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    Abstract  

  Agricultural soils around the world are slightly to moderately polluted 
with heavy metals such as As, Cd, Hg, Cr, Cu, Pb, Ni, and Zn as a result of 
industrialization, widespread application of pesticides, fertilizers, and 
anthropogenic activities. Plants experience toxic effects of heavy metals in 
the form of oxidative stress, reduction in overall growth, and productivity. 
To minimize these toxic effects, plants have evolved an arsenal of mecha-
nisms such as preventing uptake via roots or blocking transport to aboveg-
round parts. If everything fails, the toxic metal inside the cell is dealt with 
using a range of detoxifi cation and storage strategies including chelation 
with thiols and amino acids and subsequent sequestration into subcellular 
compartments. In this chapter, we have reviewed general strategies for 
heavy metal tolerance and detoxifi cation by plants. Also plants engineered 
for heavy metal transport, oxidative stress tolerance pathways, and other 
mechanisms such as stress-associated protein have substantially advanced 
our understanding of heavy metal tolerance by plants. In future, as a result 
of ongoing climate change, frequent fl oods, storms, and more use of 
underground and recycled water from industrial and municipal wastes for 
crop irrigation can further increase the heavy metals in the agricultural 
soils. Therefore, to minimize the impact of heavy metals on global agricul-
tural production, it will be of utmost importance to further our knowledge 
of heavy metal tolerance and detoxifi cation by plants.  
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7.1         Introduction 

 Heavy metals and metalloids are of signifi cant 
environmental concerns. Exposure to heavy met-
als and metalloids not only adversely affects 
human and environmental health but also inhibits 
growth and productivity of crop plants and thus 
poses serious threats to global agricultural pro-
duction and food security (Bray et al.  2000 ). 
Toxicity to plants and their growth inhibition can 
occur due to elevated concentrations of both 
essential and nonessential heavy metals present 
in the soil. Heavy metals cause cellular damage 
by either inducing oxidative stress such as lipid 
peroxidation through production of reactive oxy-
gen species (ROS) or free radicals or by binding 
to the sulphydryl groups of various enzymes and 
proteins such as the transcription factors (Assche 
and Clijsters  1990 ; Dietz et al.  1999 ). Because of 
the global climate change, the burden of environ-
mental stresses including heavy metals on crop 
plants is likely to increase in future. With decrease 
in groundwater use for irrigation, metals that nat-
urally occur in soil and water are increasing in 
concentration and thus enter the food chain 
affecting human and environmental health. Water 
defi ciency is also induced by other abiotic 
stresses such as salinity, heat, and cold; thus, all 
these stresses go hand in hand, making it abso-
lutely essential to understand the responses of 
plant to water defi ciency (Bohnert et al.  1995 ). 
Apart from drought and salinity, heavy metals 
and metalloids such as mercury (Hg), cadmium 
(Cd), lead (Pb), chromium (Cr), nickel (Ni), cop-
per (Cu), arsenic (As), and selenium (Se) consti-
tute of inorganic pollutants and are present as 
positive or negatively charged ions in the soil 
(Paulose et al.  2008 ). 

7.1.1     Heavy Metal Toxicity in Plants 
and Effects on Crop 
Productivity 

7.1.1.1     Arsenic 
 Arsenic (As) contamination is widespread in the 
environment. Natural processes such as volcanic 
eruptions and hot water springs along with human 
intervention with activities such as mining, smelt-
ing, use of pesticides, herbicides etc. contribute to 
arsenic pollution in the environment. It is a car-
cinogen and has been shown to cause major health 
problems around the world including but not limit-
ing to cancer of the liver, kidney, and lungs (Kaiser 
 2001 ). Arsenic-contaminated soils, sediments, and 
water supplies are major sources of food chain 
contamination. High levels of As have been 
reported in the underground drinking water and 
food crops such as rice ( Oryza sativa ) grown in 
many parts of Southeast Asia especially India and 
Bangladesh where this staple food is widely irri-
gated using arsenic-contaminated groundwater 
subjecting millions of people to arsenic poisoning 
risk (Clark et al.  2000 ). There have been several 
reports of unacceptable levels of arsenic being 
present in edible crops, which were grown on con-
taminated lands (Larsen et al.  1992 ; Das et al. 
 2004 ; Williams et al.  2005 ). Arsenic is present in 
soil and water in organic forms – monomethyl-
arsenate (MMA) and dimethylarsenate (DMA) as 
well as inorganic forms – arsenate (AsO 4  −3 , 
referred to as AsV) and arsenite (AsO 3  −3,  referred 
to as AsIII), but it is the latter that is a more toxic 
form and needs remediation (Bentley and Chasteen 
 2002 ; Chen et al.  2005 ). The metalloid arsenic 
(As) and other heavy metals are phytotoxic and the 
elevated concentrations of As in soil causes a sig-
nifi cant loss of crop yield (Xiong et al.  1987 ; 
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Marin et al.  1993 ; Zhu et al.  2008 ). In addition, 
arsenate (AsV), being a phosphate analogue, com-
petes with phosphate uptake, causes the inhibition 
of phosphate and other nutrient uptake, and thus 
further decreases crop production (Meharg and 
Macnair  1992 ; Abedin et al.  2002 ; Dhankher et al. 
 2006 ; LeBlanc et al.  2013 ). It has been reported 
that in 2003, 1/5th of the total cultivable land of 
China had already been accounted toward heavy 
metal-contaminated land. These widespread heavy 
metal contamination has led to a loss of about 
1000 million tons of grain production directly 
impacting the economy (Gu et al.  2003 ). Arsenic 
gets accumulated in the soil due to the use of sew-
age sludge and recycled water on the agricultural 
land due to shortage of surface water. Therefore, it 
is essential to develop strategies to resist crops 
from uptaking arsenic or if absorbed then need to 
be converted to a nontoxic form.  

7.1.1.2     Mercury 
 Mercury is among the most hazardous of the 
heavy metals (Keating et al.  1997 ), primarily 
because its charged species have great affi nity for 
the thiol group on cysteine residues of proteins 
and other important biological molecules (Liu 
et al.  1992 ). Early studies demonstrated that mer-
cury species inactivate metabolic enzymes and 
structural proteins (Boyer  1954 ; Falchuk et al. 
 1977 ). The strong interaction of mercury species 
with cellular ligands may also account for its ten-
dency to accumulate in organisms. 
Organomercurial species are more toxic in some 
eukaryotes and are more likely to biomagnify 
across trophic levels than ionic mercury [Hg (II)] 
(Bizily et al.  1999 ). Fish contaminated with 
monomethylmercury (CH 3 -Hg + ) at Minamata 
bay in Japan was a widespread ecological disas-
ter (Minamata Disease Research Group  1968 ). 
Consumption of the fi sh contaminated with 
CH 3 -Hg +  leads to severe neurodegeneration in 
birds, cats, and humans. Methylmercury has also 
been found in lakes and estuaries into which only 
inorganic forms of mercury have been released 
(Balogh et al.  2006 ; Hammerschmidt et al.  2006 ). 
For plants, Hg is highly toxic, affecting major 
cellular metabolic pathways, and thus causes 
severe reduction in plant growth and crop yields 

(Boening  2000 ; Patra and Sharma  2000 ; Patra 
et al.  2004 ).  

7.1.1.3     Cadmium 
 The regulatory limit of Cd in agricultural soil is 
100 mg/kg (Salt et al.  1995 ). Cadmium pollution 
has increased in the environment due to mining, 
industrial usage, and anthropogenic activities. Cd 
is abundantly used in surface coatings, pigment 
formulation, manufacture of batteries, stabiliza-
tion of polyvinylchloride (plastics), manufacture 
of automobiles, and aerospace and military appli-
cations. Cd has application where high stability 
and resistance to heat, cold, and light are required. 
Cd released to the environment tends to concen-
trate in soils and sediments, where it is poten-
tially available to rooted plants (Prasad  1995 ). In 
bean plants ( Phaseolus vulgaris ), leaf cell expan-
sion growth and relative water content of primary 
leaves decreased by about 10 % compared to con-
trol after 48-h exposure to 3 μM Cd (Barceló and 
Poschenreider  1990 ). Cd is an effective inhibitor 
of photosynthesis (Krupa  1988 ; Greger and 
Ogren  1991 ; Krupa et al.  1993 ). The linear rela-
tionship between net photosynthesis and inhibi-
tion of transpiration observed in clover, lucerne, 
and soybean suggests the closure of stomata by 
Cd (Huang et al.  1987 ). In experiments with bean 
plants ( P. vulgaris ), Cd inhibited net photosyn-
thesis by increasing stomatal and mesophyll 
resistance to CO 2  uptake (Krupa et al.  1993 ). 
Therefore, exposure to Cd causes reduction in 
photosynthesis, water, and nutrient uptake.  

7.1.1.4     Zinc 
 Zinc is an essential nutrient for plants as well as 
human beings. It plays important roles as compo-
nent of enzymes for protein synthesis and energy 
production and maintains structural integrity of 
biomolecules (Hänsch and Mendel  2009 ). Zn 2+  is 
an integral part of a large number of zinc fi nger 
containing proteins, transcription factors, oxido-
reductases, and hydrolytic enzymes such as 
metalloproteases (Krämer and Clemens  2006 ). 
Concentrations of Zn in contaminated soils fre-
quently exceed 150–300 mg/kg of soil (de Vries 
et al.  2007 ). Similar to Cd, exposure to excess 
levels of Zn results in chlorosis, reduced growth 
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of both roots and shoots, and early senescence in 
plants (Choi et al.  1996 ; Ebbs and Kochian  1997 ; 
Fontes and Cox  1998 ). Excess Zn can also cause 
Mn, Cu, and phosphate defi ciencies in plants 
(Lee et al.  1996 ).  

7.1.1.5     Copper 
 Copper (Cu) is also an essential micronutrient for 
plant growth and plays important roles in pro-
cesses such as CO 2  assimilation, ATP synthesis, 
mitochondrial respiration, oxidative stress pro-
tection, and cell wall synthesis. Under physiolog-
ical conditions, copper exists in the two-oxidation 
states Cu 1+  and Cu 2+  and can interchange between 
these forms (monovalent copper is unstable). 
This allows copper to function as a reducing or 
oxidizing agent in biochemical reactions. But at 
the same time, this property also makes copper 
potentially toxic as copper ions can catalyze the 
production of free radicals, in particular through 
Fenton chemistry, thus leading to the damage of 
proteins, DNA, and other biomolecules (Hänsch 
and Mendel  2009 ). Exposure of plants to excess 
Cu generates oxidative stress and ROS (Stadtman 
and Oliver  1991 ). Oxidative stress causes distur-
bance of metabolic pathways and damage to 
macromolecules and affects crop yields (Hegedüs 
et al.  2001 ).  

7.1.1.6     Lead 
 Lead naturally occurs in the earth’s crust in small 
amounts as a bluish-gray metalloid (Gupta et al. 
 2010 ). Contamination of Pb occurs from its use in 
pesticides and fertilizers, combustion of Pb con-
taining fossil fuels, and Pb additive containing 
municipal sewage dumping, from its use in indus-
trial processes such as mining and smelting 
(Gupta et al.  2010 ). Many commercially available 
products such as batteries, medical equipment 
(i.e., x-ray shields, fetal monitors), paints, ceramic 
glazes, television glass, ammunition, etc. also 
contain small concentrations of Pb (Gupta et al. 
 2010 ). Pb has the tendency to accumulate in the 
body organs (i.e., brain), which may lead to poi-
soning or even death and has also shown to affect 
the gastrointestinal tract, kidneys, and central ner-
vous system. Pb exposure has detrimental effect 
on small children and they can have impaired 

development, lower IQ, shortened attention span, 
hyperactivity, and mental deterioration. 

 Basic forms of Pb released into the soil and 
water including ground and surface are ionic lead 
(Pb 2+ ), Pb oxides and hydroxides, and Pb-metal 
oxyanion complexes with ionic Pb and Pb 
hydroxyl complexes being the most stable forms 
(Evanko and Dzombak  1997 ). Pb is very diffi cult 
to remove once it is introduced in the soil matrix 
as it is a very sticky metal because of its ability to 
form a precipitate within the soil matrix along 
with anions such as phosphate ions which 
decreases its solubility and, in many cases, is not 
readily bioavailable (Gupta et al.  2010 ). The top 
few inches of soil are where Pb is mainly found, 
bound to the organic matter through adsorption, 
ion exchange, precipitation, and/or complexation 
(Hart et al.  1999 ; Gill and Tuteja  2011 ). Many 
plants transport a very small concentration of 
Pb 2+  in the aboveground plant tissues and retain 
maximum concentration in their roots via sorp-
tion and precipitation. Pb exposure causes stunted 
root growth and accelerated cell death in rice 
(Huang and Huang  2008 ). As with any other 
heavy metals, one of the major consequences of 
Pb toxicity is the enhanced production of reactive 
oxygen species (ROS) including superoxide radi-
cals, hydroxyl radicals, and hydrogen peroxide, 
H 2 O 2  (Shu et al.  2012 ).  

7.1.1.7     Chromium 
 Chromium (Cr) is a heavy metal that causes seri-
ous environmental contamination in soil, 
 sediments, and groundwater (Shanker et al. 
 2005 ). The tanning industry is one of the major 
consumers of water and most of it is discharged 
as wastewater, which contains high amount of Cr 
(1.07–7.80 mg/l). Inorganic Cr exists in two 
forms, trivalent Cr (III) and hexavalent Cr (VI), 
the latter being more toxic, powerful epithelial 
irritant and a proven human carcinogen estab-
lished by the International Agency for Research 
on Cancer (IARC), the Environmental Protection 
Agency (EPA), and the World Health Organization 
(WHO). Toxicity of Cr has been studied in many 
plants. Excess of Cr causes inhibition of plant 
growth, chlorosis in young leaves, nutrient imbal-
ance, wilting of tops, and root injury (Chatterjee 
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 2000 ; Dixit et al.  2002 ; Sharma et al.  2003 ; 
Scoccianti et al.  2006 ).  

7.1.1.8    Selenium 
 Selenium (Se) is a metalloid that naturally occurs 
in the shale rocks and is also produced by some 
anthropogenic sources such as oil refi neries, 
power plants, etc. and thus is present in excess, 
potentially in toxic levels in the environment 
(Wilber  1983 ; Fordyce  2005 ). At low levels, Se 
serves as an essential nutrient with normal dietary 
intake in the range of 50–400 μg Se/day and has 
several health benefi ts like prevention of heart dis-
eases, muscle disorders, and cancer and is also 
involved in viral suppression and functioning of 
the immune system. Higher levels are highly toxic 
and cause stomach cancer, defects in the develop-
ment, and failure in the reproductive system 
(Terry et al.  2000 ; Ellis and Salt  2003 ). Excessive 
levels of Se can also accumulate in food chain, 
which can cause serious health defects in human 
and wildlife population. In soil and water, Se is 
present in several forms such as selenide (Se 2− ), 
elemental selenium (Se 0 ), selenite (Se 4+ ), and sel-
enate (Se 6+ ) and many organic forms like dimethyl 
selenide (DMSe) and dimethylselenenylsulfi de 
(DMSeS), which have different bioavailabilities. 
Selenate (Se 6+ ) form of Se is formed in alkaline, 
well-aerated soils, making it highly soluble, and 
does not form stable adsorption complexes with 
other components present in the soil. As a conse-
quence, they are more bioavailable for plant 
uptake, whereas acidic soils favor the formation 
of elemental selenium (Se 0 ) and selenides (Se 2− ) 
that are quite insoluble and therefore are less bio-
available for plant uptake (Zayed et al.  1998 ; 
Terry et al.  2000 ).    

7.2     Strategies for Heavy Metal 
Detoxifi cation and Enhanced 
Tolerance in Plants 

 Some plants have the natural ability to detoxify, 
accumulate, and tolerate high levels of heavy 
metal stresses using processes at the cellular lev-
els, and other plants could be engineered to carry 
out such processes. The major challenge to engi-

neer food crops for heavy metal tolerance is that 
the genes encoding metal-binding peptides such 
as metallothioneins (MTs), glutathione (GSH), 
and phytochelatins (PCs) caused increased metal 
uptake along with metal tolerance. The phyto-
toxic effects suffered by crops grown on soil with 
heavy metal and metalloid residues could be 
overcome by developing crops resistant to these 
metals. However, progress toward developing 
such genetics-based strategies has been hindered 
by the lack of understanding of the basic molecu-
lar and biochemical mechanisms of heavy metal 
uptake and detoxifi cation in plants. Despite these 
limitations, a signifi cant progress has been made 
to engineer plants with genes, either individually 
or in combination, for increasing tolerance and 
detoxifi cation of heavy metals such as As, Hg, 
Cd, Pb, Se, Ni, etc. Further plants have been 
engineered for remediation of several metals and 
metalloids (Pilon-Smits et al.  1999 ; Rugh  2001 ; 
Dhankher et al.  2002 ,  2006 ; van Huysen et al. 
 2003 ; Li et al.  2005 ; Dixit and Dhankher  2011 ; 
Paulose et al.  2013 ). 

 Plants utilize several strategies/mechanisms to 
achieve tolerance toward heavy metals and met-
alloids. These include thiol-mediated chelation 
followed by sequestration (Schmoger  2000 ; Song 
et al.  2010 ), uptake or exclusion through trans-
porters, and complexation with phytochelatins 
followed by vacuolar storage (Dhankher et al. 
 2002 ) and chelation by metallothioneins and 
anthocyanins or by binding with carboxylic acids 
such as citrate, malate, or amino acids such as 
histidine and nicotianamine. A list of genes used 
for engineering plants for enhanced tolerance to 
heavy metals and metalloids is presented in 
Table  7.1 .

7.2.1       Chelation with Metal-Binding 
Peptides 

 In non-hypertolerant plants, binding of metals by 
strong ligands is the main detoxifi cation strategy. 
The best-known types of ligands for this purpose 
are thiols, including GSH and its precursor 
gamma-glutamylcysteine (γEC dipeptide), phy-
tochelatins (PCs), and metallothioneins (MTs) 
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(Leitenmaier and Kupper  2013 ). Most of the 
divalent cations (Cd, Hg, Pb, Cu, Zn) and oxyani-
ons (AsV and AsIII) are highly reactive and has a 
strong affi nity toward thiol groups such as those 
in γEC, GSH, PCs, and MTs (Schmoger  2000 ; 
Dhankher et al.  2002 ; Zimeri et al.  2005 ). 

7.2.1.1    Chelation with Glutathione 
 Glutathione (GSH) is the key redox molecule in 
plant cells. It plays important roles in protecting 
cells from oxidative stress caused by exposure to 
environmental stresses including toxic metals, 
ozone exposure, and biotic stresses such as insect 
and pathogen infestation. Plants detoxify toxic 
metals and metalloids through a GSH-dependent 
pathway. GSH homeostasis in plants is main-
tained by the γ-glutamyl cycle, which involves 
GSH synthesis and degradation and the recycling 
of component amino acids (Paulose et al.  2013 ). 
GSH synthesis is catalyzed by two enzymes – 
γ-glutamylcysteine synthetase (γ-ECS) and glu-
tathione synthetase (GS). Overexpression of 
these enzymes enhanced the tolerance to toxic 
metals and metalloids such as Hg, Cd, Pb, Cr, and 
As (Dhankher et al.  2002 ; Li et al.  2005 ). Once 
toxic metal is bound to thiol peptides, it is rela-
tively less toxic to plants, and the metal-thiol 
complexes are then sequestered into vacuoles by 
glutathione-conjugating pumps, GCPs (Wang 
et al.  2002 ; Dhankher et al.  2002 ; Indriolo et al. 
 2010 ; Song et al.  2010 ). Therefore, enhancing the 
levels of GSH and its derivatives favors the trap-
ping of toxic metals in thiol complexes resulting 
in enhanced tolerance and accumulation. This 
strategy is employed in most of the metal hyper-
accumulators (Freeman et al.  2004 ,  2005 ). 

 The role of GSH and PCs in Cd tolerance has 
been studied in great details. These peptides che-
late Cd cations with varying affi nities, leading to 
vacuolar sequestration for metal-peptide com-
plexes (Kneer and Zenk  1992 ; Ortiz et al.  1992 ; 
Howden  1995 ; Li et al.  1996 ). Their involvement 
in detoxifying heavy metals was discovered 
almost 30 years ago (Grill et al.  1985 ,  1989 ). 
Cadmium stress affects sulfur uptake and assimi-
lation pathway in plants (Zhu et al.  1999 ), which 
directly affects the synthesis of amino acids such 
as cysteine that requires sulfur for its synthesis. 

Cysteine is a precursor in synthesis of GSH. Zhu 
et al. ( 1999 ) demonstrated the role of γ-ECS in 
increasing cadmium tolerance and accumulation 
by overexpressing γ-ECS encoding  E. coli  gene 
 gsh1  in  Brassica juncea . Along with transgenics 
growing better in presence of toxic concentra-
tions of Cd, increased concentrations of PCs, 
γ-GluCys, and GSH were also seen in the trans-
genic seedlings, leading to believe that increased 
production of these compounds lead to increased 
Cd tolerance and accumulation (Zhu et al.  1999 ). 
Metalloid toxicity in non-hypertolerant plants 
has been observed in  cad1  mutant plants that are 
either biochemically (Schat  2002 ) or genetically 
mutant for PC synthase leading to Cd hypersensi-
tivity (Howden  1995 ). Arabidopsis engineered to 
express bacterial GSH1 showed strong tolerance 
to As and weak tolerance to Hg, whereas it failed 
to provide any tolerance to Cd stress (Li et al. 
 2005 ). Transgenic tobacco ( N. tabacum ) plants 
expressing serine acetyltransferase (SAT, 
involved in the production of a cysteine precursor 
O-acetylserine), GSH1, and PCS, either sepa-
rately or in combination, have shown increased 
Cd concentration in roots (Wawrzynski et al. 
 2006 ). 

 Arsenic is present in soil and water in organic 
forms such as MMA and DMA as well as inor-
ganic forms such as AsV and AsIII, but it is the 
latter that is a more toxic form and needs reme-
diation (Bentley and Chasteen  2002 ; Chen et al. 
 2005 ). In 2002, Dhankher and coworkers engi-
neered  Arabidopsis  to detoxify As and created a 
genetics-based strategy for accumulation of As in 
the aboveground tissue for phytoremediation by 
co-expressing arsenate reductase, ArsC, and 
γ-glutamylcysteine synthetase, γ-ECS. The bac-
terial ArsC reduces AsV to AsIII (Rosen  1999 ), 
and γ-ECS is the fi rst step for the synthesis of 
GSH and PCs and enhances the thiol peptide lev-
els in plants. Transgenic lines expressing light- 
regulated ArsC were hypersensitive to AsV, 
whereas the γ-ECS transgenic lines were moder-
ately resistant as compared to wild-type plants. 
Double transgenic plants made by genetic cross-
ing of As-hypersensitive ArsC plants and moder-
ately resistant γ-ECS overexpressing plants were 
super-resistant to AsV as compared to the plants 
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expressing γ-ECS alone. The double transgenic 
ArsC + γ-ECS plants accumulated threefold more 
As in the aboveground tissues (Dhankher et al. 
 2002 ). 

  Thlaspi  species hyperaccumulate Ni up to 3 % 
of their shoot dry weight (Yadav  2010 ). The con-
centrations of GSH, Cys, and O-acetylserine 
(OAS) in shoot tissue are strongly correlated with 
the ability to hyperaccumulate Ni in various 
 Thlaspi  hyperaccumulators collected from ser-
pentine soils. Examples of such hyperaccumula-
tors reported are  T. goesingense ,  T. oxyceras , and 
 T. rosulare , and non-accumulator relatives are  T. 
perfoliatum ,  T. arvense , and  A. thaliana  (Kramer 
et al.  1997 ; Wenzel and Jockwer  1999 ; Guerinot 
and Salt  2001 ; Peer et al.  2003 ; Freeman et al. 
 2004 ). High concentrations of OAS, Cys, and 
GSH in Austrian Ni hyperaccumulator  T. goesin-
gense  coincide with constitutively high activity 
of both SAT and glutathione reductase (GR) 
enzymes.  Arabidopsis  overproducing SAT from 
 T. goesingense  has been found to cause accumu-
lation of OAS, Cys, and GSH, mimicking the 
biochemical changes observed in the Ni hyperac-
cumulators. In these transgenic  Arabidopsis , 
GSH concentration was strongly correlated with 
increased resistance to Ni-induced growth inhibi-
tion and oxidative stress. This observation con-
cluded that high levels of GSH conferred 
tolerance to Ni-induced oxidative stress in 
 Thlaspi  Ni hyperaccumulators (Freeman et al. 
 2004 ).  Sedum alfredii , a perennial herb which is 
also a known Zn/Cd hyperaccumulator, was used 
as an indicator species by Gupta and coworkers 
to demonstrate that enzymatic and nonenzymatic 
antioxidants such as cysteine, nonprotein thiols 
(NPSH), glutathione (GSH), and PCs have 
important roles in detoxifi cation of toxicity 
induced by Pb (Gupta et al.  2010 ). The above-
mentioned antioxidants were found in higher 
concentration in the Pb accumulating  S. alfredii  
species when compared with its non- accumulating 
counterpart suggesting that the capacity of the 
ecotypes to accumulate different levels of Pb 
depends upon their ability to detoxify Pb through 
production of these antioxidants. 

 In case of mercury, hyperaccumulation can be 
achieved by overexpression of each of the three 
enzymes – γ- ECS , GS, and PS – involved in the 
GSH and PC biosynthesis pathway that will 
increase thiol sinks for Hg (II). Plants trans-
formed with  merB  and  γ − ECS  will trap Hg (II) 
in the form of thiol-Hg complexes and result in 
enhanced organic and ionic Hg resistance. 
Constitutive expression of PCS expression has 
previously been achieved, which further increases 
PC sink for Hg (II). However, the second 
approach of phytoextraction has not been fully 
achieved yet and more research needs to be done 
in understanding Hg phytoextraction as such Hg 
accumulation in plant tissues can be toxic to 
wildlife. Also, plant tolerance to Hg is generally 
low, and therefore phytoremediation can be lim-
ited by plant tolerance.  

7.2.1.2    Chelation with Phytochelatins 
 Phytochelatins form a family of structures with 
increasing repetitions of the γ-GluCys dipeptide 
followed by a terminal Gly, (γ-GluCys) n -Gly, 
where n is generally in the range of 2–8. PCs are 
structurally related to glutathione (GSH, 
γ-GluCysGly), and numerous physiological, bio-
chemical, and genetics studies have confi rmed 
that GSH is the substrate for PC biosynthesis 
(Cobbett  2000 ; Cobbett and Goldsbrough  2002 ). 
PCs are synthesized from GSH by the enzyme 
phytochelatin synthase, PCS (Grill et al.  1989 ). 
 Arabidopsis cad1  mutant was the fi rst PC syn-
thase mutated or inactivated gene. The  cad1  
mutants were PC defi cient but had wild-type lev-
els of GSH, suggesting a defect in the PCS gene 
(Howden  1995 ). The  Arabidopsis cad1/AtPCS1  
gene (Howden  1995 ; Ha  1999 ; Vatamaniuk et al. 
 1999 ) and a similar gene in wheat,  TaPCS1 , have 
been shown to confer resistance to Cd and Pb 
when expressed in the yeasts  S. cerevisiae  and  N. 
glauca , respectively (Clemens et al.  1999 ; 
Cobbett and Meagher  2002 ; Gisbert et al.  2003 ). 
 Arabidopsis cad1-3  mutant was found to be more 
sensitive to As(V) and Cd and slightly sensitive 
to Cu, Ag, and Hg, while there was no difference 
observed when exposed to Zn, selenite, and Ni 
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ions (Ha  1999 ). Using  B. juncea , it has been 
shown that Cd accumulation is accompanied by a 
rapid induction of PC biosynthesis, and the levels 
of PC present were theoretically suffi cient to che-
late all the Cd that is taken up by plants (Haag- 
Kerwer et al.  1999 ). A possible role for PCs in Cu 
tolerance had also been suggested from studies 
on copper-tolerant  Mimulus guttatus  (Salt et al. 
 1989 ). The constitutive overexpression of 
TaPCS1 in shrub tobacco ( N. glaucum ) substan-
tially increased its tolerance to Pb 2+  and Cd 2+  and 
greatly improved accumulation of Cu 2+ , Zn 2+ , 
Pb 2+ , and Cd 2+  in shoots (Martínez et al.  2006 ). 

 In the published literature, it has also been 
observed that excessive levels of PC in transgenic 
plants lead to increase in heavy metal accumula-
tion without enhancing tolerance and causing 
hypersensitivity to heavy metals (Pomponi et al. 
 2006 ). A similar effect was observed when 
AtPCS was overexpressed in  Arabidopsis  leading 
to Cd hypersensitivity (Lee et al.  2003 ). As far as 
the role of PCs in copper tolerance/sensitivity, 
cadmium-tolerant transgenic plants that overex-
pressed AtPCS1 were not tolerant of copper 
stress, thereby supporting the hypothesis that PC 
is not primarily involved in Cu tolerance mecha-
nism. Investigation into Cu tolerance in  cad2-1 , a 
Cd-sensitive and glutathione (GSH)-defi cient 
 Arabidopsis  mutant, leads to  cad2-1  mutant 
being more resistant to Cu stress than wild-type 
plants. This was likely due to the high level of 
cysteine present in  cad2-1  mutants. However, 
when the growth medium was supplemented with 
cysteine, the wild-type plants also exhibited Cu 
tolerance. Moreover,  S. cerevisiae  that expressed 
 AtPCS1  showed tolerance to Cd but hypersensi-
tivity to Cu. All these results indicate that PCs are 
not a major factor in determining Cu tolerance in 
plants (Lee and Kang  2005 ). Historically, there 
has been some disagreement about the role of 
PCs in metal tolerance and not all studies have 
supported this role (Steffens  1990 ; Hall  2002 ). 
Although evidence for the role for PCs in Cd 
detoxifi cation is strong, these peptides may play 
other important roles in the cell, including metal 
homeostasis and sulfur metabolism or as antioxi-
dants (Rauser  1995 ; Dietz et al.  1999 ; Cobbett 
 2000 ; Hall  2002 ). The participation of PCs in 

heavy metal detoxifi cation may be a consequence 
of these other functions (Steffens  1990 ).  

7.2.1.3     Chelation 
with Metallothioneins 

 Metallothioneins (MTs) are low-molecular- 
weight and highly cysteine-rich metal-binding 
peptides, which play important roles in toxic 
metal detoxifi cation and metal ion homeostasis. 
MTs in plants differ considerably from those 
found in mammals and fungi as they contain mer-
captide groups they are able to bind metal ions. 
Based on arrangement of cysteine residues, 
metallothioneins from plants can be classifi ed 
into four subfamilies or classes – MT1 to MT4. 
Class 1 MTs are characterized by the presence of 
Cys–X–Cys motifs, whereas in Class 2 MTs both 
Cys–Cys and Cys–XX–Cys pairs are located 
toward the N-terminal domain (Robinson et al. 
 1993 ). They are able to detoxify metals, achieve 
homeostasis, and allow metal transport due to 
their ability to reversibly bind both toxic and 
essential metal ions. 

 Human MT2 and mouse MT2 were among the 
fi rst MT genes expressed in transgenic plants 
(Lefebvre and Laliberte  1987 ; Misra and Gedamu 
 1989 ). In case of wheat and rice, MTs are not 
only induced by metal ions, such as Cu and Cd, 
but also by abiotic stresses such as extreme tem-
perature and nutrient defi ciency (Cobbett and 
Goldsbrough  2002 ). Plant MTs sequester excess 
of metals by coordinating metal ions with the 
multiple cysteine thiol groups (Robinson et al. 
 1993 ) and have particular affi nity for Zn 2+ , Cu + , 
and Cu 2+  as shown by the expression of the pea 
gene PsMTa in  E. coli  (Tommey et al.  1991 ). 
Overexpression of yeast metallothionein gene 
( CUP1 ) created Cd-tolerant transgenic cauli-
fl ower, which grew well in the presence of 
400 μM Cd and accumulated more Cd, especially 
in the upper leaves (Hasegawa et al.  1997 ). Also 
CUP1 overexpression in  N. tabacum  resulted in 
increased copper accumulation (Thomas et al. 
 2003 ). Gene silencing demonstrated that the MT1 
class isovariants are required to protect 
 Arabidopsis  plants from toxic effects of the heavy 
metal Cd(II) and possibly As. The study (Zimeri 
et al.  2005 ) used RNA interference to knock 
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down expression of the  Arabidopsis  class I MT 
genes: MT1a, MT1b, and MT1c. The MT1 
knockdown lines showed greatest sensitivity to 
Cd(II) and accumulated less Cd, Zn, and As than 
wild-type plants (Zimeri et al.  2005 ). When 
expressed in  N. tabacum , AtMT2b enhanced 
root-to-shoot transport of arsenic resulting into 
decreased As tolerance but increased accumula-
tion in shoots (Grispen et al.  2009 ). The role of 
 AtMT2a  and  AtMT3  in Cd detoxifi cation and 
resistance was studied recently in which the two 
genes fused to GFP and RFP protected the guard 
cell chloroplasts of  Vicia faba  from degradation 
when exposed to high concentrations of cadmium 
(Lee et al.  2004 ). It was also identifi ed that the 
two genes might not be playing a role in cadmium 
detoxifi cation through vacuole sequestration but 
are most likely involved in reducing the levels of 
ROS generated upon cadmium exposure (Lee 
et al.  2004 ). Overexpression of CcMT2 from 
legume  Cajanus cajan  in  Arabidopsis  induced 
both Cd and Cu tolerance and allowed both met-
als to accumulate without affecting the expres-
sion of endogenous transporters (Sekhar et al. 
 2011 ). A heat shock transcription factor A4a 
( HsfA4a ) from  Triticum aestivum  when overex-
pressed in rice enhanced Cd tolerance in rice 
plants and decreased Cd accumulation in rice 
plants with knocked-down expression of 
OsHsfA4a. Under cadmium stress, upregulation 
of  HsfA4a  along with increased expression of MT 
genes in wheat and rice such as Os MT-I-1a  was 
seen in roots of these plants suggesting that MT 
has a role to play in cadmium tolerance through 
 HsfA4a  (Shim et al.  2009 ). One of the MT genes 
from sugarcane,  ScMT2-1-3 , not only showed 
increased tolerance and detoxifi cation to Cd 2+  and 
Cu 2+  when expressed in transgenic  E. coli  but was 
also upregulated under Cu 2+  stress and downregu-
lated under Cd 2+  stress (Guo et al.  2013 ). A 
decrease in the levels of peroxidase (POD) activ-
ity and malondialdehyde (MDA) accumulation 
was observed in tobacco plants overexpressing 
 TaMT3  gene under 35S promoter, leading to 
believe that  TaMT3  has a role to play in providing 
increased tolerance to cadmium stress (Zhou 
et al.  2014 ). Upon Pb exposure, increased expres-
sion of two genes  HiHMA4  and  HiMT2a  coding 

for a P1B-type ATPase and an MT was observed 
in roots and leaves of Pb hyperaccumulator plant 
species  Hirschfeldia incana , a member of 
 Brassicaceae  (Auguy et al.  2013 ). When charac-
terized further, these were seen to play a role in 
greater lead tolerance and were involved in 
greater lead accumulation.  OsMT1a  expression 
was induced specifi cally by Zn 2+  treatment. Both 
transgenic plants and yeasts harboring  OsMT1a  
accumulated more Zn 2+  than wild-type controls, 
suggesting  OsMT1a  is most likely to be involved 
in zinc homeostasis. Transgenic rice plants over-
expressing  OsMT1a  demonstrated enhanced tol-
erance to drought. The examination of antioxidant 
enzyme activities demonstrated that catalase 
(CAT), peroxidase (POD), and ascorbate peroxi-
dase (APX) were signifi cantly elevated in trans-
genic plants. Furthermore, the transcripts of 
several Zn 2+ -induced CCCH zinc fi nger transcrip-
tion factors accumulated in  OsMT1a  transgenic 
plants, suggesting that OsMT1a not only partici-
pates directly in ROS scavenging pathway but 
also regulates expression of the zinc fi nger tran-
scription factors via the alteration of Zn 2+  homeo-
stasis, which leads to improved plant stress 
tolerance (Yang et al.  2009 ). Therefore, accord-
ing to Grennan AK ( 2011 ), “although many 
recent studies have started to reveal the roles of 
MTs in plants, there is still much more informa-
tion needed. The large diversity in the metal-
binding regions of plant MTs suggests that they 
have the ability to bind a greater range of metals 
than their animal counterparts and, consequently, 
a greater range of function.”  

7.2.1.4    Other Metal-Binding Peptides 
 Carboxylic acids such as citrate, malate, oxalate, 
and amino acids such as histidine and nicoti-
anamine are potential non-thiol ligands for heavy 
metal detoxifi cation in plants (Rauser  1999 ). 
Histidine was fi rst shown to bind a major propor-
tion of Ni in the Ni hyperaccumulator,  Alyssum 
lesbiacum  (Kramer et al.  1996 ), and later it was 
shown to bind Zn in hyperaccumulators as well 
(Salt et al.  1999 ; Küpper et al.  2004 ). Free histi-
dine is an important metal-binding ligand, and in 
its monodentate form it may not bind to metals 
very strongly, but multi-histidine residue can 
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make a strong interaction with metals. 
Nicotianamine (NA), as a polydentate ligand with 
three carboxyl groups and three nitrogen, makes a 
strong ligand for Fe 2+ , Zn 2+ , Ni 2+ , and Cu 2+  (Beneš 
et al.  1983 ). They are structurally very similar to 
the iron-phytosiderophore mugineic acid. NA 
provides six alternating carboxylate and amine 
functions; their relative positions favor the forma-
tion of six-coordinate metal complexes (Callahan 
et al.  2006 ; Leitenmaier and Kupper  2013 ). They 
bind to both iron (II) and iron (III) (Pich et al. 
 1994 ; Von Wiren  1999 ). NA has been shown to be 
important for Cu metabolism (Liao et al.  2000 ); at 
the same time they were also found to bind a sub-
stantial proportion of total Cu at toxic concentra-
tions in  N. caerulescens  (Mijovilovich et al. 
 2009 ). NA has also been shown to bind Zn 
(Trampczynska et al.  2010 ), in Cd/Zn hyperaccu-
mulators  Arabidopsis halleri  and  N. caerulescens  
(Becher et al.  2004 ; Weber et al.  2004 ). An RNAi-
mediated knockdown of nicotianamine synthase 
in  A. halleri  revealed a severe diminishing of Zn 
and Cd accumulation, which proves importance 
of NA for hyperaccumulation of these metals 
(Deinlein et al.  2012 ). In summary, when present 
in low concentrations, NA likely is important as a 
ligand mostly in compartments with low abun-
dance of stronger ligands (e.g., the vacuole, 
xylem, and phloem). At the very high NA lev-
els in hyperaccumulators, however, it might 
also take part in binding of these metals in the 
cytoplasm (Leitenmaier and Kupper  2013 ). 

 Anthocyanins have also emerged as impor-
tant non-thiol ligands in metal binding, which 
have been shown to be associated with molyb-
denum (MO) accumulation (Hale et al.  2001 ). 
Oxalates were shown to bind Cu in Cu-tolerant 
lichens and fungi (Fomina et al.  2005 ), and 
they have been shown to bind Cu in 
Cu-sensitive Cd/Zn-hyperaccumulator  N. cae-
rulescens  (Mijovilovich et al.  2009 ). Organic 
acids have been shown to facilitate enhanced 
uptake of metals into the roots of hyperaccu-
mulators (Li et al.  2012 ). The strategy of bind-
ing to oxalate in hyperaccumulators makes 
sense as Cu and manganese (Mn) oxalates are 
hardly soluble and much more stable which 

diminishes their bioavailability as compared 
to binding to smaller organic acids like malate 
or citrate (Leitenmaier and Kupper  2013 ).    

7.3     Compartmentation 
and Sequestration of Heavy 
Metals 

 Chelation of metal ions is an important aspect of 
metal ion detoxifi cation, but a potential mecha-
nism for increased metal tolerance is the seques-
tration of metal ions and metal-chelate complexes 
into subcellular compartments. There is consid-
erable evidence that sequestration to the vacuole 
plays a signifi cant role in detoxifying metal ions 
in a number of organisms. Manipulation of these 
sequestration mechanisms may be a necessary to 
increase plant’s tolerance to toxic concentrations 
of heavy metals (Cobbett and Meagher  2002 ). 

7.3.1     Transport and Storage 
of GSH- and PC-Bound Metals 
to Vacuoles 

 The HMT1 gene encodes a member of the family 
of ATP-binding cassette (ABC) membrane trans-
port proteins that is located in the vacuolar mem-
brane and is required for the transport of PCs or 
PC-Cd complexes into vacuolar membrane vesi-
cles (Huang et al.  2012 ). In fi ssion yeast 
 (Schizosaccharomyces pombe ) the Cd-sensitive, 
 hmt1  mutant is unable to accumulate vacuolar 
PC-Cd (Ortiz et al.  1992 ). YCF1, a member of 
ABC family of transporters, is a classical example 
of transport of both GSH conjugates and (GSH) 2 Cd 
complexes into vacuolar compartment (Li et al. 
 1996 ). YCF1 has also been shown to sequester 
GSH conjugates of Hg (Gueldry et al.  2003 ) and 
As(III) (Ghosh et al.  1999 ) into vacuoles. In meso-
phyll protoplasts derived from tobacco plants 
exposed to Cd, almost all of both the Cd and PCs 
accumulated were confi ned to the vacuole (Vögeli-
Lange and Wagner  1990 ). AtMRP3 can also trans-
port GS conjugates of Cd (Tommasini et al.  1998 ). 
Recently, Guo et al. ( 2012 ) confi rmed increased 
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tolerance to and accumulation of Cd and As by 
transgenic  Arabidopsis  overexpressing PCS1 in 
combination with either YCF1 (Guo et al.  2012 ) or 
GSH1 (Guo et al.  2008 ). It was recently discov-
ered that when  SpHMT1 , which is a PC-Cd trans-
porter, from fi ssion yeast ( S. pombe ) was expressed 
in Arabidopsis, greater tolerance and accumula-
tion was achieved for Cd, Cu, As, and Zn ions as 
well as enhanced vacuolar sequestration could 
also be achieved. Chardonnens et al. ( 1999 ) have 
shown that Zn-tolerant lines of  Silene vulgaris  
have increased tonoplast transport of Zn compared 
with non-tolerant lines.  Arabidopsis  Zn-induced 
facilitator1 (AtZIF1) is a kind of MFS (major 
facilitator superfamily) transporter, still part of 
ABC transporter group, and mRNA of ZIF1 was 
induced by Zn, and its mutant showed to accumu-
late more Zn in the shoot and also be sensitive to 
Cd. Its localization studies indicated it being pres-
ent in the tonoplast suggesting that it might be 
playing a role in transport of Zn and its complexes 
to the vacuoles (Haydon and Cobbett  2007a ,  b ). 
The CPX or type 1B subclass of P-type ATPase 
transporters is important in heavy metal detoxifi -
cation and homeostasis in many organisms, includ-
ing prokaryotes, fungi, plants, and animals 
(Cobbett and Meagher  2002 ). HMA3, a P 1B -type 
heavy metal ATPase, was found to mediate leaf 
vacuolar storage of Cd, Co, Pb, and Zn in 
 Arabidopsis  (Morel et al.  2009 ). 

 The homologue of yeast effl ux transporter 
 ACR3  was identifi ed in an As hyperaccumulator, 
 Pteris vittata  ( PvACR3 ), and was shown to res-
cue arsenic-sensitive phenotypes of yeast defi -
cient for  ACR3.  Upregulation of  ACR3  was seen 
in plant tissues in contact with As, and its knock-
down leads to sensitive phenotypes in the pres-
ence of As confi rming the role of  PvACR3  in As 
tolerance through vacuolar sequestration of 
As-bound compounds (Indriolo et al.  2010 ). The 
role of ABC transporter family members such as 
that of ABCC1 in transporting and detoxifying 
As has also been shown in various species such 
as yeast, protozoa, and  C. elegans  (Papadopoulou 
et al.  1994 ; Broeks et al.  1996 ; Song et al.  2003 ; 
Schwartz et al.  2010 ; Guo et al.  2012 ). Two vacu-
olar PC transporters AtABCC1 and AtABCC2 in 
 Arabidopsis  were shown to play a role in the tol-

erance and transport of PC-bound metalloids 
such as As(III)-PC into the vacuole (Song et al. 
 2010 ). They also showed that in the absence of 
these transporters,  Arabidopsis  plants were 
extremely sensitive to As. When heterologously 
expressed, in the presence of PC background, 
greater tolerance and accumulation of As could 
be seen. Greater As tolerance in  Arabidopsis  was 
also achieved when AtABCC1 was overex-
pressed along with AtPCS1 (Song et al.  2010 ). 
Overexpression of AtABCC1 in  Arabidopsis  also 
resulted in enhanced Cd(II) tolerance and accu-
mulation (Park et al.  2012 ).   

7.4     Heavy Metal Transporters 

 Metal transporters play a signifi cant role in the 
uptake and transport of essential and nonessential 
metals and metalloids across plasma membrane 
of plant species which are needed for processes 
such as plant growth and development, signal 
transduction, and toxic metal detoxifi cation 
(Krämer et al.  2007 ; Paulose et al.  2008 ). With 
the advances in “omics” in the last few years, a 
lot of metal transporters have been identifi ed in 
various plant families. These metal transporters 
have been broadly categorized into two groups – 
metal uptake transporters and effl ux transporters 
as described below. 

7.4.1     Metal Uptake Transporters 

 Out of several different types and families of 
metal uptake transporters, certain metal ions such 
as Cd, Co, Mn, and Zn get transported through 
some ZIP (zinc-regulated transporter) transport-
ers because of their nonmetal specifi c nature. 
ZAT overexpression in  Arabidopsis  provided 
strong tolerance to and accumulation of zinc 
upon exposure to 400 μM ZnSo 4  (van der Zaal 
et al.  1999 ). Under Zn defi ciency, transcripts of 
ZIP1, ZIP2, and ZIP3 from  A. thaliana  were 
shown to be induced only in the roots and ZIP4 
was found in both roots and shoots (Grotz et al. 
 1998 ). When expressed in yeast, another ZIP 
member from  Arabidopsis -AtIRT1, which nor-
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mally uptakes iron, was seen to uptake Zn 
(Korshunova et al.  1999 ) and transport Cd lead-
ing to Cd-sensitive yeast cells (Rogers et al. 
 2000 ). An important role of two ZIP genes, ZNT1 
and ZNT2, from Ni hyperaccumulator  Thlaspi 
japonicum  was also identifi ed in providing toler-
ance to yeast cells when subjected to greater con-
centrations of Ni (Mizuno et al.  2005 ). ZIP 
proteins from  Medicago trunculata  (MtZIP) 
were shown to rescue  zrt1/zrt2  mutant in yeast in 
the presence of Zn and other metals. Under Zn 
defi ciency, ZIP4 from rice was highly expressed 
in both root and shoots and also complemented a 
Zn-uptake-defi cient mutant strain (Ishimura et al. 
 2005 ). 

 Another class of transporter involved in uptake 
of toxic metals is the family of natural resistance- 
associated macrophage protein (NRAMP). Six 
genes in  Arabidopsis  genome code for NRAMP 
proteins and have been divided into two groups – 
group one consisting of  AtNRAMP1  and  6  and 
group two containing  AtNRAMP2  through  5  
(Maser  2001 ). Cadmium sensitivity and accumu-
lation were increased in yeast cells in which 
 AtNRAMP 1, 3 , and  4  had been expressed 
(Thomine et al.  2003 ). Overexpression and char-
acterization of  AtNRAMP3  and  AtNRAMP4  
T-DNA lines further confi rmed their role in Cd 
transport in plants (Thomine et al.  2003 ). 
 TjNRAMP4  from  T. japonicum , which is a homo-
logue of  AtNRAMP4 , also showed increased Ni 
accumulation and sensitivity when expressed in 
wild-type yeast cells (Mizuno et al.  2005 ). 

 Yellow stripe-like protein family transporters 
(YSL) allow the uptake of metals that are com-
plexed with secondary amino acids such as phyto-
siderophores or nicotianamines and got their name 
from maize mutant, yellow stripe 1, which is unable 
to uptake iron-phytosiderophore complex (Curie 
et al.  2001 ). First YS1 was identifi ed in maize and 
was termed ZmYS1, which complemented 
Zn-uptake mutant  zap1  in yeast (Schaaf et al. 
 2004 ). Eight genes (AtYSL1 through 8) from 
 Arabidopsis  were found homologous to ZmYS 
(Paulose et al.  2008 ). The role of the transporters 
from this family in uptake of metals such as Zn, Cd, 
and other divalent cations is still unclear. OPT3, a 
member of  Arabidopsis  oligopeptide transporter 
(OPT) family, was shown to be involved in move-

ment of iron into developing seeds (Stacey et al. 
 2008 ).  opt3-2  mutants, which have reduced levels 
of OPT3, exhibited constitutive expression of iron 
defi ciency responses in roots regardless of iron 
supplementation, resulting in overaccumulation of 
iron in leaves, but decreased levels of iron in seeds 
(Chu  2010 , dissertation thesis). Recently, OPT3 
has been shown to be a phloem-specifi c transporter 
that mediates Fe loading into the phloem. By load-
ing of Fe into the phloem in leaves, OPT3 has been 
shown to regulate both signaling of Fe demand 
from shoots to roots and Fe transport to developing 
tissues (Zhai et al.  2014 ) and plays a key role regu-
lating Fe, Zn, and Cd distribution within the plant 
(Mendoza-Cózatl et al.  2014 ).  

7.4.2     Metal Effl ux Transporters 

 Another group of transporters is broadly termed 
as metal effl ux transporters under which the CDF 
family members (cation diffusion facilitator) 
have been shown to transport metal cations such 
as Zn and Cd (Nies  2003 ). Plant CDFs have been 
given the name metal tolerance proteins (MTPs) 
(Delhaize  2003 ; Kim et al.  2004 ; Paulose et al. 
 2008 ). Twelve CDF members have been identi-
fi ed in  A. thaliana  and the fi rst CDF character-
ized was termed as AtMTP1. This gene, when 
overexpressed and knocked down in plants, 
showed tolerance to Zn with less tissue accumu-
lation of Zn. MTP1 has also been identifi ed in  A. 
halleri , a metal accumulator species, and was 
shown to complement the mutant phenotype of a 
yeast strain that lacks vacuolar zinc resistance 
gene (ZRC1) and cobalt transporter gene, COT1 
(Dräger et al.  2004 ). All three MTP1s in  A. hal-
leri  have shown Zn tolerance. Several allelic vari-
ants of MTP1 from Ni/Zn-hyperaccumulator 
plant  T. goesingense , also a homologue of 
AtMTP1, have conferred resistance to yeast 
strains mutant for ZRC1 and COT1. 
Overexpression of  TgMTP1  also decreases the 
concentration of Zn in the cells by effl uxing it out 
(Kim et al.  2004 ). 

  Arabidopsis  HMA2, HMA3, and HMA4 are 
the members of IB-2 subgroup of P 1B -type 
ATPase transporter family, and it was shown that 
 AtHMA2  was strongly induced by Zn and Cd 
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exposure and seen to transport Zn outside the 
cytoplasm. Knocked-down  hma2  mutants, com-
pared to wild-type  Arabidopsis  plants, accumu-
lated higher levels of Zn and Cd (Eren and 
Argüello  2004 ). In the presence of higher Cd 
concentrations, HMA4 from  T. caerulescens  
enabled the yeast strain grew better and also 
effl uxed Cd out of the cells through the plasma 
membrane. High and low concentrations of Zn 
were also able to induce the expression of 
 TcHMA4  (Bernard et al.  2004 ; Papoyan and 
Kochian  2004 ). HMA4 gene from  Arabidopsis  is 
located and expressed at the plasma membrane of 
the root vascular tissues but its role in metal load-
ing in the xylem was confi rmed when its overex-
pression leads to an increase in the amount of Zn 
and Cd in the shoots. However, a mutant of this 
gene showed less translocation of the Zn and Cd 
from roots to shoots (Verret et al.  2004 ). The role 
of HMA4 in root-to-shoot Zn translocation has 
also been shown earlier by Mills et al. ( 2005 ). 
They also explained the role of  AtHMA4  in metal 
detoxifi cation by showing that plants’ sensitivity 
to higher concentrations of Cd and Zn increases 
when  AtHMA4  is disrupted. The role of HMA2 
and HMA4 transporters was also studied in  hma2 
hma4  double mutants. Decreased amount of Zn 
in the shoots and nutrient-defi ciency phenotype 
of this mutant, when subjected to zinc-free 
growth medium, pointed toward the role of these 
two genes in Zn homeostasis. Promoter analysis 
of HMA2 and HMA4 revealed that they are 
located in the vascular tissues of roots, leaves, 
and stems, and HMA2 was also found to be pres-
ent at the plasma membrane confi rming their role 
in Zn translocation. These were also thought to 
be involved in Cd detoxifi cation as in a 
phytochelatin- defi cient mutant background, their 
sensitivity to Cd increased (Hussain et al.  2004 ; 
Wong et al.  2009 ).  AtHMA3  transporter, a mem-
ber of the P 1B-2  subgroup of the P-type ATPase 
family located in the vacuolar membrane of 
 Arabidopsis , has been shown to play a role in 
transport of heavy metal in plants. When overex-
pressed in  Arabidopsis , transgenic plants were 
more tolerant to Cd, Co, Pb, and Zn. Greater 
accumulation of Cd was also observed. Sensitive 
phenotypes of T-DNA knockout lines were also 

seen in the presence of Cd and Zn. Confocal 
microscopy reveled participation of  AtHMA3  in 
vacuolar sequestration of Cd (Morel et al.  2009 ). 

 AtATM3, an ATP-binding cassette transporter 
from  Arabidopsis , is a mitochondrial protein 
involved in the biogenesis of iron-sulfur clusters 
and iron homeostasis in plants. AtATM3- 
overexpressing plants were shown to exhibit 
enhanced resistance to Cd, whereas  atatm3  
mutant plants were more sensitive to Cd than 
wild-type controls. The role of AtATM3 in regu-
lating cellular levels of nonprotein thiols (NPSH) 
was also observed. Increased expression of 
AtATM3 was seen when GSH biosynthesis was 
inhibited with increased expression of GSH1 
under Cd stress and in the  atatm3  mutant sug-
gesting that it may be involved in the transport of 
GSH-Cd conjugates across mitochondrial mem-
brane (Kim et al.  2006 ). Recently, it has been 
shown that protein with strong similarity to 
AtATM3 transport Cd conjugates (Hanikenne 
et al.  2005 ) and CeHMT1, a close homologue of 
AtATM3, has been shown to be required for Cd 
tolerance (Vatamaniuk et al.  2005 ). 

 The multidrug and toxin extrusion (MATE) 
family is the most recently categorized one among 
fi ve multidrug effl ux transporter families (Kuroda 
and Tsuchiya  2009 ). Magalhaes et al. ( 2007 ) used 
positional cloning to identify the gene encoding a 
member of the MATE family, an aluminum-acti-
vated citrate transporter, responsible for the major 
sorghum ( Sorghum bicolor ) aluminum (Al) toler-
ance. Similarly another study in 2009 showed that 
expression of an expressed sequence tag, belong-
ing to  MATE  gene family, correlates with the 
citrate effl ux phenotype. This study provided 
genetic and physiological evidence that citrate 
effl ux is a second mechanism for Al resistance in 
wheat (Ryan et al.  2009 ). Iron homeostasis-related 
FRD3 (ferric reductase defective 3) gene, which 
encodes a multidrug and toxin effl ux (MATE) 
transporter, is responsible for reduced Zn toler-
ance in  A. thaliana . FRD3 works as a multimer 
and is involved in loading Zn into xylem. Cross-
homeostasis between Fe and Zn, therefore, appears 
to be important for Zn tolerance in  A. thaliana  
with FRD3 acting as an essential regulator (Pineau 
et al.  2012 ). 
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 MRPs (multidrug resistance-associated pro-
teins) constitute another effl ux transporter family 
belonging to ATP-binding cassette transporter 
superfamily (ABC) and transport metals that have 
formed conjugates with GSH. Plant orthologs of 
yeast cadmium factor 1 ( ScYCF1 ) which provides 
Cd resistance by pumping GSH-Cd conjugates 
into vacuoles were identifi ed in  Arabidopsis . The 
fi rst MRP gene termed as  AtMRP1  showed a simi-
lar function as  ScYCF1  (Szczypka et al.  1994 ; Li 
et al.  1997 ).  AtMRP3, 6, 7,  and  14  were subse-
quently identifi ed and shown to be upregulated by 
Cd (Bovet et al.  2003 ), with  AtMRP3  also seen to 
be involved in transport of Cd.  AtMRP3  promoter 
was also induced upon metals such as Cd, Ni, As, 
Co, and Pb exposure in  A. thaliana  and  N. taba-
cum  (Zientara et al.  2009 ). 

  AtPDR12,  a member of the pleiotropic drug 
resistance protein (PDR) family of ABC trans-
porters was found in Arabidopsis. The mRNA 
level of only AtPDR12 increased in both shoots 
and roots of Pb(II)-treated Arabidopsis, suggest-
ing that it may be involved in the detoxifi cation of 
Pb(II). The GFP: AtPDR12 fusion protein at the 
plasma membrane suggested that AtPDR12 func-
tions as a pump to exclude Pb(II) and/or Pb(II)-
containing toxic compounds from the cytoplasm 
(Lee et al.  2005 ). Cd tolerance in plants has also 
been achieved through ABC transporter PDR8 
(pleiotropic drug resistance 8) located at the 
plasma membrane that extrudes Cd out of the cell 
(Kim et al.  2007 ). 

 Apart from these transporter families 
described above, there are some other transport-
ers that do not fall under these families such as 
the IREG and PCR1 family from  Arabidopsis , 
and have been shown to be involved in Ni toler-
ance and transport and cadmium tolerance, 
respectively (Schaaf et al.  2004 ; Song et al. 
 2004 ). Tobacco  NtCBP4  (a calmodulin-binding 
protein) was isolated from tobacco cDNA library, 
located at the plasma membrane, and was shown 
to provide tolerance against heavy metal toxicity. 
The  NtCBP4  transgenic lines showed improved 
tolerance to Ni by limiting Ni accumulation and 
hypersensitivity to Pb due to increased accumula-

tion of Pb. These results lead to believe that 
 NtCBP4  is involved in the uptake of metals across 
the plasma membrane (Arazi et al.  1999 ). 

 Metalloid such as arsenic is naturally present 
in soil in the form of arsenate (AsO 4  −3 ). Due to 
chemical similarity between AsO 4  −3  and inorganic 
phosphate, Pi(PO 4  −3 ), As(V) is usually taken up 
into the plants via phosphate transporters. Out of 
9 high-affi nity phosphate transporters (PHT1-9) 
in  Arabidopsis , PHT1 and PHT4 have been 
involved in As(V) transport. Overexpression of 
PHT1 resulted into plants being sensitive to As(V) 
(Catarecha et al.  2007 ), while their single and 
double mutants have been shown to be As(V) tol-
erant indicating that As(V) uptake is compro-
mised by mutations in these Pi transporters (Shin 
et al.  2004 ). Recently, LeBlanc et al. created 
transgenic  Arabidopsis  overexpressing PHT1 or 
PHT7 from  Arabidopsis  in combination with or 
without YCF1, leading to increased As accumula-
tion and tolerance in  Arabidopsis  (LeBlanc et al. 
 2013 ).   

7.5     Other Genes for Metal 
Tolerance 

 Apart from strategies discussed above, plants can 
be engineered with genes that have other means 
of dealing with heavy metal toxicity either by 
volatilization of metals and metalloids or via 
interacting with proteins in other metabolic path-
ways as described below. 

7.5.1     Phytovolatization 

 Phytovolatization of a metal or metalloid ion 
involves the accumulation of metal (loid) spe-
cies in plant cells and their subsequent conver-
sion to an evaporable, usually less toxic, form 
such that it can be liberated to atmosphere. The 
main advantage of phytovolatization is the 
removal of metal (loid) from a site without the 
need for plant harvesting and disposal (Kotrba 
et al.  2009 ). 
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 Bacterial resistance to Hg 2+  and organomercu-
rial compounds has been attributed to organo-
mercurial lyase ( MerB ), which converts 
methylmercury and other organomercurials to 
Hg 2+  and mercuric reductase ( MerA)  that reduces 
elemental Hg 2+  to nontoxic volatile Hg 0  (Summers 
 1986 ). These bacterial mercury resistance genes 
were cloned and used to genetically engineer 
plants for methylmercury phytoremediation. 
Overexpression of  merA, merB , or a combination 
of both, in  A. thaliana  (Rugh et al.  1996 ; Bizily 
et al.  1999 ,  2003 ),  N. tabacum  (Ruiz et al.  2003 ), 
and rice ( Oryza sativa , Heaton et al.  2003 ), 
resulted in Hg 2+  and organomercurial tolerant 
phenotypes. More than tenfold higher volatiliza-
tion rate was achieved by the targeting of MerB 
in the endoplasmic reticulum of  merA/merB , 
where MerB exhibited more than 20 times higher 
specifi c activity than in plants with cytoplasmi-
cally distributed MerB (Bizily et al.  2003 ). 

 Selenium (Se) occurs naturally in two forms – 
selenate and selenite. Due to a similar nature of 
selenate and sulfate, they are normally taken up 
and assimilated by the same transporters and 
pathways (Ng and Anderson  1979 ; Zayed and 
Terry  1992 ; Anderson  1993 ). One such trans-
porter involved in sulfate transport into plant cells 
is sulfate permease, and in certain plant species 
such as  Brassica napus  and  Stylosanthes hamata,  
selenate was seen inhibiting the sulfate uptake by 
this transporter (Hawkesford  2003 ; Smith et al. 
 1995 ). ATP sulfurylase is an enzyme involved in 
sulfate reduction in plants (Setya et al.  1996 ). It 
converts selenate to selenite leading to a decrease 
in selenate concentration, and recent studies have 
shown that ATP sulfurylase is also involved in sel-
enate reduction in plants (Pilon-Smits et al.  1999 ). 
Overexpression of APS1 in Indian mustard ( B. 
juncea ) showed that under supplied selenate, 
activity of ATP sulfurylase in these overexpressed 
plants was much higher in shoots but not roots 
compared to wild- type plants. These plants were 
able to reduce selenate better. Greater selenium 
accumulation and tolerance was also seen in APS 
transgenic plants (Pilon-Smits et al.  1999 ). The 
biosynthesis of MetSeCys, catalyzed by seleno-
cysteine methyltransferase (SMT) in hyperaccu-
mulating plant species inactivates SeCys for 
synthesis of SeMet and proteosynthesis. 

MetSeCys could then be converted to volatile 
dimethyldiselenide (DMDSe; Terry et al.  2000 ). 
Most plants that do not produce DMDSe to con-
vert SeMet from SeCys to volatile dimethylsele-
nide (DMSe), which has been reported to be 
500–700 times less toxic than selenate and sele-
nite in soil (Wilber  1980 ). In addition to an 
improved Se accumulation in selenocysteine 
methyltransferase , B. juncea  overexpressing SMT 
and ATP sulfurylase showed a higher DMSe pro-
duction than wild- type control plants and an 
acquired ability to produce DMDSe (LeDuc 
et al.  2004 ). Volatile forms were then effi ciently 
evaporated from the leaves of transgenics grown 
in culture media and polluted soil (LeDuc et al. 
 2004 ; Bañuelos et al.  2007 ).  

7.5.2     Genes Involved in Oxidative 
Stress Response 
and Misfolded Protein Repair 

 As the concentration of heavy metals inside the 
cell reaches to a point of saturation, the plant as a 
system begins to experience oxidative stress 
caused by the production of ROS and the inhibi-
tion of metal-dependent antioxidant enzymes 
(Schützendübel and Polle  2002 ). In general, 
heavy metal-induced ROS production causes oxi-
dative damage to photosynthetic pigments; bio-
molecules such as lipids, proteins, and nucleic 
acids; and leakage of electrolytes via lipid peroxi-
dation causing dramatic reductions in plant 
growth and productivity. Plants respond to oxida-
tive stress by production of antioxidative enzymes 
such as SOD, APX, and GR and nonenzymatic 
free radical scavengers (Aust et al.  1985 ). Heavy 
metal toxicity is reported to increase activity of 
glucose-6-phosphate dehydrogenase and peroxi-
dase in the leaves of plants grown in polluted soils 
(Van Assche and Clijsters  1987 ). In  Nicotiana 
plumbaginifolia , leaves exposed to excess Fe have 
been shown to induce expression of ascorbate 
peroxidase (APX) and catalases (CAT) 
(Kampfenkel et al.  1995 ). Similarly the expres-
sion of CAT3 from  B. juncea  was induced upon 
Cd treatment (Minglin et al.  2005 ). A brief treat-
ment with low concentration of Al to chickpea 
seedlings ( Cicer arietinum ) resulted in higher 
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SOD, APX, and guaiacol peroxidase (GPX) activ-
ity (Singh et al.  2012 ). Peroxiredoxins (PRXes) 
are peroxide-degrading enzymes with mitochon-
drial and chloroplastic variants. A T-DNA inser-
tion mutant of  A. thaliana  lacking the expression 
of mitochondrial PrxIIF (AtPrxIIF knockout) was 
more sensitive to Cd in terms of root growth than 
the controls, signifying the involvement of PrxIIF 
in cellular detoxifi cation of Cd such that root 
growth is maintained under Cd stress up to a cer-
tain threshold (Finkemeier et al.  2005 ). 

 Superoxide dismutases (SODs) are enzymes 
that play a pivotal role in metabolizing singlet O 2 , 
preventing formation of deleterious reactive oxy-
gen species (ROS) including hydrogen peroxide 
(H 2 O 2 ), hypochlorite (OCl − ), peroxynitrate 
(ONO 2 ), and hydroxyl radical (HO − ) (Miller 
 2012 ). SOD activity is also induced in tomato 
seedlings after prolonged Cd treatment (Dong 
et al.  2006 ). SOD activity increases signifi cantly 
in wheat leaves, following exposure to high levels 
of Cd, probably refl ecting the accumulation of 
superoxide (Lin et al.  2007 ). On the other hand, 
Rodríguez-Serrano and coworkers showed a 
reduced SOD activity in pea plants exposed to Cd. 
Cd in particular has been shown to reduce the 
GSH/GSSG ratio and activate antioxidant 
enzymes such as SOD and GR (Rodríguez- 
Serrano et al.  2009 ). Heavy metals also induce the 
synthesis of stress-related proteins and signaling 
molecules, such as HSPs, SAPs, salicylic and 
abscisic acids, and ethylene (Manara  2012 ). Heat 
shock proteins (HSPs) are expressed not only in 
response to elevated temperatures but also in 
response to other abiotic stresses such as drought 
and heavy metal stress. Under heavy metal stress, 
protein-folding mechanism can go haywire result-
ing in misfolded proteins. Heat shock proteins can 
act as molecular chaperon ensuring correct fold-
ing and repair of misfolded protein (Vierling 
 1991 ). Heavy metals induce the expression of 
low-molecular-weight HSPs in rice (Tseng et al. 
 1993 ).  Zea mays  plants exposed to varying soil 
concentrations of Cu, Ni, Pb, and Zn showed 
increased chloroplast small HSP contents, with 
increased time of exposure. These HSPs in turn 
were shown to protect photosynthesis from heavy 
metal toxicity (Heckathorn et al.  2004 ). 

 Members of stress-associated protein (SAP) 
family (Vij and Tyagi  2006 ) were recently shown 
to provide tolerance to multiple abiotic stress 
including toxic metals (Mukhopadhyay et al. 
 2004 ). OsiSAP8 was shown to be induced in 
response to heavy metals such as Zn, Cu, Hg, and 
Cd (Kanneganti and Gupta  2008 ). Similarly 
overexpression of AtSAP10 in  Arabidopsis  pro-
vided strong tolerance to Ni and Mn. Due to their 
unique ability to provide tolerance to multiple 
abiotic stresses, members of SAP family are also 
the ideal candidates to engineer plants for heavy 
metal tolerance to tackle the challenges of global 
climate changes and the effects associated with it 
(Dixit and Dhankher  2011 ).   

7.6     Heavy Metal Tolerance 
and Climate Change 
Adaptations 

 As global climate change is happening and not in 
distant future, the burden of environmental 
stresses including heavy metals and metalloids 
on crop plants is likely to continue to increase. 
Flood events can transport heavy metals, cya-
nide, and hydrocarbons from a contaminated area 
to a non-contaminated one (Harmon and Wyatt 
 2008 ; Hilscherova et al.  2007 ; Boxall et al.  2009 ). 
Climate change is likely to increase frequency of 
heavy precipitation events worldwide, which 
would result in transport of historical contami-
nants from previously undisturbed sediments. 
This could have implications for residue of toxic 
metal levels in food crops (Casteel et al.  2006 ). 
As irrigation demands may increase because of 
warmer and drier summers, water of poorer qual-
ity, including partially treated wastewater from 
industries and municipalities, will likely be 
applied to crops which may result in additional 
contaminant loadings to crops (Rose et al.  2001 ). 
Changes in temperature and precipitation could 
also increase aerial inputs of volatile and dust- 
associated contaminants. Finally, changes in bio-
availability may occur with less bioavailable 
forms of contaminant being converted to more 
bioavailable forms. For example, Booth and 
Zeller ( 2005 ) suggested that increases in temper-
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ature could enhance the methylation rate of Hg. 
The use of composting for treatment of munici-
pal waste is increasing, with a portion of the 
resulting compost being used in agriculture. This 
is likely to increase loadings of microbes, heavy 
metals, and persistent organic pollutants in agri-
cultural land (Déportes et al.  1995 ; Boxall et al. 
 2009 ). Furthermore, with the expansion of crop 
cultivation on soils that are not optimal for the 
growth of crop plants such as contaminated lands, 
development of abiotic stresses including heavy 
metals stress tolerant plants is becoming increas-
ingly important (Kathuria et al.  2007 ). Improving 
the tolerance of major crop plants to heavy met-
als and other abiotic stresses has been a main 
goal in agricultural research for a long time. 
Transgenic approaches offer attractive alterna-
tives to conventional techniques for the genetic 
improvement of abiotic stress tolerance. The 
development of new cultivars with enhanced 
heavy metal tolerance will undoubtedly have an 
important effect on global food production and 
food safety.  

7.7     Conclusions 

 Crop production is declining around the world 
due to several biotic and abiotic stresses, which 
include heat, cold, drought, heavy metals, etc. 
(Abedin et al.  2002 ; Van Nguyen and Ferrero 
 2006 ). In the past years, a lot of focus has been on 
improving plant species and their tolerance 
toward these stresses but not much has been 
achieved because of the limited knowledge of the 
gene/network of genes that might be involved in 
providing such tolerance to multiple stresses. The 
research in this direction could have a signifi cant 
impact on global food security, human health 
enhancement, and the environment, if more 
knowledge and information is gained on the 
hyperaccumulating species and phytoremedia-
tion strategy through the use of transgenics. Once 
this system is fully understood in the model plant 
species, the knowledge and information gained 
can be applied on other agricultural crops to engi-
neer crops that will be better able to withstand 
such abiotic stresses and still produce sustainable 

yield. This will also help to grow crops for food 
and biomass production on not so cultivable 
lands, thus making them more cultivable over 
time. Developing crops more resilient to heavy 
metals and other abiotic stresses will enable them 
to grow on marginal to moderately contaminated 
soils without losing crop yields.     
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