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Abstract In the last few years, compressed sensing (CS) has been well used in the
area of signal processing and image compression. Recently, CS has been earning a
great interest in the area of wireless communication systems. CS exploits the
sparsity of the signal processed for digital acquisition to reduce the number of
measurement, which leads to reductions in the size, power consumption, processing
time, and processing cost. This paper presents application of CS in cognitive radio
(CR) networks for spectrum sensing and channel estimation. The effectiveness of
the proposed CS-based scheme is demonstrated through comparisons with the
existing conventional spectrum sensing and channel estimation methods.
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1 Introduction

According to Nyquist’s sampling theorem, a continuous-time band-limited signal x
(t) with bandwidth B > 0 can be exactly recovered from twice as many samples per
second as the highest frequency present in the signal, i.e., 2B also known as the
Nyquist rate [1]. However, around 2004, Donoho [2] proved that at given
knowledge about sparsity of a signal, the signal may be reconstructed back with
even fewer samples than required by Nyquist’s sampling theorem, also known as
compressed sensing (CS).
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To implement wideband spectrum sensing, cognitive radio (CR) needs fast
analog-to-digital converter (ADC) but the achievable sampling rate of ADC is only
3.6 Gsps. Capitalizing on the wideband signal spectrum sparseness, CS technique
can be employed in spectrum sensing in CR network [3]. Tian and Giannakis [4]
firstly applied CS theory to wideband CR networks for acquiring spectrum at
sub-Nyquist sampling rates. In most scenarios in CR networks, the number of used
channels is comparatively much lesser than total channels; those are vacant at a
particular time and space. Therefore, when dealing with channel estimation problem
in CR system where the channel band is really wide and dynamic and occupation
information of the channels is compressible, CS can be exploited, since CS does not
require any knowledge of the underlying multipath channel, based on the fact that a
sparse structure is exhibited by the physical multipath channels in angle delay
Doppler spreading, especially at large signal space dimensions, it is advantageous
to utilize sparse channel estimation method based on convex/linear programming,
which can be proved to outperform the existing least square-based methods [5]. Jia
et al. [6] presented channel estimation algorithm for OFDM-CR, based on OMP and
applied sparsity adaptive matching pursuit (SAMP) algorithm for the first time for
channel estimation in NC-OFDM systems. Moreover, for the reconstruction
time-consuming of SAMP algorithm was too large, modified adaptive matching
pursuit (MAMP) algorithm was introduced as an improved SAMP algorithm. Qi
et al. [7] introduced sparse channel estimation (SCE) scheme in OFDM-CR, where
pilot design was formulated as an optimal column selection problem and con-
strained cross entropy optimization-based scheme was proposed to obtain an
optimized pilot pattern.

The remainder of this paper is structured as follows Sect. 2 presents CR system
model for spectrum sensing and channel estimation. In Sect. 3, CS-based spectrum
sensing and channel estimation scheme is proposed. Section 4 demonstrates and
summarizes the performance advantages of proposed CS-based scheme over tra-
ditional energy detection spectrum sensing and maximum likelihood ratio-based
channel estimation techniques. Section 5 concludes the paper.

2 System Model and Problem Statement

Suppose that CR system aims to find spectral holes (SHs) in the frequency range of
0 to W Hertz, as shown in Fig. 1. During the spectrum sensing interval, all CR
nodes keep quiet. Thus, the continuous signal received at the receiver of CR net-
work, i.e., x(t), is composed of primary users’ (PUs) signals and additive white
Gaussian noise (AWGN).

Mathematically, using sub-Nyquist sampling rate fS (fS < 2W), the compressed
samples y (y ∈ CM×1, M = τ fS ≪ N) can be written as
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y=φx=φψS ð1Þ

where φ is an m × N sensing matrix, ψS is sparsifying matrix and y is the mea-
surement vector of m measurements. Let μ(φ, ψ) be the coherence between φ and ψ,
S = k/N be the sparsity measure, then we can choose minimum number of mea-
surements required for reconstruction of x from y

m≥C0 ⋅ μ2 φ, ψð Þ ⋅ S ⋅ logN ð2Þ

for a Gaussian measurement matrix m, where C0 is a constant. An estimate can be
obtained by solving the CS reconstruction problem [8]:

x ̂ = arg min xj jj j1 s.t. y=φψ x ð3Þ

After spectrum reconstruction secondary users (SUs) sense the recovered
channel spectrum in order to identify frequency holes. If K symbol periods are
allocated for channel sensing, the problem can be described as the hypothesis
testing problem, mathematically:

H0: zi = ni i=1, 2, . . . ,K ð4Þ

H1: zi = xi + ni, i=1, 2, . . . ,K ð5Þ

After spectrum sensing, CR adopts noncontiguous orthogonal frequency divi-
sion multiplexing (NC-OFDM) technique that decomposes wideband into orthog-
onal sub-channels. The sub-channels are activated when the spectrum is idle and
when it is not available corresponding sub-channels are deactivated.

For S number of nonzero elements, the vector is S-sparse, discrete Fourier
transform (DFT) size is N, active sub-carriers are M and pilot sub-carriers (cp) are
K (K ≤M). The CP length is greater than the maximum possible path delay (Fig. 2).

OFDM symbol data X(n) contains mapping signals and pilot signals. After
removing CP, discrete Fourier transform (DFT) is applied to the received
time-domain signal yn for n ϵ [0, N − 1] to obtain k ϵ [0, N − 1]. The discrete-time
channel model is:

PSD PU PU
PU

SH W

F
0  1   2      3      4      ....           b                   ....                   B

Fig. 1 Frequency frame of wideband cognitive radio
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h nð Þ= ∑
l− 1

l=0
hlδðn− lÞ ð6Þ

where the impulse response vector of the channel h = [h0, h1,…, hl−1]
T remains

unchanged in multiple OFDM symbol period of time reflects the slow time vari-
ation of the channel. The relation between the transmitted pilots and received pilots
can be written as:
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where Z is additive white Gaussian noise (AWGN) and is FK×L is a DFT sub matrix
given by:

FK ×L =
1ffiffiffiffi
N
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where wnl =e− j2πnlN . Let A = XFK×L, then (7) can be written as:

y=Ah+ Z ð9Þ
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Fig. 2 NC-OFDM-based CR system
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Since the channel delay spread is much larger than sampling period [9], par-
ticularly for OFDM systems with over sampling, most components of h are either
zero or nearly zero, which implies that h is sparse. With this a priori condition, CS
theory can be applied to estimate h.

3 Compressed Spectrum Sensing Algorithm

Consider a discrete-time signal x∈PN , which can be expressed as X(n) where
n = 1, 2, …, N. The claim of compressive sensing is that from m (m ≪ n) measure-
ments, we can reconstruct the original signal x with nonadaptive linear measure-
ments. This does not violate the Shannon–Nyquist sampling theorem as
reconstruction of only sparse signals is possible. According to Eq. (1):

y=φx ̂=φψ s =φψ sF
− 1X ̂ ð10Þ

where F−1X ̂ is the inverse Fourier transform of x ̂. Using Eq. (10) problem recon-
struction of x ̂ can be converted into the problem of reconstruction of X ̂:

x ̂= argxminjjX ̂jj0 s.t. y= φF − 1� �
X ̂ ð11Þ

Basis pursuit (BP) [10] can be used for signal reconstruction, which transforms
the sparseness constraint on into a convex optimization problem solvable by linear
programming:

x ̂= argxminjjX ̂jj1 s.t. y= φF − 1� �
X ̂ ð12Þ

To deal with the signals with noise components, some variants of LASSO
algorithm can be developed by minimizing the usual sum of squared errors:

x ̂= arg minjjX ̂ 0 s.t.j jj jφF − 1X ̂− yjj2 ≤ ε ð13Þ

where ε is recovery error threshold. The problem can be solved with a two-step
scheme: first, use compressed measurements y to estimate the sparse sequence and
second, reconstruct signal x ̂ according to ψs.

Orthogonal matching pursuit (OMP) algorithm [11–13] suggests the recon-
struction under the conditions of a given iteration number, as the iterative process is
forced to stop, OMP algorithm needs a lot of linear measurement to ensure accurate
reconstruction. The basic idea of the OMP algorithm is to select the columns of
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measurement matrix with greedy iterative algorithm, make sure the correlative
value between the columns selected in each iteration and the current redundant
vector is maximum, and then subtract the correlative value from the sampling
vector and repeat iteration until the number of iterations achieves the sparse degree
s. OMP algorithm selects an atom in each iteration to update the atom collection,
which will certainly pay a large time for reconstruction. The number of iterations is
closely related to sparse degree S and the number of samples m, with their increase,
time consumption will also increase significantly.

Problem with OMP algorithm is that it is not adaptive, pre-estimate of the sparse
degree of the sparse signal is needed, and the reconstruction accuracy is not sat-
isfactory. In reality, the sparse degree of the sparse channel is usually unknown.
Sahoo et al. [14] proposed extended OMP-CS algorithm in order to improve the
accuracy of reconstruction and make the algorithm adaptive. In the ExtOMP-CS
algorithm, one key issue is how to choose the step size. Unlike the OMP-CS
algorithm, the iteration times of ExtOMP-CS algorithm is not certain and is related
to step size, and computational complexity and computational time are higher in the
ExtOMP-CS algorithm than OMP-CS algorithm.

An extension to OMP algorithms is the compressed sampling matching pursuit
(CoSaMP) algorithm [15]. The basis of the algorithm is OMP but CoSaMP can be
shown to have tighter bounds on its convergence and performance [16].
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For any 2S-sparse channel vector x, CoSaMP algorithm produces the channel
estimator x ̂ that satisfies

jjx− x ̂jj2 ≤ C maxfε, 1 ̸
ffiffi
s

p jjx− x2̂S 1 +j jj jzjj2g ð14Þ

for a given parameter ε, and x2S is a best 2S-sparse approximation to x.
Having estimated x ̂, SU finds the presence of PUs in a certain sub-band using

energy detector. Let the energy Ep = ∑i ε sub− channelm xî received in sub-channel
M. The spectrum availability is decided by:

H nð Þ = H0 Zi ≥ λ
H1 Zi ≤ λ

�
ð15Þ

The threshold λ is a decision threshold and is a design parameter for the CR
receiver system. Pd probability of detection and Pf probability of false alarm are two
probabilities used for performance evaluation of the scheme.

Pf =Pr Z ≥ λjH0f g ð16Þ

Pd =Pr Z < λjH1f g ð17Þ

After deactivating, the active sub carriers random pilots are assigned. As wire-
less channels are rapidly decaying, the channel response h is highly sparse because
of the small number of significant multipath components. A sparse high-resolution
signal h can be recovered with high probability with a constraint from the mea-
surements y. The corresponding model can be written as

minh ∈ cN hk k0 s.t. y=Ah ð18Þ

Problem (18) is NP-hard problem and even for moderate N, it is not possible to
solve. ℓ1 relaxation model with the same constraints can be used as an alternative.

minh ∈ cN hk k1 s.t. y=Ah ð19Þ

The reconstruction can never be exact due to the noise present in the mea-
surements. Using a final de-noising step based on least square problem, noise can
be eliminated.
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4 Performance Analysis and Simulation Result

In NC-OFDM, the power spectral density (PSD) of Pth sub-carrier signal is char-
acterized of the form

Γk fð Þ=K ⋅ sinc2 f − f Pð ÞTSð Þ ð20Þ

where K is the signal level, fk is the sub-carrier center frequency, TS is the OFDM
symbol duration and TG is guard interval. Assuming independent symbols in dif-
ferent sub-carriers, the PSD of an NC-OFDM signal is obtained as

Γ fð Þ= ∑
P
ΓP fð Þ ð21Þ

where index P is the number of active subcarriers. In this paper, a wideband
spectrum of 0–100 MHz is considered with total six sub-bands (B1–B6). Among
these sub-bands, B1, B3, and B5 located at 1–10 MHz, 20–35 MHz, 70–75 MHz,
have relatively high PSD in the range of 0.0277–0.1126, as shown in Fig. 3 by level
16–25. For CS, the compression ratio is set to 75 % and the noise level is 8 dB.

4.1 Recovered PSD

Using algorithm 1 based the CS scheme, wideband spectrum can be successfully
reconstructed back at sub-Nyquist rate, as shown in Fig. 4.

Fig. 4 Reconstructed spectrum

Fig. 3 Wideband spectrum X ̂
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4.2 Probability of Detection Performance

The performance of the conventional generalized likelihood ratio test scheme and
CS-based spectrum sensing scheme is evaluated and compared via the probability
of detection Pd for a constant false alarm rate of Pf = 0.08 (Fig. 5).

4.3 BER Performance

An OFDM-based CR system is considered with M = 1024 subcarriers, after
spectrum sensing without any false alarm or missing detection and deactivating

Fig. 5 Comparison of
probability of detection
performances

Fig. 6 Comparison of BER
performances
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those subcarriers occupied by PUs, there are 512 remaining OFDM subcarriers for
SUs, including three noncontiguous subcarrier blocks, i.e., {1, 2, …, 256}, {513,
514, …, 640} and {897, 898, …, 1024}, with the number of subcarriers in each
block being 256, 128, and 128, respectively. A sparse multipath channel h is
considered with L = 60 taps where 5 nonzero taps are placed randomly. The
channel estimation performance is evaluated now using the designed pilot patterns.

Figure 6 shows BER performance of two schemes—proposed CS channel
estimation and channel estimation scheme based on LS. Improved BER perfor-
mance of the proposed CS-based scheme can be seen from the above figure, over
the conventional LS-based scheme.

5 Conclusion

CS is a very promising technique in wireless communication networks. However,
the studies on the applications of CS are just in fewer areas. Even in these areas, a
lot of problems are still not been fully settled, limiting the performance of CS.
In CR network systems, if the number of channels, is not large enough, the
requirement of sparsity cannot be guaranteed, which limits the advantages of CS. In
this paper, the application of CS is demonstrated in CR networks and based on the
advantages of the proposed scheme, the problem of designing a high-performance
CR receiver indicates that the approach should work both for spectrum sensing and
channel estimation.
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