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      Impacts of Anthropogenic Carbon 
Dioxide Emissions on Plant-Insect 
Interactions                     

     Jorge     A.     Zavala      and     Linus     Gog   

    Abstract  

  Human industrialization has steadily raised atmospheric levels of CO 2  from 
280 ppm prior to industrialization to current levels at 400 ppm and by 2050 are 
expected levels of 550 ppm. Climate change has important impacts on plant-
insect interactions, and gaps in current understanding of plant responses to 
herbivory exist. Lately new empirical data has started to illuminate the mecha-
nisms of the effects of elevated CO 2  in plant-insect interactions. Research has 
shown that the resource allocation to allelochemicals is interconnected among 
photosynthesis, genetic regulation, and hormonal signaling. Recent molecular 
approaches have revealed that insect damage is perceived by plants, and the 
signal is amplifi ed by the participation of regulatory elements modulated by 
JA and ET, which induce plant responses to increase chemical defenses against 
herbivores. Elevated CO 2  inhibits JA and ET pathways and increases suscep-
tibility of plants to herbivore attack by decreasing both constitutive and induc-
ible chemical defenses against certain insects. Conversely, enriched 
atmospheric CO 2  increases SA, which increases other chemical defense path-
ways that are not regulated by JA. Identifying how atmospheres with high CO 2  
levels moderate resource allocation to secondary metabolism would help to 
avoid any interference in natural plant defenses. In this chapter, we discuss 
current understanding of the mechanisms controlling insect herbivory pertain-
ing to the global rise in atmospheric CO 2  concentrations.  
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10.1       Introduction 

 At the beginning of the twenty-fi rst century, the 
scientifi c literature outlines global boundary lim-
its to agricultural production. Estimates of land 
use, for instance, hold that croplands, pastures, 
and planted forests occupy between 4000 and 
5000 million hectares of land on Earth, with a 
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predicted addition of 120–280 million hectares 
by 2030 (Lambin and Meyfroidt  2011 ). The ceil-
ing on energy effi ciency of plants is known as 
well: Zhu et al. ( 2008 ) calculate that at contem-
porary CO 2  concentrations, C3 plants are up to 
4.6 % effi cient at capturing solar energy as chem-
ical bonds, while C4 plants are 6 %. Before that 
energy can be appropriated for anthropic pur-
poses, however, herbivory by insects annually 
deducts up to 13 % from global agricultural yield, 
at an estimated economic cost of 400 billion dol-
lars (Pimental  2004 ). 

 Responses of insect populations to rising 
anthropogenic CO 2  emissions are a topic of 
uncertainty and important to agriculture. 
Human industrialization has steadily raised 
atmospheric levels of CO 2  from 280 ppm prior 
to industrialization to current levels at 400 ppm 
and by 2050 are expected levels of 550 ppm 
(IPCC  2007 ). Atmospheric CO 2  concentration 
modulates the overall physiology of C3 plants 
(Leakey et al.  2009 ) and changes the quality of 
foliage, which makes herbivore insects sensi-
tive to the rise in atmospheric CO 2  (DeLucia 
et al.  2008 ). Since climate change infl uences 
insect populations through their interactions 
with host plants, predicting how insect popula-
tions will respond to climate change centers on 
understanding of plant physiology responses to 
herbivory. Especially, the physiological mecha-
nisms controlling allocation of resources to 
defenses against herbivores in plants grown 
under elevated CO 2  are most uncertain (Zavala 
et al.  2013 ). 

 Understanding the physiological mechanisms 
that lie beneath plant-insect interactions in ele-
vated CO 2  environments could help to predict the 
impacts of climate change on insect populations. 
Yet adjusting plant chemical defenses to chang-
ing environment could be an option for managing 
the stability of agroecosystems. Additionally, 
understanding how plants allocate resources to 
secondary metabolism under elevated CO 2  envi-
ronment would help to prevent any interference 
on the innate defenses in genetically modifi ed 
plants. In this chapter, we discuss current under-
standing of the mechanisms controlling insect 
herbivory pertaining to the global rise in atmo-
spheric CO 2  concentrations.  

10.2     Role of Plant Ecophysiology 
on Quality of Foliage 

10.2.1     Photosynthesis and Stomata 
Closure 

 Photosynthesis can be imagined as the initial 
stage of a process that distributes carbon and 
energy through interactions between plants and 
herbivore insects to culminate in considerable 
portion of the terrestrial ecosystem (Weisser and 
Siemann  2008 ). The carbon fi xation enzyme 
ribulose bisphosphate carboxylase/oxidase 
(rubisco) is responsible for fi xing atmospheric 
CO 2 , and it is situated at the beginning of this 
process. Competitive substrate binding between 
CO 2  and O 2  at the active site of rubisco accounts 
for the sensitivity of photosynthesis to changes in 
levels of atmospheric CO 2 . Although some 
grasses and arid succulents (C4 and CAM plants) 
fi x carbon independent of atmospheric CO 2  con-
centrations, the majority of plants (those which 
possess C3 metabolism) photosynthesize with 
increasing effi ciency as their supply of CO 2  
becomes more concentrated (Leakey et al.  2009 ). 

 The stimulation of photosynthesis by rising 
CO 2  levels has proliferant consequences on the 
general physiology of plants. For instance, sto-
matal apertures constrict as photosynthetic 
capacity increases, which leads to reduced tran-
spiration rates, resulting in increased foliar tem-
perature (Ainsworth and Rogers  2007 ; Bernacchi 
et al.  2007 ). The substrate saturation of rubisco 
by CO 2  assimilation not only infl uences plant 
physiology by increasing starch accumulation 
and sucrose signaling but also extends into the 
ecological dynamic between plants and insect 
herbivores.  

10.2.2     The Impact of Leaf Quality 
on Folivores 

 The main source of N for insects comes from 
rubisco, the dominant protein in the leaves of 
most plants and also the main source of valuable 
amino acids. Leaves contain up to nearly 40 % of 
amino acids and this is a potentially greater 
source of energy than a few micrograms of starch 
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(Farmer  2014 ). The ratio of carbon (C) to nitro-
gen (N) in plant tissue is higher than that of 
insects and converts N a limiting factor to the 
growth of insect herbivores (Mattson  1980 ). 
Although insects in general tend to compensate 
the lack of N in the diet by consuming more foli-
age, some insects are phagostimulated by high 
levels of carbohydrates (Hamilton et al.  2005 ). In 
one study, the CO 2 -driven increase of carbohy-
drates in soybean increased fecundity of Japanese 
beetles (O’Neill et al.  2008 ). 

 Although insects want nutritional resources 
from leaves, plants need to conserve these same 
resources for their own growth and reproduction. 
While the plant nutritional resources support 
insect growth, many plant secondary metabolites 
specifi cally reduce herbivore feeding effi ciency 
(Felton  2005 ). Optimal defense theory predicts 
that the products of primary metabolism are bal-
anced against the products of secondary metabo-
lism in plant tissue, such that plant fi tness is 
maximized under challenge by insect herbivores 
(McKey  1974 ). When considering the effects of 
elevated CO 2  on insect populations, both the 
nutritional content and the titer of chemical 
defenses must be taken into account.  

10.2.3     Consequences on Plant 
Growth Rate 

 Increasing atmospheric CO 2  accelerates plant 
growth. Elevated CO 2  environment spurns plants 
to assimilate carbon at a greater rate, leading to 
increased carbohydrate content as well as a shift 
to lower specifi c leaf areas (Stiling and 
Cornelissen  2007 ). The acceleration of plant 
growth rate can result a form of tolerance to 
insect herbivores by decreasing the relative foliar 
N content (Fornoni  2011 ). At the same time, the 
reduction in ratio of N to C obliges insect herbi-
vores to compensate by consuming more plant 
tissue to meet their basic dietary N requirements 
(DeLucia et al.  2008 ). 

 The phenology of plants also can be affected 
by the environmental concentration of CO 2 ; the 
timing and extent of developmental stages of 
plants are typically delayed with rising CO 2  
atmospheres. Soybeans grown under elevated 

CO 2 , for instance, begin to fl ower later than their 
control counterparts grown in ambient CO 2  atmo-
sphere (Castro et al.  2009 ). Likewise, senescence 
is both delayed in onset and prolonged in dura-
tion for plants exposed to elevated CO 2  levels 
(Taylor et al.  2008 ). This shift in phenological 
timing can lead to developmental mismatches 
between plants and their insect counterparts 
(DeLucia et al.  2012 ). Stages in the life cycles of 
insect pollinators, in particular, often are syn-
chronized with the fl owering times of plants they 
frequent and can drift out of temporal overlap 
under elevated CO 2  (DeLucia et al.  2012 ).  

10.2.4     Consequences 
of Ecophysiology Changes 
on Secondary Metabolism 

10.2.4.1     C:N Balance and Plant-Insect 
Interactions 

 The carbon-nutrient balance hypothesis postu-
lates that the nutrition status (C:N) of plants 
directly controls allocation of secondary metabo-
lites (Bryant et al.  1983 ). Similarly, the resource 
availability hypothesis (Coley et al.  1985 ) predi-
cated the physiological role of resource availabil-
ity as a control point connecting the plant’s 
primary growth with its chemical defenses against 
insect herbivores (Fig.  10.1 ). Based on these 
hypotheses, one can predict that plants grown 
under elevated CO 2  environment produce more 
carbon-based secondary metabolites because the 
higher CO 2  assimilated is diverted to the produc-
tion of these types of metabolites. This prediction, 
however, has been disputed by many empirical 
observations on the production of carbon- based 
secondary metabolites by plants grown under 
conditions of enriched CO 2  (Lindroth  2010 ). 
Continuous progresses in understanding patterns 
of synthesis of secondary metabolites have shown 
that resource allocation is interwoven among at 
least three physiological operators: photosynthe-
sis, genetic regulation, and hormonal signaling 
(Kerchev et al.  2012 ; Fig.  10.2 ).

    While the earlier models of plant responses 
to elevated CO 2  clearly conceptualize the effects 
of plant growth habit and nutrition on insect 
populations, they unsuccessfully predict the 
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production of secondary metabolites in defense 
against insect herbivory (Zavala et al.  2013 ; 
Hamilton et al.  2001 ). Existing mechanistic 
models of plant secondary metabolism regula-
tion by environmental CO 2  have yet to discern 
underlying  patterns among the empirical data 
available. Evidence suggests that photosynthe-
sis plays a direct regulatory role in the mobiliza-
tion of plant chemical defenses against 
herbivores. Under biotic stress, for instance, 
plants universally downregulate genes related to 

photosynthesis (Bilgin et al.  2010 ). The redox 
state within the chloroplast is thought to link 
photosynthesis with secondary metabolism; 
under attack from herbivore insects, plants 
interrupt the electron transport chain in photo-
synthesis, leading to a rapid accumulation of 
reactive oxygen species within the chloroplast 
(Kerchev et al.  2012 ). In turn, metabolic path-
ways responsible for the synthesis of several 
defense hormones are sensitive to the redox 
state of the cell (Kerchev et al.  2012 ).  

  Fig. 10.1    Early conceptual models of resource allocation 
in plants, such as the carbon-nutrient balance hypothesis, 
based the partitioning of resources to growth and chemical 
defenses on only a few physiological operators, such as 
C:N balance. However, the variable infl uence of elevated 

CO 2  on the production of plant secondary metabolites 
against insect herbivory suggests that the task of resource 
allocation in plants is more complex than previously 
supposed       

  Fig. 10.2    The physiological function of resource 
allocation is now understood to be interwoven among at 
least three operators: photosynthesis, genetic regulation, 
and hormone signaling. The uncertainty in predicting how 

CO 2  infl uences populations of insect herbivores lies in the 
way these components interact with one another to yield 
plant growth and defense       

 

 

J.A. Zavala and L. Gog



209

10.2.4.2     Unpredictability of CO 2  
Effects on Secondary 
Metabolism 

 Secondary metabolites are both diverse and idio-
syncratic in that their distribution does not always 
follow phylogenetic relationships among the 
plants that produce them (Wink  2003 ). This char-
acteristic unpredictability remains consistent in 
response to rising atmospheric CO 2 ; the infl uence 
of CO 2  on plant chemical defenses results in a 
range of responses without any apparent pattern 
(Zavala et al.  2013 ). Of the classes of compounds 
studied with regard to CO 2 , phenolics and terpe-
noids represent the majority (Lindroth  2010 ). 
Phenolic compounds appear largely unaffected 
by carbon dioxide, with the exception of con-
densed tannins which vary widely in response 
across species studied. Likewise, the response of 
terpenoids to rising CO 2  concentration varies 
without pattern by species of plant (Lindroth 
 2010 ). The unpredictability of secondary com-
pound production in plants grown under elevated 
CO 2  remains much the same for other studied 
classes of secondary compounds. 

 In addition to inducing direct chemical 
defenses against insects, herbivore attack on 
plants elicits the release of airborne compounds 
that interact with the surrounding ecosystem 
and function as a potential indirect defense 
(Karban  2008 ). The “bouquet” of volatiles can 
be composed of terpenoids, lipids, and methyl-
esterated defense hormones typically released 
from herbivore- induced wounds in plant tissue 
(Karban  2008 ). Some of the potential ecologi-
cal effects of these biogenic volatile organic 
compounds (BVOCs) are from activating 
chemical defenses in neighboring plants 
(Karban et al.  2010 ), to recruit natural preda-
tors of herbivores challenging the plant (Heil 
 2008 ). BVOCs emission can reduce the herbi-
vore attack of the plant by more than 90 % 
because it attracts predators and reduces herbi-
vore oviposition rates (Kessler and Baldwin 
 2001 ). Although some studies are available 
regarding to the impacts of atmospheric CO 2  on 
BVOCs production (Vuorinen et al.  2004a ,  b ; 
Klaiber et al.  2013 ), more studies are required 
to understand biological impacts of elevated 
CO 2  environments on BVOC emissions.   

10.2.5     Consequences of Stomata 
Closure 

10.2.5.1     Transpiration and Leaf 
Temperature 

 In addition to altering the nutritive and chemical 
properties of leaves to prospective herbi-
vore insects, elevated CO 2  also infl uences the 
hydraulic and thermal characteristics of leaves by 
reducing transpiration rates through closure of 
stomata (Bernacchi et al.  2007 ). As phloem feed-
ers, aphid populations are especially sensitive to 
changes in the rate of nutrient translocation 
within their host plants (Hullé et al.  2010 ). 
Lowering transpiration rates in the plant could 
reduce the growth of insect populations with 
piercing/sucking mouthparts. 

 As an effect of reduced evapotranspiration due 
to lowered stomatal conductance, leaf tempera-
tures rise under elevated CO 2 . As ectotherms, 
insects in close contact with leaf surfaces experi-
ence increased metabolic rates as the temperature 
of the leaf rises (Pincebourde and Woods  2012 ). 
This principle especially applies to aphids, whose 
feeding rates and population growth can be 
expected to steepen as leaf temperatures increase 
(O’Neill et al.  2011 ).    

10.3     Solving the Ambiguity 
of Induced Chemical 
Defenses to Insect Damage 

 In the last years, many new studies have been pub-
lished suggesting that elevated CO 2  modifi es plant 
chemical defenses against insects and alters their 
performance (Zavala et al.  2013 ). Insect damage is 
perceived by plants and induces signals through 
different pathways, which further produce bio-
chemical and physiological changes that can be 
affected or modulated by variations in environ-
mental CO 2  concentrations (Fig.  10.2 ). These 
changes in damaged leaves induce the production 
of plant secondary metabolites and decrease insect 
performance. However, it is not clear how high 
environmental CO 2  levels can interfere with the 
production of plant chemical defenses and its 
effects on plant-insect interactions. An earlier 
study on fi eld-grown soybean demonstrated that 

10 Impacts of Anthropogenic Carbon Dioxide Emissions on Plant-Insect Interactions



210

changes in plant defenses against herbivore attack 
in plants grown in elevated CO 2  atmosphere are 
regulated by phytohormones (Zavala et al.  2008 ). 
Lately, new progress has been done in revealing 
the mechanisms of the infl uences of atmosphere 
with high CO 2  levels on plant defense elicitation 
by herbivore damage, which has been recently 
reviewed (DeLucia et al.  2012 ; Zavala et al.  2013 ). 
Although our understanding of the plant-herbivore 
interphase is limited, recent molecular approaches 
have revealed the participation of regulatory ele-
ments, such as Ca 2+  ion fl uxes, mitogen-activated 
protein kinases (MAPKs), jasmonic acid (JA), eth-
ylene (ET), and reactive oxygen species (ROS), 
which detect insect damage, amplify the signal, 
and induce plant responses to increase chemical 
defenses against herbivores (Fig.  10.3 ).

10.3.1       Early Responses to Herbivory 

 Since plant defenses against insect attack are 
costly for plants, they must avoid wasting defen-
sive resources and differentiate insect feeding 
from simple mechanical damage (Zavala et al. 
 2004 ; Zavala and Baldwin  2004 ). Herbivore 
attack is commonly associated with wounding of 
plant tissues and direct contact of insect oral 
secretions (OS) with putative cell receptors, 
which transduce the alarm signal and induce the 
accumulation of defensive metabolites. Volicitin 
[N-(17-hydroxylinolenoyl)-L-glutamine], the 
fi rst identifi ed fatty acid-amino acid conjugates 
(FACs) and herbivore-derived elicitor, was 
obtained from  Spodoptera exigua  OS (Alborn 
et al.  1997 ). FACs are not only present in OS of 

  Fig. 10.3    A simplifi ed model of the effects of elevated 
CO 2  on signaling events in a cell as a response of herbivore 
attack (Modifi ed from Zavala et al.  2013 ). In ambient CO 2  
herbivore oral secretions are perceived by unidentifi ed 
receptors and trigger the activation of Ca 2+  channels, 
resulting in Ca 2+  infl uxes. Ca 2+  binds to calmodulins and 
calcium-dependent protein kinases ( CDPKs ). Mitogen- 
activated protein kinases ( MAPKs ) are also rapidly acti-
vated and trigger the biosynthesis of jasmonic acid ( JA ) 
and thus JA-Ile. JA-Ile binds to the COI1 receptor that 
leads to the degradation of JAZ proteins, resulting in the 
release of their inhibitory effect on MYC2, which induces 
defense genes in the nucleus. MAPK and CDPK phos-
phorylate ACS proteins and increase ethylene production, 

which leads to the increased activity of ethylene- responsive 
transcription factors, inducing defense genes. However, 
elevated CO 2  induces salicylic acid ( SA ) accumulation and 
NPR1 activation by changing redox status in the cytosol by 
inducing thioredoxins and glutathione S-transferase ( black 
arrow ). The activated NPR1 functions as a transcription 
factor ( TF ) in the nucleus and inhibits JA-induced defense 
gene expression. In addition, we hypothesize that elevated 
CO 2  increases ABA concentration, which decrease ethyl-
ene emission. In addition elevated CO 2  decreases MPK4 
activity and activates downstream genes of SA signaling 
( dashed black arrow ). The inhibition of early signaling 
events by elevated CO 2  decreases the accumulation of 
metabolites that function as defense against herbivores.       
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some lepidopteran species (Halitschke et al. 
 2001 ; Pohnert et al.  1999 ; Spiteller and Boland 
 2003 ; Spiteller et al.  2004 ) but also in OS of fruit 
fl ies ( Drosophila melanogaster ) and crickets 
( Teleogryllus taiwanemma ) (Yoshinaga et al. 
 2007 ). A new study has demonstrated that plants 
can differentiate specialists from generalist 
insects by the amount of FAC present in the OS; 
this identifi cation of the attacker allows plants to 
upregulate specifi c defenses accordingly 
(Hettenhausen et al.  2013 ). 

 Membrane depolarization is one of the earliest 
cellular responses to damage by herbivory. Bites 
of  Spodoptera littoralis  larvae on leaves of 
 Phaseolus lunatus  (lima bean) produced large 
membrane depolarization (Maffei et al.  2004 ). 
Since Ca +2  fl uxes across the cell membranes’ 
change membrane potentials, this ion has been 
implicated as a second messenger in many plant 
signaling pathways, including responses to her-
bivory (Maffei et al.  2007 ). Larva FACs contrib-
ute to the Ca +2  infl uxes by forming ion channels 
in planar lipid bilayer membranes (Maischak 
et al.  2007 ). It has been suggested that calcium- 
dependent protein kinases are part of plant 
defense system against herbivores because these 
Ca +2 -dependent protein kinases regulate the pro-
duction of reactive oxygen species (ROS) in 
potato, which in turn upregulate plant defenses 
(Kobayashi et al.  2007 ). 

 Activation of mitogen-activated protein 
kinase (MAPK) cascades is a common response 
of plants to abiotic and biotic stimuli, includ-
ing pathogens and herbivory (Romeis et al. 
 2001 ; Zhang and Klessig  2001 ; Wu et al. 
 2007 ). Herbivory and application of  Manduca 
sexta  OS to wounded leaves of  Nicotiana 
attenuata  and  Solanum lycopersicum  (tomato) 
highly elicit both salicylic acid-induced pro-
tein kinase (SIPK) and wound-induced protein 
kinase (WIPK), which induced transcriptional 
regulation of many defense-related genes (Wu 
et al.  2007 ; Kandoth et al.  2007 ). In potato the 
homologous SIPK and WIPK are involved in 
Mi-1-mediated resistance to aphids (Li et al. 
 2006 ). The  Arabidopsis  orthologous MPK3 
and MPK6 to tobacco ( Nicotiana ) WIPK and 
SIPK, respectively (Zhang and Klessig  2001 ; 

Ichimura et al.  2002 ; Ren et al.  2002 ), phos-
phorylate the transcription factor WRKY33 
and induce important plant defenses (Mao 
et al.  2011 ). In addition, SIPK regulates the 
activity of chloroplastic GLA1 phospholipase 
and releases polyunsaturated fatty acids, such 
as linolenic acid, from the plastidial mem-
branes (Kallenbach et al.  2010 ). Linolenic acid 
can be used to the synthesis of the defense hor-
mone JA, the most important phytohormone 
that controls plant defenses against herbivores 
(Wasternack  2007 ).  

10.3.2     Jamonates Regulation as Key 
of Inducing Defenses 

 Variations of atmospheric CO 2  levels can modify 
jasmonic acid (JA) accumulation in plant tissues 
and alter plant chemical defenses against herbi-
vore insects (e.g., Zavala et al.  2008 ; Sun et al. 
 2010 ,  2013 ; Casteel et al.  2012 ). Leaf damage 
infl icted by chewing insects or mechanical dam-
age increases (<30 min) accumulation of JA at 
the site of wounding; this key cellular signal is 
involved in the activation of the immune 
responses to most insect herbivores and necrotro-
phic microorganisms (Farmer  2014 ). JA is syn-
thesized via the octadecanoid pathway, from 
which nearly all jasmonate biosynthetic enzymes 
have been identifi ed in  Arabidopsis  and charac-
terized in several species (Schaller et al.  2005 ; 
Halitschke and Baldwin  2003 ; Fig.  10.3 ). The 
linolenic acid liberated by phospholipases from 
lipids of chloroplast membranes is transformed 
to a series of reactions to 12-oxo-phytodienoic 
acid (OPDA) by the enzymes, lipoxygenase 
(LOX), allene oxide synthase (AOS), and allene 
oxide cyclase (AOC) (Fig.  10.3 ). Then in the per-
oxisomes, after three steps of β-oxidation, OPDA 
is converted to JA (Wasternack  2007 ). 

 Studies using microarray analysis and RT-PCR 
of fi eld-grown soybean ( Glycine max ) showed 
that constitutive and inducible levels of key tran-
scripts associated with JA pathway, LOX7 and 
LOX8, AOS, and AOC, were downregulated 
under elevated CO 2  (Casteel et al.  2008 ; Zavala 
et al.  2008 ). Downregulation of JA pathway 
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resulted in lower level of chemical defenses in 
soybean foliage after 24 h of Japanese beetle 
( Popillia japonica ) herbivory (Casteel  2010 ). 
Similar results were found in tomato and 
 Arabidopsis ; elevated CO 2  levels reduced the JA 
pathway and accumulation in the wild-type plants 
and in a genotype in which the JA pathway is 
constitutively upregulated (Sun et al.  2011 , 
 2013 ). 

 The new insights into the mechanisms of JA 
bioactive perception and signal transduction into 
the activation of defense transcriptional responses 
have been discussed in several review papers and 
suggest that the core signal transduction chain is 
composed for relative few links (Ballaré  2011 ; 
Wu and Baldwin  2010 ; Wasternack and Hause 
 2013 ). The fi rst step is conjugation of JA to iso-
leucine (Ile), which is required for direct defense 
response against herbivores, such as caterpillar 
feeding (Kang et al.  2006 ). The ubiquitin ligase 
SCFCOI1 complex perceives the jasmonoyl- 
isoleucine (JA-Ile), and the F-box protein 
CORONATINE-INSENSITIVE1 (COI1) recog-
nizes JA-Ile, which triggers the ubiquitination 
and subsequent proteosomal degradation of 
JASMONATE ZIM DOMAIN (JAZ) proteins. 
Degradation of the JAZ repressors releases the 
expression of MYC2 transcription factor (TF). 
Therefore, MYC2 TF induces downstream 
defense responses related to JA burst. 
Interestingly, increases of JA synthesis (possibly 
via MYC2) induce the transcription of JAZ 
repressors (Thines et al.  2007 ; Chico et al.  2008 ), 
controlling the levels of signal transduction and 
production of chemical defenses (Fig.  10.3 ). 
Since rapid resynthesis of JAZ repressors 
restrains the expression of genes related with 
defenses, this negative feedback presumably 
avoids the synthesis of energetically costly com-
pounds once insect attack is fi nished and allows 
plants to save energy.  

10.3.3     Cross Talk among Defense 
Pathways 

 Plants grown in elevated CO 2  atmosphere pre-
sented low JA accumulation and emission of ET, 
which reduced antiherbivore defenses and 

increased insect attack (Zavala et al.  2008 ,  2009 ; 
Sun et al.  2011 ,  2013 ). ET and JA have synergis-
tic effects on upregulating plant defenses against 
herbivores, such as the upregulation of protease 
inhibitors (PIs) in tomato (O’Donnell et al.  1996 ). 
It has been demonstrated that both ET and JA can 
activate common TF in  Arabidopsis  and sun-
fl ower ( Helianthus annuus ) (Manavella et al. 
 2008 ; Lorenzo et al.  2003 ; Pre et al.  2008 ), 
explaining the synergistic effect. The synergistic 
cross talk between JA and ET is known to occur 
preferentially for the response to necrotrophic 
pathogens (Pieterse et al.  2012 ). Two central TFs 
of ET signaling, ETHYLENE-INSENSITIVE3 
(EIN3) and EIN3-like (EIL1), bind JAZ1, JAZ3, 
and JAZ9 via the Jas domain of JAZs, resulting in 
the suppression of EIN3/EIL1 activity (Zhu et al. 
 2011 ). 

 ET pathway is initiated by the synthesis of 
S-adenosylmethionine from methionine, which 
after being oxidized by 1-aminocyclopropane- 1-
carboxylic acid (ACC) oxidases is converted to 
the ET precursor ACC by ACC synthase (ACCs) 
(Fig.  10.3 ). Since ACC forms ET, ACC synthesis 
is considered to be rate limiting of ET 
 biosynthesis, which can be inhibited in plants 
grown under elevated CO 2 , increasing herbivory 
susceptibility. Both constitutive and inducible 
expression levels of  acc  are diminished in foliage 
of fi eld-grown soybeans under elevated CO 2  
atmosphere (Casteel et al.  2008 ; Zavala et al. 
 2008 ). In addition, elevated CO 2  environment 
decreased both the accumulation of JA and the 
emission of ET in  Arabidopsis  (Sun et al.  2013 ). 
While JA and ET are important modulator for 
chewing insects, salicylic acid (SA) pathway is 
activated by plants in response to attack by 
phloem feeding insects, such as aphids and silver 
leaf whitefl ies and biotrophic pathogens (Walling 
 2000 ). 

 One of the most studied cross talk is the antag-
onistic interaction between the JA and SA path-
ways (Pieterse et al.  2009 ; Kunkel and Brooks 
 2002 ). Upregulation of JA pathway can repress 
SA defense responses (Brooks et al.  2005 ; 
Uppalapati et al.  2007 ), and conversely, induction 
of SA by biotrophic pathogens inhibits defenses 
regulated by JA (Felton and Korth  2000 ; Spoel 
et al.  2007 ). Similar antagonistic interaction 
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between JA and SA was observed in different 
plant species grown under enriched CO 2  atmo-
sphere, increasing the allocation of resources to 
SA-dependent over JA-dependent defenses. 
Elevated CO 2  increased the induce defenses 
based on SA pathway in tomato, such as the 
pathogenesis-related protein (PR), and decreased 
JA-regulated defenses, such as PIs (Sun et al. 
 2011 ; Huang et al.  2012 ). Similar results were 
found in  Arabidopsis  growing in open chambers 
with elevated CO 2  atmosphere (Sun et al.  2013 ). 
Field-grown soybeans under elevated CO 2  ampli-
fi ed SA-regulated defenses and pathway and 
diminished gene expression of JA pathway and 
JA accumulation compared to ambient-grown 
plants (Casteel et al.  2008 ,  2012 ; Zavala et al. 
 2008 ). 

 Synthesis of defense compounds against plant 
pathogens is regulated by SA signaling pathway 
and can be modulated by CO 2  (Glazebrook  2005 ; 
Zarate et al.  2007 ). Recently, it has been demon-
strated that some soybean pathogens are reduced 
in elevated CO 2  treatments at SoyFACE (Eastburn 
et al.  2010 ). In addition, elevated CO 2  increased 
SA and decreased JA accumulation in tomato, 
enhancing resistant to tomato yellow leaf curl 
virus (Huang et al.  2012 ). The mechanism by 
which elevated CO 2  alters the hormonal response 
to herbivory is not known, but the antagonism 
between SA and JA responses is discussed in sev-
eral recent reviews (Pieterse et al.  2009 ,  2012 ). 

 SA can decrease JA biosynthesis and sensitiv-
ity through a negative interaction (Spoel et al. 
 2003 ). NPR1 (NONEXPRESSOR OF 
PATHOGENESIS-RELATED GENES1) is an 
important protein component of SA pathway and 
activated by SA (Fig.  10.3 ). Some NPR1 multim-
ers monomerize by SA-induced changes of the 
redox state via thioredoxin followed by the trans-
port of the monomeric forms into the nucleus. 
Here, they bind as activators to TGA TFs specifi c 
for SA-inducible genes and phosphorylated them 
and induce transcription (Fu et al.  2012 ). Elevated 
CO 2  alters the transcripts regulating the redox 
status of soybeans by inducing thioredoxins and 
glutathione S-transferase (Casteel et al.  2008 ). 
Moreover, elevated CO 2  alters ascorbate or gluta-
thione, albeit with some degree of plant specifi c-
ity (Gillespie et al.  2011 ; Perez-Lopez et al. 

 2009 ), and may allow TFs to interact with 
reduced NPR1 and facilitate effi cient DNA bind-
ing for induction of immune signaling (Spoel and 
Loake  2011 ). 

 Assuming that NPR1 may be responsible for 
downregulating JA-related defenses and increas-
ing herbivory susceptibility in plants grown in 
enriched CO 2  environment, what is the early sig-
nal perceived by plants that upregulate the SA 
pathway? Recent experiments demonstrated that 
SA and ROS accumulation and PR expression 
were increased in MPK4-silenced soybeans and 
 Arabidopsis  (Liu et al.  2011 ; Petersen et al. 
 2000 ). Interestingly, expression of WRKY33 
increased 16-fold in MPK4-silenced soybeans, 
suggesting that MPK4 negatively control 
WRKY33 at both the posttranslational and tran-
scriptional level (Liu et al.  2011 ). MPK4 func-
tions to sequester WRKY33 in the nucleus and 
prevent it to activating downstream genes of SA 
signaling (Qiu et al.  2008 ). Conversely, the cross 
talk between JA with other hormones can also 
interfere with either JA or ET pathway. 

 Atmosphere of elevated CO 2  concentration 
increases ABA levels during leaf development 
and promotes stomatal closure, reducing stoma-
tal conductance by decreasing pore size in devel-
oping leaves (Ainsworth and Rogers  2007 ; 
Herrick et al.  2004 ). ABA and SA signaling 
required for stomatal closure (Pieterse et al. 
 2012 ) are modulated by MAPK4 (Hettenhausen 
et al.  2013 ). Upon wounding or herbivory, ABA 
production increases and antagonizes the ERF 
pathway, compromising ET signaling and per-
ception (Abe et al.  2003 ; Anderson et al.  2004 ; 
Fig.  10.3 ). ET can play a critical role during 
SA-JA interaction, and the fi nal outcome of this 
signal cross talk can be shaped by levels of 
ET. When ET signal is high, JA-SA antagonisms 
are diluted, while with low ET levels in plant tis-
sue, the JA-SA antagonistic relationship becomes 
greater (Pieterse et al.  2012 ). 

 In summary, we suggest that elevated CO 2  
atmosphere induces changes in gene expression 
and activity of MAPK4 and the production of 
ABA in leaves, which induces SA signaling and 
inhibits ET emission and pathway that increases 
the JA-SA antagonistic relationship. Thus, in 
plants grown in elevated CO 2  environment, levels 
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of SA increase and production of JA and ET 
decrease compared to ambient-grown plants 
(Casteel et al. 2007; Zavala et al.  2008 ; Casteel 
et al.  2008 ,  2012 ; Sun et al.  2011 ; Huang et al. 
 2012 ). Although the mechanism of the impact of 
elevated CO 2  on the early signaling steps involved 
in the perception of insect damage and the activa-
tion of JA biosynthesis remain to be elucidated, 
some advances have been done to explain CO 2  
regulation on secondary metabolite production. 
Elevated CO 2  alters hormonal responses that are 
transduced into the activation of transcriptional 
responses and affect plant-insect interactions.  

10.3.4     CO 2  Regulates Chemical 
Defenses 
through Phytohormones 

 Many empirical studies about the consequences 
of elevated CO 2  on plant chemical responses to 
insect damage and their effects on herbivore per-
formance seem to be contradictory. Whereas 
some studies report that plants grown under ele-
vated CO 2  environment are more defensed against 
herbivores (e.g., Lindroth et al.  1993 ; Holton 
et al.  2003 ), fi eld studies demonstrated that ele-
vated CO 2  atmosphere diminished plant defenses 
against some herbivore insects (e.g., Zavala et al. 
 2008 ;  2009 ; Hamilton et al.  2005 ). Recently new 
research has started to study the mechanisms of 
the consequences of elevated CO 2  on chemical 
defenses and its relationships with hormonal reg-
ulation rather than just study the effects of 
defenses on herbivore performance (Zavala et al. 
 2013 ; DeLucia et al.  2012 ). Although elevated 
CO 2  increases SA in plant tissue and increases 
chemical defense pathways that are not regulated 
by JA (e.g., Sun et al.  2011 ; Ghasemzadeh et al. 
 2010 ; Casteel et al.  2012 ), plants grown in 
enriched atmospheric CO 2  downregulate JA and 
ET pathways and increase susceptibility to herbi-
vore attack by disrupting both constitutive and 
inducible important chemical defenses (Zavala 
et al.  2008 ,  2009 ); Interestingly, a new study has 
proposed that an unknown JA-independent 

defense pathway may defend  Nicotiana attenu-
ata  against larvae of  M. sexta  (Hettenhausen 
et al.  2013 ). 

 Revealing the regulation of plant chemical 
defenses in response to herbivory will allow us to 
determine the adaptive function of anti-herbivore 
defenses (Karban and Baldwin  1997 ) that are 
modifi ed by elevated CO 2  and these modifi ca-
tions should be investigated in concert with pre-
dictable changes in CO 2 -driven plant traits. 

 Phytohormones differentiate among phenolic 
pathways and synthesize both isofl avonoids and 
fl avonols compounds in accordance to environ-
mental cues (Ferrer et al.  2008 ). Although 
 Nicotiana attenuata  impaired in JA biosynthesis 
was unable to produce phenolic conjugates after 
damage produced by herbivores, these plants 
were able to produce rutin (a fl avonoid) and chlo-
rogenic acid (Demkura et al.  2010 ; Hoffman- 
Campo et al.  2001 ). The production of 
carbon-based defenses is modifi ed by hormones 
affected by elevated CO 2 . Elevated CO 2  levels 
increased C:N ratio and concomitantly the pro-
duction of SA-regulated fl avonoids in plants, 
such as quercetin, kaempferol, and fi setin 
(Ghasemzadeh et al.  2010 ), but decreased the 
concentration of JA-regulated isofl avonoids such 
as genistein (O’Neill et al.  2010 ), an important 
antiherbivore defense (Piubelli et al.  2005 ; Figs 
 10.1  and  10.2 ). In addition, elevated CO 2  
decreased the JA-regulated triterpenoid cardeno-
lides in four different genotypes of milkweed 
( Asclepias syriaca ) another important chemical 
defense against herbivores (Vanette and Hunter 
 2011 ; Rasmann et al.  2009 ). 

 One of the fi rst defenses against herbivores 
studied is protein proteases inhibitors (PIs) in 
tomato, which are regulated systemically and 
locally by JA (Ryan  1990 ). PIs damage the abil-
ity of insects to digest proteins and decrease 
amino acid assimilation (Birk  2003 ; Zavala et al. 
 2004 ). The accumulation of these nitrogen-based 
defenses also can change C:N ratio in plant tissue 
(Howe and Jander  2008 ; Figs.  10.1  and  10.2 ). 
Foliage of fi eld-grown soybean had low constitu-
tive and induced expression and activity levels of 
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cysteine proteinase inhibitors (CystPIs) in an 
atmosphere with high CO 2  levels, the principal 
antiherbivore defenses against coleopteran herbi-
vores (Zavala et al.  2008 ,  2009 ; Sun et al.  2011 ). 
CystPIs are typically regulated by the defense 
hormones JA and ET that are downregulated by 
elevated CO 2  (Zavala et al.  2008 ; Sun et al.  2013 ). 
Glucosinolates, another nitrogen-based defense 
and regulated by JA and SA signaling pathways, 
are differentially regulated by concentration lev-
els of CO 2  in the atmosphere. Plants grown in 
atmosphere with high CO 2  levels had incre-
mented constitutive glucosinolates regulated by 
SA, such as aliphatic glucosinolates and methyl 
sulfi nylalkyl glucosinolates glucoraphanin and 
glucoiberin in broccoli ( Brassica oleracea ), and 
these metabolites were induced in  Arabidopsis  
by diamondback moths ( Plutella xylostella ) her-
bivory (Schonhof et al.  2007 ; Bidart-Bouzat et al. 
 2005 ; Doughty et al.  1991 ). Conversely, 
JA-regulated indole glucosinolates decreased in 
plants grown under elevated CO 2 , predominantly 
because of a reduction of glucobrassicin and 
4-methoxy-glucobrassicin contents, which are 
regulated by JA (Schonhof et al.  2007 ; Brader 
et al.  2001 ). 

 Analogously, levels of plant BVOC emission 
depend on whether they are regulated by JA or 
SA. Downregulation of JA levels by elevated CO 2  
environment decreased the emission of terpene 
volatile compounds in cabbage ( Brassica olera-
cea ; Vuorinen et al.  2004a ,  b ). Plants exposed to 
elevated CO 2  exhibited a great reduction of ter-
pene emission, decreasing aphid ( Brevicoryne 
brassicae ) colonization and attraction of herbi-
vores’ natural enemies (Vuorinen et al.  2004a ; 
Klaiber et al.  2013 ). However, emission of GLV 
following herbivory was enhanced in plants 
grown under elevated CO 2  environment (Vuorinen 
et al.  2004b ), and it appears that the regulation of 
these compounds does not rely on JA signaling 
(Halitschke and Baldwin  2003 ; Allmann et al. 
 2010 ). Based on the empirical evidence presented 
here, we suggest that JA/ET and SA may provide 
new insights into how elevated CO 2  modulates 
plant chemical responses to herbivory.   

10.4     Impact of Atmosphere 
with High CO 2  Levels 
on Agriculture 

 By 2050 crops will grow in an atmosphere with 
CO 2  levels 50 % higher than today (Prather et al. 
 2001 ) and by that date the projected world popu-
lation will be about 9 billion (Ray et al.  2013 ). 
Although it has been suggested that global crop 
production needs to increase twice the present 
rate to meet global food demand, climate change 
is likely to worsen the situation by increasing 
infestation of diseases and insects on crops 
(Khoury et al.  2014 ). As a consequence of anthro-
pogenic global change, elevated levels of atmo-
spheric CO 2  can greatly modify the interactions 
between crops and insect pests and may promote 
the rapid establishment of invasive species 
(Zavala et al.  2008 ;  2013 ). 

 Whereas higher atmospheric CO 2  concentra-
tions stimulate photosynthetic activity in C3 
plants (such as wheat and soybean), elevated CO 2  
increases water-use effi ciency in both C3 and C4 
plants (such as maize and millet), suggesting a 
potential increment in yield of crops (Ainsworth 
and Long  2005 ). However, fi eld experiments 
demonstrated that the projections of increasing 
agricultural production under climate change 
cannot be reached, probably because of insect 
herbivory, an aspect that was not considered in 
open chambers (Muller  2013 ; Long et al.  2006 ). 
New studies have suggested that climate change 
may affect plant natural defenses against insects, 
especially when they are grown under elevated 
atmospheric CO 2  concentrations (DaMatta et al. 
 2010 ; Taub et al.  2008 ; Zavala et al.  2013 ). 
Downregulation of natural plant defenses may 
also affect pesticide use, to compensate the 
altered chemical composition changes that 
increase susceptibility of crops to insect damage 
(Dermody et al.  2008 ; Zavala et al.  2008 ). 

 One of the main components of integrated 
pest management programs is the utilization of 
natural plant defenses against insect pest, which 
together with the expression of foreign genes 
with inducible promoters has been suggested as 
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an important tool to protect crops against insect 
herbivores. However, the ability of insect to adapt 
to plant defenses may limit the extent of those 
programs (Bolter and Jongsma  1995 ). In addi-
tion, high CO 2  levels in the atmosphere in the 
future may restrain inducible defenses of crops, 
such as CystPI in soybean, which will be down-
regulated and may compromise defenses against 
insects (Zavala et al.  2008 ,  2013 ). Elevated CO 2  
may affect the expression of JA-regulated 
defenses of soybean, which include not only 
CystPIs but also serine proteinase inhibitors, iso-
fl avonoid content, or polyphenol oxidase activity, 
potentially making plants more vulnerable to her-
bivores other than beetles and leading to even 
greater losses.  Nicotiana attenuata  unable to pro-
duce JA planted into native habitats was more 
vulnerable to adapted herbivores and also was 
more colonized at a higher rate by novel herbi-
vore species, which fed and reproduced success-
fully (Kessler et al.  2004 ). On the other side, 
insect herbivores preferred to feed on younger 
leaves of plants grown under elevated CO 2  in 
FACE experiments (Zavala et al.  2009 ), which is 
a potential mechanism to explain the offset of the 
predicted increases in agricultural productivity 
associated with greater levels of CO 2  in the atmo-
sphere (Ainsworth and Long  2005 ; Long et al. 
 2006 ). Furthermore, it is likely that the impacts 
of elevated CO 2  atmosphere on plant chemical 
defenses reported here also affect communities of 
natural enemies and the entire trophic structure 
of agroecosystems (Richards et al.  2015 ), poten-
tially exacerbating pest problems by multiple 
mechanisms. Additional scientifi c attention is 
necessary to understand and evaluate the impact 
of CO 2  fertilization on agricultural productivity 
and crop quality (Muller  2013 ).  

10.5     Concluding Remarks 

 Recent evidence has demonstrated that anthropo-
genic elevation in CO 2  concentration alters plant- 
insect interactions by altering hormonal 
regulation that in turn change chemical defenses 
of plants against herbivore insects (e.g., Zavala 
et al.  2008 , DeLucia et al.  2008 ). However, many 

aspects of the mechanisms that regulate the 
impact of elevated CO 2  atmosphere on defense 
metabolisms are still to be elucidated. As recent 
review articles have remarked, the task of pre-
dicting how insect populations respond to 
changes in host plant growth habits and nutritive 
composition would be easier if the basic regula-
tory connections between plant primary and sec-
ondary metabolism were better understood.     
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