
An Efficient Approach for Evolution
of Functional Requirements to Improve
the Quality of Software Architecture

M. Sunil Kumar and A. Rama Mohan Reddy

Abstract Software architecture will be designed within the early phases combined
with the development process; the huge constraints makes it possible for the
achievement of certain functional requirements, quality attributes (non-functional
requirements), and also business goals. Metaheuristic search algorithm performs an
important role within the software architecture design to improve the performance
of obtaining an optimal solution from the huge search space. This particular paper
mainly focusses on balancing the combinations of “Adaptive Genetic algorithm,”
which has to be applied. It has incorporated the usage of roulette wheel selection
operators; this technique is implemented in java and it also finds out global minima
as well as time reduction when compared with Genetic algorithm.

Keywords Software architecture � Functional requirements � Quality attributes �
Responsibility � Metaheuristic search algorithms � Adaptive genetic algorithm �
Simulated annealing

1 Introduction

Software plays an essential role in all the aspects of our life. The rising usage of
several applications facilitating varying user’s necessities creates a sharp increase in
the scale and complexity of software, which results in the decline of the software
quality. As a result, the main challenges in software engineering are to measure,
understand, manage, control, and lower the software complexity [1]. Software
product line engineering aims at improving the productivity and reduces the real-
ization times by collecting the analysis, design, and implementation actions of a

M. Sunil Kumar (&)
Department of CSE, Sree Vidyanikethan Engineering College, Tirupati, India
e-mail: sunilmalchi1@gmail.com

A. Rama Mohan Reddy
Department of CSE, S.V.U. College of Engineering, SV University, Tirupati, India

© Springer India 2016
S.S. Dash et al. (eds.), Artificial Intelligence and Evolutionary Computations
in Engineering Systems, Advances in Intelligent Systems and Computing 394,
DOI 10.1007/978-81-322-2656-7_71

775

family of systems. Characteristics that vary from product to product form the
variabilities. The major challenge in the context of the software product lines
(PL) approach is to form and put into practice these variabilities [2]. Along with the
magnitude and intricacy of the software systems varies the computational com-
plexity of theirs. The design of the software system, the allied methodologies, and
data structures play a major role in fixing the problem. The major structural con-
cerns in the process of software system design include designing efficient com-
munication protocols and simpler synchronization mechanisms, component
formation and assessment of the components as a whole, physical placement of
components on the network nodes, service distribution on the network nodes in
order to support faster services to the user, etc. The design process is a spiral model,
which presents the most appropriate design model given in the system requirements
by considering all the possible design alternatives.

2 Problem Statement

Along with the growth of software industry, the necessity for online software
systems has increased. To accommodate the enhancing technology and needs into
the system on-the-fly, the architecture of the software system should be carefully
designed and thoroughly analyzed. Standards, procedures, and processes to develop
such system architectures need to be established. Automation up to some extent
may help software architects to start from a general skeleton architecture and build
on it. This leaves the architects more time to refine the architectural designs to the
maximum possible extent.

This paper is only a humble beginning and there is yet an ocean of research to be
done in the field. The analysis on the associated workings, which uses the genetic
algorithm, has revealed that regardless of being technically sophisticated, the
methods seem to be short of reduction in the computational time which further
influences the excellence of the software. While designing the software, compu-
tational time is given the principal consideration. The software is considered to be
quality software only when the time for computing a process is less. This has
necessitated the requirement for developing better techniques for the architecture of
the software with the intention of reducing the computational time and also to boost
the quality of the software being designed.

Automation process may further be used to compare various possible architec-
tural styles and designs for a given application in order to select the appropriate and
best suitable combination. The idea of using the concepts of genetic science to refine
the architecture model to produce the best possible automation is studied in this
thesis work. The basic idea is to maintain a database of architectural styles, design
patterns, and apply genetic algorithms to derive all the possible design alternatives
for a given application/system, by providing the basic constraints/guidelines to be
followed while generating the possibilities.

776 M. Sunil Kumar and A. Rama Mohan Reddy

To facilitate in overcoming the disadvantages, a novel approach “An Adaptive
Genetic Algorithm” has been taken in the beginning with a set of responsibilities in
the class diagram. The responsibility dependency graph has been then derived
which is further considered as input to the adaptive genetic algorithm, which
produces suggestions for identifying the quality requirements for the architecture.

3 Metaheuristic Search Algorithm

3.1 Justification of Applicability of Metaheuristic
Algorithms in Software Architecture Domain

The field of metaheuristic provides solutions to various combinatorial optimization
problems like scheduling problem, integer programming, resource assignment
problem, cutting stock problem, network routing problem, tree optimization prob-
lem, neural network design problem, etc. [3]. The field of Evolutionary Algorithms
(EAs) had its beginning when researchers thought of using the phenomena
observed in the evolution of life-form in the real world. Since then, a variety of
algorithms have been developed. For example, optimization algorithms based on
ant-colony behaviors have been designed. The inspiration was taken from the
biological processes like population, reproduction, mutation, selection, survival of
the fittest, etc. One of the advantages of evolutionary algorithms is that they can be
easily modularized and hence parallel programming can be used.

For many applications or real-world problems, there does not exist exact
problem-specific solutions and heuristics to be followed to find optimal and feasible
solutions. In such cases, the field of metaheuristic can be helpful beyond the
expectations in finding an optimal and computable solution for a given problem.
The field of evolutionary algorithms along with defined problem-specific heuristics
in combination with the other fields like local-search-based techniques, sampling
techniques, etc., is aimed at achieving highly efficient optimization algorithms. Any
problem when transformed into a combinatorial optimization problem can be
solved by using metaheuristics.

3.2 Genetic Algorithms

On observing the evolution of different species of life-form, many biological prin-
ciples have been found, which can be used for supporting natural evolution of a
feasible solution in the process of search-based optimization [4]. It shares a com-
monality with the simulated annealing approach that it performs better when com-
pared to gradient-based optimization strategy [5]. Its use is particularly appreciated
when it is applied to applications or systems that show high nonlinearity. Also, it is

An Efficient Approach for Evolution of Functional … 777

useful in situations where global optimum is to be derived from the many existing
local optimums. The general working strategy of the GA algorithms can be described
as follows in Table 1.

i. A random selection of a set of initial seed points is made from the given design
search space, then

ii. Design alternatives are further improved by repeatedly applying genetic
principles.

3.3 Applicability of Genetic Algorithm in Architectural
Modeling

The dramatic improvement in the field of computing technology has given immense
scope to researchers world-wide to perform deep and enhanced experimentation
with their approaches efficiently and swiftly. The applicability of the newly
developed approaches in specific domains could be proved. Further improvements
could be effectively suggested. This has speeded up the area of research produc-
tively. As genetic algorithms need high computational power, their use after their
conception was limited. As the technology grew, their use was steadily boosted
up. But in the software architecture design process, the usage of genetic algorithms
has been thought of and worked upon only recently. Only since the establishment of
the importance of software architecture design (in handling large and complex
problems efficiently) has the prospective idea of utilizing genetic principles in the
design process been given a thought. Developing various design alternatives and
evaluating them to extract a best design solution throws a challenge to the archi-
tects, where search-based optimization comes into picture [6]. Genetic algorithms
are best suited for handling these challenges in the process of designing software
architecture.

In software architecture design, genetic algorithms can be used to handle two
challenges. In one way, genetic algorithms help to choose the optimal feasible

Table 1 Application of genetic algorithm

Some application areas by
domain

Some application areas by technique

Industrial design by
parameterization

Chromosomes to set membership and function optimization

Scheduling Real valued chromosomes to function optimization

Network design by
construction

Order-based binary chromosomes for optimization by
construction

Routing Tree-based chromosomes for genetic

Time series prediction Domain-specific chromosomes for specialized solutions to
particular problems

778 M. Sunil Kumar and A. Rama Mohan Reddy

solution among the given population of the design alternatives by setting objective
functions. In another way, genetic algorithms are helpful in the evolution of new
design alternatives from the existing ones.

4 Proposed Methodology of Adaptive Genetic Algorithm

This paper uses adaptive genetic algorithm of software architectures to introduce
varying levels of automation into design, planning, and maintenance phases. The
conducted studies use UML-based representation of software architecture design.
The work is in light of the perspective that software architecture is a result of a
series of decisions made to incorporate the concerns of different stakeholders in the
system. The decisions translate into solutions inside software architectures, where
some solutions are specific to the system while others can be reused. In this work,
all architectural changes resulting from architectural decisions are called architec-
tural solutions or simply solutions. Software architecture can be considered as a
collection of architectural solutions. A solution in its entirety enters or leaves
software architecture thereby affecting some property of the system.

If we consider software architecture as a combination of solutions, then,
designing a system can be understood as finding a feasible configuration of the
solutions. Each solution not only resolves a functional requirement but also has an
impact on quality attribute(s). The quality-related implications of the well under-
stood solutions are usually well-documented and are known in advance. Thus, a
careful selection of the solutions can be expected to lead to an acceptable archi-
tecture. This scenario can be formulated as a search problem: in principle, an
algorithm can be designed which will find an optimal configuration of the solutions
available in a solution database, given the architecturally significant requirements of
the system. In this kind of problem, metaheuristic search methods usually outper-
form deterministic approaches. Adaptive genetic algorithms belong to the meta-
heuristic search methods family and have been employed in many studies to address
software engineering problems.

In this paper, adaptive genetic algorithms have been employed to design soft-
ware architectures. The adaptive genetic algorithm synthesizes software architec-
tures and applies solutions from a solution base, thus producing improved designs.
Each of the solutions is introduced through adaptive mutations employed in the
adaptive genetic algorithm. The adaptive genetic algorithm is provided with an
objective or fitness function to gauge the modifiability, efficiency, and complexity
of the architectures. The algorithm takes an input initial design and properties of the
developing organization to produce initial work distribution plans. The solutions are
introduced in the architecture to ease its distribution among the teams as well as to
reduce the inter-team communications during the architecture development. The
difficulties in communication among the involved teams are therefore taken into
account in the fitness function. The difficulties usually have their origin in the
cultural, lingual, or social dissimilarities among the teams.

An Efficient Approach for Evolution of Functional … 779

Consequently, the adaptive genetic algorithm favors low coupling among the
components to be assigned to teams with significant overhead in communication
and vice versa. Furthermore, extreme over- or under- loading of the teams are also
discouraged by the fitness function. Our adaptive genetic algorithm-based main-
tenance is planned around some specific modification needs; instead, one or more
properties, (e.g., efficiency, reliability, etc.) are targeted for maintenance. The major
preplanning activities involve designing of the fitness function and selection of the
solutions that have an influence on the maintained properties. Once equipped with
the solutions and the fitness function, our adaptive genetic algorithm can address a
wide range of future, possibly unpredictable modification needs associated with the
maintained properties.

The developed genetic algorithm includes a set of solutions with an effect on the
performance and reliability in distributed systems settings. The fitness function
measures efficiency and reliability of architectures. The infrastructure allows run-time
updating of Java classes. All the modifications, manual or automatic, are performed
within theUML class diagram-based architectural representation of a running system.
The software is considered to be quality software only when the time for computing a
process is less. This necessitated for the requirement of developing a better technique
for the architecture of the software with the intention of reducing the computational
time and also to boost the quality of the software being designed. Besides the com-
putational time, the fitness value for the solution also stays to be less which can
influence the architecture of the software by and large. To overcome these disad-
vantages, we have designed a technique using the adaptive genetic algorithmwhich is
proved to be a competent method for software architecture.

The alteration operation passed out is adaptive alteration in adaptive genetic
algorithm which demonstrates to be further competent than the standard mutation
operation in GA. Regarding its enhanced steps such as crossover, mutation, and
also offers improved fitness value, the adaptive genetic algorithm is leading over
normal GA. By pertaining to the adaptive alteration, the fitness value of the con-
sequent solution for the architecture is enlarged when balanced with the algorithm
utilized in the presented method, which can result in enhanced presentation of
software. Consequently, the computational time has been enhanced to a larger
extent when compared with the architecture produced by means of the standard GA
process by utilizing the adaptive genetic algorithm for software architecture.

The software architecture is generally a set of decisions related to the organi-
zation of the software system and selection of the structural elements and their
interfaces by which the system is composed together. Software architecture, along
with the structure and behavior, is also concerned with functionality, performance,
reuse, economic and technological constraints, etc. In software, its components are
related to one another in a variety of ways. In order to develop good quality
software, this relationship has to be represented in the architecture. The software
architecture is an extremely challenging process. The functional and the
non-functional necessities mostly enable the software architecture. In our proposed
methodology, the responsibilities and dependency values are given as an input for
finding the optimal software design.

780 M. Sunil Kumar and A. Rama Mohan Reddy

4.1 Architecture Representation Using Adaptive Genetic
Algorithm

In order to maintain variety in the course of optimization process, the chromosomes
are separated into chromosomes in the recommended software architecture by
means of adaptive GA. The chromosomes are similar and the folks are replaced
among chromosomes, till the most excellent individuals are got through the set of
chromosomes in this procedure. The substitute operation is executed by means of
migration operator. Relocation of individuals among dissimilar chromosomes
chased by the application of genetic operators results in the production of new
individuals. To manage the level of variety, the rate of migration permits the
algorithm and is continued inside the chromosomes.

To be able to elucidate that the proposed Adaptive Genetic Algorithm is a novel
approach that has been taken in the beginning with a set of responsibilities in every
class diagram shown in Fig. 1. A responsibility dependency graph is then developed
for the use as input to the proposed adaptive genetic algorithm. In any field, the
adaptive genetic algorithms are used to evolve best solution by performing genetic
operations on the existing set of solutions. For applying adaptive genetic algorithm
on a specific problem, a mapping of elements of the given problem to the elements
of the adaptive genetic algorithm needs to be done—the smallest basic element of
the existing solution that can be assumed as a chromosome in terms of genetic
algorithm, an initial set of solutions that can be considered as the initial population,
the genetic operators that should be used in the genetic algorithm, an appropriate
objective or fitness function to evaluate the solutions and a selection operator to
choose the survival of the fittest to be forwarded to the next generation.

Fig. 1 Conceptual model for
AGA

An Efficient Approach for Evolution of Functional … 781

In order to maintain variety through optimization process, the chromosomes are
separated into chromosomes within the recommended software architecture by
using adaptive genetic algorithm. The chromosomes have been similar as well as
the individuals are replaced among chromosomes. Throughout the selection pro-
cedure, the indiscriminately generated chromosomes and also the new chromo-
somes are positioned in a selection pool on the basis of their fitness values. The
chromosomes which contain good fitness occupy the top positions in the pool
within the selection pool.

The first chromosomes which are at the top of the selection pool are selected for
the next generation within the chromosomes. Here, the selection is based on the
fitness and execution time for every task. This technique is repeated through the
crossover with all the selected chromosomes until it reaches the termination criteria.
Throughout the process, the number of iteration reaches the absolute maximum
generation and then the entire process is terminated. The chromosome which can be
at the top of the selection pool is selected as the best chromosome. Depending upon
the identification of quality functional requirements, quality architectural design is
produced.

4.2 Adaptive Genetic Algorithm

Input: Dependency values, Path coverage, Statement coverage.
Output: best chromosome after termination of condition.

S1: Initialize population with ‘n’ chromosomes
S2: Identify the fitness f(x), each chromosome x in population.
S3: For generating random population we are taking Roulette wheel selection

method. [Selection] Select two parent chromosomes from a population according
to their fitness
(b) Cross over operator is used to identify new offspring (children).

(c) Adaptive mutation, mutate new offspring (new children) at each locus

(d) [Selection] set new offspring in new population. The new offspring will
Give the quality responsibilities. Base on the responsibilities we are able to
construct best software architecture.

S4: [Replace] Use new generated population
S5: End condition.
S6: Go to s2

782 M. Sunil Kumar and A. Rama Mohan Reddy

4.3 Generating Input for Adaptive Genetic Algorithm

In this paper, the responsibility dependency values are the inputs to the solution
space. Assigning responsibilities to class is done using MH optimization algo-
rithms. Initially, a design with responsibilities assigned to a class on differences
serves as basis for applying more advanced OO mechanisms like inheritance,
interfaces, abstract classes, etc.

4.3.1 Responsibility Value

These values are gathered from the class diagrams; assigning responsibilities to
classes is among first and arguably most important step when creating
object-oriented software design. This step depends greatly on human judgment and
experience to automate the process of assigning responsibilities by using classes.
Here is the example of retrieving the responsibilities from the class diagram.

4.3.2 Responsibility Dependency Graph

The concept of responsibility dependency graph is developed in order to efficiently
represent the set of functional requirements of the software systems. The graph
represents the functional requirements in the form of simple responsibilities.
A responsibility can be defined as a job to be handled by either the complete
software system or by a module or component of the software system. It can also be
termed as a data object or item that has to be maintained in integrity by either the
complete software system or by a module or component of the software system.

The responsibility dependency graph, as the name itself indicates, represents
responsibilities and the dependency relationships between the responsibilities.
Responsibilities are denoted using an oval symbol which is technically termed as a
node and the dependency relationships between responsibilities is represented by
using directed edges. A directed edge specifies that the fulfillment of the source
responsibility is dependent on the fulfillment of the target responsibility. Using this
representation format, a responsibility dependency graph for any given software
system can be developed. Once this graph is developed, properties such as path
coverage, dependency value, and statement coverage of the responsibilities are
considered for the purpose of evaluating the software system.

The hospital management software system considered here can be divided into
five major modules—new user registration and user login module, patient module,
doctor module, bill entry and maintenance module, and report generation module.
On the analysis of these modules, a set of functional requirements have been
identified which have been modeled as 26 responsibilities having 52 dependencies
relating them. A typical selection approach assigns the probability of selection Pj to
each and every individual j according to its fitness value. A number of N random

An Efficient Approach for Evolution of Functional … 783

numbers is actually generated as well as compared toward the cumulative proba-
bility Ci ¼

Pi
j¼1 Pi from the population. A proper individual i will be selected

along with the one copied to in the new population if Ci−1 < U (0, 1) ≤ Ci. A variety
of methods exist in order to assign probabilities to individuals: roulette wheel, linear
ranking as well as geometric ranking.

Roulette wheel, may be the first selection method. The particular probability Pi

for each and every individual is actually described by:

P Individual i is chosen½ � ¼ Fi=
Xpop size

j¼1

Fj

In this, Fi equals the particular fitness of individual i. The usage of roulette wheel
selection limits the actual genetic algorithm in order to maximize, since the eval-
uation function needs to map the particular solutions in order to a completely
ordered number of values on ℜ+. Extensions, such as windowing as well as scaling
are actually proposed to permit intended for minimization and negativity.

In roulette wheel selection, the particular individuals tend to be mapped in order
to contiguous segments of the line, so that every individual’s segment is every bit
sized in order to its fitness. A random number can be generated as well as the
individual whose segment spans the particular random number will be selected. The
procedure repeats before the desired number of individuals is actually obtained
(called mating population). This method is actually analogous with a roulette wheel
together with each slice proportionally sized toward the fitness.

Algorithm for Roulette Wheel Selection Method

Step1: r := random number, where 0 =< r < 1;
 Step2: sum := 0;
 for each
 Step 3: individual i
 {
 Step 4: sum := sum+p(choice = i);
 Step 5: if r < sum
 {
 Step6: return i;
 }
The flow diagram for our proposed adaptive genetic algorithm is shown in

Fig. 2.
The software architecture is represented in terms of UML class responsibility

diagrams. The optimality can be proved based on the dependencies and responsi-
bilities of the system. Here, we have used bank management application as an
example system. It contains 47 responsibilities and 94 dependencies between them.
A class diagram will clearly structures the functional responsibilities, as shown in
Fig. 3.

784 M. Sunil Kumar and A. Rama Mohan Reddy

Fig. 2 Flow chart for AGA (adaptive genetic algorithm)

Fig. 3 The class diagram

An Efficient Approach for Evolution of Functional … 785

4.4 Generating Dependency Graph from Class Diagram

The concept of responsibility dependency graph is developed in order to efficiently
represent the set of functional requirements of the software systems. The graph
represents the functional requirements in the form of simple responsibilities.
A responsibility can be defined as a job to be handled by either the complete
software system or by a module or component of the software system. It can also be
termed as a data object or item that has to be maintained in integrity by either the
complete software system or by a module or component of the software system
(Fig. 4).

Two basic elements are used in the responsibility dependency graph for the
purpose of representation. As the name itself indicates, the graph represents
responsibilities and the dependency relationships between the responsibilities.
Responsibilities are denoted using an oval symbol which is technically termed as a
node and the dependency relationships between responsibilities is represented by
using directed edges. A directed edge specifies that the fulfillment of the source
responsibility is dependent on the fulfillment of the target responsibility. Using this
representation format, a responsibility dependency graph for any given software
system can be developed. Once this graph is developed, properties such as path

Fig. 4 Responsibility dependency graph

786 M. Sunil Kumar and A. Rama Mohan Reddy

Table 2 Responsibilities with dependency values

Responsibility number Responsibility name Depending value Type

1 ABank1 48 F

2 Acounter 2 F

3 ADeleteAcc 2 F

4 ADep 2 F

5 Adisp 2 F

6 ADisplay1 2 F

7 AEloan1 2 F

8 AGloan1 3 F

9 ALo 3 F

10 ALoan 2 F

11 AMain 2 F

12 AMiniStmt 2 F

13 AMTransfer 2 F

14 ANewAccount 2 F

15 APayeloan 2 F

16 APaygloan 2 F

17 APayment 2 F

18 APayloan 2 F

19 APloan1 2 F

20 AWithdrawal 3 F

21 Bank1 48 F

22 Clusdis 2 F

23 Clustering 2 F

24 Database 2 F

25 DeleteAcc 2 F

26 Dep 0 F

27 Display 2 F

28 Eloan1 0 F

29 Firstpage 2 F

30 Fisdisplay 2 F

31 Gloan 2 F

32 Gloan1 2 F

33 Lo 2 F

34 Loan 2 F

35 Main 2 F

36 MiniStmt 2 F

37 MTransfer 2 F

38 NewAccount 1 F

39 Payeloan 2 F

40 Paygloan 2 F
(continued)

An Efficient Approach for Evolution of Functional … 787

coverage, dependency value, and statement coverage of the responsibilities are
considered for the purpose of evaluating the software system.

For testing the given software system, identify the functional requirements in the
form of responsibilities and their dependencies and having developed the respon-
sibility dependency graph, a sample data is designed to test the system. Here, the
type “F” represents the functional responsibilities. All the values are shown in the
Table 2.

The bank management system contains 11 modules: login, customer, account,
loan, bank, account, display, loan, clustering, transfer, and testing. These modules
are independent of each other. On analysing these modules, a set of functional
requirements have been identified which have been modeled as 47 responsibilities
having 94 dependencies relating them. The details of the same are shown in
Table 2. Effort is made to achieve a balance between complexity and structure of
the graph. The parameter values are fine-tuned. Here, we illustrated path coverage,
dependency values, and statement coverage values as taken from the above
dependency graph.

5 Results of Final Test Case

Initial population in solution space is consisting of chromosome with length of two
genes, i.e., {{23, 44}, {23, 44}, {23, 26}, {23, 26} {23, 26}}. Evaluation of fitness
for each and every offspring chromosome in the solution space is show in Tables 3,
4, 5, 6, 7.

Based on the fitness values, identifying eminent functional responsibility is
shown in Table 8.

From the above responsibilities, Table 8, eminent functional responsibilities are
identified and represented as a class diagram as shown in Fig. 5.

After all iterations, the fitness values in the case study are constant; there is no
longer generation of new offsprings. Hence, adaptive genetic algorithm is the best
when compared to genetic algorithm.

Table 2 (continued)

Responsibility number Responsibility name Depending value Type

41 Payment 2 F

42 Payploan 2 F

43 Ploan1 3 F

44 Pridis 2 F

45 Pro 7 F

46 Testing 7 F

47 Withdrawal 2 F

788 M. Sunil Kumar and A. Rama Mohan Reddy

Table 3 New offspring
chromosome with fitness
value

Iteration: 5

Initial chromosome Fitness values

23 44 781

23 44 781

23 26 720.5

23 26 720.5

23 26 720.5

Table 4 Crossover operation Crossover chromosome

23 44

23 44

23 26

23 26

23 44

Table 5 Adaptive mutation
operation

Mutation chromosome

23 2 1

23 13 1

23 44 1

23 26 1

23 44 1

Table 6 Over all fitness for
all chromosome

S. no Chromosome Fitness values

1 23 44 781.0

2 23 44 781.0

3 23 26 720.5

4 23 26 720.5

5 23 26 720.5

6 23 44 781.0

7 23 44 781.0

8 23 26 720.5

9 23 26 720.5

10 23 44 781.0

11 23 2 551.0

12 23 13 571.0

13 23 44 781.0

14 23 28 597.5

An Efficient Approach for Evolution of Functional … 789

5.1 Performance Analysis

The whole effort of the genetic algorithms lies on the objective functions and fitness
values selected. In each generation, the chromosomes with highest fitness values are
chosen. In both the GA and AGA methodologies, in each iteration, the fitness value
of each of the chromosomes is calculated and the results are tabulated. By
observing the information, Table 9, it is concluded that our AGA technique
achieved higher fitness values when compared to the GA technique.

The results shown in Table 9 and Fig. 6 prove the efficiency of the proposed
adaptive genetic algorithm in producing a quick convergence scenario when
compared to the traditional genetic algorithm.

Table 7 Eminent
chromosome and fitness value

Chromosome Fitness

23 44 781

23 44 781

23 44 781

23 44 781

23 44 781

Table 8 Eminent functional
responsibilities

Responsibility no Responsibility names

1 ABank1

2 Counter

3 ADeleteAcc

4 ADep

5 Adisp

6 ADisplay1

Fig. 5 Eminent functional
responsibilities for test case

790 M. Sunil Kumar and A. Rama Mohan Reddy

6 Conclusion

The implementation of the work starts from the selection of application with
object-oriented approach. A UML class diagram consisting of responsibilities in
generating the dependency values; these values are input for AGA. Further, this
adaptive genetic algorithm has proved to be an efficient technique for software
architecture. In the intended adaptive genetic algorithm, the chromosomes are
separated into chromosomes to maintain assortment in the course of optimization
process which demonstrated to be successful than ordinary genetic algorithm
process.

Our recommended method has enhanced the computational time of the software
which is the most important requirement in the software architecture. It also helps in
comparing the presentation of every method which will be helpful to scheme
improved software architecture. This paper has proposed one of the solutions for
evaluating the fitness function dynamically to provide and identify eminent func-
tional requirement to produce a good software architecture design.

Table 9 Fitness value for adaptive GA and GA for every iteration

Number of iteration Fitness for adaptive GA Fitness for GA

1 978 1123

2 970.2 1110

3 870 1065

4 781 1032

5 781 996

35 781 991

900

1000

1100

1200

1 10 15 20 25 30 35

F
it

n
es

s
va

lu
e

Iterations

Fitness for
Adaptive GA

Fitness for GA

Fig. 6 Comparison of convergence between adaptive genetic algorithm and traditional
conventional genetic algorithm

An Efficient Approach for Evolution of Functional … 791

References

1. Pan W. Applying complex network theory to software structure analysis. World Acad Sci Eng
Technol. 2011;60:1636–42.

2. Abdelmoez M, Jalali AH, Shaik K, Menzies T, Ammar HH. Using software architecture risk
assessment for product line architectures. In: Proceedings of. international conference on
communication, computer and power (Icccp’09); 2009. Muscat, Feb 15–18, 2009.

3. Yang XS, Deb S. Engineering optimization by cuckoo search. Int J Math Model Num Optim.
2010;1(4):330–43.

4. Frey S, Fittkau F, Hasselbring W. Search-based genetic optimization for deployment and
reconfiguration of software in the cloud. In: 2013 35th international conference on software
engineering (ICSE); 2013, 18–26 May 2013.

5. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical
results. Evol Comput. 2000;8(2):125–48.

6. Rela L. Evolutionary computing in search-based software engineering, Lappeenranta University
of Technology, Department of Information Technology, M.Sc. Thesis; 2004.

792 M. Sunil Kumar and A. Rama Mohan Reddy

	71 An Efficient Approach for Evolution of Functional Requirements to Improve the Quality of Software Architecture
	Abstract
	1 Introduction
	2 Problem Statement
	3 Metaheuristic Search Algorithm
	3.1 Justification of Applicability of Metaheuristic Algorithms in Software Architecture Domain
	3.2 Genetic Algorithms
	3.3 Applicability of Genetic Algorithm in Architectural Modeling

	4 Proposed Methodology of Adaptive Genetic Algorithm
	4.1 Architecture Representation Using Adaptive Genetic Algorithm
	4.2 Adaptive Genetic Algorithm
	4.3 Generating Input for Adaptive Genetic Algorithm
	4.3.1 Responsibility Value
	4.3.2 Responsibility Dependency Graph

	4.4 Generating Dependency Graph from Class Diagram

	5 Results of Final Test Case
	5.1 Performance Analysis

	6 Conclusion
	References

