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Abstract microRNAs are single-stranded noncoding RNA sequences of 18–24

nucleotide length. They play important role in post-transcriptional regulation of

gene expression. Last decade witnessed immense research in microRNA identifica-

tion, prediction, target identification, and disease associations. They are linked with

up/down regulation of many diseases including cancer. The accurate identification of

microRNAs is still complex and time-consuming process. Due to the unique struc-

tural and sequence similarities of microRNAs, many computational algorithms have

been developed for prediction of microRNAs. According to the current status, 28645

microRNAs have computationally discovered from the genome sequences, and have

reported 1961 human microRNAs (miRBase version 21, released on June 2014).

There are several computational tools available for predicting the microRNA from

the genome sequences. We have developed a support vector machine-based classifier

for microRNA prediction. Top ranked 19 sequence, structural, and thermodynamic

characteristics of validated microRNA sequence databases are employed for build-

ing the classifier. It shows an accuracy of 98.4 % which is higher than that of existing

SVM-based classifiers such as Triplet-SVM, MiRFinder, and MiRPara.

Keywords microRNA ⋅ Svm classifier ⋅ Computational prediction ⋅ Structural

parameters ⋅ Thermodynamic characteristics

1 Introduction

RNAs are single-stranded long sequences that are formed from the DNA sequences

through transcription process. With the help of hydrogen bonding between the bases,

a nucleotide sequence of RNA could form a nonlinear structure, called secondary

structure [15, 16]. The components of a secondary structure can be classified as

stem loop (hairpin loop), bulge loops, interior loops, and junctions (Multi-loops) [8].
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Functionally, RNAs are responsible for protein synthesis and RNAs such as messen-

ger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA) have its own

roles in this process [5]. A family of noncoding RNA, around 22 nt long, found in

many eukaryotes including humans is called microRNA. The process of formation of

microRNAs has many stages, initially longer primary transcript (pre-microRNA) is

formed, which in turn converted into a pre-microRNA, and processes mandate pres-

ence of ribo-nucleolus Drosha, Exportion-5 [4, 9]. The pre-microRNAs are charac-

terized by a hairpin-like structure. microRNAs play different roles in gene regulation

by binding to specific sites in mRNA and causes translational repression or cleavage

[22]. Due to the change in gene expression, microRNAs role as suppressor /onco-

genes in different cancers such as colon, gastric, breast, and lung cancers are proved

[3]. microRNA also helps for the proper functioning of brain and nervous system,

and have regulatory roles in several other diseases like deafness, Alzheimers disease,

Parkinson disease, Down’s syndrome, and Rheumatoid arthritis [1, 12]. microRNA-

based cancer detection and therapy is underway [18]. As the in vivo identification

of microRNAs is time consuming and complex, many computational tools had been

developed to predict most provable microRNA sequences. The methods employed

for computational prediction of microRNAs vary from search in conserved genomic

regions, measuring structure, sequence, thermodynamic characteristics of RNA sec-

ondary structures, to properties of reads of next-generation sequencing data, together

with advances in machine learning techniques [19].

Comparing DNA sequences of related species for conserved noncoding regions

having regulatory functions were the initial approach employed for microRNA

prediction. miRScan [11] and miRFinder [20] are examples of such tools. The

sequence characteristics, especially the properties of blocks of three of consecutive

nucleotides, namely triplet structure along with other parameters are used in Triplet-

SVM [6], MiPred [17], and MiRank [25]. MiRank, developed by Yunpen et.al, works

with a ranking algorithm based on random walks and reported prediction accuracy

is 95 %. Peng et.al developed MiPred which classifies real and pseudo-microRNA

precursors using random forest prediction model. MiPred has reported 88.21 % of

total accuracy, and while combining the P-value randomization, the accuracy of pre-

diction increased to 93.35 %. Mpred [18, 21] is a tool which uses artificial neural

network for pre-microRNA validation and microRNA prediction by hidden Markov

model. MiRPara [23], Triplet-SVM, and MiRFinder are the SVM-based classifier

where reported accuracy of MiRPara is 80 % and that of Triplet-SVM is 90 %. MiR-

Para divides the input sequences into number of fragments of length around 60

nucleotides, filter out the fragments having an hairpin structure, extracts 77 different

parameters from the sequence, and fed to SVM classifier. Triplet-SVM classifies the

real and pseudo-microRNA precursor using structure and triplet sequence features.

The positive training dataset collected miRNA registry database and the pseudo-

miRNA datasets from the protein coding regions. MiRFinder tried to distinguish

between microRNA and nonmicroRNA sequences using different representations

of the sequence states such as paired, unpaired, insertion, deletion, and bulge with

different symbols. They constructed the positive training data with the pre-miRNA

sequences of human, mouse, pig, cattle, dog, and sheep collected from miRBase,
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and constructed the negative dataset with the sequences extracted from the UCSC

genome pairwise alignments. MiRFinder used RNAfold [7] to predict the secondary

structure of the sequences.

The tools discussed above uses different subsets of structural, sequence, and ther-

modynamic properties of secondary structure of microRNA sequence. Still there is

relevance for a better tool with reduced feature set and higher level of accuracy. The

main motivation of this work is to develop a classifier with high sensitivity (True

Positive Rate), high specificity (True Negative Rate), low false positive rate, and an

accuracy greater than 95 %. We have developed an SVM-based classifier and trained

by the properties extracted from the experimentally validated database of human

microRNAs.

2 SVM-Based Classifier Model

Figure 1 shows the system model. A trained and tested classifier could be able to

predict whether a given input sequence is a probable microRNA or not. Figure 2

shows the preprocessing steps required for microRNA identification from an input

gene sequence. The length of gene sequence vary from few hundreds to several thou-

sands of nucleotides. A moving window divides input sequence into subsequence of

length 100 with step size of 30. The candidate sequences with a lesser base pairing

value than a threshold value can be discarded in the initial screening. The known

microRNA sequences have at least 17 base pairs, and hence sequences having 17 or

more pairs are only passed to feature extraction phase.

2.1 Training Data Preparation

Sufficient quantities of positive and negative samples of data are required to train

and test a classifier. The quality of the training dataset determines the accuracy of the

Fig. 1 System model
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Fig. 2 Gene sequence

preprocessing and feature

extraction

classifier. miRBase is a primary microRNA sequence repository keeping identified

pre-microRNA sequences, mature sequences, and gene coordinate information [10].

Presently, the database contains sequences from 223 species. 500 human microRNA

sequences downloaded from miRBase database are used as positive dataset. The

negative training dataset is prepared from the coding region of RNA, by filtering

out sequences that contain a hairpin-like structure. The reason behind this selection

is that the real microRNAs are characterized by their hairpin loop along with other

properties. 500 sequences are selected for the negative dataset also.

Feature Extraction and Selection A major discriminating property of RNA sec-

ondary structure is free energy due to the hydrogen bonding between its bases, called

minimum free energy (MFE). Several computational algorithms based on dynamic

programming have been developed to find MFE. RNAfold [7] is one such algorithm.

RNAfold generates the secondary structure in dot-bracket notation and predicts min-

imum free energy(MFE) of the structure.

A bracket represents a paired base with other end of sequence, while dot repre-

sents a unpaired base. Figure 3 shows secondary structure and its dot-bracket repre-

sentation with respect to a given input RNA sequence. The dot-bracket representation

obtained is the base for further computations in the development of this classifier.

We have extracted 46 features which include 32 sequence-related features [6, 24], 9

structural features, and 5 thermodynamic features. When three adjacent nucleotides

in a sequence are considered as a block, with brackets and dots as symbols, we have

eight different combinations: ’(((’, ’((.’, ’(.(’, ’.((’, ’..(’, ’.(.’, ’(..’ and ’...’. For each

block, there are four more possibilities when the middle nucleotide is fixed. For

example, the consecutive paired bases can be of ’A(((’ ’C(((’, ’G(((’, ’U(((’, where the

letter stands for nucleotide in the middle. The total possible combinations of triplets

are 8 × 4 = 32.
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Fig. 3 Secondary structure and dot-bracket representation corresponding to a typical RNA

sequence

The following structural features were selected from the secondary structure of

the sequence.

1. Base Count: Total number of base pairs.

2. Base Content: The ratio of total number of base pairs to the total number of

nucleotides in that sequence.

3. Lone loop 3: The count of lone loops that have 3 nts. (a lone loop is the one with

first and last nucleotides of the loop as Watson Crick or wobble base pair).

4. Lone loop 5: The count of lone loops that have 5 nts.

5. AU content: The ratio of number of AU base pairs to the total number of base

pairs.

6. GC content: The ratio of number of GC base pairs to the total number of base

pairs.

7. GU content: The ratio of number of GU base pairs to the total number of base

pairs.

8. Hairpin length: The number of nucleotides in the hairpin loop.

9. Number of Bulges: Total number of bulges.

The features related with the structural stability in terms of energy value due to

the bonding of bases are known as thermodynamic features [14].

1. Minimum Free Energy: Minimum free energy of the structure.

2. MFE content: The ratio of MFE to the number of nucleotides in the sequence [24].

3. GC/Fe: The ratio of number of GC pairs to the MFE.

4. AU/Fe: The ratio of number of AU pairs to the MFE.

5. GU/Fe: The ratio of number of GU pairs to the MFE.

This is quite large number of parameters, and dimensionality reduction is applied

based on principle component analysis (PCA) [2]. PCA is a mathematical method for

dimensionality reduction. This can be viewed as rotation of axes of original variable

coordinate system to new orthogonal axes called principal axes, which coincide with

the direction maximum variation of original observations. Thus, principal compo-

nents represent a reduced set of uncorrelated variables corresponding to the original

set of correlated variables. We used WEKA [13] to build the classifier. Based on the
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Table 1 Select list of features based on their ranks

Rank Feature Rank Feature

1 AU/Fe 11 GU/Fe

2 G((. 12 No. of bulges

3 G.(( 13 GC/Fe

4 A.(( 14 MFE

5 A((. 15 Hp length

6 Lone loop 3 16 AU content

7 G((( 17 GU content

8 C((( 18 GC content

9 Bspair count 19 A(((

10 Lone loop 5

value of variance specified, WEKA chooses sufficient number of Eigen vectors to

account original data. Ranking of attribute can be performed with WEKA by select-

ing an option to transform back to original space. The top ranked 19 features are only

used for final classification, as there is very little improvement in accuracy when oth-

ers are also considered. The selected features and their rank are shown in Table 1.

This includes seven features from sequence-related features such as ’A(((’, ’C(((’,

’G(((’, ’A((.’, ’G((.’, ’A.((’ and ’G.((’; and eight features from structure-related group;

and four from thermodynamic group. Although many subsets of these features are

used by other computational tools for microRNA prediction, we uniquely identified

three new features. They are ratio of GC and free energy (GC/Fe), ratio of AU and

free energy (AU/Fe), and ratio of GU and free energy (GU/Fe). It is evident that

they have decisive role as they have ranked 1st, 11th, and 13th in the select list of

attributes.

Machine Learning Support vector machines(SVM) are supervised learning model

with associated learning algorithms [6, 23]. Given a set of training examples, each

marked as belonging to one of two classes, an SVM training algorithm builds a model

that assigns new examples into the appropriate class, making it a non-probabilistic

binary classifier. SVMs effectively do this classification by a technique called kernel

trick, implicitly mapping their inputs into high-dimensional feature space. A linear

classifier is based on discriminant function of the form f (x) = 𝜔
T ⋅ x + b, where

𝜔 is the weight vector, and b is the bias. The set of points 𝜔
T ⋅ x = 0 define a

hyperplane, and b translates hyperplane away from the origin. A nonlinear classifier

is based on discriminant function of form f (x) = 𝜔
T
𝜙(x) + b, where 𝜙 is a nonlinear

function. Performance of the SVM classifier with a linear kernel, and two nonlinear

kernels, namely radial basis function kernel (RBF) and Pearson VII kernel (PUK),

are analyzed. The RBF kernel is defined by

K(x, y) = e(−𝛾 ‖x − y‖2)
(1)
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and Pearson VII kernel is defined by

K(x, y) = 1
(

1 +
(

2

√

‖x − y‖2
√

2(
1
𝜔
)−1

𝜎

)
2
)
𝜔

(2)

where 𝜔 and 𝜎 control half width and trailing factor of peak, respectively.

3 Performance Analysis of the Classifier

The performance of the classifier with linear and nonlinear kernel, with complete

and reduced feature set, is evaluated. Table 2 shows the confusion matrix in SVM

with PUK kernel function when 10-fold cross validation is employed. A classifier

gives best result when it reaches high TP and TN rates. The efficiency and quality

of a tool depend upon a number of factors such as sensitivity (TP rate), specificity

(TN rate), and accuracy. The accuracy of the classifier can be calculated using the

following equations [23, 24]:

Sensitivity = TP ∗ 100
TP + FN

(3)

Specificity = TN ∗ 100
TN + FP

(4)

Accuracy = (TN + TP) ∗ 100
TP + FP + TN + FN

(5)

When all the 46 features are used with PUK kernel and 10-fold cross validation,

the sensitivity, specificity, and accuracy reached 98.6 %, and this recorded as the best

result from the classifier. However, if top ranked 19 features are used, the classifier

provides sensitivity, specificity, and accuracy as 98.4 % (same value for all the para-

meters). When compared with the performance with whole feature set, variation is

insignificant, but computational cost will be definitely higher in the former case. The

classifier performance under different conditions is shown in Table 3. It is also evi-

dent from the data in the table, when RBF kernel is used, that change in value of

parameter 𝛾 from 0.01 to 1 makes considerable increase in accuracy.

Table 2 Confusion matrix in SVM

a b
491 9 a = Yes

7 493 b = No
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ROC is plot of fraction of true positives out of the total actual positives (TPR =

true positive rate) versus the fraction of false positives out of the total actual nega-

tives (FPR = false positive rate), at various threshold settings. TPR is also known

as sensitivity or recall in machine learning. The FPR is also known as the fall-out

and can be calculated as one minus specificity. The ROC curve is then the sensi-

tivity as a function of fall-out. In general, if both of the probability distributions for

detection and false alarm are known, the ROC curve can be generated by plotting the

cumulative distribution function (area under the probability distribution from −inf

to +inf) of the detection probability in the y-axis versus the cumulative distribution

function of the false alarm probability in x-axis. Figure 4 A shows the ROC curve

of the classifier, with RBF and PUF kernel functions. Area under the ROC curve

should be high for an excellent classifier. In our classifier, the area under the ROC

curve is 0.984, which indicates TP rate attains its highest values when FP rate is as

low as 0.016.

Figure 4 A shows the ROC curve of the classifier with RBF, and

MiRPara, Triplet-SVM, MiRFinder, etc. are the main examples of SVM-based

classifiers. We tried to compare performance of our SVM classifier with that of above

three tools. Figure 5 B shows the comparison of their accuracy.

Fig. 4 ROC curves of SVM

with RBF kernel and PUK

kernel

Fig. 5 Comparison of

accuracy of different

microRNA prediction tools
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4 Conclusion

The classifier that we developed distinguishes microRNAs and nonmicroRNAs very

accurately. When compared with other tools that employ SVM as the classifier,

our results sense better possibly due to the use of hybrid future set, precise fea-

ture selection, and selection of best classifier algorithm. The accuracy of our tool is

98.4 % which is higher than that of existing SVM-based classifier such as MiRFinder,

Triplet-SVM, and MirPara. The classifier sensitivity is 98.4 % and specificity is

98.4 % which is also higher than that of existing classifiers.
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