Design, Test and Evaluation
of Trace-Buffer Inserted FPGA System
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Abstract Integrated circuits have more functionality and complexity, and to verify
that these devices working properly in all scenarios is a difficult task. For using
traditional verification techniques such as software simulation, designers are taking
advantage of the significantly higher clock speeds which can be achieved by using
field-programmable gate-array (FPGA)-based prototypes. However, the major
challenge of using FPGAs for verification and debug is observability. Designers
must use special techniques to observe the values of FPGA’s internal signals. In this
paper, a new method has been proposed for increasing the observability of FPGAs
and demonstrates its feasibility. The new method incrementally inserts the
Trace-Buffers controlled by a trigger into already placed-and-routed FPGA designs.
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1 Introduction

Now, the integrated circuits (ICs) are reaching more than a billion transistor counts
which make them insignificant to design these complex devices. Verifying whether
these circuits are working properly under all operating conditions (expected and
unexpected) is a difficult task. To overcome this, now many designers have turned
to field-programmable gate-array (FPGA)-based prototyping to improve the veri-
fication coverage more than the achievable range using the traditional software
simulations. FPGAs are an attractive platform for verification and debugging
because they are much faster than simulation and less costlier than fabricating an
ASIC prototyping. IBM researchers stated that FPGA prototype is 100 000 times
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faster than software simulations and 400 times slower than the fabricated
application-specific integrated circuit (ASIC) [1]. An ASIC prototype could achieve
even greater speeds than an FPGA, but FPGAs have other advantages over ASIC
prototypes. The lead time for fabricating an ASIC can be weeks or even months and
can easily cost over 1 million USD [2]. The FPGA is used to identify the sources in
correct behavior. Verification and debugging both increases the device capacity and
limited due to on-chip observability. These make extensive use of software simu-
lators. The simulation is extremely slow for large design. To overcome this prob-
lem, the prototype using Trace-Buffer is to be instrumented, for recording a subset
of internal signals into on-chip memory to get subsequent analysis. To do so,
ChipScope Pro, Certus, and SignalTap II can be used [3-6].

Trace-Buffer is formed from a memory resource on the FPGA. Trace-Buffer
records a limited size history of the signals connected to them during regular device
operation. This enables the designer to run the device normally. It can extract the
signal history by the Trace-Buffers with techniques such as device reed back for
off-line analysis [7].

The results and challenges of using the approach may differ between architec-
tures. However, the approach could be used on any FPGA where it is possible to
incrementally insert (place and route) additional logic and memory components in
an already existing circuit.

The proposed approach has some specific advantages: (1) It has no impact on the
placement or routing of the user circuit. (2) It requires no additional area. (3) It
enables faster turn-around time for changing the observed signals or Trace-Buffer
compared to traditional flows. (4) It increases FPGA observability by taking full
advantages of all leftover memory.

2 Background
2.1 Enchancing Observability

A limited number of signals may be observed in FPGA’s pins using an external
logic analyzer. But, this is often inadequate and some of the pins may be used
already. Methods to observe a large number of signals can be divided into two
broad categories: scan-based and trace-based.

(1) Scan-based: Scan-based debug approaches are used to capture the state of an
FPGA for inspection by serially shifting it out over an external pin or an
interface such as JTAG. The state of the FPGA is the values in all memory
elements on the chip, such as flip-flops and embedded blocks. For serially
shifting out the Xilinx device uses the readback feature [7]. In [8], it was
shown how readback data can be used for debugging in a combined
simulation/hardware execution environment built on JHDL. However in [9],
the average overhead for full scan is 84 % of additional area. A challenge with
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scan-based approaches is that as devices increase in size and density, the time
required to shift the entire FPGA state out proportionally increases [10].

(2) Trace-based: In a trace-based approach, a designer pre-inserts Trace-Buffers
controlled by a trigger, also called embedded logic analyzers, into the circuit
before compilation. The Trace-Buffers allow a window of the history of the
chosen signals to be recorded as the circuit operates in real time. Trace-based
debug has a drawback of requiring FPGA resources which can influence the
placement and routing of the circuit [11] and limit the number of signals that
can observe. The circuit may go through a time-consuming recompilation if
the designer wishes to change the signals being observed or parameters of the
Trace-Buffers or trigger. A number of automated techniques attempted to
combat this [12].

2.2 Incremental Synthesis

Incremental synthesis allows us to overcome some drawbacks of the trace-based
approaches. It is because instrumentation of incremental synthesis is not included in
the compilation of the original circuit. The aim of incremental synthesis is to
modify the functionality of a placed-and-routed circuit while preserving as much of
the original solution as possible. FPGAs are well suited as there is often unused
logic and routing resources leftover after a circuit has been complied. The main
motivations behind this are (as shown in Fig. 1) to avoid a full compilation of the
circuit when adding or making changes to the instrumentation, to preserve timing
closure when undertaking engineering change orders, or for improved fault and
defect resilience [13].

Graham et al. [14] demonstrated an approach which is more similar to this work;
he put an unconnected embedded logic analysis in the FPGA prior to placing and
routing, and afterward used a low-level bitstream modification to connect them to
the desired signal [10]. However, their techniques relied on the Jbits API that was
provided by Xilinx FPGA device, but similar APIs have not been for other
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Fig. 1 Design and debug flow
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commercial FPGAs. Graham system may not scale well for observing 1000s of
nets, as only 128 nets were observed in their tests.

Commercial vendor tools also support the incremental compilation design.
Altera’s SignalTap II trace-IP solution and signal probe are specifically used to
connect the I/O pins directly to the external analysis [4].

2.3 FPGA-ASIC Prototyping

FPGAs are integrated circuits fabricated to be configured by a designer after
manufacturing. FPGAs are composed of reconfigurable logic, memory, and routing
interconnects that can be configured to perform a huge variety of tasks. FPGAs can
be used for one task and later be reprogrammed for a difficult task. They are
different from application-specific integrated circuits which are typically hardwired
for one task. However, the flexibility of FPGAs comes with some drawbacks.
An ASIC consumes less area and power and operates faster than the equivalent
circuit would on an FPGA. The specifics of FPGA architecture vary among vendors
and product families. ASIC prototyping is the method to prototype ASIC design on
FPGA for hardware verification. The need for verification of application-specific
integrated circuit design is growing, due to the increased circuit complexity and
time-to-market shrinking. Hardware platforms are becoming more prominent to test
system designs at speed with on-chip bus clocks as compared to simulation clocks
which may not provide an accurate reading of system behavior. These multi-gate
designs usually are placed in multi-FPGA prototyping platform with six or more
FPGAs, since they are unable to fit entirely onto a single FPGA. So the system RTL
designs or netlist has to be partitioned onto each FPGA to be able to fit the design
onto the prototyping platform.

3 Incremental Trace-Insertion

This section describes the proposed method for increasing FPGA observability to
simply debug and verify. It describes how those components are incrementally
inserted into the design. First, an overwrite of the proposed method that describes
how it fits into Xilinx design flow is given. Then, the two major steps placement
and routing are used for incrementally synthesizing the debug system.

3.1 Trace-Insertion

To increase the observability of FPGA circuits, a Trace-Buffer and a trigger unit are
inserted incrementally into already placed-and-routed designs. Nets from the
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original circuit shall be incrementally connected to the Trace-Buffers to be observed
and recorded. The trigger unit will control the Trace-Buffers to record until it meets
the specified trigger condition.

The impact on the original circuit’s area, placement, routing, and timing will be
reduced when incrementally inserting the debug system. From the perspective of
the original circuit, the debug systems have no area overhead. The original circuit
will already be placed and routed and thus will already have claimed whatever area
of the FPGA it needs. The debug system is inserted into whatever FPGA area has
been left unused by the original circuit. Thus, the amount of Trace-Buffers and
trigger logic to insert will be influenced by the area of the original circuit.

The goal of incremental synthesis is generally to modify the functionality of an
existing circuit with minimal changes to its current placement and routing. The
proposed work goal is different than this “general-purpose incremental synthesis”
because its only desire is to observe signals. The placement and routing of the
Trace-Buffers and trigger unit are restricted to resources unused by the existing
circuit. The original circuit will be left completely intact.

3.2 Xilinx Design Flow

The proposed work is inserted between the place and route (PAR) and BitGen
stages. When inserting instrumentation, the NCD representation of the circuit
produced by the PAR process is converted to a XDL file. Trace-insertion modifies
the XDL file to insert the Trace-Buffers and trigger unit and creates a new XDL that
includes the modifications. This XDL file can be converted back to an XCD, and
the normal Xilinx flow may continue. BitGen can create a bit file that can configure
the FPGA with the circuit that includes the debug system. The ncd2xdl and xdI2ncd
conversions are done (as shown in Fig. 2). A XDL file representing the circuit to
instrument is one of the inputs to trace-insertion. Trace-insertion requires two lists:
a list of the nets to trace and a list of the nets to connect to the trigger unit inputs.
There are also other parameters of trace-insertion that can be adjusted such as
Trace-Buffer width, trigger width, or number of trigger unit slices.

4 Primary Results

This section describes the methodology for testing the flexibility of the proposed
incremental trace-based debug system. The runtimes of the incremental insertion on
a set of benchmarks and the effects on minimum period are presented. The results of
the tests are presented and demonstrated that the proposed system is feasible and
can observe thousands of signals.

To demonstrate the feasibility of our proposed debug system, the effects of using
it to trace up to 100 % of the flip-flops and latches in three benchmark circuits
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Fig. 2 Xilinx design flow

(when Trace-Buffer capacity permits). We chose to trace the flip-flops and latches
because given the values of them the other intermediate values of a circuit could be
calculated using techniques such as those in [15, 16].

The runtime is the time taken to place and route the Trace-Buffers and trigger
unit. The time was determined by storing the current system time between major
steps in the program and then comparing the times after routing has completed. The
minimum period was determined by the Xilinx ISE tool, which analyses the timing
of the FPGA circuit.

The important characteristics of the benchmarks are shown in Table 1. The
benchmarks circuits were synthesized, and placed and routed with Xilinx ISE tools
for the Virtex-2pro FG896 embedded development platform which contains a
XC2VP30 FPGA. The benchmark circuits are available as part of the VTR project
and represent realistic, sizable, heterogeneous designs that include Monte Carlo
simulation for a financial application and linear system solvers. This table assumes
a Trace-Buffer width of 16 is being used, so “Max-Traces” is calculated by mul-
tiplying the number of unused BRAMs by 16.

For the tests, there are several parameters are kept constant. The width of
Trace-Buffers is fixed at 16, meaning 16 traces can be connected to each
Trace-Buffer. At this width, the Trace-Buffers have a depth of 1024. The traces are
routed in random order. The trigger unit is fixed at 256 inputs and 100 slices. The
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Table 1 Uninstrumented benchmark summary

Circuit LUTs |FFs Slices |BRAMs | DSPs |10Bs | Signals | Max-Traces
traced

BGM 20,511 3,672 |11,708 |0 44 289 | 3,672 4,870

Stereovision0 | 5,328 |3,733 [4,884 |0 0 366 | 3,733 4,870

Stereovisionl |9,299 9,078 |[7,222 |0 88 278 19,078 4,870

Total 27,392 27,392 | 13,696 |136 136|416 |- 4,870

available

trigger unit slices are placed in locations where the original circuits has not used any
routing in the interconnect tile associated with the slices to avoid routing
congestion.

The slices of the trigger unit are assumed to be placed within the same region.
This ensures the trigger unit has good timing performance and its internal signals
only have to be routed short distances.

4.1 Runtime Proportion

Figure 3 shows the total runtime for each of the benchmarks when the max numbers
of Trace-Buffer inputs are routed. It should be noted that all benchmarks were able
to successfully route all flip-flops. This is an interesting result and demonstrates that
the Virtex-2pro architecture has enough routing resources to support our method.
Most of the benchmarks take about a minute for the entire PAR process.

All the runtimes are less than the time it would take to recompile the entire
circuit. Large and complicated circuits are known to take hours to recompile. The
compile times of the benchmarks used in this work are shown in Table 2. The table
also shows the average trace-insertion runtimes from Fig. 2 and the difference
between the compile time and insertion runtime. None of compile times are in hours
but even the shortest times are longer than all the runtime for trace-insertion, so
incremental insertion decreases turnaround time for even these circuits also, if

Fig. 3 Trace-insertion
runtime
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'l.’able.Z Benchmark compile  cireyit BGM (mins:sec) Stereo0 Stereol

times in minutes and seconds = 0855 05:10 11.06
Trace-insertion 02:05 01:25 01:43
Difference 10:50 03.45 10.23

incremental were not used then the compile time would be higher than the values
shown in the Table 2 because the Xilinx tool would have to place and route the
Trace-Buffer and trigger unit in additional to original circuit.

4.2 Minimum Period

The minimum period of each benchmark before and after instrumentation is shown
in Fig. 4. The BGM benchmark circuit has a minimum period of 13.216 ns, and
instrumentation increases this on an average by about 18 %. The stereovision
benchmarks’ minimum periods increase much more than other benchmarks.
StereovisionO jumps from the minimum period of 8.392—12.751 ns over 51 %. The
percentage is even greater for stereovisionl which goes from 7.846 to 12.667 ns.
The minimum period increases if the delay of any of the paths we insert is greater
than the original minimum period. Circuits with the higher minimum are less likely
to experience any increase because the inserted path may be longer without
becoming a critical path.

The BGM sometimes had an increase in its minimum period and sometimes did
not. The variation in period is due to the randomization in Trace-Buffer placement.
The critical path is the control signal that is an output of the trigger unit and an input
to the Trace-Buffers. The trigger unit is often placed near the edge of the FPGA
because closer to center there are not enough free slices to place it. The

mBefore instrumentation
mzfter instrumentation

min. period(ns)

(=T S N L = - ]

bgm stereovision0 stereovision1

Fig. 4 Minimum period of each benchmark before and after instrumentation
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Fig. 5 Trigger signals influence on runtime

Trace-Buffers are spread throughout the FPGA. Thus, some of them are located
long distance from the trigger units.

The critical path is the delay between the trigger unit and one of the distant
Trace-Buffers. Figure 5 shows the runtimes for the different trigger widths. The
runtime increases exponentially with the number of trigger signals, but it is mostly
flat until the widths are 1024 or higher. The exponential increase comes because of
the additional clock routing that is required with more slices.

Designer should avoid using trigger units that require thousands of input signals
if runtime issue for the benchmarks used in our test runtime did not increase much if
the runtime of input signals was 512 or below. Beyond that, the runtime increases
quickly due to exponential curves. However, improving the clock router may
eliminate the exponential increase in the scan time or at least keep the increase flat
for even larger number of signals. Designers should also keep in mind the amount
of the slices the original design uses. None of the benchmarks used here had a
problem placing the trigger units of 100’s of slices.

5 Conclusion

A new incremental trace-based method is used for increasing the observability of
FPGAs. The method incrementally inserts the Trace-Buffers and the trigger unit in
an already placed-and-routed FPGA circuits. A unique characteristic of the method
is a centralized trigger unit that controls all the distributed Trace-Buffers.
Advantages of this incremental method include not affecting the placing and routing
of the user circuit taking full advantage of leftover BRAMs to observe more signals
and decreasing turnaround time when changes are made to the debug system. The
method could instrument 100 % of the flip-flops given that enough Trace-Buffer
capacity exists. This was done on a commercial Xilinx Virtex-2pro FPGA further
distinguishing from others. The time it takes to perform the method was less than
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5 min for all benchmarks. This means that a designer could insert or change circuit
instrumentation for debugging relatively fast. One drawback of our method is that it
can increase minimum period for some circuits. This occurs if the delay of any of
the parts we insert is greater than the current minimum period. So, the pipelining
method can be used to improve the minimum period if needed.
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