
Service Provisioning Middleware
for Wireless Sensor Network

S. Sasirekha and S. Swamynathan

Abstract Earlier, wireless sensor network (WSN) applications tended to follow the
traditional format of being specific to a device. Later, when applications evolved
integrating heterogeneous devices, it rendered difficulty in enforcing a common
standard among all the diverse devices. In order to handle this, a lot of WSN
middleware platforms emerged to bind the application interaction with the
heterogeneous devices through heterogeneous interfaces. This started increasing the
service-based applications while decreasing the device-based applications. Apart
from not only providing the classic task of reading the information from the sensor
network, the middleware support were extended to address interoperability, man-
agement, security, and privacy. However, still there exists an important issue, which
many of the existing middleware fail to address. For instance, the network design
scenario varies depending on the application context. However, most of the existing
middleware operate on the default network infrastructure and data dissemination
protocol to collect the data and perform other tasks on the network. Therefore, there
is a requirement to include support for customizing the network configuration for an
application requirement with respect to its context. Hence, in this work, a service
provisioning middleware based on service-oriented architecture (SOA) is proposed.
To support network customization, in the middleware layer, a decision algorithm is
proposed. It is used for generating the configuration file according to the application
requirement. This service provisioning middleware would serve as a generic model
for adapting to the required network environment.

Keywords Wireless sensor network ⋅ Service-oriented architecture ⋅ Middle-
ware ⋅ Service provisioning

S. Sasirekha (✉)
SSN College of Engineering, Chennai 603110, India
e-mail: sasirekhas@ssn.edu.in

S. Swamynathan
Anna University, Chennai 600025, India
e-mail: swamyns@annauniv.edu

© Springer India 2016
S. Das et al. (eds.), Proceedings of the 4th International Conference on Frontiers
in Intelligent Computing: Theory and Applications (FICTA) 2015, Advances
in Intelligent Systems and Computing 404, DOI 10.1007/978-81-322-2695-6_28

329



1 Introduction

Wireless sensor network (WSN) in the recent past has witnessed an explosive
growth in connecting the digital realm to the physical world [1]. This is mainly due
to the technology innovation in microprocessors, wireless communication, and its
integration with the microelectromechanical system (MEMS). As WSN consents a
fine-grained environment observation at an economical cost much lower than other
known monitoring systems such as remote sensing, nowadays it plays a significant
role in building large-sized WSNs for most currently evolving practical applications.
These sensor networks provide robust service even in toxic and inaccessible regions
to humans. WSN has great potential to efficiently plan and coordinate among the
nodes to acquire information for real-time scenarios such as handling emergency,
military, and disaster relief operations [2]. It brings a new and wide perspective for
monitoring physical conditions like temperature, pressure, humidity, etc.

Nowadays, sensor nodes are available at low cost and are miniature in size. Due
to their size, sensors have limited energy, storage, communication, and computation
capabilities. Hence, they are usually deployed in large arrays to collaboratively
extract the environmental data [2]. A WSN is designed to transmit the sensed data
from an array of sensor nodes to a data repository on a server or directly to the user
through wireless communication. When the sensor network is deployed in a hostile
environment, it operates unattended for a long time with sensors equipped with
limited battery power. Therefore in these situations, reducing the energy con-
sumption to prolong the network lifetime stands as a critical issue. As most of the
energy is spent on transmitting the data than other tasks in WSN, various com-
munication protocols specific to WSN were proposed to handle efficient data
transmission over the network. Some of them are LEACH (Low-Energy Adaptive
Clustering Hierarchy), PEGASIS (Power-Efficient GAthering in Sensor Informa-
tion Systems), TEEN (Threshold Efficient sensor Network protocol), MECN
(Minimum Energy Communication Network), GAF (Geographic Adaptive Fide-
lity), and GEAR (Geographic and Energy-Aware Routing). Most of these solutions
are dedicated to power efficient routing, focusing on short-range communication
and adopt some aggregation mechanism to reduce the amount of data to be
transmitted [3].

Some of the related works, as discussed in [4], highlight the importance of
involving the application users in the WSN communication process. They also
clearly state that it reduces the computation cost of the network with respect to
application-specific optimization. Every application class satisfies a specific need
and it requires a particular type of communication protocol. Thus, it is understood
that the main issue is in providing the most suitable protocol to each application
class. However, in general, it is difficult for application developers to choose the
protocol that best meets their application needs. Therefore, in this work the main
objective is to improve the performance of system by providing application users

330 S. Sasirekha and S. Swamynathan



with a choice of the communication protocol, from which users can choose
according to the application requirements [5, 6]. In spite of the advantages, the
existing middleware [7–9] have been built with a high degree of dependency
between applications and the underlying communication protocol. Accordingly, the
framework also needs to afford a decision unit to provide a choice of suitable
communication protocol.

Hence, in this paper a service provisioning middleware is proposed. It acts as a
mediator between applications and the WSN. It helps in translating the application
requirements to an efficient choice of network configuration and protocols. The
middleware is generic enough to be used over a wide range of applications. The key
focus of this middleware is interpreting the application needs and selecting the
precise network protocol to configuration for performing efficient data aggregation.
Besides, it also provides a high level graphical interface for subscribing, publishing,
and collecting the sensor data. From the user’s point of view, the system offers an
abstraction layer to the applications developer from the sensor layer.

This paper is organized as follows: the related work is presented in Sect. 2; in
Sect. 3 detailed descriptions of the different layers of the architecture are given; in
Sect. 4, the operation of a middleware with a testing environment is illustrated; and
finally in Sect. 5, some concluding remarks are given.

2 Related Works

In this section, the state-of-art WSN middleware are examined and discussed by
classifying them as non-adaptable and self-adaptable middleware in the context of
the proposed work. The classification was done based on the support for network
reconfiguration at runtime. Here, some of the works related to self-adaptable
middleware are discussed. Most of the self-adaptable middleware are based on the
service-oriented concepts handling the heterogeneity and composition of the sensor
nodes. They manage the adaptation issues based on the structural and behavioral
reconfiguration actions. These existing service-oriented architecture (SOA)-based
middleware can further be categorized based on the service deployment level. The
services deployment basically can be on any of the three distinguished layers such
as on the node, on the gateway, or on the base station layer. Middleware such as
Tiny Web Services [10] and TinyWS [11] deploy services at the sensor nodes. They
interact horizontally between the neighboring nodes and reform the structure
according to the specification provided by the adaptive services. Tiny Web Services
is an event-based middleware which provides mini Web Services operated by a
small version of Transmission Control Protocol/Internet Protocol (TCP/IP) called
µIP. TinyWS provides an opportunity to communicate directly with the sensor
nodes without going through gateway by embedding Web Services (WS) on the
sensor nodes using TCP/IP. Middleware Linking Applications and Networks
(MiLAN) is another middleware for WSN, where a description of application

Service Provisioning Middleware for Wireless Sensor Network 331



requirement is received from the users and the best sensor protocol and network
configuration is chosen. The work presented in [12] belongs to service deployment
at the base station layer. It provides an Open Services Gateway initiative (OSGi)-
based service-oriented middleware which uses a packet forwarder for communi-
cating between the sensor nodes and base station. However, it requires a system
administrator intervention to add a wrapper to communicate with the heterogeneous
nodes. One other middleware as discussed in [13] provides a cross-level architec-
ture. It provides a layered approach that deploys services in all the three layers and
uses the DPWS for creating WS. However, no adaption is proposed to deal with
service failures. At the base station level, the sensor network is also proposed as a
database by deploying query proxies inside the network [14, 15]. In [16], a
declarative language is proposed, which receives the query submitted by the user
and submits it to the sensor networks. COUGAR provides a virtual database
concept and a data centric routing approach [17].

All the above discussed middleware are advantageous in the defined context and
aim at maximizing the network lifetime. However, the major shortcoming of the
above discussed middleware is, they do not provide an abstract representation for
the user to specify the application needs and how the sensor data has to be gen-
erated. Moreover, these middleware use eXtensible Markup Language (XML) and
Simple Object Access Protocol (SOAP) standards for its communication, which
stimulate an overhead and consume a large part of the device resources [18]. The
main difference between the existing middleware and the proposed work is, here, a
customary depiction of the application requirements and sensor data generated are
provided. Also, the proposed system relies on XML and REpresentational State
Transfer (REST) standards retaining the device resource for a much longer time.
Hence, the proposed system aims at providing an adaptable WSN configuration and
protocol support for every specific application requirement.

3 System Model for Data Provisioning Middleware

The proposed middleware serves as a uniform, standard, and abstract development
model for developing WSN applications. This framework is developed by reflecting
the concepts of service orientation specific to WSN [19]. The architecture includes
three significant layers such as the sensor network layer, data processing layer, and
the user interface layer as shown in Fig. 1. The sensor network layer is built by
deploying several sensor nodes which have different sensing capabilities. Within
the same network one powerful node with greater processing and storage capacity is
deployed to act as sink node. The sensor network layer transmits the sensor data and
the network management information to the outside entities via the sink node using
the corresponding providers. These sensor data and other information received
from the network layer are complied, classified, and stored for future use. Then the
middleware-specific sink node in the network layer is used to pass request to the

332 S. Sasirekha and S. Swamynathan



Fig. 1 Design of data provisioning middleware

Service Provisioning Middleware for Wireless Sensor Network 333



network. The entire request to the data and network control are made using the WS
[15] running in the server, which is present in the data processing layer. These WS
process the data received as response for the request sent from the sensor network
layer. Then the user interface layer is provided with various options where the
request can be made and data can be monitored and visualized for future analysis.
Since the SOA concepts are reflected in this architecture design, certain assump-
tions are made. Each individual sensor node is considered as the WS provider; the
sink node is considered to act both as service provider for the users’ request and as a
service requester to get the data from the network layer. In order to handle the
heterogeneity of the sensor nodes and to improve the efficiency of the overall
system a middleware layer is interfaced in between the network and the data layer.
It also provides an adaptable configuration service to manage the network behavior
at execution time more efficiently.

The middleware deployed in WSN section provides an interaction layer between
the application and sensor networking layer. It provides a high-level depiction for
the application users, the sensor field, and to perform efficient WSN data aggre-
gation. Sensor nodes in the WSN that act as service providers register and publish
themselves with the network information in the Service Registry. A default
multi-hop (data centric) protocol defined in the network forwards all these messages
toward sink nodes that push to the registry. A control message is exchanged among
them to keep their database updated and the latter can be used to coordinate among
the sensors in the network. Here, the system adopts XML to describe the interface
and support and language encoding. For the protocol support, REST [20] is adopted
and is used for formatting XML messages and transporting invocations between
sensors by using the underlying default network protocol. Then the services pro-
vided by the middleware are achieved by deploying application programming
interfaces (APIs) for sink node. The middleware design portrays the implementation
scenario where, the network layer comprises a heterogeneous sensor environment
with various sensing capabilities. The middleware components are deployed in the
sink nodes. Then a registry and server are maintained discretely for user access.

3.1 Design of Sink Node Middleware APIs

Users of the WSN are often proficient in their application domain but not much in
networks, hence the configuration and WSN operations are preset [21, 22]. In such
a scenario, if the user wants choose the network protocol and reorganize according
to the application requirement it would be difficult. Therefore, to guide the users
with the best choice of network configuration for a specific application, an auto-
matic decision process is offered. This choice is based on results of previous works
carried out in the field, reported by researchers. These works are studied and stored
in the database. The adaptation module of the middleware holds this database with
all the historical information about the different WSN configuration choices. In

334 S. Sasirekha and S. Swamynathan



addition, the average values for the various performance metrics, such as delay and
accuracy, for each executed application are included in the database for the cor-
responding network configuration. This information is used as the major input by
the decision algorithm of decision unit to provide the best choice of network
configuration. However, based on factors such as the number of sensors in the data
source, number of sink nodes, and the choice of data delivery model, the decision
algorithm decides the dissemination and network topologies as shown in Fig. 2.

For every request made by the application providers the decision unit API runs
the decision algorithm. The decision algorithm generates the corresponding con-
figuration file. The generated file is pushed to the configuration manager API.
Receiving the configuration file, it processes them and using the adaptor module
API, the configuration API controls the hardware and topology of each individual
sensor network through its corresponding sink nodes. These API modules com-
municate among them with the XML messages to receive and process the appli-
cation input messages. Also, the middleware has an XML-based API for sending

Fig. 2 Flow chart of decision algorithm

Service Provisioning Middleware for Wireless Sensor Network 335



the configuration file to configuration handler of node level API and it activates the
dissemination protocol according to the current WSN application. The decision
algorithm decides the strategies of data dissemination and network topologies based
on the request type submitted by the user, the size of the target area, and the
expected number of data sources and sinks are considered. From the choice based
on the previous works, the possible combination of network topology and dis-
semination strategy was identified. It was inferred that, in general, the network
topology to support energy efficient data dissemination can be classified as flat and
hierarchical. Further, according to the application requirement they are merged with
dissemination algorithm such as direct diffusion, push diffusion, one-phase diffu-
sion, unicast, multicast, and clustering with LEACH or PEGASIS.

Then the infrastructural information of the WSN and users are held in the
registry. The various services related to the network are maintained in the form of
various sub-registries. The aggregated network information from sink node service
provisioning API is registered in the device registry. Service information such as
the names of the methods, the order, number, and types of their parameters, and the
return types along with meta-data information are maintained in the service registry
The service registry provides an option for the user to subscribe a data delivery
model required by the application: synchronous, asynchronous (periodic-running,
event-driven), which is further processed by the sink node APIs to generate the
configuration file to establish the WSN operation. The sensor historical data API is
responsible for maintaining the past records of the sensors, inclusive of previously
sensed data and status of the node through the network lifetime.

3.2 Design of Server Layer

This layer acts as WS provider, abstracting the networking layer and making
available a simple WS. It provides an interface to view the various services offered
by each of the networks and also a provision to check and consult the registry to
register for events and maintenance tasks. Once the application is aware of the
available WSN services provided by the network, the user can subscribe to the
services through subscribe messages. The parameters of the request message vary
depending on the request type. For instance, in case of synchronous message, the
sensor type and the geographical coordination of the target area are provided. In
case of a periodic-running query type, the sensor type, the target area, the duration
of data acquisition rate, and duration are mentioned. Finally, incase of event-driven
queries the sensor type, the target area, and the event to be monitored have to be
specified. Applications may also request the use of aggregation function which will
also be passed in the configuration file. The query processor services process the
application requirements and message handler translates the request and coordinates
with the service registry and the sink node in generating the configuration file to set
up the underlying communication layer.

336 S. Sasirekha and S. Swamynathan



3.3 Configuration File Generation

As shown in Fig. 2, each application provider submits the request query to the
decision algorithm along with various other parameters such as the size of the target
area, the estimated number of data sources, and sinks. These parameters have a
significant role in deciding the different strategies of data dissemination and net-
work topologies. Initially the algorithm verifies for the request type submitted by
the provider. The request query is analyzed and determined if the query type is a
synchronous or asynchronous periodic or event-driven query. The network reor-
ganization is mainly based on this request type. Next, for all the request types, the
size of the target area and the number of nodes near the sink node is verified. It is
analyzed for, if the number is greater than a defined threshold. In case it is large, for
a synchronous request again, the total number of nodes in the target is verified
against a defined threshold, if it is has a large number of nodes, diffusion dis-
semination strategy is chosen, otherwise unicast to sink node is chosen. Similarly, it
is also verified for asynchronous periodic and event-driven query; in this case if the
number of nodes is large, LEACH dissemination strategy is chosen, otherwise
PEGASIS and push diffusion is chosen respectively. In case it is less, for a syn-
chronous request the direct diffusion dissemination strategy is chosen. Similarly, for
asynchronous periodic and event-driven query muticast dissemination strategy is
chosen.

Further, the middleware passes the decision chosen to the network protocol,
which in turn triggers the needed infrastructure for communication. Finally the
message is propagated to sensor nodes, based on the chosen strategy for data
dissemination. If the request sent from the application matches its data type it
responds with the data delivery message.

Therefore the proposed middleware operates in a service-oriented way providing
a flexible, adoptable, generic system for programming abstractions and positioning
them right from the hardware platforms up to end-user applications in a hetero-
geneous WSN.

4 Testing Environment

A WSN environment is created with 4 Arduino Mega Board interfaced with Digi
XBee using XBee shield to form a mesh network as shown in Fig. 3, to monitor the
temperature and humidity of the testing environment. To build sensor network with
a mixture of hardware platforms, Digi XBee is used to communicate because they
are 802.15.4 compliant. Since tuning of many parameters of the XBee is very
versatile, XBee is preferable to CC2420. Also, XBee module has an IEEE 64-bit
address and has a provision to configure in the AT mode or API; as the aim is to

Service Provisioning Middleware for Wireless Sensor Network 337



configure the network from an API, we choose an API mode. The XBee modules
come preloaded with the ZNet 2.5 firmware which implements the ZigBee protocol
stack. XBee has its own microcontroller inside and for programming it uses the
software called XCTU. This microcontroller is used to program the routing and
other communication details of the XBee.

In order to make all the sensor platforms to communicate, some basic settings
have to done in the network configuration level. First of all, for the radios to
communicate, it is mandatory to set the same Personal Area Network (PAN) ID and
sync them in the same channel. For the purpose of testing it is assumed that PAN ID
0x1234 and channel 0x0D are set for all the radios. Once the communication
aspects are programmed among the various sensor platforms the sensor nodes are
deployed. Then the middleware APIs are installed in the sensor and sink nodes to
provide the abstraction. The necessary implementation codes for the sensors to
implement them as services are defined. This implementation is
platform-dependent, that is, the application programmer uses C++ to write Arduino
programs. The users can access the WSN through the WS deployed in the server.
The central server acts as a gateway to the WSN. The intelligence level of the WSN
increases upstream in the network. Some of the data collected are shown in Fig. 4.

To address the improvements of the above stated middleware system, it is
demonstrated that when using a network routing protocol chosen according to the
application needs the network utilization is proven to be high. A comparison is run
with middleware with fixed data centric protocol and an adaptive middleware where
the network routing protocol changes according to the application need. It is ini-
tially fixed with multi-hopping flat network routing protocol, Sensor Protocols for
Information via Negotiation (SPIN). The idea behind SPIN is to name the data
using high-level descriptors or meta-data. Before transmission, meta-data are
exchanged among sensors via a data advertisement mechanism. Each node upon
receiving new data advertises it to its neighbors and interested neighbors, i.e., those
that do not have the data, retrieve the data by sending a request message. The

Fig. 3 Testing environment

338 S. Sasirekha and S. Swamynathan



adaptive network routing protocols for the data delivery model are chosen based on
the decision algorithm explained in Configuration file generation section.

The results are generated for both the scenarios, the fixed routing protocol and
adapted routing protocol for the three data delivery models––Synchronous, Asyn-
chronous Event-Based, and Periodic Data Set models. The adaptive network
routing protocols for the data delivery model are chosen based on the decision
algorithm explained in Configuration file generation section.

Fig. 4 Sample temperature and humidity data collected from 4 motes

Service Provisioning Middleware for Wireless Sensor Network 339



In the network setup, 4 sensor nodes (also called as motes) are deployed. The
initial energy level in all the nodes is set as 10 J. After deployment, the user request
is initiated and the query processor processes according to the application
requirements. The message handler translates the request and coordinates with the
service registry and the sink node is involved in finding the data delivery model and
generating a configuration file to set up the underlying communication layer.

The process is repeated for different data delivery models and the performances
of this model are monitored. The number of hops it takes to reach the sink node,
total energy dissipated in the nodes while transmitting, and based on the hop count
the latency is measured. The generated results are tabulated in Table 1 and
graphically plotted as shown in Figs. 5, 6 and 7.

For simplicity of energy analysis, a first-order radio model [23, 24] is adopted.
Energy consumption in circuitry for running the transmitter or receiver and in radio
amplifier for wireless communication are Ecircuitry = 0.5 J/msg and Eamplifier = 0.5
pJ/msg, respectively. The value of Eamplifier is directly proportional to the square of
transmission distance. Therefore, using the following formulas (1) and (2):

Table 1 Performance measures of the proposed system

Data delivery model Routing
protocol

No of Hop
counts (nos.)

Total energy dissipation
in nodes (J/Msg.)

Latency
(ms)

Synchronous data set
collection

SPIN 5 5.5 1000
diffusion 2 8.5 400

Asynchronous event data
set collection

SPIN 5 5.5 1000
LEACH 1 9 200

Asynchronous periodic
data set collection

SPIN 4 5.5 800
Pull
diffusion

1 9 200

Fig. 5 Number of Hop
counts

340 S. Sasirekha and S. Swamynathan



The energy consumed for transmitting a single packet is

Etransmitðk, dÞ=Ecircuitry × k+Eamplifier × k × d2 ð1Þ

The energy consumed for receiving single a packet is

ErecieveðdÞ=Ecircuitry × k ð2Þ

where k is the size of transmitted packets, and d is the distance between a trans-
mitter and a receiver.

There is difference in the performance of the various data delivery models. The
performance requirements of the model are application-specific. The user should be
able to adapt or choose the required network routing protocol. The proposed
middleware architecture supports the selection of required routing protocol for the
data delivery model by the user. Hence the model is flexible to the user’s specifi-
cation. The analysis on the performance measures aids to infer that the overall
system performance seems to be improved.

Fig. 6 Energy dissipation in
the nodes

Fig. 7 Latency in
transmission

Service Provisioning Middleware for Wireless Sensor Network 341



5 Conclusion

In this paper, a service-oriented approach-based service provisioning middleware
for WSN was presented. It provides a flexible and generic platform for application
developers to perform operation on WSNs. This middleware layer abstracts the
WSN infrastructure and protocol information from the developer, as most of the
existing middleware have been built with a fixed network topology and a data
dissemination strategy to perform operation of WSN; whereas the network design
scenario varies depending on the application context. Hence in this paper, the
proposed service provisioning middleware provides an extended support for cus-
tomizing the network configuration for an application requirement with respect to
its context. For this purpose, a decision algorithm was proposed. It decides on the
configuration required for application context based on the type of request query,
the size of the target area, and the estimated number of data sources and sinks.
Thus, adopting this system it provides an efficient usage of the WSN thereby
extending its lifetime. The middleware was tested to handle three basic request
types such as synchronous, asynchronous event-based, and asynchronous
periodic-based requests. It is inferred from the results that it chooses the best
suitable option, based on information provided by the users’ interest. This proposed
work takes an initiative to build energy efficient WSNs.

References

1. Khemapech, I., Duncan, I., Miller, A.: A survey of wireless sensor networks technology.
In: 6th Annual Postgraduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting, pp. 1–42. Liverpool, UK (2005)

2. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on
recent developments and potential synergies. J. Supercomputing 68/1, 1–48 (2014)

3. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Elsevier
Ad Hoc Netw. J. 3(3), 325–349 (2005)

4. Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to application
requirements. In: Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, pp. 218–229, USA (2003)

5. Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom’99), pp. 1–15,
WA (1999)

6. Wang, M., Cao, J., Li, J., Dasi, S.K.: Middleware for wireless sensor networks: a survey.
J. Comput. Sci. Technol. 23(3), 305–326 (2008)

7. Heinzelman, W., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to support sensor
network applications. IEEE Netw. Mag. Special Issue 18(1), 6–14 (2004)

8. Mohamed, N., Al-Jaroodi, J.: A survey on service-oriented middleware for wireless sensor
networks. J. IEEE Int. Conf. Serv. Oriented Comput. Appl. 5/2, 71–85 (2011)

9. Hadim, G. Mohamed, N.: Middleware challenges and approaches for wireless sensor
networks. IEEE Distrib. Syst. Online 7/3, 1–23 (2006)

342 S. Sasirekha and S. Swamynathan



10. Nissanka, B., Priyantha, A.K., Goraczko, M., Zhao F.: Tiny web services: design and
implementation of interoperable and evolvable sensor networks. In: Proceedings of the 6th
ACM Conference on Embedded Network Sensor Systems, pp. 253–266. ACM, USA (2008)

11. Othman, N.Y. Glitho, R.H., Khendek, F.: The design and implementation of a web service
framework for individual nodes in sinkless wireless sensor networks. In: 12th IEEE
Symposium on Computers and Communications, pp. 941–947 (2007)

12. Prinsloo J.M., Schulz C.L., Kourie, D.G., Theunissen,W.H.M.: Strauss, T., Van Den Heever, R.
Grobbelaar, S.: A service-oriented architecture for wireless sensor and actor network
applications. In: Proceedings of the 2006 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on IT Research in Developing
Countries (SAICSIT ‘06), pp. 145–154 (2006)

13. Leguay, J., Lopez-Ramos, M., Jean-Marie, K., Conan, V.: An efficient service oriented
architecture for heterogeneous and dynamic wireless sensor networks. In: 33rd IEEE
Conference on Local Computer Networks, pp. 740–747 (2008)

14. Devices Profile for Web Services (DPWS) specification. (2006). http://schemas.xmlsoap.org/
ws/2006/02/devprof/

15. Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards sensor database systems. In: Proceedings of
the 2nd International Conference on Mobile Data Management, pp. 3–21, Hong Kong (2001)

16. Govindan, R., Hellerstein, J.M., Hong, W., Madden, S., Franklin, M., Shenker, S.: The sensor
network as a database. USC Computer Science Department Technical Report, pp. 02–771,
(2002)

17. Yao, Y., Gehrke, J.E.: The cougar approach to In-Network query processing in sensor
network. Sigmod Record. 31(3), 9–18 (2002)

18. Delicato, F., Pirmez, L., Pires, P., de Rezende, J.: Exploiting Web technologies to build
automatic wireless sensor network. In: 8th IFIP IEEE International Conference on Mobile and
Wireless Communication, vol. 211, pp. 99–114 (2006)

19. Delicato, F.C., Pires, P.F., Pirmez, L., Carmo, L.F.: A service approach for architecting
application independent wireless sensor networks. Cluster Comput. 8/2–3, 211–221 (2005)

20. Graham, S., et al.: Building Web services with Java: making sense of XML, SOAP, WSDL,
and UDDI. Sams Publishing (2002)

21. Fok, C.-L., et al.: Adaptive service provisioning for enhanced energy efficiency and flexibility
in wireless sensor networks. Sci. Comput. Program. 78/2, 195–217 (2013)

22. Chandrakant, N., Tejas, J., Harsha, D., Deepa Shenoy, P., Venugopal, K.R., Patnaik, L.M.,
Chancellor, V: EMID: maximizing lifetime of wireless sensor network by using energy
efficient middleware service. In: International Conference on Intelligent Information
Networks, pp. 314–317 (2011)

23. Lindsay, S., Raghavendra, C.S., Sivalingam, K.M.: Data gathering in sensor networks using
the energy delay metric. In: Proceedings of the 15th International Parallel & Distributed
Processing Symposium, p. 188 (2001)

24. Tang, F., You, I., Gou, S., Gou, M., Ma, Y.: A chain-cluster based routing algorithm for
wireless sensor networks. J. Intell. Manuf. 23(4), 1305–1313 (2010)

Service Provisioning Middleware for Wireless Sensor Network 343

http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://schemas.xmlsoap.org/ws/2006/02/devprof/

	28 Service Provisioning Middleware for Wireless Sensor Network
	Abstract
	1 Introduction
	2 Related Works
	3 System Model for Data Provisioning Middleware
	3.1 Design of Sink Node Middleware APIs
	3.2 Design of Server Layer
	3.3 Configuration File Generation

	4 Testing Environment
	5 Conclusion
	References


