (Bjørdal [5] and descendents merit comparison); it is sufficient for ς to be
a �3-admissible ordinal. £ thinks it has the language of set theory minus identity
plus truth predicate T and enumerator sign e. The latter pins down a bijection from
the finite von Neumann ordinals of £ to any universal set (denumerabilism), and the
former connects to a semantic predicate; these both use the internal Gödel coding
�� which mirrors the external coding invoked above in a manner so that all sets have
names (expressionism).

A is a maxim of £ iff A is a thesis of £ and ¬A is a nonthesis of £, and a minor iff
a thesis of £ and an antithesis of £. £ has novel regulations and prescriptions; unlike
classical inference rules the regulations of £ are sensitive to whether antecedent theses
are maxims or minors, and prescriptions are similarly unlike traditional axioms and
axiom schemas. We consider £ a super-formal and contentual system; the former
is on account of its countenance of crucial infinitary regulations and the latter on
account of its equally crucial expressionistic treatment of noemata as names.

We underline here with this as background that £ is negjunction complete, so that
for any formula A of the language of £ either A is a thesis of £ or ¬A is a thesis of
£. On this, see [5], p. 338 and [4], p. 12; it is also with this in mind that it must be
stressed that £ is not a traditional formal system and our account here is semantical.
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The librationist treatment of the Curry paradoxes (see [5], p. 356f) virtually proves
that such a semantical approach is needed in order to account for the paradoxes quite
liberally such as in £.

We point out that £ supports a mathematicalist point of view to the effect that
mathematics is more fundamental than logic. In particular, from the point of view
of Lς formulas of £ simply are natural numbers of Lς and the prescriptions of £ are
regarded as functions from real numbers (sets of natural numbers) to real numbers.
Moreover, £ cannot be understood as a logic X plus comprehension principles Y . It
is rather so that the adherence of £ to classical logic, in as far as £ extends it sedately,
can be read off as a superficial phenomenon. Librationist comprehension is the sum
total of principles which entail existence statements in £, and this sum cannot be
stated effectively. Importantly, the points of view of £ are different from that of Lς .

£ amazes in connection with paradoxical phenomena, and we consider this a forte
of the librationist framework as paradoxical phenomena are amazing. Let Russell’s
set r be {x : x ∈ x} and Russel’s sentence R be r ∈ r. Although £ has R as a thesis
and also as an antithesis, £ is neither inconsistent nor contradictory.

The valency of a sentence are the set of ordinals where it holds in the Herzbergerian
style semi-inductive semantics (cfr. [10] and the related work [9]) with the librationist
twist that formulas unbounded under the closure ordinal Ϙ (archaic Greek Koppa)
are the ones taken as designated, and not only those formulas stably in as from some
ordinal below the closure ordinal. The valor of a sentence is the least upper bound
of its valency. The contravalence of a sentence is the closure ordinal Ϙ minus the
valency of that sentence, and the ambovalence of two sentences is the intersection of
their valencies. Induced set theoretic definitions introduce the concepts of velvalence,
subvalence of ... under and homovalence for veljunction, subjunction (material
conditional) and equijunction (material biconditional), respectively. A sentence is
true iff its valor is the closure ordinal Ϙ, and a sentence is false iff its negjunction is
true.

Connectives are valency functional: The valency of ¬A is the contravalency of
A, the valency of the adjunction A ∧ B is the ambovalenc of A and B, the valency of
the veljunction A ∨ B is the velvalence of A and B, the valency of the subjunction
A → B is the subvalence of A under B and the valency of the equijunction A ↔ B
is the homovalency of A and B. In the special and preferable case of maxims (non-
paradoxical formulas) the valency functionality of connectives induce their truth
functionality.

A sentence dictates its valor, and its valency is the way the valor is dictated. Two
sentences contradict each other iff they are contravalent and do not dictate the same.
Two sentences are complementary iff they are contravalent and not contradictory.
Two complementary sentences consequently dictate the same, and thence they dictate
the closure ordinal. If R be Russell’s sentence as above, R and its negjunction ¬R
dictate Ϙ in complementary, or opposite, ways.

By these definitions two sentences A and B which are contradictory or comple-
mentary are contravalent and incompatible in that the adjunction A ∧ B does not
hold. Let us agree that a theory is contrasistent iff a sentence A is both a thesis and
an antithesis of the theory. We take a theory to be inconsistent iff it has a thesis of
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the form B ∧ ¬B and to be trivial iff all its formulas are theses. Trivial systems and
inconsistent theories with simplification (adjunction elimination) are contrasistent. £
is contrasistent, but neither trivial nor inconsistent. We retain the term “parasistent”
of [5] for the somewhat different idea that £ lets us stand beyond and shift between
perspectives.

We say that two formulas A and B of a theory T cohere iff A and B are theses of
T only if also A ∧ B is a thesis of T . Russell’s sentence R and its negjunction ¬R
are theses of £ which are incoherent with each other. We say that theories that have
relatively incoherent and incompatible theses as these are paracoherent theories.
Some paraconsistent logics, such as the ones following the approach by Jaskowski,
are non-adjunctive; but such logics do not in and of themselves have incoherent
theses, though extensions of such logics with appropriate comprehension principles
may be paracoherent.

We have underlined that £ is a super (semi) formal system, and that it is not
recursively axiomatisable. Nevertheless, a lot of highly informative prescriptions
(“axiom schemas”) and prescripts (“axioms”) and regulations (“inference rules”)
are isolated. Importantly, modus ponens is not an unexceptional regulation or modus
ponens as classically understood is appropriately interpreted by the regulation modus
maximus in £ and the other regulations in it are appropriately considered super
classical; arguably it is in the novelty of regulations that £ most deviates from and
supersedes classical approaches. We take the super formal system £ to be a contentual
system as it is categorical with respect to content.

There is the question as to whether £ should be considered a property theory or a set
theory which we dealt with in [5], p. 324, where I inter alia on the basis of the opening
lines of [11] decided to settle for the term “sort theory.” I uphold the view that the
term “property theory” is unfortunate and that “sort theory” is a better term when one
wants to include, e.g., individuals (Urelemente) and crowds (properties) and queues
(tuples) thereof besides pure sets. But I am at this point no longer satisfied that the
idea of the cumulative hierarchy should be allowed to monopolize the significance
of the term “set” as, e.g., suggested in [7], Chap. 1, Sect. 4. This is not only because
librationism holds that the power set operation is paradoxical, as shown in [5], but
also because we in more recent literature encounter a wide variety of proposals that
are suggested as set theories without abiding by the strictures of being iterative or
extensional or non-paradoxical. Thence I now hold that £ indeed is a set theory as
now presented, but certain extensions of £ that deal with extra-mathematical objects
should be studied under the name “sort theory.”

We have above pointed out that £ is negjunction complete and that arguably
plausible extensions of £ interpret ZFC and stronger systems. It is important to be
aware, then, that according to such librationist interpretations of ZFC all statements
are settled in the interpretation. As a consequence of Gödel’s second incompleteness
theorem we cannot settle all such questions with resources that are weaker, and
so strength must be imported in the arguably plausible extensions of £ and in the
methods used to show that the interpretation of ZFC settles the question in the
determinate manner. Importantly, librationism on account of the foregoing supports
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a mathematical optimism according to which there are no absolutely unsolvable
mathematical problems.

We take nominism to be the view that all mathematical objects have a name
while it, as opposed to nominalism, nonetheless upholds the platonist view that
mathematical objects are abstract. Nominism is supported by librationism in the
latter’s avoidance of Cantor’s conclusion that there are uncountable infinities and
insistence instead that there are only denumerably many obects; as there, according
to £, are only a denumerable infinity of objects, we have enough names to name all
mathematical objects and we have invoked a nominality policy with that as objective
in our semantics.

Notice that the term “platonism” in the context of set theory is sometimes taken
to stand for the cantorianist view that the endless hierarchy of ever larger alephs
exists in a nonrelative and absolute sense. Here we abide by what we take as a
more plausible usage of the term in the philosophy of mathematics where it denotes
the view that takes mathematical objects to be abstract objects. Nominism rejects
cantorianism.

Arguably, a defining feature of paraconsistent systems is that they do not include
the scheme of ex contradictione quodlibet, but £ extends classical logic sedately so it
is not paraconsistent according to such standards. £ does not articulate a dialetheist
point of view for the latter is canonicaly characterized as the view that some con-
tradictions are true; but quite on the contrary, £ does not condone the assertion of
any contradictions. We adopt the name bialethism for the peculiar way of dealing
with truth supported by the super formal, super classical, contentual, contrasistent,
complementary, paracoherent, librationist set theory £.
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Chapter 24
None of the Above: The Catus.kot.i in Indian
Buddhist Logic

Graham Priest

Abstract The catus.kot.i (Greek: tetralemma; English: four corners) is a venerable
principle of Indian logic, which has been central to important aspects of reasoning
in the Buddhist tradition. What, exactly, it is, and how it is applied, are, however,
moot—though one thing that does seem clear is that it has been applied in different
ways at different times and by different people. Of course, Indian logicians did not
incorporate the various interpretations of the principle in anything like a theory of
validity in the modern Western sense; but the tools of modern non-classical logic
show exactly how to do this. The tools are those of the paraconsistent logic of First
Degree Entailment and some of its modifications.

Keywords Catus.kot.i · Buddhism · Nāgārjuna · Ineffability · First Degree Entail-
ment · Plurivalent logic
Mathematics Subject Classification (2000) Primary 03B53 · Secondary 03B50

24.1 Introduction

The catus.kot.i (Greek: tetralemma; English: four corners) is a venerable principle of
Indian logic, which has been central to important aspects of reasoning in the Buddhist
tradition. What, exactly, it is, and how it is applied, are, however, moot—though one
thing that does seem clear is that it has been applied in different ways at different
times and by different people. Of course, Indian logicians did not incorporate the
various interpretations of the principle in anything like a theory of validity in the
modernWestern sense; but the tools of modern non-classical logic show exactly how
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to do this. The tools are those of the paraconsistent logic of First Degree Entailment
(FDE), and some of its modifications.1 We will approach the matter chronologically,
interlacing philosophical and technical material, as appropriate.2 The point of the
exercise is to show how the history of philosophy and the techniques of contemporary
non-classical logic can profitably inform each other. Positions which one might have
taken to be unintelligible can be shown to be perfectly coherent with the aid of these
techniques; conversely, the positions may themselves suggest the development of
interesting new logical techniques.

24.2 Back to the Beginning

So let us go back to the earliest applications of the catus.kot.i.
The four kot.is (corners) of the catus.kot.i are four options that one might take on a

question. Given any question, there are four possibilities, yes, no, both, and neither.
Who first formulated this thought would appear to be lost in the mists of time, but it
seems to be fairly orthodox in the intellectual circles of Siddhārtha Gautama (Pali:
Gotama), the historical Buddha (c. 6c BCE). Thus, canonical Buddhist texts often set
up issues in terms of these four possibilities. For example, in the Mijjhima Nikāya,
when the Buddha is asked about one of the profound metaphysical issues, the text
reads as follows3:

‘How is it, Gotama? Does Gotama believe that the saint exists after death, and that this view
alone is true, and every other false’?

‘Nay, Vacca. I do not hold that the saint exists after death, and that this view alone is
true, and every other false’.

‘How is it, Gotama? Does Gotama believe that the saint does not exist after death, and
that this view alone is true, and every other false’?

‘Nay, Vacca. I do not hold that the saint does not exist after death, and that this view
alone is true, and every other false’.

‘How is it, Gotama? Does Gotama believe that the saint both exists and does not exist
after death, and that this view alone is true, and every other false’?

‘Nay, Vacca. I do not hold that the saint both exists and does not exist after death, and
that this view alone is true, and every other false’.

‘How is it, Gotama? Does Gotama believe that the saint neither exists nor does not
exist after death, and that this view alone is true, and every other false’?

‘Nay, Vacca. I do not hold that the saint neither exists nor does not exist after death,
and that this view alone is true, and every other false’.

1For FDE, see Priest [10], Chap. 8.
2I note right at the start there are some Buddhist logicians in whose thinking the catus.kot.i played
no role. This is true, in particular, of the school of Dignāga and Dharmakīrti. Like the Nyāyā,
this school of logic endorsed both the Principles of Non-Contradiction and Excluded Middle. See
Scherbatsky [18], pt. 4, Chap. 2.
3Radhakrishnan and Moore [14], p. 289 f. The word ‘saint’ is a rather poor translation. It refers to
someone who has attained enlightenment, a Buddha (Tathāgata).
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It seems clear from the dialogue that the Buddha’s interlocutor thinks of himself as
offering an exclusive and exhaustive disjunction fromwhich the Buddha is to choose.
That there are four such possibilities, was the standard view.4

Later Buddhists echoed the thought. Thus, in the Mūlamadhyamakakārikā (here-
after, MMK) Nāgārjuna frequently addresses an issue by considering these four
cases. Thus, in Chap. XXV, he considers nirvān. a. First, he considers the possibility
that it exists (vv. 4–6); then that it does not exist (vv. 7–8); then that it both exists and
does not exist (vv. 11–14); and finally, that it neither exists nor does not (vv. 14–15).
As Āryadeva, Nāgārjuna’s disciple, was to put it5:

Being, non-being, [both] being and non-being, neither being [nor] non-being: such is the
method that the wise should always use with regard to identity and all other [theses].

Thus, it would seem, originally, the catus.kot.i functioned as something like a Principle
of the Excluded Fifth. Aristotle held a principle of the Excluded Third: any statement
must be either true or false; there is no third possibility; moreover, these two are
exclusive. In a similar but more generous way, the catus.kot.i gives us an exhaustive
and mutually exclusive set of four possibilities.

24.3 First Degree Entailment

How to formulate such a simple idea has bemused many commentators, and resulted
inmany dud ideas.6 However, to anyone familiar with the rudiments of contemporary
non-classical logic, there is an obvious way. First Degree Entailment (FDE) is a
system of logic that can be set up in many ways, but one of these is as a four-valued
logic whose values are t (true only), f (false only), b (both), and n (neither). The
values are standardly depicted by the following Hasse diagram:

t
↗ ↖

b n
↖ ↗

f

Negation maps t to f , vice versa, n to itself, and b to itself. Conjunction is greatest
lower bound, and disjunction is least upper bound. The set of designated values, D,
is {t, b}.7 The four corners of truth and the Hasse diagram seem like a marriage made
for each other in a Buddhist heaven.8

4See Ruegg [17], p. 1.
5Tillemans [20], p. 189.
6For a survey, see Ruegg [17], p. 39ff. And for a critique, see Priest [12], 2.2.
7See Priest [10], Chap. 8.
8As observed in Garfield and Priest [4].
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FDE can be characterised by the following sound and complete rule system.
(A double line indicates a two-way rule, and overlining indicates discharging an
assumption.)9

A, B A ∧ B
A ∧ B A (B)

A (B)

A B
...

...

A ∨ B C C

A ∨ B C

¬(A ∧ B) ¬(A ∨ B) ¬¬A

¬A ∨ ¬B ¬A ∨ ¬B A

24.4 Denying All the Kot.is

So far so good. Returning to the question of the Tathāgata after death, the Buddha,
as we observed, refused to endorse any of the kot.is on this matter—and on a number
of similar “unanswerable” metaphysical questions. In some sūtras it appears that
this is because speculation over the matter is simply a waste of time.10 Thus, in the
Cula-Malunkyovada Sutta, we read11:

It is just as if a man were wounded with an arrow thickly smeared with poison. His friends
and companions, kinsmen, and relatives would provide him with a surgeon, and the man
would say, ‘I won’t have this arrow removed until I know whether the man who wounded
me was a noble warrior, a priest, a merchant, or a worker’ He would say, ‘I won’t have this
arrow removed until I know the given name and clan name of the man who wounded me...
until I know whether he was tall, medium, or short... until I know whether he was dark,
ruddy-brown, or golden-colored... until I know his home village, town, or city... ’. The man
would die and those things would still remain unknown to him.

In the same way, if anyone were to say, ‘I won’t live the holy life under the Blessed
One as long as he does not declare to me that ‘The cosmos is eternal’,... or that ‘After death
a Tathagata neither exists nor does not exist’, the man would die and those things would still
remain undeclared by the Tathagata....

So, Malunkyaputta, remember what is undeclared by me as undeclared, and what
is declared by me as declared. And what is undeclared by me? ‘The cosmos is eternal’,
is undeclared by me. ‘The cosmos is not eternal’, is undeclared by me. ... ‘After death a
Tathagata exists’... ‘After death a Tathagata does not exist’... ‘After death a Tathagata both
exists and does not exist’... ‘After death a Tathagata neither exists nor does not exist’, is
undeclared by me.

9See Priest [7], 4.6.
10See Ruegg [17], pp. 1, 2.
11Thanissaro [19].
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And why are they undeclared byme? Because they are not connected with the goal, are
not fundamental to the holy life. They do not lead to disenchantment, dispassion, cessation,
calming, direct knowledge, self-awakening, unbinding. That is why they are undeclared by
me.

However, in some of the sūtras there is a hint of something else going on. The
Buddha seems to explicitly reject all the options, the suggestion being that all the
answers have a common and false presupposition. Thus, in the Mijjhima Nikāya, the
Buddha says that none of the four kotis ‘fits the case’ in such issues.When questioned
how this is possible, he says12:

But Vacca, if the fire in front of you were to become extinct, would you be aware that the
fire in front of you had become extinct?

Gotama, if the fire in front of me were to become extinct, I would be aware that the
fire in front of me had become extinct.

But, Vacca, if someone were to ask you, ‘In which direction has the fire gone,—east,
or west, or north, or south’? what would you say O Vacca?

The question would not fit the case, Gotama. For the fire which depended on fuel of
grass and wood, when all that fuel has gone, and it can get no other, being thus without
nutriment, is said to be extinct.

The thought seems to be that if fires or Tathāgatas have gone out of existence, one
can say nothing about them.

We find Nāgārjuna and some of his Madhyamaka successors appearing to deny
all the kot.i sometimes too. For example, as part of an argument that the Tathāgata
has no self-being (svabhāva), MMK XXII: 11, 12 says13:

‘Empty’ should not be asserted.

‘Non-empty; should not be asserted.

Neither both nor neither should be asserted.

These are used only nominally.

How can the tetralemma of permanent and impermanent, etc.

Be true of the peaceful?

How can the tetralemma of finite, infinite, etc.

Be true of the peaceful?

and in the course of an argument for the same conclusion about nirvān. a, MMKXXV:
17 says:

Having passed into nirvān. a, the Victorious Conqueror

Is neither said to be existent

Nor said to be nonexistent.

Neither both nor neither are said.

12Radhakrishnan and Moore [14], p. 290.
13All translations from the MMK are from Garfield [2].
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Rejecting all four kot.is in this way is sometimes, and for obvious reasons, called
the ‘four-cornered negation’. And just to confuse matters, the word ‘catus.kot.i’ is
sometimes taken to refer to this.

24.5 A 5-Valued Logic

How can one understand the rejection of all four kot.is in terns of modern logic? The
fact that none of the four kot.is sometimes holds would seem to imply that there is a
fifth possibility: (e) none of the above. Technically, the obvious thought is to add a
new value, e, to our existing four (t , f , b and n), expressing this new status.

Since e is the status of claims such that neither they nor their negations should be
accepted, it should obviously not be designated. Thus, we still have that D = {t, b}.
How are the connectives to behave with respect to e? Both e and n are the values
of things that are, in some sense, neither true nor false, but they had better behave
differently if the two are to represent distinct alternatives. The simplest suggestion
is to take e to be such that whenever any input has the value e, so does the output:
e-in/e-out.

The logic that results by modifying FDE in this way is obviously a sub-logic of
it. It is a proper sub-logic. It is not difficult to check that all the rules of FDE are
designation-preserving except the rule for disjunction-introduction, which is not, as
an obvious counter-model shows. However, replace this with the rules:

ϕ(A) C
A ∨ C

ϕ(A) C
¬A ∨ C

ϕ(A) ψ(B) C
(A ∧ B) ∨ C

where ϕ(A) and ψ(B) are any sentences containing A and B.14 Call these the ϕ

Rules, and call this system FDEϕ . FDEϕ is sound and complete with respect to the
semantics.15

24.6 e and Ineffability

Whether or not Nāgārjuna himself is best interpreted as really denying all the kot.is
is a question of interpretation that I won’t go into here. There is no doubt that later
philosophers did.16 This is particularly the case when the Yogacārā influence came to
be felt in subsequent developments. According to this, there is an ultimate reality. Our

14Instead of ϕ(A) (etc.), one could have any sentence that contained all the propositional parameters
in A.
15For the proof, see the technical appendix of Priest [12].
16The Buddhists tadition was not alone in appearing to reject all four of the kot.is sometimes. See
Raju [15].
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conventional (lived) reality is produced by the imposition of a conceptual/linguistic
structure onto this. What is this ultimate reality like? One cannot say. To do so would
require the employment of linguistic and conceptual categories; and the ultimate
reality is what remains after all such categories have been “peeled off”. It is a simple
thatness (tathāta), often referred to as emptiness. Onemay have a direct perception of
it under appropriate circumstances, but describe it one cannot. It is ineffable. In some
Buddhist philosophers, the fifth status given by denying the four standard values of
the catus.kot.i is the value of the ineffable.

The interpretation of the catus.kot.i and fourfold negation which takes ineffability
on board is spelled out perhapsmost clearly and explicitly by the Tibetan philosopher
Gorampa. He says in his Synopsis of Madhyamaka, 7517:

The scriptures which negate proliferations of the four extremes refer to ultimate truth but
not to the conventional, because the ultimate is devoid of conceptual proliferations, and the
conventional is endowed with them.

The fifth value, e, then, is the value of the ineffable.
Care is needed here over the word ‘truth’ in this quotation. It is a translation of

the Tibetan bden-pa (Sanskrit: satya). This can mean either truth or reality. In the
quote from Gorampa, it clearly means ‘reality’. Now, it is states of affairs which are
effable or ineffable, not sentences. This requires us to rethink our formal language
and its interpretation.

Wemust now thinkof thebearers of the truth values as states of affairs.Connectives
generate complex states of affairs. Thus, if A and B are states of affairs, then A ∧ B,
A ∨ B and ¬A are the related conjunctive, disjunctive and negative state of affairs.
As for the truth values themselves: a state of affairs that receives the value t exists
and its negation does not. A state of affairs that receives the value b is such that both
it and its negation exists. Similarly for f and n. And a state of affairs that receives
the value e is ineffable.

24.7 Talking of the Ineffable

Matters are still more complex, though. Ultimate reality is, on this understanding,
ineffable. Yet Gorampa himself talks about it. Thus, as I just quoted him as saying,
‘the ultimate is devoid of conceptual proliferations’. This explains why, indeed, it is
ineffable; but it is also says something about it. Some things about the ineffable can
be expressed.18

One might react to this in various ways. One is to write off the whole project
as misconceived. Obviously, this was not Gorampa’s reaction. Indeed, nor is this

17The translation is taken from Kassor [5].
18It is not just Gorampa who finds himself in this position. Any theory according to which there
is something ineffable and which explains why it is ineffable is going to be in the same situation.
There are many such theories, East and West. See Priest [9].
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obviously required in a context where the possibility of contradictions is clearly
allowed for in the shape of one of the kot.is.

Gorampa’s own response to the situation is to draw a distinction. Kassor (2103)
describes matters thus (her italics):

In the Synopsis, Gorampa divides ultimate truth into two: the nominal ultimate (don dam
rnam grags pa) and the ultimate truth (don dam bden pa). While the ultimate truth ... is free
from conceptual proliferations, existing beyond the limits of thought, the nominal ultimate
is simply a conceptual description of what the ultimate is like. Whenever ordinary persons
talk about of conceptualize the ultimate, Gorampa argues that they are actually referring to
the nominal ultimate. We cannot think or talk about the actual ultimate truth because it is
beyond thoughts and language; any statement or thought about the ultimate is necessarily
conceptual, and is, therefore, the nominal ultimate.

It does not take long to see that this hardly avoids contradiction. If all talk of the
ultimate is about the nominal ultimate, then Gorampa’s own talk of the ultimate is
this. And the nominal ultimate is clearly effable. Hence, Gorampa’s own claim that
the ultimate is devoid of conceptual proliferations is just false.

A similar situation was to arise about 500years later and a few miles to the
West. In the Critique of Pure Reason Kant explains that there are noumenal objects
about which one cannot talk/think. For talk/thought constitutes phenomenal objects.
Realising the bind he is in here, Kant drew a distinction between an illegitimate
positive notion of a noumenon and a legitimate negative, or limiting, notion. This
does not help: according to Kant, the negative notion is there to place a limit on
the area in which we can apply thought/language. But to say that there is an area to
which we cannot apply thought/language is clearly to say something about this area,
and so apply thought/language to it.19

Indeed, the Gorampa/Kant predicament is inevitable. If onewishes to explain why
something is ineffable, one must refer to it and say something about it. To refer to
something else, which one can talk about, is just to change the subject.

24.8 Accepting More Than One Kot.i

The honest thing to do, then, is to admit that the situation is a contradictory one. We
have here a contradiction at the limits of thought, of a kind to which certain Buddhist
views are committed. Nor is this irrational. Given those views, and the fact that the
contradictions can be controlled, this is exactly the rational position to hold.20

Given this, we must allow for things to be (truly) sayable and ineffable as
well—that is, to take more than one semantic value. In fact, there is some prece-
dent for this in Nāgārjuna as well. Thus, MMK XVIII: 8 says:

19See Priest [8], 5.5.
20See Garfield and Priest [3], and Deguchi et al. [1]. The contradiction we are dealing with here is
closely related to Nāgārjuna’s paradox that the ultimate truth is that there is no ultimate truth. (See
Garfield and Priest [3], Sect. 5.) One can say nothing true about ultimate reality—either because
there is no such thing, or because it is ineffable. But either way, that is itself an ultimate truth.
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Everything is real and is not real.

Both real and not real,

Neither real nor not real.

This is Lord Buddha’s teaching.

Exactly how to interpret this passage fromNāgārjuna is moot. But whatever the truth
of that matter, in Gorampa, at least, we seem to be stuck with the idea that something
can be true and ineffable, and so inhabit more than one of our five values.

24.9 Relational Semantics

But how to make sense of this technically? There is, in fact, an easy way to do so.
In classical logic, evaluations are functions which map sentences to one of the

values 1 and 0. In one semantics for FDE, evaluations are thought of, not as functions,
but as relations, which relate sentences to some number of these values. This gives
the four possibilities represented by the four values of our many-valued semantics.21

We may do the same with the values t , b, n, f and e themselves. So if P is the
set of propositional parameters (or atomic states of affairs), and V = {t , b, n, f, e},
an evaluation is a relation, �, between P and V . We insist that every formula has at
least one of these values. That is, the values are exhaustive:

Exh: for all p ∈ P , there is some v ∈ V , such that p � v.

However, there is no reason why � cannot relate a sentence/state of affairs to more
than one value. Thus, p may relate to both true (t) and ineffable (e).

How might the connectives behave in this context? If we denote the many-valued
truth functions corresponding to the connectives¬,∨, and∧ in FDEϕ , by f¬, f∨, and
f∧, then the most obvious extension of � to all formulas is given by the point-wise
clauses:

• ¬A � v iff for some x such that A � x , v = f¬(x)

• A ∨ B � v iff for some x , y, such that A � x and B � y, v = f∨(x, y)

• A ∧ B � v iff for some x , y, such that A � x and B � y, v = f∧(x, y)

One can show, by a simple induction, that for every A there is some v ∈ V such that
A � v. I leave the details as an exercise.

Where, as before, D = {t, b}, we may simply define validity as follows: � � A
iff for all evaluations, �:

• if for every B ∈ �, there is a v ∈ D such that B � v, then there is a v ∈ D such
that A � v

That is, an inference is valid if it preserves the property of relating to some designated
value.

21See [10], 8.2.
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Amoment’s reflectionwill show that if we insist that every parameter takes exactly
one of the five values, the same is true for all formulas. These semantics are, then, just
a variation of the functional semantics for FDEϕ which we have already employed.
Let us call them the single-valued relational semantics.

But what is this logic which allowsmultiple values? In fact, it is FDEϕ . Let is write
the single-valued consequence relation as |=s and the many-valued consequence
relation as |=m . Any single-valued interpretation is a many-valued interpretation.
Hence if � �s A then � �m A; so if � |=m A then � |=s A. Conversely, suppose
that� |=s A. Then by the completeness result mentioned in Sect. 24.5, the inference
is delivered by the rules for FDEϕ . But it is easy to check that each of these rules is
sound with respect to the many-valued semantics. Hence, � |=m A.

A final technical comment. One can turn a relational semantics into an equivalent
functional semantics by taking the functional values to be sets of the many values
({t, e}, etc.). In this way, it is possible to iterate the construction to higher orders,
taking sets of values, sets of sets of values, etc. For the case, where we start with the
simple classical truth values, 1 and 0, this is done in Priest [6]. Again, there, apply-
ing the construction (after the first iteration) does not destabilise the consequence
relation.22

24.10 Coda: Jaina Logic

In conclusion, it is worth nothing the similarity of the viewwe have just been looking
at with that which is to be found in another Indian logical tradition: Jainism.23 In this,
there are three basic “truth values”, true, false, and a third truth value. The precise
meaning of this third value is somewhat moot, since different writers gloss it in
different ways: both true and false, neither true nor false, ineffable, non-assertable.24

Sentences can take any number of these values, as long as this is at least one, giving
seven possibilities in all (23 − 1)—rather than the 31 (25 − 1)wehave in theBuddhist
case. One can turn this trilogy into a relational logic in exactly the way we have done
in the Buddhist case.25

The Jains endorsed a metaphysical view about the nature of reality, according to
which is it “multi-faceted”. One can then think of each of the values, v, as one of
the basic values of the sentence if it has that value at some facet. Perhaps the most
natural way to develop this picture in terms of modern logic is to take each facet to be
something like a possible world. Each world is many-valued, but the resulting logic
is not a many-valued one, but a modal one. One can do exactly the same with our

22For a fuller discussion of the construction described in this section, see Priest [13].
23For details of what follows, see Priest [11].
24See Priest [11], Sect. 5.
25In [11], this is formulated not as a relational semantics but equivalently as a functional semantics,
where the functional values are sets of truth values. The possibility of applying this construction to
the Buddhist four (or five) values, as we hae done here, is noted there in footnote 15.
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four or five Buddhist values instead of the three Jaina ones. I leave the details as a
relatively straightforward exercise. The fact that the Buddhists do not subscribe to a
similar metaphysical doctrine concerning the many-faceted nature of reality makes
this sort of logical development much less natural.
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Mūlamadhyamikakārikā. Oxford University Press, New York (1995)
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Chapter 25
Eastern Proto-Logics

Fabien Schang

Abstract An alternative semantic framework is proposed in the following to
reconstruct andmake sense of “Eastern logics”: aQuestion-AnswerSemantics (there-
after: QAS), including a set of questions-answers and a finite number of ensuing
non-Fregean logical values. Thus, meaning is provided by yes-no answers to cor-
responding questions about relevant properties. These logical values help to show
that the saptabhaṅgı̄ (and its dual, viz., the Buddhist Mādhyamaka catus. kot.i) is not
a many-valued paraconsistent logic but, rather, a one-valued proto-logic: a construc-
tive machinery that serves as a formal theory of judgment, rather than a Tarskian-like
theory of consequence. Such an explanatory model of contradiction assumes a deep
redefinition of logical values.
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25.1 Paraconsistency

Two philosophical schools are put into focus in the following, namely: on the one
hand, the Jains’ nayavāda or theory of standpoints and the corresponding sapt-
abhaṅgı̄ or theory of sevenfold predication (thereafter: SB); on the other hand, the
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Mādhyamaka’s catus. kot.i), or theory of Four-Cornered Negation (thereafter: 4CN).
1

Let us consider these two peculiar “logics” or, better, sets of statements similar to
the Middle Age disputatio. A number of questions is to be put about their nature.

As is well known, paraconsistency is seen as a common property of a set of
logical systems that infringe the so-called principle of explosion, according to which
everything follows from a contradiction in a given logical system L. In semantic
terms, it means that the acceptance of a sentence (α, say) and its negation (∼α, say)
need not entail the acceptance of any other sentence (ψ, say) in L: α, ∼α �|= ψ.

Is SB a paraconsistent logic? Our answer to this question will be negative, for a
number of reasons.

First of all, SB is not an inferential system, crucially including the relation of
consequence between sets of sentences. Indeed, [9] acknowledged the very special
status of Indian “logics” in these terms:

This chapter is somewhat tangential to the main thread in the book. The reader whose main
interest is in the development of the notion of an inference-warranting relation and associated
concepts may wish to skip it and move to Chap.7.2

Secondly, SB is not a formal language endowed with a set of sentential connectives.
It is another reason to qualify its logical status, since it hardly make sense to refer
to a “logical” system without any logical constant in it. This is why [9] tampers his
investigation on Indian “logics” anew:

My reference to the non-bivalence or paraconsistent logic, in connection with Jainism,
should not be overemphasized. I have already noted that Jaina logicians did not develop,
unlike the modern logicians, truth matrices for Negation, Conjunction, and so on. It would
be difficult, if not impossible, to find intuitive interpretations of such matrices, if one were
to develop them in any case.3

Third, although SB has been currently mentioned as a pioneer of paraconsistency it
wrongly seems to accept contradictory sentences: the reference to metalogical rules
or paribhās. ā in ancient texts has been equally made to by all the commentators
who plainly subscribed to Aristotle’s Principle of Non-contradiction and refused to
assimilate SB with an inconsistency-friendly system.

Fourthly, SB often relates to paraconsistency by dealing with other logical topics
likemany-valuedness,modalities, and sentential negation. In this respect, subscribing
to many-valuedness could be a way to block explosion by introducing nonclassical
logics and redefining the logical constant of negation. Does it really? Just as it has
been noted that no logical constant clearly appears in SB, it is not clear whether the
latter can be seen seriously as a grandfather of modal or nonclassical systems.

Therefore, let us check if many-valuedness and SB are really on a par before
rejecting its paraconsistent nature once for all.

1About SB, see especially Vādiveda Sūri: “Pramān. a-naya-tattvālokālam. kāra”; about 4CN, see
Nāgārjuna: “Mūlamadhyamaka-kārikā.”
2Matilal [9], p. 127.
3Matilal [9], p. 139.

http://dx.doi.org/10.1007/978-81-322-2719-9_7
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25.2 Many-Valuedness

A logical system is said to many-valued whenever it includes more than the two
classical values of truth and falsity. Despite the failure of explicit logical constants in
SB and 4CN, their interpretations bymeans of nonclassical values largely contributed
to their logical flavor.

In SB, a good deal of analyses led to a clear lack of consensus among them as to
the number of truth-values, all the more than one and the same commentator may
argue for several different options: either three [3, 5, 6, 9], four [1], seven [5, 11,
14], eight [1], twelve [1], or fifteen values [16, 17].

The same trouble arises in the other theory 4CN, where the list of values goes
decreasingly fromfive [11] to the two classical ones [4] and even until a single one [2,
15]. Not only is there no reference to logical constants in 4CN either, or maybe with
the exception of negation; but also, the occurrence of only one truth-value should
definitely condemn the logical status because no difference can be made therefore
between valid and invalid arguments. To motivate this surprising assumption of a
single value, [2] argued that a blatant confusion has been made (in SB, at the least)
between truth-values and the property of a statement:

All constructivist interpretations in terms of many-valued logic seem to tacitly assume that
at least some bhan. gı̄ can be hierarchically ordered with respect to their truth-value, ranging
from false and indeterminate to true. The matter of fact is, however, that all seven statements
are true (. . .) It is not the case that each member of this septuplet has a different truth-value;
what each of these figures actually expresses is a different property!4

The main reason why QAS has been advocated here is the dialectical nature of
Indian theories, whether logical or merely argumentative ones. Thus SB proceeds as
an interrogative model of yes-no questions concerning very special topics:

A metaphysical thesis was usually expressed in the canonical literature of Buddhism and
Jainism in the form of a question, “Is A B?” or “Is everything F?”—to which an answer was
demanded, either yes or no. If yes, the thesis was put forward as an assertion, that is, the
proposed assertion “A is B” or “Everything is F” was claimed to be true. If no, it was denied,
that is, it was claimed to be false. Therefore, yes and no were substitutes for the truth-values,
true and false. The Buddhist canons describe such questions as ekām. sā-akaran. ı̄ya, those that
can be answered by a direct yes or no.5

This accounts for the following set of seven statements, these expressing yes-answers
with assertions and no-answers with denials about one and the same initial sentence
at hand.

4Balcerowicz [2], p. 13.
5Matilal [9], p. 128.
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(1) syād asty eva
arguably, it exists
(assertion)

(2) syān nāsty eva
arguably, it does not exist
(denial)

(3) syād asty eva, syān nāsty eva
arguably, it exists; arguably, it does not exist
(successive assertion and denial)

(4) syād avaktavyam eva
arguably, it is unspeakable
(simultaneous assertion and denial)

(5) syād asty eva; syād avaktavyam eva
arguably, it exists; arguably, it is unspeakable
(assertion ans simultaneous assertion and denial)

(6) syān nāsty eva; syād avaktavyam eva
arguably, it does not exist; arguably, it is unspeakable
(denial and simultaneous assertion and denial)

(7) syād asty eva; syān nāstyeva syād avaktavyam eva
arguably, it exists; arguably, it does not exist; arguably, it is unspeakable
(assertion and denial and simultaneous assertion and denial)

To make the connection with many-valuedness, the structure of SB is like a com-
bination of 23 − 1=7 predications about speaker’s attitudes toward a given sentence.
These seven predications, or bhaṅgı̄, are formed on the basis of three basic predica-
tions ormulabhaṅgı̄. Themeaning of the first two ones is obviously truth T and falsity
F, where the alleged truth-values are embedded into the speech-acts of assertion and
denial. The real difficulty stems from the third basic predication, i.e., “avaktavyam,”
whose ambiguity will be symbolized by #. Thus SB is said to include three basic val-
ues for its three basic statements, namely: T for “syād asty eva,” where the sentence
is claimed to be (arguably) true; F for “syān nāsty eva,” where the sentence is claimed
to be (arguably) false; and finally, # for “syād avaktavyam,” where the sentence is
claimed to be (arguably) unsayable or unspeakable. Each of the above seven state-
ments can be rendered by the following combination of several basic predications:
(1)={T}, (2)={F}, (3)={T, F}=B, (4)={#}, (5)={T, #}, (6)={F, #}, (7)={B,
#}, whilst (8)={∅}=N is an impossible value that never gives any yes-answer to
the exhaustive (but not exclusive) set of three basic questions.

Our thesis is that these seven predications do not amount to seven proper truth-
values, thus doing justice to our ultimate refusal of a seven-valued logical system to
depict SB.

As to 4CN, it consists of a combination of 22 =4 predications, all equally denied
in the form of no-answers. That is:
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(i) Does a being come out itself? No.
(ii) Does a being come out the other? No.
(iii) Does a being come out of both itself and the other? No.
(iv) Does a being come out neither? No.

In a nutshell, three basic predications occur in SB, whereas only two are used in
4CN, i.e., the classical copula “is” for assertion and its negation “is not” for denial.
We will note later on, however, that two sorts of denial are to be distinguished from
each other in order to make sense of Nāgārjuna’s purely negative stance (i′)–(iv′)
toward affirmative and negative sentences.

The numerical distinction between SB and 4CN may relie upon the different
speech-acts manifested in them. Does the third predication “avaktavyam” not occur
in 4CN? Does it correspond rather to the constant no-answer in 4CN? Or does it
correspond to the forbidden value (8) in SB, i.e., the case where only no-answers
are given to the three basic questions? Be this as it may, many-valuedness and para-
consistency seem to be on a par in 4CN once one notes the blatantly inconsistent set
of answers (i)–(iv) from a classical, bivalent point of view. For let us formalize this
dialectical game by a classical logic form, where the no-answer is parsed into the
classical negation ∼. Then we have the following result:

(i′) ∼(α)

(ii′) ∼(∼α) ⇒ (ii′′) α
By (ii′), double negation

(iii′) ∼(α ∧ ∼α) ⇒ (iii′′) ∼α ∨ α
By (iii′), De Morgan, double negation

(iv′) ∼(∼(α ∨ ∼α)) ⇒ (iv′′) ∼α ∨ α
By (iv′), De Morgan, double negation, commutativity

It turns out that (i′) contradicts (ii′), and (iv′) is redundant with (iii′). Again, our the-
sis is that another use of modern logical tools is in position to maintain the classical
metalogical principles of Indian logicians (or dialecticians, if you please) without
entering into the realm of paraconsistency by any means. This alternative recon-
struction of ancient texts requires a preliminary distinction between a sentence and a
statement, given the way in which an information is conveyed bymeans of a common
question-answer game.

25.3 Sentences and Statements

What is talked about in both SB and 4CN? The former predications are statements
given by an answerer and are about sentences, or propositions. By a proposition it
is meant that extralinguistic entity with a constant property, following the so-called
“Frege’s axiom” to the effect that each proposition refers to a (unique) truth-value
among the True (T) and the False (F).
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At the same time, sentences are linguistic, context-dependent vehicles of commu-
nication expressing propositions. No further distinction will be made throughout the
paper between a proposition and a sentence: although several sentences may express
one and the same proposition, it will be assumed in the following that a sentence
relates a proposition without ambiguity and can be said to be true or false in an
elliptic way.

Now can a sentence be said to be neither true nor false, or even both? The use
of statements in the Indian tradition seems to concern speech-acts with a sentential
content, so that both assertions and denials are cases in point when we deal with SB
and 4CN. Accordingly, the seven bhaṅgı̄ are statements upon one given sentential
content, and the crucial combination of different standpoints may explain how one
and the same “sentence” (a statement, actually) can be said to be true and false
at once: not from the same standpoint, as Aristotle stated in his Principle of Non-
contradiction. We will return, however, to the fourth predication of SB later on, since
it has been viewed as a genuine case of asserted contradiction by some commentators.

25.4 Modalities

Due to the central role of standpoints in the corresponding “nayavāda,” SB seems to
float betweenmany-valued andmodal logic byputting statements into the scope of the
relative notion of “syād.” Indeed, this can be translated as “arguably” and naturally
alludes to the modal concept of possibility. A way to corroborate this reading is to
assess judgments in the Jain epistemology, depending upon whether these are taken
to be complete (and thereby lead to truth) or incomplete. For instance, it is argued
that

Mallisena distinguishes a pramāna from a durnaya and a naya. According to him, a
pramāna is always true and for which we assign the truth-value T, but a durnaya is always
false for which we assign the truth-value F. The truth-value of a naya (incomplete judgment)
is different from the truth-value T or the truth-value F; hence it is intermediate between these
truth-values. This gives rise to a third intermediate truth-value I.6

While these commentators see in the intermediate stage between plain truth and
plain falsity something similar with the third truth-value (neither true nor false), the
correlated distinction between different grades of truth (from absolutely to absolutely
not) is also reminiscent of Hugh MacColl’s “symbolic logic” (see [13]).

According to [8], sentences can be true, false, certain, impossible, or variable;
these semantic predicates appear as five truth-values that can be equally rendered
in a bivalent modal logic of necessity, contingency, and impossibility. In a sense,
this many-valued or modal system includes SB insofar as every sentence α cannot
be but variable, i.e., contingent from the Jain perspective. To put it in formal terms,
each Jain statement α is such that there is both some standpoint wi at which α is

6Bharucha [3], p. 182.
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arguably true: v(wi ,α)=T, and some standpoint w j at which α is arguably false:
v(w j ,α)=F.

More importantly, the common analogy between modality and quantification
brings more light upon the Jain valuation of statements: SB is not a modal logic
in the sense of iterated modalities, like in S4 or S5; rather, it is a modal system that
assesses the complex value of every object by ranging over a set of viewpoints.

First of all, let us emphasize that the Jain model proceeds as a “supermodel,” that
is, a set of heterogeneous models in which the contradictory speech-acts of assertion
and denial are not separate from each other but, on the contrary, combined to form
a list of inconsistent but complementary viewpoints. Such a semantic frame relies
upon an epistemology, viz., a theory of justification that can accept an indefinite num-
ber of particular standpoints among seven main sorts of naya: naigama-naya (non-
distinguished standpoint), sam. graha-naya (collective standpoint), vyavahāra-naya
(particular standpoint), r. ju-sūtra-naya (momentary standpoint), śabda-naya (syn-
onym standpoint), samabhirūd. ha-naya (etymological standpoint), evam. bhūta-naya
(momentary etymological standpoint). Taking again the Jain model as a supermodel
W , i.e., a set of heterogeneous sets ofworlds {w1, . . . , wn}∈ W with different assess-
ments, W can be viewed as a set of various sorts of standpoints: ontic (w1), epistemic
collective (w2), epistemic individual (w3), temporal (w4), grammatical (w5,w6), and
grammatical temporal (w7). By this way, SB somehow leads to a multimodal logic
by conflating ontic, epistemic, temporal, topological (and grammatical) standpoints
or “worlds” assessing a (non-indexical) sentence at once.

Another reason to promote the use of QAS in the present context is that the bit-
strings are logical values that help take account of the holistic sense of not-being.
Unlike the mainstream view of nonexistence as an absolute absence of the corre-
sponding object, the following explanation of the Jain conflated standpoints puts
into emphasis the meaning of existence as a relative not-being-as (some given prop-
erty) that accommodates with some other existent properties.

The existence of an entity such as a pot, depends upon its being a particular substance (an
earth-substance), upon its being located in a particular space, upon its being in a particular
time, and also upon its having some particular (say, dark) feature. With respect to a water
substance, it would be nonexistent, and the same with respect to another spatial location,
another time (when and where it was nonexistent), and another (say, red) feature. It seems
to me that the indexicality of the determinants of existence is being emphasized here.7

While echoing theNyaya school, according towhich negative qualities are located
into objects by equating the absence of a quality (F, say) with the presence of its
negative counterpart (not-F, say), this perspectivist view of existence amounts to say
that, if an object x is F, then there is some property G such that not-G is in x . This
naturally argues for the logical values of QAS, i.e., these bitstrings assigning a set
of present or absent properties to every object α in L. In other words, “being” and
“not-being” are treated as object determiners such that, for every object α, ∃ ai∃ a j

(ai (α)=1 &a j (α)=0).

7Matilal [9], p. 132.
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Moreover, this holistic ontology also entails that every object α (whether a con-
cept, sentence, or whatever meaningful in a language) is a determinate set of prop-
erties that stands between absoluteness, or pramāna, and nothingness, or durnaya.
In QAS, absoluteness means that some property is assigned to a given object in
every context: ∀ ai (a j (α)=1), while nothingness is the contrary case in which it is
assigned in no context: ∀ ai (a j (α)=0). All the objects stand between these polar
unconditional judgments, so that, for every objectα in SB, the logical value of is given
by a set of different property assignments from the seven distinctive standpoints.

A(α) = 〈a1(α), . . . , an(α)〉 w1 ∈ W
A(α) = 〈a1(α), . . . , an(α)〉 w2 ∈ W

...
...

A(α) = 〈a1(α), . . . , an(α)〉 wn ∈ W

Assuming that every object α is defined not only by what it is but, also, by what it
is not, this complex valuation leads to a many-sorted set of answers a j

i , whereby i
stands for the i th defining property assigned to α (successfully or not) and j for the
ontological status (presence or absence, respectively) of α in a given context.

A way to account for bivalence as a paribhās. ā of SB is to rephrase it in terms of
questions-answers: every sentence is either affirmed or denied from a single stand-
point. Ontologically speaking, the duality between presence and absence entails that
affirming the presence of a property G in F is equivalent with not affirming, i.e.,
denying its absence or, equivalently, denying the presence of its negative counterpart
not-G (from one single standpoint). In symbols:

a1
i (α) = 1 ⇔ a2i (∼ α) = 0

It also follows from this that α refers to an ordered join of bits in W={w1, . . . , wn}.
The general form of this semantic analysis in SB can be depicted as follows.

What is α in a given set W of complementary standpoints?
In symbols: A(α, W )=? (with W = {w1, w2, w3, w4, w5, w6, w7})

The i th property (A, say) is present in α iff, in some standpoint wi , α is A in wi .
In symbols: a1i (α)=1 iff ∃wi (a1i (α, wi )=1).

The i th property (A, say) is absent in α or, alternatively, the negative property not-A
is present in α, iff in some standpoint wi α is not A or, alternatively, α is not-A in
wi .
In symbols: a2i (α)=1 iff ∃wi (a2i (α, wi )=1).

Note that there is no difference in SB between external and internal negation:
not to be F and to be not-F mean the same, whereas a clear difference will be made
afterwards in 4CN in this respect. Likewise, the call for different standpoints entails
that the presence of A in α need not amount to negate the absence of A in the object
α: two affirmative answers can be actually given, when A is present in α in a given
context and absent in α in another one.
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In the light of thismultiple valuation, every objectα of SB is such that it can be said
to be somehow everything by sharing any of the properties at hand from the different
complementary standpoints. Recalling the disjunctive combination of standpoints in
SB, it results in the following sample that accounts for the Jain non-one-sided theory
to truth (anekantavada):

α is A α is B α is C α is D α is E

A(α)= 1 1 1 1 1

1 0 0 1 0 w1

0 1 1 0 0 w2

0 0 0 1 1 w3

1 1 0 0 0 w4

0 0 1 1 0 w5

0 1 1 0 1 w6

1 0 1 1 1 w7

A corollary of this valuation is that any two objects ofL are subcontrary (compatible)
to each other by having at least one common property in contexts: everything is
watered, firing, smooth, hard, and so on, from similar or different standpoints.

The converse result can be observed with the Mādhyamaka valuation in 4CN,
within the common background of QAS. Unlike the disjunctive and complementary
set of viewpoints in SB, the following states that only one context must be assigned
to every object α: it is A or not so in an absolute, one-sided way. This leads to
an alternative conjunctive reading of standpoints, such that a property cannot be
assigned to an object once the least evidence (standpoint) may count against it.
Without entering into the ontological foundations that underlie the Buddhist logic,
the upshot of such a skeptic-minded assessment is the following one, where absence
expresses a commitment for the speaker that relevantly differs from non-presence.

What is α in a given set W of complementary standpoints?
In symbols: A(α, W )=? (with W = {w1, w2, w3, w4, w5, w6, w7})

The i th property (A, say) is present in α iff in every standpoint wi , α is A in wi .
In symbols: a1i (α)=1 iff ∀wi (a1i (α, wi )=1).

The i th property (A, say) is absent in α or, alternatively, the negative property not-A
is present inα, iff in every standpointwi ,α is not A or, alternatively,α is not-A inwi .
In symbols: a2i (α)=1 iff ∃wi (a2i (α, wi )=1).

The i th property (A, say) is not present in α or, alternatively, the negative property
not-A is present in α, iff in some standpoint wi , α is not A in wi .
In symbols: a1i (α)=0 iff ∃wi (a1i (α, wi )=0).

TheMādhyamaka epistemology is such that no object can be absolutely said to be
present or absent in this more stringent perspective. The multidimensional valuation
in 4CN is such that α is said to be “nothing,” but not as an asserted absence of any
property from any standpoint. Rather, it should be said that α is not something for
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want of any definite property to be assigned to it. Here is below the resulting valuation
for a denial of present properties, instead of an assertion of absent properties. It means
that any two objects are contrary (incompatible) to each other, insofar as none of
these are said to have some property in common.

α is A α is B α is C α is D α is E

A(α)= 0 0 0 0 0

1 0 0 1 0 w1

0 1 1 0 0 w2

0 0 0 1 1 w3

1 1 0 0 0 w4

0 0 1 1 0 w5

0 1 1 0 1 w6

1 0 1 1 1 w7

Themultiple valuation of QAS in the form of bitstrings attempted to showhow the
Indian judgments can be streamlined in a quite consistent and bivalent way, once the
context-dependence of statements is made explicit in the metalanguage. This clearly
questions the paraconsistent aspect of SB and 4CN, especially in their treatment of
the so-called Principle of Contradiction (thereafter: PNC).

25.5 Contradictoriness

Is the PNC to be taken as one of the basic paribhās. ā of Indian thought, unlike the
paraconsistent reading of the so-called “Eastern thought”?

A first task is to recall what this Aristotelian principle actually means in symbols.
A “strong” version of paraconsistency is to the effect that every object has a property
P and does not have it at once, thereby meaning that a given property is both present
and absent in it. Not only did Aristotle wrongly assume this interpretation to reduce
the Heraclitean position ad absurdum, thus claiming that nothing can be said any
more under such a position. Indeed, a proper classical denial of PNC should lead to
the denial of the following logical form:

(PNC1) ∀x∀P ∼(P(x) ∧ ∼P(x))

where x corresponds to any object α in QAS. Accordingly, any infringement of
this principle means that not every property cannot be both present and absent in an
object, i.e., some property can be both present and absent in some object. In symbols:

(PNC2) ∼(∀x∀P ∼(P(x) ∧ ∼P(x))) ≡ ∃x∃P (P(x) ∧ ∼P(x))

This obviously differs from the much stronger view that every property cannot not be
present and absent in an object, i.e., every property must be both present and absent
in an object. In symbols:
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(PNC3) ∀x∀P (P(x) ∧ ∼P(x))

The point is that (PNC3) is a contrary of (PNC1), while (PNC2) is its mere contradic-
tory. Now any infringement to PNC amounts to contradict its universal application
and accept some exception with a mere counterexample, thereby sustaining its valid-
ity from a metalinguistic point of view (as Aristotle himself argued rightly in the
Book 3 of his Metaphysics, but from an unduly strong interpretation of the Hera-
clitean stance).

A second task is to outweigh the role of contexts with respect to PNC. Aristotle
stated that no object can have and not have some property “from the same respect,”
i.e., from the same standpoint. SB does not refute PNC as it stands, accordingly,
so long as its acceptance of inconsistent statements relies upon the acceptance of
different standpoints at once. Now the real difficulty remains with the meaning of
the third basic predication, namely: “avaktavyam.” Does the latter mean that some
property is both present and absent in an object from the same standpoint? If it does,
then dialetheism gives a right analysis of it; if it does not, then dialetheism is nothing
but misleading.

In order to settle this problem, let us consider the theoretical background in which
the Jain theory has been developed. On the one hand, it consists in a discussion about
metaphysical statements or related subjects. On the other hand, it should be noticed
that an overall opposition prevailed between Indian scholars about what there is. To
quote some of these ancient schools, “Everything is Brahman (the ultimate reality)”
for the Advaita Vedantin whereas “Everything is empty by its own nature” for the
Mādhyamika school of Buddhism. “Everything is a vijñapti (awareness maker)” for
the Yogācāri, whereas “Everything is non-spiritual, impermanent, and painful” for
the Buddhists. “Everything is knowable and nameable” for the Nyāya-Vaisés.ika,
whereas “Everything is non-one-sided” for the Jains. Useless to say these schools
somehow overlap each other by epistemological or ontological assumptions such as
realism or antirealism.

At any rate, our main point is that each of their statements is a categorical state-
ment that includes a universal quantification with “everything.” It is clear that an
assessment of a particular sentence concerning empirical data cannot be the same as
one about a universal sentence concerning metaphysical entities. Therefore, is the
logical form of these statements the crucial source of the trouble in SB and its fourth
predication “avaktavyam”?

Let be a sentence of the form “F is G,” in accordance to the Indian concern with
general terms like F or G. Then two sorts of inconsistency can be then distinguished
from a set-theoretical approach, assuming that the copula “is” has the sense of mem-
bership in the Indian above statements. In the first case, a universal predication of G is

(U1) “Everything is G”

which is inconclusive because irrelevant from a relevant sense of information. In the
second case, a universal predication of G is
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(U2) “G is everything”

which is inconclusive because self-contradictory and leads to the well-known para-
dox of self-reference.

A comparison between first-order logic and set theory may help give a better view
of the two different levels of inconsistency. On the one hand, (U1) means that G is a
property of any object, whether F or not F. That is,

(U1) (F⊆G ∩ F̄⊆G)
∀x ((Fx ⊃ Gx) ∧ (∼Fx ⊃ Gx))

This means that the sentence is expressible but irrelevant, given that nothing can
be denied of the object F. This universal object does make sense, however, so that
we hardly believe why it should be said to be “unsayable” as the Sanskrit word
“avaktavyam” is supposed to mean in SB. On the other hand, (U2) means that G
is a property that includes every other one, including itself (as the subject of the
sentence). Thus:

(U2) (F⊆G ∩ F�G)
∀x ((Fx ⊃ Gx) ∧ ∼(Fx ⊃ Gx))

The latter version of inconsistency seems to be a more appropriate transcription
of what the Jains meant by something “inexpressible” or “unsayable,” provided
that PNC is seen by them as a universal paribhās. ā. Now the fundamental moti-
vation of dialetheism is an acceptance of (U2), thereby accepting its paradoxical
self-contradiction from the outset. Is this what is also meant by “avaktavyam” in SB?

In QAS, an interpretation of (U2) is such that A(G)=�, that is, for every
ai (G)∈A(G), ai (G)=1. Now let us recall the open-minded or non-one-sided import
of the Jain philosophy, in order to settle the problem of meaning with “avaktavyam.”
Starting from the latter and the question whether it amounts to infringe the Principle
of Explosion, an inferentialist account of meaning would be such that no object can
make sense once it does not correspond to a sequence of determinate properties. In
this sense, a sentence is “avaktavyam” whenever it is about a metaphysical subject
that behaves as an ultimate class. Let G for “Brahman,” or “ātman,” and F for any
predicate inL. Then not only is F bothG and notG, because of its being universal. But
also, F is neither (only) G nor (only) not G by being an ultimate class that goes beyond
the realm of subsumed entities (i.e., objects that fall under the scope of other con-
cepts). The result is a “hypercontradictory” statement about the sentence α, such that
the object G is both true-and-false of F and neither-true-nor-false of F! While being
reminiscent of what has been devised elsewhere by [10, 17] under the heading of
“impossible truth-values,” we hardly believe that the Jain combination of one single
speech-act (assertion or denial, i.e., negative assertion) in several viewpoints could be
reversed into a combination of several speech-acts into one single standpoint. Rather,
the interpretation we favor here is that an object F (which is equally a property of
other objects, according to our holistic theory of meaning) is said to be “unsayable”
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once nothing determinate can be predicated of it. If so, then F is impredicable: noth-
ing meaningful can be said about F because of its self-contradictoriness. Although
dialetheism is a technically feasible alternative logic, a large number of comments
about the Jain philosophy opt for the opposite view that PNC is a paribhās. ā that lies
behind “avaktavyam” and cannot accept self-contradictory sentences.

To sum up, two mainstream options have been proposed thus far to make sense
of the fourth predication in SB.

Either we opt for the glutty option of a “simultaneous assertion and denial,” stating
that a given sentence is both true and false from the same standpoint. This yields a
double yes-answer to whether α is true (i.e., G is present in F) or false (i.e., G is
absent in F, or not-G is present in F). In symbols:

a1i (α) = a2
i (α) = 1

Or we opt for the gappy option of an “unassertable” sentence, meaning that the
latter is neither true nor false (simultaneous non-truth and non-falsity) from the same
standpoint. This yields a double no-answer about the sentence’s truth and falsity. In
symbols:

a1
i (α) = a2i (α) = 0

Above these two usual interpretations in the literature about SB, our own one is an
inferentialist option of “inexpressibility” or mere silence (a non-answer in QAS).
Indeed, we just inferred from the statement about the universal class G that such a
metaphysical sentence results in a double yes-no answer: it is both true-and-false and
neither-true-nor-false and, therefore, nothing as it stands, leading to a plain nonsense.
This constitutes a lack of logical value for such a sentence, rather than an inflationist
valuation combining nonclassical values toward an increasingly indefinite expansion
of combined speech-acts. In symbols:

a1i (α) = a2i (α) = {1, 0} = ∅

By virtue of this threefold scenario to account for “avaktavyam,” the misunder-
standing about PNC can be disentangled in at least three views of inconsistency.The
first reading is a “light” version of inconsistency that is harmless for PNC, where a
given statement accepts a sentence α (that, e.g., F is G) and its negation∼α (that F is
not G) from different standpoints (i and j , say). In symbols: a1

i (α)=a2j (α)=1. The
second version is a “mild” one where both α and ∼α are accepted from one and the
same standpoint (i , say). In symbols: a1

i (α)= a2i (α)=1. And the third is a “strong”
version, such that the single sentence α is both accepted and denied from a single
standpoint. In symbols: a1i (α)=a2i (α)= {1,0}.

Actually, it turns out by (EQ) that mild and strong contradiction are nothing but
one single form of inconsistency: whoever asserts α and its negation ∼α from the
standpoint does also assert and denyα at once, so that there is no grade of inconsistent
involvement but only one expression of PNC, i.e., the allegedly “mild” one which
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departs from the undue form of “light” inconsistency. No genuine inconsistency
stands between a sentence and its negation from different standpoints, just as no
inconsistency occurs between a sentence and its negation from two different models.
The “supermodel” generated by SBmay have created some misunderstanding in this
respect; indeed, the Principle of Explosion can be dismissed under the proviso that a
sentence and its negation belong to a unique model including different standpoints,
as the case is with our reconstruction of SB. However, this conflation of models into a
single big one does not imply any infringement of PNC since no sentence can be said
to be true and false at once. It is well known that not every paraconsistent system
violates PNC, unlike Priest’s dialetheism or da Costa’s hierarchy of inconsistent
systems. In this respect, such a distinction between explosion and contradiction does
justice to those who equate SB with paraconsistency. Our objection mostly concerns
the formal character of Jain “logic,” given that no set of logical constants is assigned
to its ancient texts.

Again, we defend a conservative, consistent-preserving reading of SB at the meta-
level of speech-acts, where the non-Fregean logical values of QAS still obey biva-
lence. This treatment can be also applied to 4CN, with the difference that the latter
set of statements is not about a single sentence but, rather, an extension of an ini-
tial atomic sentence into its negated conjuncts or disjuncts. While tampering our
preceding assumption that no logical constant is mentioned in the ancient Indian
“proto-logics” (i.e., theories of judgment without proper formal languages), the point
is that falsity and negation seem to be on a par so long as the latter constant connotes
something like exclusion and separation (between two sentences or speech-acts about
them, i.e., corresponding statements). Let us see if the so-called “Indian negations”
are really consistency-preserving, and if nothing differs between the use of negation
in SB and 4CN.

25.6 Negation

What of negation if SB contains no connectives, and can SB and 4CN be said to
be dual (proto-)logics? Once again, we said that SB is a set of judgments about
one single, atomic sentence, whereas 4CN is depicted as a set of four atomic and
molecular statements.

However, the dialetheist Graham Priest denied the latter reconstruction by replac-
ing the molecular sentences (iii′)–(iv′) (see Sect. 25.2, p. 3) with single valuations.
He claims that 4CN requires a jump into a 5-valued logic, both reminiscent of Mac-
Coll’s modal logic whilst departing from it in the interpretation of its logical values
(as shown in [15]):

The most obvious way to proceed is now to take this possibility as a fifth semantic value,
and construct a 5-valued logic. Thus, we add a new value, E, to our existing four (T, B, F,
and N).8

8Priest [12], p. 15.
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This many-valued interpretation of a single atomic sentence α can be rendered with
the following formalization, which extends Belnap’s 4-valued logic FDE and its
combined bivalent values (truth and falsity) with an additional element (i.e., the
empty set).

4CN Semantic reading
(i′) v(α) �= T
(ii′) v(α) �= F
(iii′) v(α) �= B
(iv′) v(α) �= N

For every sentence α, let v(α) be a sentential valuation function that maps α into
V5 = {T, B, F, N, E}. Assuming that the domain of values V5 is both exclusive and
exhaustive, the set of denials (i′)–(iv′) entails that v(α)=E. Now it should be noted
that the above syntactic reading presents the repeated denial as a sentential negation
but proceeds semantically as a metalinguistic negation that applies to values rather
than sentences.

While being a further reminiscence of MacColl’s use of denial, the advantage of
Priest’s 5-valuedness is that no more connectives are needed in the predications of
4CN. At the same time, this many-valued approach presents at least two disadvan-
tages.

First, seven or three “truth-values” have been proposed in [11] as a logical analysis
of SB, whereas five values are advocated for 4CN. This entails that duality is lost
between SB and 4CN, contrary to our view according to which, as suggested by the
title of [1], 4CN is like a dual of SB by reverting its (unique) logical value for every
statement.

Second, bivalence is equally lost by favoring many-valuedness and assigning
nonclassical truth-values to sentences.

Alternatively, QAS aims at restoring the duality of SB and 4CN with respect to
their respective valuations, focusing on their dialectic nature by means of a question-
answer game. It also purports to clarify the status of silence as a failure of logical
value, rather than an extra value which has been exemplified by Priest’s 5 truth-value.
By making a clear-cut distinction between the Fregean truth-value of a sentence
and the non-Fregean logical value of a statement, let us see now to what extent
the Mādhyamaka system of 4CN can be rendered as a counterpart of the Greek
(Pyrrhonian) ou mallon.

To begin with, there are two readings of negation in the light of QAS.
The first negation occurs in SB and corresponds to the mainstream sentential,

locutionary negation that attaches to the content of a speech-act. By analogy with
Frege’s unary theory of judgment (only one judgment prevails for the latter, i.e.,
assertion as a process of truth acknowledgment), the Sanskrit concept of paryudāsa
pratis. edha is translated by the speech-act of a negative assertion and amounts to the
assertion of a negative sentence. That is: in the answer value ai (α), negation belongs
to the sentential content of α and is symbolized by the unary functor ∼.

The second negation pertains to 4CN and corresponds to an illocutionary nega-
tion, related to the speech-act of denial and expressed by a no-answer. A Sanskrit
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counterpart of it is the concept of prasajya pratis. edha and amounts to a metalinguis-
tic negation, or nonassertion. In the valuation ai (α) = 0, denial expresses a negative
answer to the question whether the sentence α is either true or false and recalls the
skeptic suspension of judgment. This does not imply that denial is not a judgment
at all, however: suspension is a proper decision made by the Mādhyamaka, for want
of any access to the mundane reality; by doing so, his speech-acts of denial is like a
second-order commitment toward his noncommitment in the truth-value of a given
sentence, contrary to the Jain who always makes first-order commitments about the
truth-value of sentences.

Borrowing from the symbolism used in Searle’s Speech-Acts, the first negation
of a sentence α is an assertion of the negated sentence ∼α. This positive speech-act
is symbolized by Frege’s turnstile as follows: �∼α, by opposition to the negative
speech-act applied to a sentence (whether affirmative or negative): � α. These dis-
tinctive negations of SB and 4CN make the two judicative systems appear as clear
mutual mirror images of each other (� versus �), but the properties of the first
sentential negation remain to be clarified.

For this purpose, we propose to construct a general logical system within the
conceptual background of QAS. This system includes both SB and 4CN as two
one-valued subsystems, and sentential negation is viewed in both as a unique logical
constant.

First of all, the meaning of a sentence α is a pair of two answers to corresponding
questions about its bivalent truth-value (i.e., true or false):

A(α) = 〈a1
i (α), a2

i (α)〉

This twofold questioning includes the first two basic predications of SB (and 4CN)
while omitting the third one, since “avaktavyam” means a lack of value rather than
a third one.

Then the logical constant of sentential negation proceeds as a permutation oper-
ator upon the ordered answers. By extension, the following definition of sentential
negation holds irrespective of the number m of questions about the properties of α.
For every sentence α such that ai (α) = 〈 a1i (α), . . . , am

i (α)〉:

ai (∼ α) = 〈am
i (α), . . . , a1

i (α)〉

25.7 Logical Values

The general logical system at hand, namely: AR4, is a logic of acceptance and
rejection with four logical values. It is a common logic for both Buddhist and Jain
schools as well as the Aristotelian, classical logic with its two exclusive logical
values. A comparison can be made between this non-Fregean system and Belnap’s
4-valued logic FDE, while noticing that only one logical value occurs separately in
SB and 4CN.
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AR4 FDE Interpretation

A(α)=〈1,0〉 v(α)=T α is true from some standpoint
false from no standpoint

A(α)=〈1,1〉 v(α)=B α is true from some standpoint
false from some standpoint

A(α)=〈0,1〉 v(α)=F α is true from no standpoint
false from some standpoint

A(α)=〈0,0〉 v(α)=N α is true from no standpoint
false from no standpoint

Indeed, this valuation results in 2 dual one-valued logics where the logical val-
ues are answers to questions concerning sentential truth-values. Bivalence is clearly
defended as a common paribhās. ā of the Indian proto-logics, given that, for every α
in AR4:

For every Ai (α) = 〈 a1i (α), a2
i (α)〉, ai (α)=1 or ai (α)=0

(where 1=yes and 0=no)
a1

i (α)=1 iff v(α)=T
a2

i (α)=1 iff v(α)=F

By interpolation, we can also devise a number of definitions for the sentential connec-
tives of conjunction anddisjunction inAR4, in the light of its classicalmetalanguage.9

That is:
a1

i (α ∧ ψ)=1 iff v(α ∧ ψ)=T, i.e., v(α)=v(ψ)=T
a2

i (α ∧ ψ)=1 iff v(α ∧ ψ)=F, i.e., v(α)=F or v(ψ)=F

a1
i (α ∨ ψ)=1 iff v(α ∨ ψ)=T, i.e., v(α)=T or v(ψ)=T

a2
i (α ∨ ψ)=1 iff v(α ∨ ψ)=F, i.e., v(α)=v(ψ)=F

The motivation behind this all-embracing system relies upon the different epis-
temologies advocated by SB, 4CN, and the traditional Aristotelian logic. This has
already been explained elsewhere (e.g., in [17]), but we have to return to this point
in order to justify our non-Fregean valuation.

As [5] put it, ancient logics did not share the same criteria of truth-assignment to a
sentence. This is due to theirmetaphysical discrepancies aboutwhatmakes a sentence
true, which means that not only one constraint was put on their truth-ascriptions.
On the one hand, [5] presented the Aristotelian logic as a realist “doctrinalism” (or
dogmatism) where every sentence can be said to be true or false without any evidence
at hand:

9We omit here the definition of conditional in AR4, because we do not need it for our present
concerns. However, a strengthened definition of it in AR4 will be given in a forthcoming paper:
“‘If’, and only ‘if,”’ such that (p → q) �=d f (∼p ∨ q).
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it is always possible, in principle, to discover which of two inconsistent sentences is true,
and which is false.10

It results in a standard valuation where only one relevant question is to be asked
about the property of a sentence, i.e., whether it is true. As to the second question
imposed by AR4, it is irrelevant insofar as the truth of a sentence implies the falsity
of its sentential negation (and vice versa). This explains why only two logical values
of AR4 can be included into the Aristotelian logic. Let us depict the Aristotelian
question-answer game as follows, where the sentence is about, e.g., α’s being B or
not:

qi (α) = 〈q1
i (α),q2

i (α)〉

The exclusive answers can be easily understood by the interpretation of the corre-
sponding questions q1

i (α): “Is α B?” and q2
i (α): “Is α not B?”. For if it is true that α

is B, then it is not true (i.e., false) thatα is not B, and conversely. Bivalence is thereby
imposed on these two logical values by a restriction upon the possible answers. Thus
for every α:

a1
i (α) = 1 iff a2i (α) = 0

in a subdomain of AR4 of the Aristotelian valuation VA = {〈1,0〉; 〈0,1〉}.
Turning again to the general valuation of QAS, where the objects α are not

only sentences but whatever meaningful, an application to Aristotle’s standard logic
amounts to say that every sentence is true or false from a unique standpoint j which
is the real world as it is. Thus, for every object α in L:

A(α) = 〈a j
1(α), . . . , a j

n(α)〉, with W = j = {w1}

so that every property of α refers to a single bit in w0 (the “real world”).
To take an example, let us take an arbitrary object α in QAS, e.g., a general term

that can be individuated by n = 5 relevant properties A, B, C, D, E. Each of the
ensuing predications yields a definite sentence about what the object α is, and the
logical form of α is thus given by the 5-tuple of answers A(α)= 〈 a1(α), a2(α),
a3(α), a4(α), a5(α)〉. Let A(α)=11010, where a2(α1)=1, a1(α,w1)= a2(α,w1)=
a4(α,w1)=1, and a3(α,w1)= a5(α,w1)=0. Then it can be stated that only one
Boolean value can be assigned to each element of the whole 5-bitstring, since only
one standpoint is available for every compound predication.

This is not so, with the Indian epistemologies underlying SB and 4CN.
Against Aristotle’s dogmatism, the Jain condition for truth-ascription is more

tolerant and can be compared to the Greek traditions of eclecticism, or even sophism.
Ganeri [5] calls by “perspectivism” this weaker two-sided truth-ascription theory.
According to this conventional view of truth, to be expressed by the Sanskrit word
“sam. vr. ti-satya,” the precondition for truth is

10[5],p. 268.
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to find some way conditionally to assent to each of the sentences, by recognizing that the
justification of a sentence is internal to a standpoint.11

The differencewithAristotle’s theory of judgment can be expressed by a nonstandard,
twofold questioning about single properties. The “supermodel” attached to SB entails
that, unlike the previous case, a same sentence can be affirmed and negated at once
(from distinctive standpoints, however). More precisely, the Jain questioning in 4CN
is still of the form

qi (α) = 〈q1
i (α),q2

i (α)〉,

the real difference coming from the interpretation of the two corresponding questions.
To account for the crucial role of the concept of evidence (“syād”, i.e., “arguably”) in
the Jain tolerant truth ascription, we takeq1

2(α) tomean “Isα arguablyB?” andq2
2(α),

“Is α arguably not B?” (where i =2 denotes the second predication about B). The
occurrence of at least one affirmative standpoint for every statement about A leads
to another, non-Aristotelian subdomain of AR4 to characterize the Jain valuation,
namely: VJ ={〈1,1〉}. Taking again the set of five properties that define A: A(α)=
〈 a1(α), a2(α), a3(α), a4(α), a5(α)〉, each of the Jain predications (or “bhaṅga”) also
results from a questioning of the form qi (α)=“Is α so?”.

Furthermore, each of the seven Jain predications can be reconstructed in the light
of QAS as a number of either absolute (“pramana”:α is always so, or “durnaya”:α is
always not-so) or relative judgments about what α is (α is sometimes so, sometimes
not-so). Due to the essential relativity of standpoints in the Jain philosophy, we
claim that some of the seven predications cannot be endorsed by a Jain speaker, i.e.,
those which amount to absolute (not relative) judgments. We make the difference
in the following exemplification of a Jain valuation, by declaring as “available”
these possible predications about whether α is so: a1

i (α), as opposed to the cases of
unavailability from the Jain perspectivist stance. The corresponding Fregean truth-
value is associated under each of these predications, together with its non-Fregean
sentential counterpart in AR4.

Bhaṅga (1): syad asty eva (unavailable: α is so from every standpoint)
∀wi ∈ W , a1i (α, wi )=1
Fregean valuation: v(α)={T}
Non-Fregean valuation in AR4: a1i (α)=1, a1

i (α)= 0, hence a2(α)=〈1,0〉
Bhaṅga (2): syan nasty eva (unavailable: α is so from no standpoint)
∀wi ∈ W , a1i (α, wi )=0
Fregean valuation: v(α)={F}
Non-Fregean valuation in AR4: a1i (α)=0, a1

i (α)= 1, hence a2(α)=〈0,1〉
Bhaṅga (3): syad asty eva syan nasty eva (available:α is so from some (but not every)
standpoint)
∃wi∃w j ∈ W , a1i (α, wi )=a1i (α, w j )= 1
Fregean valuation: v(α)={T,F}={B}

11[5], p. 268.
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Non-Fregean valuation in AR4: a1i (α)=a2i (α)=1, hence a2(α)=〈1,1〉
Bhaṅga (4): syad avaktavyam eva (unavailable: α is so from no standpoint)
For every wi ∈ W , a1i (α, wi )=∅

Fregean valuation: {∅}
Non-Fregean valuation in AR4: a1i (α)=a1i (α)= ∅, hence a2(α)=∅

Bhaṅga (5): syad asty eva syad avaktavyam eva (unavailable: α is not so from no
standpoint)
∃wi∃w j ∈ W , a1

i (α, wi )=1 and a1
i (α, w j )=∅

Fregean valuation: {T,∅}
Non-Fregean valuation in AR4: a1i (α)=1, a1

i (α)= ∅, hence a2(α)= 〈1,0〉
Bhaṅga (6): syan nasty eva syad avaktavyam eva (unavailable: α is so from no
standpoint)
∃wi∃w j ∈ W , a1

i (α, wi )=0 and a1
i (α, w j )=∅

Fregean valuation: {F,∅}
Non-Fregean valuation in AR4: a1i (α)=1, a1

i (α)= ∅, hence a2(α)= 〈0,1〉
Bhaṅga (7): syad asty eva syan nasty eva syad avaktavyam eva (available: α is so
from some (but not every) standpoint)
∃wi∃w j∃k ∈ W , a1

i (α,wi )=1, a1
i (α, wi )=0, and a1

i (α, w j )=∅

Fregean valuation: {T,F,∅}
Non-Fregean valuation in AR4: a1i (α)=1, a1

i (α)= 1, hence a2(α)=〈1,1〉

Finally, 4CN embeds a skeptic-minded or Pyrrhonist epistemology, such that a
strong two-sided truth-ascription theory is required by its absolute approach to truth
(in Sanskrit: “param ārtha-satya”). Ganeri [5] depicts it as the view that

the existence both of a reason to assert and a reason to reject a sentence itself constitutes a
reason to deny that we can justifiably either assert or deny the sentence.12

TheMādhyamaka questioning is not as demanding as the Jain perspectivism, because
of the unclear logical form of the denied Tetralemma: is the set of four denied state-
ments about one atomic sentence α, as suggested by Priest’s many-valued analysis,
or a number of molecular sentences related to the initial α?

Let us first suppose an atomic interpretation of 4CN. Then it requires a nonstan-
dard, fourfold questioning outside the domain of AR4, namely: qi (α) = 〈 q1

i (α),
q2

i (α), q3
i (α), q4

i (α)〉, with q1
i (α): “Is α definitely so?”, q2

i (α)(α): “Is α definitely
not-so?”, q3

i (α)(α): “Is α definitely so and not-so?”, and q4
i (α)(α): “Is α definitely

neither so nor not-so?”. Correspondingly, the systematic denial of the four statements
should lead to a unique logical value in VM = {〈0, 0, 0, 0〉} where α cannot be made
true (or true-and-false) and cannot be made false (or neither-true-nor-false) by every
standpoint. At the same time, Priest’s 5-valuedness is replaced here by 1-valuedness
in the form of a fourfold no-answer. That is:

12Ganeri [5], p. 268.
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4CN Semantic reading
(i) v(α) �= 〈1,0,0,0〉
(ii) v(α) �= 〈0,1,0,0〉
(iii) v(α) �= 〈0,0,1,0〉
(iv) v(α) �= 〈0,0,0,1〉

Some problems arise with this interpretation, however.
First, the third question q3

i (α) violates PNC (a paribhās. ā, again) and is not inde-
pendent from the two first ones. Indeed, α is definitely so and α is definitely not-so
whenever α is definitely so and not-so.

Second, this non-Fregean valuation is not complete because there still remains
eleven other combinations among the 24 =16 bitstrings.

In order to avoid these troubles, let us admit by now a molecular interpretation of
4CN. This yields another nonstandard, twofold questioning about single properties:
qi (α) = 〈 q1

i (α), q2
i (α)〉, with q1

i (α): “Is α definitely so?” and q2
i (α): “Is α definitely

not-so?”. The result is a unique logical value inside the domain of AR4, VM ={〈0,
0〉}. This valuation means thatα cannot be made true and cannot made false by every
standpoint, in such a way that Priest’s 5-valuedness is replaced by one-valuedness in
the form of a twofold no-answer. We can reconstruct this result as follows, render-
ing the systematic denial by the speech-act of no-answer rather than the sentential
negation.

4CN Syntactic reading Semantic reading
(a) � α a1

i (α) = 0
(b) � ∼α a2i (α) = 0
(c) � (α∧∼α) a1

i (α) = 0
(d) � (∼ (α∨ ∼ α)) a1i (α) = 0

The valuation of 4CN is such that, for every sentence α, a j
i (α)=0, thereby meaning

that the set of denied tetralemma (a)–(d) entails that ai (α) = 〈0, 0〉.
General statements can be made in AR4 about the previous free epistemologies,

whether in the form of committed assertions or merely cautious denials.
According to Aristotle’s dogmatism, the world of independent substances is such

that no thing is everything and every thing is something. In symbols: � ∀α(A(α) �=
� & A(α) �= ⊥).

According to the Jain perspectivism, the participation of the things to common
properties from different standpoints entails that every thing is somehow everything
and no thing is nothing, due to the existence of at least one positive statement for
every object. In symbols: � ∀α(A(α)=�).

As for the skeptic trend of theMādhyamaka, the impermanence of the world leads
to the paradoxical negative statement that not something is something. In symbols:
� ∃α (A(α) �= ⊥). But again, the latter does not lead to a nihilist assertion about
everything: � ∀α(A(α)=⊥) does not hold for him.
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Fig. 25.1 A
three-dimensional view of
logical values

25.8 Conclusion: Logic and Logic

Ageneral reflection has been proposed in the present paper upon a number of theories,
in order to make sense of what is currently presented as “paraconsistent Indian
logics.”

Concerning the theory of valuation, a distinction has been made in the way to
establish the meaning of different entities like objects, concepts, or sentences. Truth-
values have been replaced by some “marked” values, in the vein of Belnap’s com-
bination of bivalent truth-values. By doing so, we took valuation as an increasing
process of dichotomy from a primary class (the True) to a range of values obtained
by partition.

Following thePrinciple ofBivalence, valuation is a class of two elements that serve
as the common proper names of sentences. The corresponding domain of values V2

occurs in all the bivalent, classical Tarskian logics.
Once many-valuedness is allowed, the logical values do not proceed as proper

names and aremore like definite descriptions. The set of logics sharing such a domain
of values V>2 are said to be nonclassical Tarskian logics and admit of more than two
classes of elements to characterize the sentences.

As a last step of this dichotomous process, our non-Fregean valuation applies
to any sort of meaningful information (beyond the sole domain of sentences) and
is such that every valued object is a unique proper name: no other object shares
the same logical value and appears as the singleton of a unique class, insofar as a
logical value helps individuate every given information in the dialectical context of a
question-answer game. The corresponding domain of values V n

m has been described
in QAS and leads to a number of non-Tarskian logics.

A general representation of this logical value results in the following many-
dimensional object (see Fig. 25.1), to be characterized by three main features: a
predicative set of m questions; a many-sorted set of k corresponding sorts of answer
(“yes,” “no,” or some further ones); and a quantified set of standpoints where the
question-answer game is played.

Concerning the theory of logic, its main feature is consequence but another one
has been sketched throughout the present paper. In the case of Indian “proto-logics,”
these can be considered to be “logics” provided that the general theory of logic is



25 Eastern Proto-Logics 551

questioned. Otherwise, the Indian systems SB and 4CN would be nothing but trivial
set of formulas. For if every sentence α is said to be true in SB, then the logic of SB is
(maximally) trivial. In symbols: ∅ |=SB α. If no sentence α is said to be true in 4CN,
then the logic of 4CN is (minimally) trivial. In symbols: α |=4C N ∅. Actually, our
view is that SB and 4CN serve as two proper logics with a different language-game:
any logic of consequence relies upon rules for truth-preservation between sets of
formulas, whereas a logic of opposition relies upon rules for difference-preservation
between set of formulas. An overview of this alternative way of doing logic has been
described by [7] as follows:

On the standard view, logic is concerned with reasoning, more in particular with fixing
criteria for the soundness and validity of arguments. (. . .) Reasoning is just one particular
language-game. And if we think of our daily conversations, it does not have the same central
position it has in logic. Cooperative information exchange seems amore prevailing linguistic
activity.13

In other words, our main point is that SB and 4CN are difference-friendly theories
whosefinal aimof the gamediffers from themajority of formal systemswith scientific
purposes.

This alternative way of doing logic also includes a reply to the objection of mono-
valence: what is the point of a one-valued logical system, assuming that any logic
requires at least two values to make a distinction between valid and invalid argu-
ments? Again, our reference to two different language-games opposes two sorts of
logics: Tarskian logics that are scientific theories upon (nothing but) truth, on the
one hand; non-Tarskian logics like SB and 4CN, which are soteriological theories
centered upon openness. If so, the latter Indian “logics” are not just alternative log-
ics with a standard Tarskian structure 〈L,Cn〉 but, rather, alternative views of Logic
with a deviant structure 〈L,Op〉 (where Op is an abstract relation of opposition).
After all, should any logic serve as a decidable, problem-solving machinery? Alter-
natively, SB and 4CN seem to proceed as problem-posing machineries whose final
aim does consist in their resolution. Here is a way to reinforce the affinity between
such nonstandard activities of logic and the medieval games of disputatio.
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