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    Abstract  

  Overexpansion of population and poor availability of resources in devel-
oping countries have resulted in serious problems of poverty, malnutrition, 
and poor health. Rapidly changing climate as a result of global warming is 
making the situation worse. Farmers are deviating from agriculture due to 
increased input costs and low benefi ts. Tools of plant biotechnology like 
GM crops have improved the present situation and undoubtedly have con-
tributed to the increase of farmer’s income, nutrition and health, and pov-
erty reduction leading to a step toward food and nutritional security in the 
developing world. As a result, GM crops have emerged as the fastest 
adopted crop technology in the history of modern agriculture in spite of a 
strong opposition initially, which is nullifying gradually.  
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11.1       Introduction 

 Agriculture worldwide needs a signifi cant 
increase in productivity to ensure suffi cient avail-
ability of food and other raw materials for ongo-
ing population expansion which is estimated to 
exceed 9 billion by the year 2050. More than 3 
billion people suffer from diseases caused by 
inadequate nutrition in one or the other way 
(Gomez-Galera et al.  2010 ; Farre et al.  2010 ), 
and around 900 million people are undersupplied 
with calorie worldwide (FAO  2012 ). The condi-
tions are worse in developing countries which 
have the largest proportion of undernourished 
people especially in sub-Saharan Africa and 
South Asia (FAO  2012 ). Poverty in this part of 
the world is usually linked to low agricultural 
productivity as a consequence of poor availabil-
ity of resources, less agricultural land, and over-
growing population. Plant biotechnology is a 
potent tool that can improve the present situation 
and contribute to the poverty reduction and food 
security in the developing world (Qaim  2010 ). 
Conventional breeding and development of 
genetically engineered plants or GM crops are 
two widely used biotechnological strategies to 
resolve the widespread problems of malnutrition 
and health and for increasing farmers’ income 
and elimination of poverty in developing coun-
tries. Conventional breeding involves identifying 
parents with traits that complement each other 
and are sexually compatible. However, plant 
breeding has been successful but limited. It 
requires selection of offspring with desired traits 
over a long period of time, and production of 
improved crop lines can take as long as 10 years 
from the fi rst parental crossing to generation and 
distribution of selected improved crops. Besides, 
strategies to overcome yield-limiting factors and 
hence enhancement in crop production by con-
ventional breeding have been slow due to the lack 
of desirable level of genetic variability in germ-
plasm (Sahoo and Jaiwal  2008 ). This leaves lim-
ited options of genetic improvement through 
selection since selection operates on existing 
genetic variability. Furthermore, the reproductive 
barriers limit the transfer of favorable alleles 
from interspecifi c and intergeneric sources. 

Moreover, the approach is time-consuming and 
labor intensive. Besides, this can also lead to crop 
vulnerability due to pests and disease epidemics 
and unpredictable climatic factors. Therefore, the 
development of genetically engineered plants by 
the introduction and/or overexpression of selected 
genes seems to be a viable option to enhance the 
tolerance to various stresses and hence stabilize 
yield (Kaur and Murphy  2012 ; Atif et al.  2013 ). 
In addition to widening the gene pool of useful 
genes, it also allows introgression of novel genes 
and traits from any living organism into elite 
agronomic background. Genetic engineering also 
avoids the complexities of linkage drag. Even for 
traits that can be improved by traditional breed-
ing, genetic engineering may facilitate and speed 
up the process (Potrykus  2010 ). The fi rst GM 
crop became commercially available in the mid- 
1990s (Qaim  2009 ) and was grown in 1.7 million 
hectares of land. Since then, farmers around the 
world have adopted genetically modifi ed (GM) 
crops at a very rapid rate, and by the year 2013, 
175.2 million hectares of GM crops were grown 
in 28 countries (Fig.  11.2 ). This GM crop revolu-
tion started in the USA where the adoption rate 
for soybean and maize is 95 % and 75 %, respec-
tively (USDA  2013 ); however, now more than 50 
% of this area is in developing countries (James 
 2013 ). These fi gures in themselves are indicative 
that GM crops have brought benefi ts to farmers 
and society by increasing agricultural productiv-
ity and reducing food costs while providing 
numerous economic, environmental, and nutri-
tional benefi ts even in the era of rapidly changing 
climate.  

11.2     GM Crops: An Overview 
of Plant Transformation 

 Genetic engineering is the process in which a 
desired gene is isolated, cloned, and inserted into 
a host organism. Initially, a plasmid vector is 
designed to transfer the candidate gene into the 
crop plant genome. The transformation vector 
often contains a cassette with a selectable marker 
along with the transgene expression cassette that 
allows for the selection of plant cells that contain 
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the transgene. Transformed plant cells are fi nally 
regenerated into plants (Fig.  11.1 ). Two com-
monly used methods that can be employed to 
insert the transgene into the plant genome are 
 Agrobacterium -mediated transformation and 
transformation via bombardment with DNA- 
coated particles (Altpeter et al.  2005 ; Tzfi ra and 
Citovsky  2006 ; Prado et al.  2014 ). The fi rst GM 
plants were produced using either  Agrobacterium- 
based  or direct gene transfer techniques, such as 
particle bombardment.  Agrobacterium tumefa-

ciens  infects wounded plant tissue(s) and inserts 
a short section of DNA, called the transfer DNA 
or T-DNA, into the host plant genome (Chilton 
et al.  1977 ). This work by Mary-Dell Chilton 
provided evidence that plant genomes could be 
manipulated more precisely, and hence very 
recently, she has been awarded the 2013 World 
Food Prize (World Food Prize  2013 ). This tech-
nology no doubt leads to overcome the bottle-
necks faced during green revolution while using 
conventional breeding techniques.

Transformation

Agrobacterium method

Agrobacterium
tumefaciens

Ti plasmid carrying
desired genes

Particles coated
with DNA encoding
desired genes

Particle gun

Bombardment of
plant pieces with
particles

Chromosomes with
integrated DNA
encoding desired genes

NucleusPlant cell

Plant with new trait

Shoot regeneration
followed by root
regenerationCell multiplication (callus)

DNA transferred
to plant cells

Cocultivation of
Agrobacterium with
plant pieces

Particle gun method

  Fig. 11.1    Overview of primary methods used for plant 
transformation. During the transformation process, either 
 Agrobacterium tumefaciens  or particle bombardment is 
used to transfer the desired gene(s) into individual plant 

cells. These transferred genes then become integrated into 
the genome of some recipient cells. Whole new transgenic 
plants are regenerated from transformed cells, giving rise 
to a transgenic line (Source: modifi ed after Mirkov  2003 )       
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11.3        GM Crops in Developing 
Countries 

 GM crops are the fastest adopted crop technology 
in the history of modern agriculture with 100- 
fold increase from 1.7 million hectares in 1996 to 
over 175 million hectares in 2013. Developing 
countries have established the use of GM crops, 
with Brazil, Argentina, India, China, and South 
Africa being the prominent players among the 19 
developing countries adopting the technology in 
2013. These fi ve countries together constitute 41 
% of world population and are growing 47 % of 
global GM crops. Over 18 million farmers across 
the globe planted GM crops in 2013, among 
which16.5 million were small, poor farmers from 
developing countries. More than 7.5 million 
small farmers from China were growing 4.2 mil-
lion hectares of Bt cotton; however, the trendset-
ters were 7.3 million farmers from India 
cultivating a record of 11.0 million hectares of Bt 
cotton (James  2013 ). Bt cotton resistance to boll-
worms and budworms is quite relevant in devel-
oping countries. Bt crops are based on the  cry  
genes of a soil bacterium,  Bacillus thuringiensis  
(Bt), which produces proteins that are specifi -
cally toxic to larvae of some lepidopteran and 
coleopteran insect species, whereas other insect 
pests, especially sucking pests, remain unaf-
fected. Different strains of the bacterium have 

different  cry  genes classifi ed into groups  cryI –
 cryIV  and subgroups A, B, C, etc., and each 
encodes a protein that is effective against a differ-
ent type of insect (Maagd et al.  1999 ; Halford 
 2012 ). More advanced transgenic cotton varieties 
such as Bollgard II, which contains two Bt genes 
and expresses two Cry proteins (Cry1Ac and 
Cry2Ab2), are now available and are becoming 
widely used. Bollgard I technology involved the 
 Cry1Ac  Bt gene. The USA which accounts for 40 
% of the global GM crops is the leading adopter 
with 70.1 million hectares among the developed 
world, with Canada at the second spot; however, 
a developing country like Brazil is emerging as a 
strong global leader and is only trailing by the 
USA with 40.3 million hectares (James  2013 ). 
Figure  11.3  shows the relative area of biotech 
crops in developed and developing countries in 
millions of hectares, since 1996 to 2013.

11.4         Transgenic Crops 
for Increase of Farmer’s 
Income 

 Agriculture in developing countries is mostly 
dependent on nature as there is a lack of appro-
priate agricultural technologies, the reason for 
which may be economic or the unavailability of 
apt techniques and their ineffi cient implementa-
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  Fig. 11.2    Global area of transgenic crops in millions of hectares, since 1996 to 2013 (Source: James  2013 )       
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tion. Farmers are threatened by extreme weather, 
crop pests, and hence unpredictable and low pro-
ductivity which culminates into food scarcity and 
insecurity. The extreme weather conditions like 
frequent occurrences of drought and fl oods 
invariably result in low crop production and acute 
food shortages. As a result, poor people in devel-
oping countries suffer from different types of 
malnutrition. Tools of plant biotechnology pro-
vide opportunities for improving the economy of 
developing countries and the well-being of the 
people and offer a means for increasing agricul-
tural production, improving human health, and 
minimizing environmental degradation by devel-
oping high-yield varieties, which requires less 
use of chemical pesticides and do not require 
mechanical tilling (Carpenter  2010 ). 

11.4.1     The First Generation of GM 
Crops: Increasing Farmer’s 
Income 

 The fi rst generations of GM crops were focused 
on traits which directly benefi t the farmers. These 
were called as input traits and affect the hus-
bandry and management of a crop. Input traits 
include herbicide tolerance; resistance to insects 
or pathogens like fungus, bacteria, and virus; and 
the ability to survive stress conditions, such as 
drought (Halford  2006 ). Insect resistance and 
herbicide tolerance are two primarily and most 
widely targeted traits, which directly benefi t the 

growers although consumers may benefi t indi-
rectly through lower food prices (Chen and Lin 
 2013 ; Rommens  2010 ; Halford  2012 ). These 
fi rst-generation GM crops have proved to be 
quite promising in enhancing agricultural pro-
ductivity and reducing poverty in developing 
countries (Christou and Twyman  2004 ; Farre’ 
et al.  2010 ,  2011 ). 

 Development of the GM IR traits in crops has 
resulted in less expenditure on insecticides and 
lower costs of production and hence higher 
incomes through improved yields in all countries. 
Thus, gains from technology are direct, and farm-
ers mostly in developing countries have been able 
to improve both their productivity and economic 
returns. The gains from GM HT traits on the 
other hand have come from a combination of 
effects including reduced costs of production, 
e.g., using low-cost, broad-spectrum herbicide 
(glyphosate), which is directly benefi cial for 
farmers. Indirect gains have come by the facilita-
tion of changes in farming systems, e.g., in both 
North and South America, it facilitated the mov-
ing away from conventional to low or no-tillage 
production systems and enabled many farmers to 
plant a second crop of soybeans after wheat in the 
same season (Brookes and Barfoot  2013 ). 
Adopting conservation tillage techniques reduces 
soil erosion and improves soil quality through a 
gradual accumulation of organic material in the 
soil (Park et al.  2011 ). Insecticide reduction and 
yield effects are closely related. Yield enhance-
ment varies depending on the environment and 
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  Fig. 11.3    Adoption of GM crops in developed and developing countries in millions of hectares (Source: James  2013 )       
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the local intensity of pest and weed pressures. 
Pest pressure is often higher in the tropics and 
subtropics, and resource-poor farmers face more 
severe constraints in chemical pest control, so 
yield effects will be more pronounced in develop-
ing countries (Qaim and Zilberman  2003 ; Qaim 
 2009 ; Park et al.  2011 ). Adoption of Bt crops 
resulted in 65 % insecticide reduction and 24 % 
increase in effective yield in China. As a result, 
increase in gross margin in China reached 
US$470/ha (Pray et al.  2002 ). Similar results 
were later reported in India where adoption of Bt 
crops resulted in 41 % insecticide reduction and 
37 % increase in effective yield leading to 
US$135/ha increase in gross margin (Qaim et al. 
 2006 ; Sadashivappa and Qaim  2009 ). Farmers in 
developing countries received $3.74 for each dol-
lar invested in GM crop seeds in 2012 (the cost 
being equal to 21 % of total technology gains), 
while farmers in developed countries received 
$3.04 for each dollar invested in GM crop seed 
(the cost being equal to 25 % of the total technol-
ogy gains) (Brookes and Barfoot  2014 ). The 
higher share of total technology gains realized by 
farmers in developing countries relative to farm-
ers in developed countries mainly refl ects weaker 
provision and enforcement of intellectual prop-
erty rights coupled with higher average levels of 
benefi ts in developing countries. 

 Crop biotechnology undoubtedly helps farm-
ers earn reasonable incomes for their work. The 
net economic benefi t at the farm level in 2012 
was $18.8 billion, equal to an average increase in 
income of $117/hectare. For the 17-year period 
(1996–2012), the global farm income gain has 
been $116.9 billion. The total farm income gain 
of $116.9 billion was divided equally between 
farmers in developing and developed countries. 
Fifty-eight percent (58 %) economic gains were 
due to reduced production costs (less plowing, 
fewer pesticide sprays, and less labor) and 42 % 
due to substantial yield gains of 377 million tons. 
The highest yield gains were obtained by farmers 
in developing countries, many of which are 
resource poor and farm small plots of land. The 
cost farmers paid for accessing crop biotechnol-
ogy in 2012 ($5.6 billion payable to the seed sup-

ply chain) was equal to 23 % of the total gains (a 
total of $24.4 billion inclusive of the $18.8 bil-
lion income gains). Globally, farmers received an 
average of $3.33 for each dollar invested in GM 
crop seeds (Brookes and Barfoot  2014 ). So, crop 
biotechnology continues to be a good investment 
for farmers around the world.  

11.4.2     Concern of Farmers 
about Planting Genetically 
Modifi ed Crops  

 Interest of farmers lies in increased income and 
productivity; better allocation of labor, time, and 
resources: and safer practices and products for 
themselves and the environment. In view of these 
facts, major concerns of farmers while planting 
genetically modifi ed crops are as follows:

    1.    Seeds bred for particular soils, particular tem-
perature, and rainfall zones do not perform to 
the optimum in other soils and zones; there-
fore, farmers must have access to seeds that 
are suitable for the agroecological conditions 
of their particular fi elds. Farmers must be able 
to coexist with their neighbors in neighborly 
ways so that each farmer can choose what is 
appropriate for his/her fi eld (Kershen  2010 ).   

   2.    Laws should not be too stringent when it 
comes to using genetically modifi ed seeds. 
They must not face discriminatory rules and 
regulations that limit their choices and inap-
propriately impose liability upon them simply 
because they desire to grow genetically modi-
fi ed crops. When laws allow farmers the 
choice, farmers have chosen quickly and 
broadly to grow genetically modifi ed crops in 
their fi elds. In countries like India, Pakistan, 
and Brazil, farmers are defying the law to 
improve their lives and their farms (Rehman 
 2007 ; Roy et al.  2007 ). Illegal cultivation of Bt 
cotton in Pakistan forced the regulators to 
approve its cultivation in 2010 (Nazli et al. 
 2010 ). 

 Interestingly, a small country like 
Bangladesh approved Bt eggplant (brinjal) for 
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planting for the fi rst time in 2013 and released 
four varieties of Bt eggplant in January 2014 
(BARI  2014 ). In the future, it may serve as an 
exemplary model for other small poor coun-
tries (James  2013 ).       

11.5     Transgenic Crops for Poverty 
Alleviation 

 For developing world, poverty is the main cause 
of chronic food insecurity (Wijk  2002 ; Christou 
and Twyman  2004 ; Yuan et al.  2011 ). GM crops 
can contribute to the alleviation of poverty in 
developing countries through increased income 
for producers as well as addressing persistent 
problems of hunger (Juma  2011 ; Brookes and 
Barfoot  2009 ,  2013 ). The reasons for the increase 
in producer’s income may vary from region to 
region as well as from farm to farm (Finger et al. 
 2011 ). According to the UN reports of 2011, half 
the population in sub-Saharan Africa and in the 
least developed countries subsists on less than 
US$ 1 per day which comes to more than a quar-
ter of the population in developing countries as a 
whole (UN  2011 ). On a larger scale, this trans-
lates into productivity losses that can account for 
2–4 % of gross domestic product (GDP) as dem-
onstrated for several countries in South Asia 
(FAO  2012 ). Developments in crop will have a 
direct impact on poverty alleviation as many of 
the poorest people and countries in the world are 
highly reliant on agriculture (DFID  2005 ). Hence, 
a remarkable gain in overall economic welfare 
can be achieved through adoption of technologies 
such as genetic engineering of plants. GM crops 
can contribute signifi cantly to poverty reduction 
and rural development, when they are suited to 
the small farm sector and embedded in a contrib-
utory institutional environment. The effects of 
transgenic crops are considered in relation to 
crop yield, inputs such as pesticides, and their 
effects on overall profi tability. Yield improve-
ment, higher revenue, and lower pesticide costs 
are widely reported for Bt cotton, producing in 
most cases signifi cant net benefi t after account-
ing for higher seed prices. 

 So, GM technology has had a signifi cant posi-
tive impact on farm income derived from a com-
bination of enhanced productivity and effi ciency 
gains. It was assumed that the productivity of 
unskilled labor would rise by 2 % following 
adoption of second-/next-generation GM crops. 
Even golden rice on its own could add $3.2 bil-
lion per year to developing countries economic 
welfare (Anderson  2010 ). Global value of GM 
rice has recently been estimated to be US$64 bil-
lion per year by aggregating the expected annual 
benefi ts (Demont and Stein  2013 ). 

 In 2012, the direct global farm income bene-
fi t from GM crops was $18.8 billion. This is 
equivalent to having added 5.6 % to the value of 
global production of the four main crops of soy-
bean, maize, canola, and cotton. Positive yield 
impacts from the use of this technology have 
occurred in all user countries when compared to 
average yields derived from crops using conven-
tional technology (such as application of insec-
ticides and seed treatments). Because most of 
the farmers in developing countries are small-
scale farmers, so any increase in their income 
can have a direct impact on poverty alleviation. 
The average yield impact across the total area 
planted to insect-resistant (IR) traits during the 
1996–2012 period has been +10.4 % for insect-
resistant corn and +16.1 % for insect-resistant 
cotton. In 2012, 46.2 % of the farm income ben-
efi ts have been earned by developing country 
farmers, and the vast majority of these income 
gains have been from GM IR cotton and GM HT 
soybeans (Tables  11.1  and  11.2 ). In the absence 
of crop biotechnology, 17.3 million farmers 
using this technology in 2012 would not have 
maintained global  production levels equivalent 
to 2012 levels and would have required addi-
tional plantings of 4.9 million ha of soybeans, 
6.9 million ha of corn, 3.1 million ha of cotton, 
and 0.2 million ha of canola. This total area 
requirement is equivalent to 9 % of the arable 
land in the USA or 24 % of the arable land in 
Brazil (Brookes and Barfoot  2014 ). GM crops 
are, hence, allowing farmers to grow more with-
out using additional land. It is, therefore, a land-
saving technology (James  2010 ).
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11.5.1        Role of Bt Cotton 
in Alleviating Poverty in India 

 India has the third largest area in the world under 
GM crops. There are more than 60 transgenic 
crops under research and more than 20 under 
fi eld trials in India (ISAAA  2013 ). But only one 
crop is under cultivation, i.e., Bt cotton, since its 
approval in 2002 by the Genetic Engineering 
Approval Committee (GEAC) of the Government 
of India. Premature discontinuation of GM mus-
tard in 2001 and the moratorium of Bt brinjal by 
the Ministry of Environment and Forests (MOEF) 
in 2010 raised a question on the regulatory sys-
tem of GM crops in India. However, on a brighter 
side, Bt cotton is doing exceptionally well. In 
India, a case study was done, which compared 
the performance of over 9000 Bt and non-Bt cot-
ton farm plots in Maharashtra, and it was found 
that Bt cotton varieties had a signifi cant positive 

impact on average yields and on the economic 
performance of cotton growers. Between 2003–
2004 and 2006–2007, cotton yields in India indi-
cate a signifi cant yield advantage of more than 30 
% with Bt cotton compared with conventional 
varieties with corresponding increase in farm 
income (Karihaloo and Kumar  2009 ). Similar 
study was done on resource-poor small-scale cot-
ton farmers of South Africa, and similar results 
were obtained (Bennett et al.  2006 ). Bt cotton 
produces 82 % higher aggregate incomes per 
hectare in India, and as a result annual consump-
tion expenditures of Bt-adopting households 
increased by 18 %, during 2006–2008, in com-
parison with non-adopters (Qaim  2009 ; Klumper 
and Qaim  2014 ). The yield increases in the range 
of +30 % to +40 % have been confi rmed later in 
India (Qaim  2009 ,  2010 ; Gruere and Sengupta 
 2011 ; Herring and Rao  2012 ). As a result, Bt cot-
ton area increased from 0.05 million hectares in 
2002 to 9.3 million hectares in 2011–2012, 
accounting for 88 % of total area (IGMORIS 
 2013 ), and the Indian cotton sector switched 
from a net import to a signifi cant export situation. 
Despite this signifi cant increase in cotton area, 
the use of insecticides on cotton decreased from 
46 % of total insecticides used in agriculture dur-
ing 2001–2002 to 20 % in 2011–2012 (Kranthi 
 2012 ). Bt technology further contributed to 24 % 
increase in cotton yield per acre through reduced 
pest damage and a 50 % increase in profi t among 
cotton smallholders (Kathage and Qaim  2012 ). 

   Table 11.1    GM crop farm income benefi ts of developing 
countries in million US$ in the year 2012   

 GM crops 
 Farm income benefi ts in developing 
countries in 2012 

  GM IR cotton   4800.7 

 GM HT 
soybeans 

 1842.5 

 GM IR maize  1400.3 

 GM HT maize  543.9 

 GM HT cotton  75.8 

  Total    8663.2  

  Source: modifi ed after Brookes and Barfoot ( 2014 )  

   Table 11.2    GM crop farm income benefi ts for developing countries in million US$, 1996–2012   

 Countries  GM IR cotton 
 GM HT 
soybeans 

 GM HT 
maize 

 GM HT 
cotton  GM IR maize  Total 

  China    15,270.4   N/a  N/a  N/a  N/a   15,270.4  

  India    14,557.1   N/a  N/a  N/a  N/a   14,557.1  

 South Africa   34.2    9.1    4.1    3.2    1100.6    1151.2  

 Paraguay  N/a   828   N/a  N/a  N/a   828.0  

 Pakistan   725.1   N/a  N/a  N/a  N/a   725.1  

 Bolivia  N/a   432.2   N/a  N/a  N/a   432.2  

 Philippines  N/a  N/a   104.7   N/a   273.6    378.3  

 Burkina Faso   186.9   N/a  N/a  N/a  N/a   186.9  

 Honduras  N/a  N/a  N/a  N/a   6.9    6.9  

  Source: modifi ed after Brookes and Barfoot ( 2014 )  
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Bt cotton has signifi cantly raised living standards 
of small farm households in India.   

11.6     Transgenic Crops 
for Nutrition and Health 

 On the one hand, the world is facing newer chal-
lenges, such as the expansion of cultivated areas 
to less fertile fi elds and the adaptation of crops to 
a globally changing climate (Avni and Bla’zquez 
 2011 ), on the other hand the nutritional quality of 
food or balanced diet is emerging as a major 
problem in developing countries. In response to 
escalating food prices, poor households had to 
limit their food consumption, and poor people are 
unable to procure a balanced diet. Food prices 
throughout the world have increased sharply in 
the last decade. For example, prices of wheat and 
maize were three times higher in 2008 than at the 
beginning of 2003, and the price of rice was fi ve 
times higher (Braun  2008 ,  2010 ). Majorities of 
the people living in developing countries are 
extremely poor and cannot afford combination of 
expensive foods like meat, fi sh, milk, pulses, etc., 
which usually forms essential balanced diets. 
According to an estimate, food production would 
have to be doubled by 2050 to overcome existing 
hunger, feed an additional 2 billion people, and 
accommodate rising demand from income 
growth (Braun  2010 ; Adenle et al.  2012 ). 

 Lack of balanced diet leads to micronutrient 
defi ciencies and, hence, negative consequences 
on people’s nutrition and health. Micronutrients 
are involved in all aspects of development, 
growth, and physiology of the human body, and 
their defi ciencies can cause birth defects, perma-
nent physical and mental impairment, as well as 
an increased risk of death by infectious and 
chronic diseases. The long-term consequences of 
insuffi cient amounts of essential micronutrients 
in the human diet can be more devastating than 
low-energy intake (Murgia et al.  2013 ). The lead-
ing micronutrient defi ciencies are iron defi ciency, 
iodine defi ciency, zinc defi ciency, folic acid defi -
ciency, and vitamin A defi ciency. One or more of 
these affect almost half of the world’s population. 
Since children’s nutrition is crucial for their 

physical and cognitive development and for their 
productivity and earnings as adults, the health 
and economic consequences of insuffi cient food 
and poor diets are lifelong – for the individuals as 
well as for society. Besides, GM crops with 
insect-resistant genes may reduce the need for 
pesticides which improves the health of farmers, 
especially in developing countries where pesti-
cides are still applied with handheld sprayers 
(Chrispeels  2014 ). 

11.6.1     Next Generation GM Crops: 
Improving Nutrition 
and Health 

 Scientifi c knowledge has achieved breakthrough 
in the fi eld of genomics, proteomics, and metabo-
lomics in the recent times. It has broadened our 
understanding of the sources and nutritional val-
ues of the products of many of food crops (Arber 
 2010 ). Next-generation GM crops target traits 
which affect the composition of the crop product 
for quality improvements for nutrition and indus-
trial purposes and are called as output traits. 
These traits include improved nutritional value 
like staple foods with enhanced contents of 
essential amino acids (especially lysine and 
methionine) and micronutrients (vitamins A and 
E, iron, folate, and ascorbate); oilseeds with 
improved fatty acid composition (oleic acid, 
omega-3 fatty acid); changes in starch quality, 
i.e., resistant starch and antioxidants (anthocya-
nins); etc. (Jefferson-Moore and Traxler  2005 ; 
Pew Initiative on Food and Biotechnology  2007 ). 

 In general, one or several key genes in meta-
bolic pathways are introduced or knocked down 
by genetic modifi cation to promote the 
 accumulation of healthy metabolites, and nutri-
tional requirements can be addressed directly by 
contributing to multipoint intervention strategies 
(Yuan et al.  2011 ). The main benefi ciaries of 
these so-called next-generation GM crops are 
consumers and/or food processors. One famous 
example is golden rice, which can prevent vita-
min A defi ciency that prevails in poor popula-
tions solely dependent on rice as a staple food 
crop. Approximately 500,000 children in devel-
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oping countries become blind each year owing to 
vitamin A defi ciency. Africa accounts for almost 
50 % of the children who are clinically or sub-
clinically defi cient in vitamin A, particularly 
under 5 years of age (FAO/WHO  1998 ; WHO 
 2010 ). Golden rice contains a high content of 
β-carotene by introduction of a previously absent 
biosynthetic pathway into rice endosperm. A GM 
line containing β-carotene was developed by 
Ingo Potrykus and coworkers in 2000 at the Swiss 
Federal Institute of Technology, Zurich (Potrykus 
 2003 ). Rice endosperm contains geranylgeranyl 
diphosphate, which is converted into β-carotene 
by three enzymes produced from different trans-
genes: phytoene synthase ( psy ), lycopene 
β-cyclase gene from daffodil ( Narcissus 
pseudonarcissus ), and a phytoene desaturase 
( crtI ) gene from the bacterium  Erwinia uredov-
ora . The GM rice producing β-carotene was 
crossed with another line engineered with multi-
ple genes to improve iron availability, including a 
phytase-encoding gene from  Aspergillus fumiga-
tus  (Lucca et al.  2001 ). The high-β-carotene/
high-availability iron hybrid was called golden 
rice (Halford  2012 ). Higher β-carotene intakes 
will improve the vitamin A status of individuals, 
thus reducing the incidence of adverse health out-
comes (Qaim  2010 ). The replacement of the daf-
fodil genes  Zmppsy1  and  EucrtI  with its maize 
ortholog is the basis of Golden Rice 2, which pro-
duces up to 37 μg of carotenoids per gram dry 
weight (DW) of grain, of which 31 μg/g is 
β-carotene (Paine et al.  2005 ). The putative 
impact of golden rice was calculated as up to 
40,000 lives saved per year for India alone 
(Khush  2012 ). β-Carotene in golden rice is as 
good as pure β-carotene in oil at providing vita-
min A to children (Tang et al.  2012 ). It was the 
use of genetic engineering together with conven-
tional breeding, i.e., combinatorial transforma-
tion method, which has enabled the production of 
provitamin A (PVA) in corn and rice plants as an 
alternative source of vitamin A to save millions 
of children who go blind every year (Avni and 
Bla’zquez  2011 ). 

 Bananas having levels of PVA greater than 
15-fold higher than wild type have been devel-

oped through the overexpression of a single gene, 
phytoene synthase, using either constitutive pro-
moters or fruit-preferred promoters. Two differ-
ent phytoene synthase genes, one from a naturally 
high-PVA banana and other from maize gene 
used in Golden Rice 2, were differently expressed 
in bananas, and lines with elevated PVA have 
been identifi ed (Dale et al.  2013 ). Anemia caused 
by iron defi ciency is the world’s most common 
nutritional defi ciency. It affects pregnant and 
nursing women and young children most com-
monly (Earl and Woteki  1998 ; Swaminathan 
 2002 ). Genetic enrichment of iron in Indian rice 
Pusa Basmati ( Oryza sativa  L.) has also been 
accomplished through recombinant DNA tech-
nology (Shivprakash et al.  2006 ). Co-expression 
of endosperm-specifi c recombinant soybean fer-
ritin and  Aspergillus  phytase in maize resulted in 
signifi cant increases in the levels of bioavailable 
iron (Drakakaki et al.  2005 ). A similar end was 
achieved earlier with lettuce (Goto et al.  2000 ). 
Transgenic rice plants expressing the NAS (nico-
tianamine synthase) genes  Osnas1 ,  Osnas2 , or 
 Osnas3  accumulated up to 19 lg/g of iron in the 
endosperm (Johnson et al.  2011 ). Recently, phos-
phate bioavailabilities of barley grains have been 
improved from 30 to 60 % using cisgenesis with 
an endogenous phytase gene (Holme et al.  2012 ). 
Barley grains are widely used for feeding mono-
gastric animals such as chickens and pigs. A 
large number of rice or soybean ferritin overac-
cumulators in rice mega-variety IR64, including 
marker-free events, were generated and evaluated 
by introducing soybean or rice ferritin genes into 
the endosperm for product development. As 
much as a 37- and 19-fold increase in the expres-
sion of ferritin gene in single and co-transformed 
plants, respectively, and a 3.4-fold increase in Fe 
content in the grain over the IR64 wild type were 
achieved (Oliva et al.  2014 ). 

 Multivitamin maize expressing the rice  dhar  
gene from the ascorbate recycling pathway accu-
mulated six times the normal level of ascorbate 
(Naqvi et al.  2009 ). Similarly, the constitutive 
expression of two  Arabidopsis  cDNA clones 
encoding q-hydroxyphenylpyruvate dioxygenase 
(HPPD) and 2-methyl-6-phytylplastoquinol 
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methyltransferase (MPBQ MT) increased the 
tocopherol content by threefold in transgenic 
maize (Naqvi et al.  2011 ). The essential fatty 
acids are abundant in fi sh, shellfi sh, nuts, and 
leafy vegetables, but they are not present in cere-
als (Farre et al.  2011 ). Genetic engineering can 
be used to produce oilseeds such as soybean and 
canola that have nutritional properties similar to 
fi sh oils (Damude and Kinney  2008 ). These 
include fatty acids associated with lowering risks 
of coronary heart disease (Haslam et al.  2013 ). 
For example, omega-3 fatty acid which reduces 
coronary heart disease and maintains heart health 
has been increased from 12 to 50 % in canola 
(Ursin  2003 ). The fatty acid biosynthesis path-
way in plants was modulated to produce ω-3 and 
ω-6 PUFAs by introducing the microbial enzymes 
responsible for a sequence of fatty acid desatura-
tion and elongation reactions (Domergue et al. 
 2005 ). Studies have also shown that the use of oil 
from transgenic soya in which the fatty acid met-
abolic pathways have been modifi ed can increase 
the n-3 VLC-PUFAs of chicken meat (Rymer and 
Givens  2009 ). 

 Folate prevents neural tube defects and causes 
widespread megaloblastic anemia during preg-
nancy and often exacerbates already existing iron 
defi ciency anemia (Rush  2000 ; Barber et al.  2000 ; 
Laurence et al.  1981 ; Rosenquist et al.  1991 ). 
Enhancing folate content in staple crops by meta-
bolic engineering is a promising, cost- effective 
strategy to eradicate folate malnutrition worldwide 
(Blancquaert et al.  2014 ). The transformation of 
two pathway genes from  Arabidopsis thaliana  
increased folate production from <1 mg/g to 17 
mg/g in rice which is enough to meet the require-
ments necessary to combat its defi ciency 
(Storozhenko et al.  2007 ). Several other traits are 
also under development, such as rice enriched with 
lactoferrin to reduce diarrhea in high-risk patients. 

 Similarly, biofortifi cation is another important 
and widely used technique to nutritionally 
enhance the food crops at source (Zhu et al. 
 2007 ). Biofortifi cation of staple food crops might 
be used as one of the possible strategies against 
micronutrient malnutrition in developing coun-
tries. Biofortifi cation allows the poor to receive 
the necessary amounts of vitamin A, zinc, and 

iron via their regular staple food diets and, hence, 
delivers naturally fortifi ed foods to people with 
limited access to commercially marketed forti-
fi ed foods or supplements (Braun  2010 ). 
However, the desired traits for biofortifi cation 
may not be present at all in a food crop; the best- 
known example is golden rice, in which the 
carotenoid biosynthetic pathway has been recon-
stituted in non-carotenogenic endosperm tissue, 
as a means to deliver provitamin A (Mayer et al. 
 2008 ). So, biofortifi cation of staple crop plant tis-
sues can be achieved through breeding where this 
is possible, while recombinant DNA technology 
must be applied in all other cases (Bayer  2010 ). 
Hence, the science of biotechnology, either 
through conventional breeding (often in conjunc-
tion with marker-assisted selection) or genetic 
modifi cation approaches, has great potential to 
achieve biofortifi cation for nutritional benefi ts 
(Table  11.3 ).

11.7         Transgenic Crops in the Era 
of Climate Change 

 A question that often comes in one’s mind is 
whether genetic engineering can contribute to 
food security, as well as enhancing human nutri-
tion and farming under a changing climate. 
Global climate change is increasing temperatures 
worldwide resulting in global warming besides 
rapid climate variability and unscheduled expan-
sion or shrinkage of the extreme climates (Keer 
 2007 ; IPCC  2001 ,  2007 ; Webb et al.  2012 ). In 
other words, as a result of climatic change, there 
is an increase in the frequency of extreme events 
that are likely to decrease crop yield affecting all 
dimensions of crop production (Singh et al. 
 2015 ). Human activities are hugely accelerating 
this change in global climate. Continuously 
increasing human population is hence making the 
situation even worse. It is expected to peak before 
the end of the century, with 10 billion people 
before 2100 (Lutz et al.  2001 ; Duhamel and 
Vandenkoornhuyse  2013 ). Food crises are exac-
erbated by global warming as agricultural pro-
ductivity has declined worldwide as a 
consequence of the hot summers experienced in 
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the recent past (Mittler  2006 ; Mittler and 
Blumwald  2010 ). It is estimated that global 
warming will reduce about 6 % and 5 % average 
yield per 1 °C rise when it comes to C 3  and C 4  
crops, respectively (Yamori et al.  2013 ) Besides, 
current trends in yield increase are insuffi cient to 
double food production by 2050 (Ray et al. 
 2013 ). However, the impact of climate change 
will cut across all boundaries, and the most sus-
ceptible victims of this climate change are going 

to be the most food-insecure developing coun-
tries with a challenge posed to them to attain mil-
lennium development goals and achieve 
sustainable development by climate change 
(Singh et al.  2015 ). 

 The climate change which is generally related 
to the abiotic stresses due to extreme environ-
mental changes may result in melting of portions 
of the Himalayan glaciers, disturb the monsoon 
pattern, and increase fl ooding/drought in Asia. 

   Table 11.3    Some of the important nutritionally enhanced GM crops   

 Crop  Nutrient/trait  Base level 
 Maximum level in 
GM crop  Main benefi ts  Reference(s) 

 Rice  Iron  –  37- and 19-fold 
increase in the 
expression of 
ferritin gene in 
single and 
co-transformed 
plants, 
respectively 

 Malnutrition causes anaemia 
or impaired mental 
development 

 Oliva et al. 
( 2014 )) 

 Banana  Provitamin A 
(PVA) 

 –  15-fold higher  Vitamin A defi ciency causes 
blindness and increased child 
mortality 

 Dale et al. ( 2013 ) 

 Barley  Phosphate 
bioavailability 

 30 %  60 %  Barley grains used for feeding 
monogastric animals such as 
chickens and pigs 

 Holme et al. 
( 2012 ) 

 Wheat  Amylose  28 %  75 %  Benefi t for some health issues 
associated with some chronic 
diseases 

 Regina et al. 
( 2006 ); Zhu et al. 
( 2012 ) 

 Maize  Tocopherol  –  Threefold  Powerful antioxidants that 
protect fatty acids, LDLs, and 
other components of cell 
membranes from oxidative 
stress. 

 Naqvi et al. 
( 2011 ) 

 Soybean  Oleic acid  20 %  80 %  To hinder the progression of 
adrenoleukodystrophy, and 
reduce blood pressure 

 Mroczka et al. 
( 2010 ); Wagner 
et al. ( 2011 ) 

 Maize  Ascorbate  18 mg/g  107 mg/g  Ascorbate defi ciency causes 
scurvy in humans 

 Naqvi et al. 
( 2009 ) 

 Rice  Iron  –  Increase > sixfold  Malnutrition causes anaemia 
or impaired mental 
development 

 Wirth et al. 
( 2009 ) 

 Tomato  Anthocyanin  0 mg/g  2.83 mg/g  To extend the life of cancer- 
prone mice 

 Butelli et al. 
( 2008 ) 

 Rice  Folate  <1 mg/g  17 mg/g  To prevent neural tube defects  Storozhenko 
et al. ( 2007 ) 

 Rice  β-Carotene  0 µg/g  37 µg/g  Vitamin A defi ciency causes 
blindness and increased child 
mortality 

 Paine et al. 
( 2005 ) 

 Canola  Omega-3  12 %  50 %  Reduces coronary heart 
disease and maintains heart 
health 

 Ursin ( 2003 ) 
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Increased uncertainty over the availability of 
water for irrigation and more frequent fl oods will 
affect 25 % of the world’s cereal production. 
Most of the abiotic stress tolerance mechanisms 
in plants are complex due to the involvement of 
multiple metabolic pathways. Hence, manipulat-
ing these characters through conventional breed-
ing remains a big challenge. The genetic 
transformation of plants is an effi cient alternative 
to this problem. The genetic transformation of 
plants with regulatory genes, e.g., transcription 
factors, is a promising method for genetic engi-
neering because many of the ways in which 
plants can adapt to cold, drought, oxidative stress, 
and extreme temperatures is through transcrip-
tional control (Mittler and Blumwald  2010 ). The 
genetic transformation studies to overcome vari-
ous types of stresses have already been discussed 
in detail in this book in an article by Bauddh and 
coworkers (Table  11.4 ). Genetic engineering 
(GE) has already contributed to the reduction of 
greenhouse gas (GHG) emissions as a result of 
less fuel use and additional soil carbon storage 
from reduced tillage with GM crops. When 
global impact of biotech crops on environmental 
effects was estimated between 1996 and 2010, it 
was found that farming with transgenic crops 
since 1996 has led to additional soil carbon 
sequestered, equivalent to 133,639 million tons 
of CO 2  (Brookes and Barfoot  2012 ). In 2012, this 
was equivalent to removing 27 billion kg of car-
bon dioxide from the atmosphere or equal to 
removing 11.9 million cars from the road for 1 
year (Brookes and Barfoot  2014 ). Increased pro-
ductivity from GM crops has decreased pressure 
for land conversion of non-cropland to cropland 
which is a major contributor to the greenhouse 
gas increase in the atmosphere. This indicates 
that it can play a large role in both the mitigation 
of and adaptation to climate change.

11.8        Conclusions and Future 
Prospects 

 In spite of the strong opposition, farmers around 
the world have adopted GM crops at an unprece-
dented rate (Herring  2008 ; James  2013 ) espe-

cially in some major developing countries like 
India and China. The principal benefi ciaries of 
agricultural development from GM crops are 
likely to be poor farmers and poor consumers 
(Weale  2010 ). GM crops have the potential to 
improve food security in developing countries by 
improving incomes of farmers and availability of 
lower-priced and better-quality food for consum-
ers (Qaim and Kouser  2013 ). There are several 
constraints to the research and application of bio-
technology in developing countries like fi nancial 
resources, lack of policies and absence of sys-
tems for the delivery of technologies to potential 
users, and fi nally lack of awareness, leading to 
misconceptions about the potential of and risks 
posed by biotechnology. Hence, public contro-
versies about the risks and benefi ts of GM crops 
continue (Gilbert  2013 ; Fernandez-Cornejo et al. 
 2014 ). However, there is no scientifi c evidence 
that the process of transferring genes from one 
kind of organism to another possesses intrinsic 
problems. Further, there are no such reports that 
anyone has become ill as a result of eating GM 
foods. Hundreds of millions of people are regu-
larly consuming foods produced by GM crops 
(Raven  2010 ). There is an increasing scientifi c 
consensus, even in Europe, that the GM foods 
and crops currently on the market have brought 
no documented new risks either to human health 
or to the environment (Paarlberg  2010 ; European 
Commission  2010 ; European Academies Science 
Advisory Council  2013 ; DeFrancesco  2013 ). 
However, the existing negative public attitude 
toward GM crops, especially in Europe, has con-
tributed to a stringent complex regulatory frame-
work and has limited public and private 
investments into GM crop research, increasing 
the cost of technologies making it diffi cult for 
developing countries to continue the research on 
large scale and, hence, reap its benefi ts (Qaim 
 2010 ). Besides, investments should be more in 
the areas of R&D, rural infrastructure, rural insti-
tutions, and information monitoring and sharing 
to enhance agricultural productivity (Braun 
 2010 ). The public sector needs to resource these 
developing country-targeted projects as they do 
not represent commercially valuable targets and 
therefore cannot be a commercial priority for the 
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private sector (Bayer  2010 ). However, to develop 
novel traits and to distribute it systematically at a 
wider scale would require the expertise and 
resources of both public and private sector insti-
tutions. In the immediate future, the research 
should focus on development of methods avoid-
ing antibiotic- or herbicide-resistant genes as 
selectable marker or use of positive selectable 
markers such as phosphomannose isomerase 
( pmi ), xylose isomerase ( xyl  A), etc., to widen the 
acceptability of GM crops and selection of genes 
for the desirable traits for the transfer and strate-
gies for the seed distribution system, where the 
end user in the developing countries is benefi ted 
and not only industries in developed countries. 
There is a wide scope to produce nutritionally 
enhanced crops such as fi nger millet, cassava, 
etc., which are widely grown in sub-Saharan 
countries like Africa and are nutritionally poorer 

crops. Once nutritionally enhanced, these crops 
can be easily available and, hence, benefi cial to 
poorer local populations. The new tools of 
genomics, proteomics, and metabolomics would 
allow better understanding of vital processes and 
metabolic pathways for their improvement. 
Generation of more number of next-generation 
GM crops in the near future and development of 
new biotechnologies and non-targeted safety 
assessment approaches may improve public per-
ception about the potential risk of GM crops 
(Chen and Lin  2013 ). The focus should now be 
on the use of new techniques like RNA interfer-
ence, agro-infi ltration, cisgenesis, 
oligonucleotide- directed mutagenesis, and zinc 
fi nger nuclease technology that may or may not 
come under the strict GM regulations (Halford 
 2012 ). Crops created through genome engineer-
ing might prove to be more acceptable to the pub-

   Table 11.4    Some of the important genes transferred against major abiotic stresses   

 Stress  Gene  Crop/plant  Reference(s) 

 Cold   CBF (CpCBF2 )  Papaya  Zhu et al. ( 2013 ) 

  OsDREB1B   Mouse-ear cress 
(Arabidopsis) 

 Qin et al. ( 2007 ) 

  ApGSMT  and  ApDMT   Mouse-ear cress 
(Arabidopsis) 

 Waditee et al. ( 2005 ) 

  BNCBF5/BNCBF17   Brassica  Savitch et al. ( 2005 ) 

 Heat   RcaB   Wheat  Wang et al. ( 2014 ) 

  CBF (CpCBF2)   Papaya  Zhu et al. ( 2013 ) 

  AChE   Tobacco  Yamamoto et al. ( 2011 ) 

  AtDREB1A   Chrysanthemum  Hong et al. ( 2009 ) 

  GASA4 T-DNA  (SALK_042431)  Maize  Ko et al. ( 2007 ) 

  AtDREB2A   Mouse-ear cress 
(Arabidopsis) 

 Sakuma et al. ( 2006 ) 

 Drought   codA   Rice.  Kathuria et al. ( 2009 ) 

  betA   Cotton  Lv et al. ( 2007 ) 

  TPS1   Tobacco  Almeida et al.  2007  

  TPS1-TPS2   Mousear Cress (Arabidopsis)  Miranda et al. ( 2007 ) 

  TPS1-TPS2   Tobacco and mouse-ear cress 
(Arabidopsis) 

 Karim et al. ( 2007 ) 

  GmDREB2   Tobacco and mouse-ear Cress 
(Arabidopsis) 

 Chen et al. ( 2007 ) 

  AtDREB1A   Fescue  Zhao et al. ( 2007 ) 

  P5CSF129A   Wheat  Vendruscolo et al. 
( 2007 ) 

  P5CSF129A   Sugarcane  Molinari et al. ( 2007 ) 

  OsDREB1   Rice  Ito et al. ( 2006 ) 

  P5CSF129A   Petunia  Yamada et al. ( 2005 ) 
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lic than plants that carry foreign DNA in their 
genomes. Crops with enhanced nutritional value 
can be created by altering only a few nucleotides. 
The use of gene knockouts to disrupt biochemical 
pathways should make it possible to create plants 
that accumulate a variety of valuable biosynthetic 
intermediates (Voytas and Gao  2014 ). 

 GM crops hold a signifi cant potential to con-
tribute to poverty reduction, better nutrition and 
health, and sustainable development in develop-
ing countries especially in the present scenario of 
climate change. So, risk–benefi t analysis 
approach should be considered over risk assess-
ment. Saving lives by curbing malnutrition and 
food security should be the fi rst priority. Hence, 
the “if’s and but’s” should be in waiting, when it 
comes to saving lives. Commercialization of GM 
crops will have substantial implications for the 
alleviation of poverty, hunger, and malnutrition. 
They have much more to offer the developing 
world than the developed because when it comes 
to food developing world needs more and has 
fewer alternatives.     
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