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Abstract An algorithm has been proposed for mining frequent maximal itemsets
from data cube. Discovering frequent itemsets has been a key process in association
rule mining. One of the major drawbacks of traditional algorithms is that lot of time
is taken to find candidate itemsets. Proposed algorithm discovers frequent itemsets
using aggregation function and directed graph. It uses directed graph for candidate
itemsets generation and aggregation for dimension reduction. Experimental results
show that the proposed algorithm can quickly discover maximal frequent itemsets
and effectively mine potential association rules.
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1 Introduction

Frequent pattern mining has been a major task in data mining. Frequent pattern
mining finds interesting association or correlation among a large number of item-
sets. Finding frequent patterns play an important role in association rule mining,
correlation. Frequent pattern are the patterns that appear repeatedly in the dataset.
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It was first proposed by Agrawal [1] in 1994. In this paper, a frequent pattern
mining technique is proposed that use directed graph together with aggregation to
discover knowledge from data cube. Aggregation transforms 3D model views to 2D
(tabular) view of dataset using sum-based measure. Directed graph provides fast
and easy construction of candidate generation. Candidate generation using directed
graph saves time and memory consumption because, most candidate itemsets are
frequent. Frequent 2-itemsets are required for the directed graph generation. First
item of a frequent 2-itemset works as origin and second item is like destination for
an edge in the directed graph.

Many algorithms have been developed for searching association rules. The main
challenge in mining association rules is developing fast and efficient algorithms that
can handle large volume of data, minimum time scans database and find associated
rule quickly. Most of the proposed apriori-like algorithms for mining association
rules are wasting lots of time to generate candidate itemsets. FP-Growth algorithm
is also very useful for finding association rule. The FP-Growth algorithm does not
generate candidate itemsets and so takes less time to find frequent itemsets [2]. But
it also has limitations with respect to space and time. The proposed algorithms
overcome these limitations. Frequent itemsets can be of two types, closed and
maximal. A frequent itemset is called maximal if it has no superset that is frequent
[3]. An itemset is closed if it is frequent but none of its superset has the same
support count [4].

The proposed algorithm uses directed graph for candidate itemsets generation. It
saves time and memory consumption because it generates minimum number of
candidate itemsets, those are likely to be frequent. Frequent 2-itemsets are required
for the directed graph generation. First item of a frequent 2-itemset works as origin
and second item like destination for an edge in the directed graph [5]. Directed
graph gives us minimum candidate itemsets that are likely to be frequent itemsets.

Proposed algorithms generate frequent patterns using data cube reduction. Data
reduction technique used to reduce the dataset that is much smaller in volume.
Reduced dataset should maintain the integrity of original dataset. Mining on the
reduced dataset produce exactly the same or almost the same results. If recon-
struction of original dataset from reduced dataset is without any loss of information,
then the reduced dataset is called lossless. Otherwise, we loss the information and
produce approximation of original dataset, then the reduced dataset is called loosy.
There are many methods of data reduction. Dimensionality reduction and
numerosity reduction techniques are the main forms of data reduction. Dimen-
sionality reduction is the process of reducing the number of attributes or variables.
There are many dimensionality reduction methods which transform the original
dataset into a smaller spaced dataset, e.g., wavelet transformation, principal com-
ponent analysis, and attribute subset selection [6]. Numerosity reduction techniques
replace the original dataset by smaller form of data representation. Numerosity
reduction may be parametric of nonparametric. Parametric methods are used to
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estimate the data, only the data parameters needs to be stored, instead of the original
dataset, e.g., regression and log-linear model. Nonparametric methods are used to
reduce representations of the dataset, e.g., histograms, clustering, sampling, and
data cube aggregation. A data cube allows data to be viewed in multiple dimen-
sions. The data cube contains three dimensional item, time, and location. It can
return the total sales for any combination of the three dimensions. Apex cuboid
refers to the case where the group-by is empty. It contains the total sum of all sales.
The base cuboid is the least generalized of the cuboids. The apex cuboid is the most
generalized of the cuboid. If we start at the base cuboid and explore upward, this is
similar to roll-up operation.

2 Frequent Patterns Discovery Using Directed Graph

In this section, we present the proposed algorithm. The proposed algorithm is
shown in Fig. 1.

Input: Data-Cube, min_sup;
Output: Set of Maximal frequent itemset. 
1. Condense one predicate of Data-Cube using aggregation 
2. Find total_item_count of all the items
3. If  total_item_count  < min_sup than 
4. Remove those items
5. Otherwise add 1-itemsets into L1

6. Sort the items in ascending order according to their total_item_count
7. Generate candidate 2-itemsets using lexicographical order with L1

8. Calculate total_item_count of candidate 2-itemsets
9 . If total_item_count < min_sup than
10 . Remove those itemsets
11 . Otherwise add 2-itemsets into L2

12 . Generate directed graph using L2

13 . If (Ii,Ij) in L2 than 
14. Draw a directed edge from Ii  to Ij  in directed graph
15 . Traverse the directed graph and generate candidate k-itemsets 
16 . Calculate total_item_count of k-itemsets
17 . If total_item_count < min_sup than
18 . Remove those itemsets 
19 . Otherwise add k-itemsets into Lk

20. Discover Maximal Frequent itemset from Lk

21 . Return Maximal Frequent itemset 

Fig. 1 The proposed algorithm
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2.1 Algorithm Details

The proposed algorithm can be divide into fives main steps on the basis of broad
tasks. These main steps are explained below.

Perform Aggregation on Data Cube.
The data cube condenses using aggregation. We simply computed by aggregation
the counts from cells contained in the one predicate. The resulting dataset is smaller
in volume without loss of information necessary for frequent pattern mining [7–9].
We did this aggregation because memory consumption is reduced. Aggregate
function and the group-by operator produce 1D aggregate or more dimensional
aggregates. Aggregation functions return a single value.

Generate the set of frequent 1-itemsets L1.
Calculate total_item_count of items by counting item_freq of items. If
total_item_count of Ij item is smaller than min_sup, itemset Ij in not a frequent
1-itemset so removed. Otherwise, itemset Ij is frequent and is added to the set of
frequent 1-itemset L1. Sorting helps us to generate minimum candidate itemsets as
in [10]. Sorting has been done of all frequent 1-itemsets by total_item_count in
ascending order, these are likely to be frequent.

Generate the set of frequent 2-itemsets.
In this step, we generate candidate 2-itemsets in lexicographical order using L1.
Count the total_item_count of the candidate 2-itemset {Ii, Ij}. If the total_item_-
count of candidate 2-itemset {Ii, Ij} is greater than min_sup, then itemset {Ii, Ij}
frequent 2-itemset and added into L2, otherwise removed.

Construction of Directed Graph using frequent 2-itemsets.
We construct the directed graph by using frequent 2-itemsets L2. If itemset {Ii, Ij}
frequent 2-itemset, then draw a directed edge from Ii to Ij in directed graph [11, 12].
First item of 2-itemset is the origin and second item is the destination. We draw all
directed edge by using itemset of L2. After drowning all the edges, we present
directed graph.

Generate all the Candidate k-itemsets using directed graph.
This proposed algorithm traverses once to the directed graph and generate candidate
itemsets by using the directed neighbor nodes of itemset. Start from Ii and traverse
all the possible reachable nodes. After completed traversing it leads to formation of
simple paths; these simple paths are our candidate itemsets. Nodes of possible
simple paths are the elements of these itemsets.

Find Frequent itemsets.
In the final step, we collect only frequent itemsets. For finding frequent k-itemsets,
count the total_item_count of the candidate k-itemset {Ii, Ij, … Ik}. If the
total_item_count of candidate k-itemset {Ii, Ij, … Ik} is greater than min_sup, then
{Ii, Ij, … Ik} frequent k-itemset and added into Lk. Otherwise, remove infrequent
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itemsets. Finally, we got the final set of frequent k-itemsets Lk. Now, we verify
whether frequent k-itemsets Lk are maximal or not. The itemsets that do not fulfill
the property of maximal itemsets are removed; otherwise added into final result set.

2.2 Example

We present a simple example to help illustrate working of the proposed algorithm.
The data cube showed in Fig. 2. The user has given minimum support threshold
as 5. We can find out the new minimum support threshold by multiplying the
number of aggregated cell with old minimum support threshold. So the new min-
imum support threshold is (min_sup) is (20= 5*4) 20.

Perform Aggregation on Data Cube.
The data cube is aggregated into a tabular dataset as shown in Fig. 2b. The data
cube can be aggregated so that the resulting data summarize the total sales in all
locations instead of sale per city, as shown in Fig. 2. The attributes of dimension
location are grouped. The data cube consist the sales per year, for the year
2011–2014. We are interested in the total sale per year, rather than the total
obtained per city. Aggregation returns the total sales for combination of the
dimension location. The dimension attributes are grouped, where locations are
grouped. Therefore, we perform aggregation summarization of location predicates.
Figure 2a shows the condensed dataset.

Laptop 6 7 9 5
Printer 9 8 9 11
Mouse 8 7 11 6
Speaker 10 6 8 5
Keyboard 7 10 12 14
Pen Drive 4 6 5 4
Scanner 6 9 9 10
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Fig. 2 Sales data cube of computer devices for the year 2011–2014. On the right, data are
aggregated to provide the total sale of all locations
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Generate the set of Frequent 1-itemsets L1.
Scan the condensed dataset and calculate total_item_count of items by counting
values as shown in Fig. 3a. Those items that have total_item_count less than
min_sup are removed. Item pen drive is removed because it has less total
total_item_count to the min_sup. After removal of item pen drive, the resulted set is
shown as Fig. 3b. Then, sort all frequent 1-itemsets by total_item_count in
ascending order. Now, the set of sorted itemsets are L1 = {Laptop, Speaker, Mouse,
Scanner, Printer, Keyboard}.

Generate Candidate 2-itemsets:-.
Generate candidate 2-itemsets using sorted 1-itemsets L1. Count the total_item_-
count of the candidate 2-itemset {Ii, Ij} as shown in Fig. 4a. If the total_item_count
of candidate 2-itemset is {Ii, Ij} greater than or equal to min_sup, then {Ii, Ij}
frequent 2-itemset and added into L2. Otherwise, remove 2-itemset {Ii, Ij}. Itemset
{Laptop, Speaker} and {Speaker, Scanner} are infrequent because total_item_count
of these itemsets less than min_sup. Now, the frequent 2-itemsets are shown in
Fig. 4b.

Construction of Directed Graph using Frequent 2-itemsets.
Construct the directed graph using L2. If {Ii, Ij} in L2, then draw a directed edge from Ii
to Ij in directed graph. A graph consists of two things node (V) and direct edged
{Mouse, Scanner, Keyboard} or {L1} and E = {{Laptop, Mouse}, {Laptop, Scan-
ner}, {Laptop, Printer}, {Laptop, Keyboard}, {Speaker, Mouse}, {Speaker, Printer},
{Speaker, Keyboard}, {Mouse, Scanner}, {Mouse, Printer}, {Mouse, Keyboard},
{Scanner, Printer}, {Scanner, Keyboard}, {Printer, Keyboard}}. For itemset {Lap-
top,Mouse}, Laptop is the origin point andMouse is the destination point of the edge.
After construction of all the edges, the graph looks like, as shown in Fig. 5.

Item_type 2011 2012 2013 2014 total_item_count

Laptop 6 7 9 5 27

Printer 9 8 9 11 37

Mouse 8 7 11 6 32

Speaker 10 6 8 5 29

Keyboard 7 10 12 14 43

Pen Drive 4 6 5 4 19

Scanner 6 9 9 10 34

Item_type 2011 2012 2013 2014 total_item_count

Laptop 6 7 9 5 27

Printer 9 8 9 11 37

Mouse 8 7 11 6 32

Speaker 10 6 8 5 29

Keyboard 7 10 12 14 43

Scanner 6 9 9 10 34

Dropped item

(a) (b)

Fig. 3 The generation of frequent 1-itemsets. a Candidate 1-itemsets. b Frequent 1-itemsets
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Generate candidate k-itemsets using directed graph.
Generate candidate k-itemsets by traversal of directed graph. Start from Ii and
traverse all the reachable nodes. An Ij is reachable from Ii if there is a simple path
from Ii to Ij. After completion of traversing, we found that there are many simple
paths; these simple paths are our candidate itemsets. The candidate k-itemsets
generated are shown in Table 1. Figure 6 shows the process of candidate itemset
generation through traversing the directed graph. Node Keyboard is not having any
candidate itemset because it did not have any outgoing edge or node Keyboard; not
a source node for any other node.

Keyboard 

Laptop 

Mouse 

Speaker 

Printer 

Scanner 

Fig. 5 The directed graph

Candidate 2-itemsets 2011 2012 2013 2014
total_item_count

{Laptop, Speaker} 6 6 6 5
23

{Laptop, Mouse} 6 7 9 5
27

{Laptop, Scanner} 6 7 9 5
27

{Laptop, Printer} 6 7 9 5
27

{Laptop, Keyboard} 6 7 9 5
27

{Speaker, Mouse} 8 6 6 5
25

{Speaker, Scanner} 6 6 6 5
23

{Speaker, Printer} 9 6 6 5
26

{Speaker, Keyboard} 7 6 6 5
24

{Mouse, Scanner} 6 7 9 6
28

{Mouse, Printer} 8 7 9 6
30

{Mouse, Keyboard} 7 7 11 6
31

{Scanner, Printer} 6 8 9 10
33

{Scanner, Keyboard} 6 9 9 10
34

{Printer, Keyboard} 7 8 9 11
35

Frequent 2-itemsets 2011 2012 2013 2014

{Laptop, Mouse} 6 7 9 5

{Laptop, Scanner} 6 7 9 5

{Laptop, Printer} 6 7 9 5

{Laptop, Keyboard} 6 7 9 5

{Speaker, Mouse} 8 6 6 5

{Speaker, Printer} 9 6 6 5

{Speaker, Keyboard} 7 6 6 5

{Mouse, Scanner} 6 7 9 6

{Mouse, Printer} 8 7 9 6

{Mouse, Keyboard} 7 7 11 6

{Scanner, Printer} 6 8 9 10

{Scanner, Keyboard} 6 9 9 10

{Printer, Keyboard} 7 8 9 11

Dropped itemsets

(a)

(b)

Fig. 4 The generation of frequent 2-itemsets. a Candidate 2-itemsets with total_item_count. b The
frequent 2-itemsets
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Find frequent itemsets.
At last, we check whether each candidate k-itemsets is frequent or infrequent
itemsets. Count the total_item_count of the candidate k-itemset {Ii, Ij, … Ik}. The
total_item_count of itemsets {Speaker, Mouse, Scanner}, {Speaker, Mouse,
Scanner, Printer}, and {Speaker, Mouse, Scanner, Printer, Keyboard} and
{Speaker, Mouse, Scanner, Keyboard} are less than Sup_count, so remove these
itemsets. All other itemsets are having greater total_item_count than min_sup, so
these are added into frequent k-itemset Lk.

In the end, we find maximal frequent itemsets from Lk. All frequent k-itemsets
are the subsets of the maximal frequent itemset {Laptop, Mouse, Scanner, Printer,
Keyboard} and {Speaker, Mouse, Printer, Keyboard}. In maximal itemset we did
not include frequent subsets. So, remove the subsets of the maximal itemsets.

Table 1 The candidate k-itemsets with source node

Source
node

k-candidate itemsets

Laptop {Laptop, Mouse, Scanner}, {Laptop, Mouse, Scanner, Printer}, {Laptop, Mouse,
Scanner, Printer, Keyboard}, {Laptop, Mouse, Scanner, Keyboard}, {Laptop,
Mouse, Printer}, {Laptop, Mouse, Printer, Keyboard}, {Laptop, Mouse,
Keyboard}, {Laptop, Scanner, Printer}, {Laptop, Scanner, Printer, Keyboard},
{Laptop, Scanner, Printer}, {Laptop, Printer, Keyboard}

Speaker {Speaker, Mouse, Scanner}, {Speaker, Mouse, Scanner, Printer}, {Speaker,
Mouse, Scanner, Printer, Keyboard}, {Speaker, Mouse, Scanner, Keyboard},
{Speaker, Mouse, Printer}, {Speaker, Mouse, Printer, Keyboard}, {Speaker,
Mouse, Keyboard}, {Speaker, Printer, Keyboard}

Mouse {Mouse, Scanner, Printer}, {Mouse, Scanner, Printer, Keyboard}, {Mouse,
Scanner, Keyboard}, {Mouse, Printer, Keyboard}

Scanner {Scanner, Printer, Keyboard}
Printer {}

Keyboard

Laptop

Mouse

Speaker

Printer

Scanner

Generation of Itemset {Laptop, Mouse, Scanner}

Keyboard

Laptop

Mouse

Speaker

Printer

Scanner

Generation of Itemset {Laptop, Mouse, Scanner, Printer}

Keyboard

Laptop

Mouse

Speaker

Printer

Scanner

Generation of Itemset {Laptop, Mouse, Scanner, Printer, Keyboard}

Keyboard

Laptop

Mouse

Speaker

Printer

Scanner

Generation of Itemset {Laptop, Mouse, Scanner, Keyboard}

Fig. 6 The generation of candidate k-itemsets through traversing the directed graph
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3 Experiment

To find experimental results, we have used mushroom and accidents dataset obtained
from UCI [13] and synthetic dataset which are created. The algorithms were imple-
mented in Java and tested on a windows platform. Mushroom dataset have total
number of instances: 8124, number of attributes: 23, number of items: 119. Dimen-
sions come from the formerfive attribute of themushroomdataset.We analyses that as
support count increases, the execution time goes down as shown in Fig. 7.

Another dataset used for experiment result is accidents [14]. Accidents dataset
have total number of Instances: 3196, number of attributes: 37, number of items: 75.
Dimensions come from the former five attributes of the accidents dataset. The result
shows that lesser the minimum support threshold takes more time to execute as
shown in Fig. 8.

The proposed algorithm takes lesser time when minimum support count
threshold is higher. The frequent pattern generated by Apriori and proposed algo-
rithm do not have much difference. Candidate Generation: To better understand the
execution time behavior of the proposed algorithm, we explicitly evaluated the
number of candidate itemsets generated by the proposed algorithm. The interesting
observation here is that the number of candidate itemsets counted by proposed
algorithm is less than other traditional algorithms. Mostly, the candidates generated
by proposed algorithm are frequent so we can say that candidate itemsets generated
by proposed algorithm are likely to be frequent.
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Fig. 7 Execution time with different minimum support thresholds for mushroom dataset
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Memory consumption: We also monitored the memory consumption overhead
of the various algorithms. We found that the memory occupancy of the proposed
algorithm is comparable with other algorithms. The consumption was related less in
condensed data cube. Condensed Data cube requires less memory because aggre-
gate function is applied on the data cube.

Discovered Patterns: The frequent patterns generated by proposed algorithm and
Apriori do not have much difference. The sample result for dataset mushroom and
accidents are shown in Fig. 7 and Fig. 8, respectively.

Finally, turning to proposed algorithm, we find that it consistently provides the
best performance across all the datasets.

4 Conclusion

The proposed algorithms generate candidate itemset quickly by graph traversing
without using join and prune. Proposed algorithm generated minimum candidate
itemsets and these candidate itemsets are most likely to be frequent. The proposed
algorithm use directed graph for generating candidate itemsets. The algorithm
shows that mostly candidate k-itemsets are frequent because sorting of the frequent
2-itemsets. So, the proposed algorithm spends less time to find candidate and
maximal frequent itemsets. Directed graph generates candidate itemsets by graph
traversing instead of join and prune steps. The proposed algorithm scans the
database only once.
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5 Future Work

The above described work can be enhanced for directed graph generation. This
directed graph can be generated by using 1-frequent itemset that can enhance the
performance of the proposed algorithm.
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