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Abstract In this paper, a modified architecture for Floating-Point Fused
Multiply-Add (FMA) unit for low power and reduced area applications is presented.
FMA unit is the one which computes a floating-point (A × B) + C operation as a
single instruction. In this paper a bridge unit has been used, which connects the
existing floating-point multiplier (FMUL) and the FMUL’s add-round unit in the
co-processor to perform FMA operation. The main objective of this modified FMA
unit is to reuse as many components as possible to allow parallel floating-point
addition and floating-point multiplication or floating-point fused multiply-add
functionality by addition of little hardware into the FMUL’s add-round unit. In this
paper each unit is designed using Verilog HDL. The design is simulated using
Altera ModelSim and is synthesized using Cadence RTL compiler in 45 nm. All the
floating-point arithmetics are implemented in IEEE-754 double precision format. It
is found that the proposed FMA architecture achieved 17 % improvement in power
and 6 % improvement in area when compared to the existing Bridge FMA unit.
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1 Introduction

In digital signal processing applications the floating-point fused multiply-add
(FMA) operation has become one of the fundamental operations. Many of the
commercial processors like IBM PowerPC, Intel Itanium have included the FMA
unit in its floating-point units to execute double precision fused multiply-add
operation [1]. FMA unit improves the accuracy of the floating-point ðA� BÞþC
operation as it performs single rounding instead of two. FMA operation is very
useful when a floating-point multiplication is followed by a floating-point addition.

Floating-point fused multiply-add implementation has two advantages over
implementation of floating-point addition (FADD) and floating-point multiplication
(FMUL) separately: (1) The FMA operation is performed with only one rounding
instead of two (one for floating-point adder and other for floating-point multiplier)
reducing overall error due to rounding. (2) There will be a reduction in delay and
hardware required by sharing components [2, 3].

In some designs the existing FMUL unit and FADD unit is entirely replaced with
a FMA unit. It performs single FMUL operation by making C = 0 and single FADD
operation by making A = 1 (or B = 1) in ðA� BÞþC, e.g., ðA� BÞþ 0:0 for single
multiplier and ðA� 1:0ÞþC for single adds. But due to the insertion of constants,
the latencies of stand-alone FMUL, and FADD operations increase due to the
complexity of FMA unit. In such designs there will not be any possibility to
perform parallel FMUL and FADD instructions [3].

The first floating-point FMA unit was introduced on IBM RISC System/6000 in
1990 for single instruction execution of ðA� BÞþC operation as an indivisible
operation [2, 4]. Executing parallel FMUL and FADD operations is not possible in
basic FMA unit. In [5] the Concordia FMA architecture is designed, which uses
alignment blocks before the multiplier array. So multiplier tree input range widens.
Due to this larger variable multiplier tree is required. A few possible solutions have
been identified in the Lang/Bruguera fused multiply-add architecture, which is
designed for reduced latencies [3, 6]. But it did not reach the latency of a common
FADD/FMUL instruction. A bridge FMA design is introduced in [7] to avoid the
stand-alone FMUL and FADD latencies due to the insertion of constants by adding
extra blocks between existing FMUL and FADD components in the processor. But
the cost added to this architecture is increase in area and power consumed when
compared to the basic FMA architecture.

The main objective of this work is to design a low power, area efficient FMA
unit which performs FMA operation or parallel FMUL and FADD operations based
on requirement. In this paper a modified add-round block is designed, which
supports add-round for FMUL as well as FMA. Common add-round unit for both
FMA and FMUL instructions is used to save chip area.

All the floating-point arithmetic operations here are done using IEEE-754 double
precision format. The standard IEEE-754 double precision format [8] consists of 64
bits which are divided into three sections as shown in Fig. 1. To represent any
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floating-point number, all the three sections have to be combined. The double
precision floating-point number is calculated as shown in Eq. (1).

A ¼ ð�1ÞsignA � 1 � fractionA � 2expA �bias ð1Þ

2 Architecture of Proposed FMA Unit

Block diagram for proposed floating-point fused multiply-add unit is shown in
Fig. 2. The FMA unit starts with the common multiplier and adder units which can
perform single stand-alone operations. The main components in this design are:

1. Floating-Point Multiplier
2. Floating-Point Adder
3. Bridge Unit
4. Add-Round unit for FMA/FMUL
5. Add-Round Unit for FADD

Our FMA unit performs parallel floating-point addition and multiplication or
floating-point fused multiply-add operations based on the requirement. Suppose
when a FMA operation is to be performed, this bridge architecture is connected
between the existing FMUL and FMUL’s add-round unit. When FMA operation is

Sign (1-bit) Exponent (11-bit) Mantissa (52-bit)

Fig. 1 IEEE-754 double precision format [8]

Fig. 2 Block diagram for proposed FMA unit
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not needed stand-alone FMUL and FADD operation can be performed without
using the intermediate bridge unit.

2.1 Multiplier

Efficient double precision floating-point multiplier using radix-4 modified booth
algorithm (MBE) and Dadda algorithm has been implemented. This hybrid multi-
plier is designed by using the advantages in both the multiplier algorithms. MBE
has the advantage of reducing partial products to be added. Dadda scheme has the
advantage of adding the partial products in a faster manner [9, 10]. Our main
objective is to combine these two schemes to make the multiplier design power
efficient and area efficient. Finally obtained two rows (sums and carries) are added
using an efficient parallel prefix adder [11].

MBE generates at most N
2

� �þ 1 partial products, where N is the number of bits.
Radix-4 recoding is done with the digit set {−2, −1, 0, 1, 2} is shown in Table 1.
Each three consecutive bits of the multiplier B represents the input to the booth
recoding block. This block selects the right operation on multiplicand A which can
be shift or invert (−2B) or invert (−B) or zero or no operation (B) or shift (2B).
Figure 3 shows the generation of one partial product using MBE.

In Dadda scheme, the reduction of obtained partial products is done in stages
using half adders and full adders. The reduction in size of each stage is obtained by
working back from the final stage. Each preceding stage height must be not greater
than 3 � successorheight=2b c [10].

For a double precision floating-point multiplication two 53-bit (1 hidden
bit + mantissa 52 bits) numbers are to be multiplied. If normal method is used for
generation of partial products 53 partial products will be obtained. But by using
MBE the partial products can be reduced to 27. Each partial product can be
obtained using block shown in Fig. 3. These 27 rows of partial products are reduced
to 2 rows in 7 reduction stages, where 19, 13, 9, 6, 4, 3, 2 is height of each stage as
we go down in the Dadda reduction scheme. The dot diagram for 10 bit by 10 bit

Table 1 Radix-4 modified
booth’s recoding (for A × B)

Bits of multiplier B Encoding operation on multiplicand A

Ci+1 Ci Ci−1

0 0 0 0

0 0 1 +B

0 1 0 +B

0 1 1 +2B

1 0 0 −2B

1 0 1 −B

1 1 0 −B

1 1 1 0
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booth encoding with Dadda reduction is shown in Fig. 4. The same method in
Fig. 4 is extended to 53 bit by 53 bit.

The final sums and carries are added using parallel prefix adders as it offer a
highly efficient solution to the binary addition and suitable for VLSI implementa-
tions [11, 12]. Among the parallel prefix adders, Kogge–Stone architecture is the
widely used and the popular one. Kogge–Stone adder is considered as the fastest

Fig. 3 One partial product
generator using MBE

Fig. 4 10 bit by 10 bit booth encoding with Dadda reduction
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adder design possible [11]. Architecture for 8-bit Kogge–Stone adder is as shown in
Fig. 5. In this design to add the final sums and carries a 109-bit Kogge–Stone adder
is used.

2.2 Floating-Point Adder

The modified FMA architecture uses the Farmwald’s dual-path floating-point adder
design [7]. FADD design is shown in Fig. 6. It uses two paths close path and far
path to handle different data cases. Far path is used for significand addition and
subtraction, when exponent difference is more than 1. Close path is used for sig-
nificand addition and subtraction, when the exponents are equal or differ by � 1. In
far path both the significands are passed through swap multiplexers. When the
larger significand is detected it is passed through far_op_greater and the smaller
significand is aligned till the exponents match. Smaller significand is passed
through far_op_smaller. In close path the two significands are pre-shifted by 1. The
original significands and the pre-shifted significands are given to swap multiplexers
and based on the exponent difference the significands are swapped. Meanwhile
when the exponents are equal the comparator compares the two significands. The
greater significand in close path is passed through close_op_greater and the smaller
significand is passed through close_op_smaller.

Fig. 5 a 8-bit Kogge–Stone adder. b Logic implementation of each block of Kogge–Stone adder
[11]
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2.3 Bridge Unit

The bridge unit is as shown in Fig. 7. This bridge unit is capable of carrying data
from multiplier array to FMUL’s add-round unit to perform FMA operation ððA�
BÞþCÞÞ efficiently. Inputs to this unit are mantissa of the operand C and the carry
save format product of A� B from multiplier array. The operand C is aligned based
on the exponent difference between exponent of C and exponent of the product.
After alignment, the select line ‘sub’ decides whether to perform inversion or not.
This inversion provides effective 2’s compliment for effective subtraction. If
sub = 1, it performs inversion on the aligned data else the aligned data is buffered.

Bridge unit adds the product (i.e., mul_sum and mul_carry) A� B along with a
part ([108:0]) of pre-aligned 161-bit addend (operand C) using 3:2 CSA as shown
in Fig. 7. The remaining 52 ([161:109]) bits of the 161 added is given to the
incrementer in FMA/FMUL’s add-round unit. The 109-bit sum and carry obtained
from 3:2 CSA is given to multiplexer stage in FMA/FMUL’s add-round unit.

Fig. 6 Floating-point adder unit [7]
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Consider ‘D’ as the exponent difference between exponent of C and exponent of
product A� B, its value is D ¼ expðCÞ � ðexpðAÞþ expðBÞÞ, where exp(A), exp
(B), and exp (C) are the exponents of operands A, B, and C, respectively.

When D� 0 (i.e.,expðCÞ[ ðexpðAÞþ expðBÞÞ), the normal aligner will shift
exponent of A� B right by D bits or shift ‘C’ left by D bits until the exp
(A� B) = exp (C). When D� 56, the sum and carry are placed right of LSB of
operand ‘C’

When D\0, the operand ‘C’ will be shifted right by D bits until exp
(A� B) = exp (C). For the right shift greater than 105 (i.e., D\� 105), the operand
C is placed to the right of the LSB of the sum and carry (product).

To avoid bidirectional shifter, the alignment is totally implemented as right shift
by placing operand ‘C’ left to that of sum and carry and by placing two extra bits
(guard bit and round bit) between the two. Combining both the cases the shift
amount will be in the range of 161-bit right shifter. Figure 8 shows how to align
operand ‘C’ in different cases in detail.

• In case of D � 0, the shift amount is shift amount = max {0, 56 − D}
• In case of D\ 0, the shift amount is shift amount = min {161, 56 − D}

2.4 FMA/FMUL Add-Round Unit

FMA/FMUL add-round unit is shown in Fig. 9. This same add-round unit is used
for both FMA and FMUL operation. When a stand-alone FMUL is required it acts

Fig. 7 The bridge unit
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as FMUL add-round unit and when FMA is required it acts as FMA add-round unit.
Multiplexer stage is used to select FMA or FMUL. 109 bit Kogge–Stone adder is
used to add the data from the mux stages. In parallel to this part of aligner output
(52 MSB’s) from the bridge unit is given to incrementer. Based on the carry from
109-bit adder the 2:1 mux will select the aligner output or the incrementer output.
Compliment the output if necessary. After normalizing the data is sent to perform
rounding.

Basically three bits after the LSB decides the rounding. The three bits next to
LSB are guard bit (g), round bit (r), and sticky bit (s), respectively. Sticky bit is the
logical OR of all bits beyond the guard bit. In the Fig. 9, R[2:0] represents {g, r, s},
respectively. Round-up method which is in [13] is used for rounding purpose, result
and result + 1 need to be generated for rounding up. By using the rounding table
given in [13] the result is rounded. Finally mantissa of the FMA/FMUL output will
be obtained. In parallel to this the exponent is to be adjusted accordingly whenever
the normalization or shifting is done.

Fig. 8 Alignment of operand C. a Before alignment. b Alignment with D � 0. c Alignment with
D\ 0
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2.5 FADD Add-Round Unit

The add-round unit which is shown in Fig. 10 is exclusively used for FADD
operation. The far path and close path operands from floating-point adder are given
to FADD add-round unit. The two selected inputs are passed through 56 bit Kogge–
Stone adder and the 56-bit 3:2 CSA. In order to perform round-up we are taking
third input of the CSA as {55′b0, 1′b1}. The rounding is done in the same way as

Fig. 9 FMA/FMUL add-round unit
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the multiplier. Then sum and carry from CSA is added with one more 56-bit
Kogge–Stone adder. Finally mantissa of the adder output will be obtained. In
parallel to this the exponent is to be adjusted accordingly whenever the normal-
ization or shifting is done.

3 Results and Discussion

Simulation results for floating-point multiply-add operation is shown in Fig. 11.
Simulation result for parallel floating-point addition and multiplication operation is
shown in Fig. 12. Synthesis report for proposed FMA design and FMA design in
[7] using Cadence RTL Compiler in 45 nm technology is given in Table 2.

From Table 2 we found that delay and power consumed for stand-alone FADD
and FMA operation decreased. The comparison charts for delay, power, and area is
shown in Figs. 13, 14 and 15 respectively.

The proposed FMA unit has achieved 7 and 18 % improvement in delay for
FADD and FMA instructions respectively, 19 and 17 % improvement in power
consumption for FADD and FMA instructions, respectively, and 6 % improvement

Fig. 10 FADD add-round unit
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Fig. 11 Simulation result for floating-point multiply-add operation

Fig. 12 Simulation result for parallel floating-point addition and multiplication operation

Table 2 Delay, area, power report in 45 nm technology

FMA Delay (ps) Area (µm2) Power (µW)

Bridge FMA [7] FADD: 7498.90 34271.51 FADD: 522.22

FMUL: 6998.90 FMUL: 3510.21

FMA: 9156.10 FMA: 4582.01

Proposed FMA design FADD: 6995.20 32542.21 FADD: 422.40

FMUL: 7499.00 FMUL: 3564.82

FMA: 7499.00 FMA: 3823.64

Fig. 13 Comparison chart for
delay of proposed FMA with
FMA in [7]
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in total area when compared to FMA in [7]. Proposed FMA unit for FMUL
instruction consumes almost same power as that of the FMA in [7]. But the
drawback of proposed FMA unit is that, it has 7 % degradation in timing for FMUL
instruction when compared to FMA in [7].

The stand-alone FMUL and FADD operations in existing floating-point units
and ALUs [14, 15, 16] can be replaced by floating-point fused multiply-add, if a
floating-point addition is followed by a floating-point multiplication. Further this
FMA design can be extended and implemented using Residue Number System as it
is gaining popularity for fast arithmetic operations [17].

4 Conclusion

This paper presents a low power and area efficient double precision floating-point
fused multiply-add unit. The use of common add-round unit for FMUL and FMA
instruction is the main reason for reduction in area occupied by the unit. By this the
overall power consumption of the unit also decreased. The design has been com-
pared with existing bridge FMA and it is found to be efficient in terms of power and
area. But the only drawback is the degradation in timing for FMUL instruction. The
proposed FMA can perform FMA operation or it can perform stand-alone FMUL

Fig. 14 Comparison chart for
power of proposed FMA with
FMA in [7]

Fig. 15 Comparison chart for
delay of proposed FMA with
FMA in [7]
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and FADD operations parallely with out any need for insertion of constants. This is
not possible with the classic FMA unit. This FMA design is suitable for high
performance floating-point units of the co-processors.
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