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Abstract Low-density parity check (LDPC) codes are the capacity approaching
codes having better decoding performance closer to Shannon’s limit. The perfor-
mance of the LDPC codes depends on the block length, code rate, structure of
parity check matrix (H-matrix), and on the decoding process. Various code con-
struction methods are structured including Quasi-cyclic-irregular parity check
matrix to improve the performance of the LDPC codes. Cellular Automata are a
computational method that realizes the complex computational blocks into simple,
regular, and modular structures. In this paper, the cellular automata-based LDPC
parity check matrix with hierarchical diagonal parity check matrix structure has
been incorporated in the decoder design. Error performance improvement of
0.0417 dB is obtained with HDPCM-based LDPC decoder using cellular automata.
Performance analysis on increased code length validates the proposed LDPC
decoder with the improved decoding performance.
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1 Introduction

Low-density parity check codes are the class of linear block codes with sparse
parity check matrix (H-matrix) [1, 2]. The advantages of LDPC codes are highly
parallelizable in hardware implementation; codes are capacity approaching, effi-
ciently decoded by parallel iterative decoding algorithm with low latency and these
advantages allow LDPC codes to real-time and high-throughput application [3].
LDPC codes find application in standards such as 10GBase-T Ethernet, IEEE
802.11(WiFi), WiMAX, data storage in flash memory and Digital Video
Broadcasting (DVB). LDPC decoding algorithms include functions in computation
which gives complex computational blocks structures in VLSI implementation [4].
The parity check matrix gives the parity check constraints for the LDPC codes. The
structure of the parity check matrix is one of the metric which determines the
performance of the LDPC codes. Quasi-cyclic LDPC codes provides decoding with
fast convergence rate, low error-floor, and better performance in the AWGN and
BEC channel and it is close to Shannon limit [5]. Various algorithmic modifications
are provided to reduce the complexity in the implementation at the cost of degra-
dation in the performance [4, 6, 7].

The cellular automata implements the complex computational blocks into simple
modular logic structures [8]. Cellular Automata (CA) is the computational method
for various VLSI applications which includes error correcting codes [9, 10], design
of cipher system [11], testing of circuits, authentication scheme, and compression.
Cellular automata implementation provides better parallelism and it is also cost
effective compared to DSP processor. Cellular automata-based LDPC structure is
obtained using the cellular automata rules, which includes the modular expression
for generation of the hierarchical diagonal parity check matrix.

In this paper, cellular automata-based LDPC codes have been proposed to
provide better performance and reduced computational complexity. This paper
includes basic concepts of cellular automata, classification of rules, and cellular
automata rules for HDPCM generation.

2  Cellular Automata Concept and Classification

Cellular automata are a computational method which implements complex com-
putational blocks into simple modular logic structures. Cellular automata (CA) are
attractive due to their fine grain parallelism, simple computational structures, and
local communication patterns [12]. CA consist of an infinite number of finite cells
arranged on a regular lattice. Each cell in the lattice is identical and works simul-
taneously. The value in each cell in time 7 + 1 is a function of the value of cell in
time ¢, the value of neighboring cells in time ¢, and rule associated with the cell.
One-dimensional cellular automata consist of a row of cells with r = n in general
representation, where r is the distance from the present cell to the neighborhood
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cells to which the value of the current cells depend on and 7 is the number of cells
in the row, n = 1 gives y;,_1(¢), yi(t), yi+1(¢) as the neighborhood cells. In
one-dimensional cellular automata [13], the value of the cell y;(r+ 1) depends on
the neighborhood cells y;—1(t), y;(¢), and y;1(¢). y;—1(¢) corresponds to the cell to
the left of the current cell and y; . (¢) corresponds to the cell to the right of the
current cell. The value of the present cell depends on the neighborhood cells
previous values that results in 8 (i.e., 2*) possible neighborhood combinations. The
possible number of rules is 256 (i.e., 28).

3 Cellular Automata Rules for LDPC Decoding

Parity check matrix (PCM) is the random matrix defined in the Galois Field which
determines the strength of the LDPC codes. The complexity in the computations of
LDPC codes depend on the number of nonzero numbers and structure of the PCM.
By increasing the sparsity of the PCM, the computational complexity is reduced
significantly. The increased sparsity in the PCM is achieved by implementing the
cellular automata rules. The increased sparsity of the matrix is required to reduce
the complexity in the computation of LDPC codes in the implementation of the
decoding algorithm. The CA-based generated PCM is sparser compared to the
random PCM. PCM obtained by rule 90 is sparser compared to the random or other
two CA rules. The rule 90 has a less complex function compared to all the other
random CA rules.

Rule 90: A simple linear CA rule generates sparse matrix by the exclusive-or of
its two neighbors [13].

Yi(t+1) = yi1(t) D yip1(2)

Rule 240: Shift-right operations are performed [13].

yi(t+1) = yi-1 ()

3.1 Comparison of PCM Generated by Using Cellular
Automata Rules

The sparsity comparison between the random LDPC PCM and PCM generated by
the cellular automata rules are shown in Table 1. The sparse arity check matrix
PCM was obtained by the Rule 90 with simple function for implementation.

The random number generation using nonuniform CA randomizer has been
found to be superior to that of Rule 30 [14] and takes the same time as that of
uniform cellular automata rules. The hierarchical diagonal parity check matrix is
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Table 1 Comparison of CA rules

Random LDPC PCM PCM using CA Rule 30
111011 1 1 1.0 0 0 0 0 0 0
g=10 1 1 1 0 0 0 1 g=|1 0 0 0 0 0 0 1
110111 1 1 01 01 01 1 0
1 0111110 01 1 01 1 0 0

PCM using CA Rule 90 PCM using CA Rule 150
1 0 00 0 0 0O 1 0 0 0 0 0 0 0
H = 01 000001 H = 11 0 0 0 0 0 1
001 00 O0T1TTO0 1 01 0 0 0 1 0
0101010 1 1 011 011 0

implemented in cellular automata by concatenating Rule 240 and Rule 90, and are
represented by

Hyuppem = [RMs | IM]

1 01 01 00O
H:01110100
1 1100 010
01 01 0O0O01

where RMj g ;. the single diagonal elements along with the diagonal elements both
in the upper right half and lower left half of the matrix and IM, the identity matrix.

3.2 Algorithm to Generate CA-Based LDPC Codes

See Table 2.

4 LDPC Decoding Algorithm

Sum—Product decoding algorithm (SPA) of LDPC codes approach the channel
capacity in the additive white Gaussian noise channel. The computational com-
plexity of the SPA is given by O(g) as it has sum and product operations for each
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Table 2 Algorithm to generate CA based LDPC codes

Initially the H(m,n) matrix is
generated by rule 240 to the first half
matrix and second half matrix by
specifying the initial conditions as
H(1,1)=H(1,(n/2+1))=1.
STEP: 1.a, Initialization for first row
to apply CA rule

i=1

forj=1:1:n/2

Ifj==

H(l,1)=1;

else

H(ij)=0;

end

end

b,Rule 240

fori=2:1:m

forj=1:1:n/2

ifj==1

H(ij)=H(i-1,n/2);

else

H(ij)=H(i-1j-1);

end

end

¢, similar is done for
j=n/2+1:1:n by applying the rule 240.
STEP: 2.Splitting the H-matrix as
H;-matrix and H,-matrix.
STEP: 3.For H;-matrix the rule 240
is applied by specifying

Hi(1,(n/4+1))=H,((m/2+1),1)=1.

STEP: 4.Random matrix Hy (m,n/2)
is generated by using Rule 90.

i=1;
=1
forj=2:1:n/2
Hy(l,1)=1;
Hi(i,j)=0;
end
fori=2:1:m
forj=1:1:n/2
if j==
Hg(Ij)=xor((Hg(i-1,n), Hg(i-
1,j+1));
elseif j==n
HR(IJ) :XOI'(HR(i-],j-
1),Hp(i-1,1));
else

Hg(l,j)=xor(Hg(i-1,j-
1),xor(Hg(i-1,j+1));

end

end

end
STEP: 5.Matrix H;, is obtained by
OR-operating the matrix Hz and H,.

H[2:HR or H],'

STEP: 6.Final HDM matrix is
obtained by concatenating Hj,and
H..

check node processing, where g represents the cardinality of the Galois field.
The SPA can also be implemented in the probability domain using fast fourier
transforms (FFT) [15] and the complexity will be dominated by O(g log,q) as it
includes sum and product operations. The FFT-based SPA (FFT-SPA) needs
complicated multiplications. The hardware expensive multiplications are removed
by the exponential and logarithm operation with look-up tables during the check
node and variable node processing. In the max-log-SPA, the computational
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complexity is given by O(g%) with sum and comparisons. Variations in the algo-
rithm is done to reduce the complexity that includes min-sum decoding algorithm
which provides reduced memory requirement and with little performance loss.
Min-max decoding algorithm gives reduced number of comparisons and it degrades
the performance. To provide better trade-off between computational complexity and
performance, the proposed method of cellular automata-based LDPC parity check
matrix is generated for the FFT-SPA decoding using the cellular automata rules.
The computational complexity is reduced by the cellular automata as it implements
the complex computational block to simple modular logic structures.

5 Hierarchical Diagonal Parity Check Matrix
in CA-Based LDPC Codes

In the cellular automata-based LDPC codes, the hierarchical diagonal parity check
matrix (HDPCM) is derived using CA rules. The information bits are encoded by
using the generation matrix and modulated by BPSK modulation. The modulated
information is transmitted through the channel. The Additive White Gaussian Noise
(AWGN) is added to the transmitted information. The channel probability for the
channel and the received bits are calculated and decoded using FFT-SPA. FFT-SPA
decoding algorithm was implemented with the HDPCM derived by the CA rules as
shown in Table 2. The computational complexity of the sum—product algorithm
(SPA) is O(qz) and by the FFT-SPA it scales down to O(q log q).

For the code length 648, the BER for different SNR, noise variance (sigma), and
comparison between random LDPC codes HDPCM matrix and CA-based LDPC
codes HDPCM matrix is plotted.

5.1 Analysis of HDPCM

Sparsity of the PCM is the ratio of total number of zero elements to the total number
of elements in the parity check matrix structure. The sparsity of the HDPCM matrix
for code length n = 648 is 0.9698 and for n = 1008 the sparsity is 0.9729.

Density of the PCM is the ratio of total numbers of nonzero elements to the total
number of elements in the parity check matrix structure. The density of the
HDPCM matrix for code length n = 648 is 0.0302 and for n = 1008 the density is
0.0271.

A cycle of length / is a path between the variable and check nodes of [ distinct
edges which closes on it. The shortest possible cycle has the length of four. The
minimum cycle length is girth. Short cycles of Tanner graph have a negative
influence on the performance of iterative decoding [16]. So, short cycles should be
avoided when designing good LDPC codes.
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5.2 Performance Analysis

BER is the ratio of number of erroneous bits to the total number of bits. Cellular
automata concept is introduced in the parity check matrix generation by using the
nonuniform cellular automata rules. For the code length of 648, the BER curve is
plotted for different SNR dB values in Fig. 1. The BER for noise variance
sigma = 0.8 is obtained for different SNRs from —1 to 5 dB for 25 iterations.

The CA-based LDPC decoder error performance is improved for the increasing
SNR values. The error performance is similar to the other decoder performance for
the different noise variance is analyzed.

5.3 Comparison Analysis

The hybrid CA rules are used to obtain the HDM structure. The HDM structure
provides better error performance compared to the random parity check matrix. For
sigma = 0.8 with 30 iterations, the LDPC codes comparison plot between CA
derived HDPCM and random HDPCM for different SNRs is analyzed and plotted
in Fig. 2. The SNR of 3 dB gives a BER of 0.0849 dB for random HDPCM and
0.0432 dB for CA-derived HDPCM. The improvement in the BER is obtained as
0.0417 dB.

Bit error probability curve for BPSK modulation

10 = 3

107

Bit Error Rate

10

Eb/No, dB

Fig. 1 BER curve for CA based LDPC codes
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Bit error probability curve for BPSK modulation

2| =—&— Random PCMlteration=30,Sigma=0.8 |
| —#— CA PCM lteration=30,Sigma=0.8

............................ e g

Bit Error Rate

Eb/No, dB

Fig. 2 Comparison between CA based and random LDPC codes

This analysis shows the error performance improvement by using the HDPCM
structure in comparison with the random PCM in the LDPC decoding.
The HDPCM matrix is a sparse matrix that reduces the computational complexity
with the increase in the performance.

5.4 CA-Based LDPC Codes for Different Code Length

In LDPC decoding, by increasing the code length the error performance is
improved. By the proposed cellular automata-based parity check matrix, the anal-
ysis for the increased code length has been done and plotted in Fig. 3. BER for code
lengths 648 and 1008 was plotted for various SNR dB values with sigma = 0.8 and
25 iterations.

It has been observed that by increasing the code length, the BER performance
improvement was observed. The complexity in the computation was also mini-
mized by the increased sparsity in the cellular automata-based HDPCM. Comparing
the code length n = 648 in the Wifi application and the underwater communication
with n = 1008, the code length n = 1008 provides better error performance.
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0 Bit error probability curve for BPSK modulation
10 I T ]
—O— 324x648 CA-PCM, lteration=25,sigma=0.8
—&— 504x1008 CA-PCM, lteration=25,sigma=0.8

Bit Error Rate

—
o‘
o

10
1 0 1 2 3 4 5
Eb/No, dB

Fig. 3 BER for different code length

6 Conclusion

The cellular automata-based HDPCM is constructed and increased error performance
is obtained by satisfying the girth and '2 code rate for the decoder design. The
performance analysis of the CA-based LDPC codes and the random LDPC codes
provides improved error performance in the CA-based LDPC codes. Performance
prompts to be increased for the increased code length. The designed decoder is
evaluated for decoder parameters like BER, girth, and convergence rate. The
CA-based LDPC codes provides a convergence rate of 0.0417 dB for code length
n =324 on comparing with random LDPC codes. The cellular automata-based LDPC
decoder can be used for different channel modulations and different channels. The
implication of the CA-based LDPC decoder can be used for higher order Galois Field.
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