
A Study on Software Risk Management
Strategies and Mapping with SDLC

Bibhash Roy, Ranjan Dasgupta and Nabendu Chaki

Abstract In recent years, despite several risk management models proposed by
different researchers, software projects still have a high degree of failures. Improper
risk assessment during software development was the major reason behind these
unsuccessful projects as risk analysis was done on overall projects. This work
attempts in identifying key risk factors and risk types for each of the development
phases of SDLC, which would help in identifying the risks at a much early stage of
development.

Keywords Risk management � Risk models � SDLC � Technical risk

1 Introduction

Software project management is crucial for development, services and maintenance
of software products. Management of diverse activities during software engineering
process needs to be handled carefully for any software project. One of the most
important yet often overlooked aspects in the complete process is risk and its
management [1]. A risk may be considered as a probabilistic term that has the
potential to affect the overall project in a negative way. Failure of the projects,
especially IT projects, is often due to these unwanted and rather less explored

B. Roy (&)
Tripura Institute of Technology, Tripura, India
e-mail: bibhashroy10@yahoo.co.in

R. Dasgupta
National Institute of Technical Teachers’ Training and Research, Kolkata, India
e-mail: ranjandasgupta@ieee.org

N. Chaki
University of Calcutta, Kolkata, India
e-mail: nabendu@ieee.org

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_9

121



threats or issues [2, 3]. Some works during the last two decades on risk manage-
ment strategies have emerged as survival component for software projects [4, 5].
However, it is important to identify the possible risks in all the stages of the
software development process so that proper mitigation strategy can be adopted at
the appropriate level to reduce the possible financial and temporal loss.

Any software project may face different categories of risks, either internal or
external, in its engineering process. There are different kinds of risks encountered in
different phases of software development life cycle (SDLC) and these risks can be
classified as technical risks and nontechnical risks. The internal risks are due to the
factors within the organization and external risks come from outside the organi-
zation and are difficult to control. Software risks can be grouped into project risks,
process risks, and product risks. Risks for software project management have been
classified as Known risk, Unknown risk, Predictable risk, Unpredictable risk [3].
Another approach used in [6] identifies risks as Technical risk, Management risk,
Financial risk, Contractual and legal risk, and Personal risk. On the other hand in
[7], it was observed that risks are identified as Business risk, Commercial risk,
Economical risk, Project risk, Product risk.

In the last few decades the researchers all over the globe had done lots of works
and various risk models had been proposed and applied at different cases with
various levels of success. All such models have lots of merits; however, no single
model can be applied to all cases. Moreover, for a complex and big projects looking
the risk analysis from the top level might not be appropriate as the risks occurred in
the lower level might not be identifiable if the tool for identification is not applied at
that level where the actual risk might occur. In this paper, risk management models
are reviewed in such a way that the models can be mapped with the different stages
of the life cycle of a software development process. For this purpose, major
objectives and capacities of various risk management models had been studied
(Sect. 2). All steps of activities of a software development process had also been
studied with an eye to identify the types of risks that may occur at each level
(Sect. 3). In Sect. 4, mapping has been done from the outcomes of Sects. 2 and 3 so
that insight knowledge can be extracted from the final result to design the mitigation
strategy.

2 Risk Management Models

Risk management is a set of activities required to manage risk. Organizations who
apply risk management methods and techniques have greater control over the
projects [8]. The risk management methods that are being proposed till date follow
mainly two characteristics—probability and impact. Most of the proposed methods
are static in nature that performs qualitative and quantitative analysis to assess and
control the risks. Most of the methods divide the risk management into some basic
processes like risk identification, risk analysis, risk planning or mitigation, risk
monitoring and control, etc. [3, 9]. It is very much essential to identify the causes as

122 B. Roy et al.



well as effects of the risks for a comprehensive analysis of risks and many of the
methods perform this but concentrate on a single risk.

One of the oldest as well as mostly discussed risk management models is Barry
Boehm’s (1991) BOEHM Model [1–3, 10] that emphasizes on the concept of ‘risk
exposure’ and can be applied to almost any software-related project. BOEHM
divides the risk management into two primary steps—Risk assessments (risk
identification, risk analysis, and risk prioritization) and risk control (risk man-
agement planning, risk resolution, and risk monitoring). Boehm proposed an
effective risk control strategy where each risk is thoroughly tracked with the aim
that this risk either can be eliminated or its effect into the project in terms of cost or
time can be reduced to certain extent. Boehm has discussed different tools like
checklists, cost models, cost–benefit analysis, etc., in each step, however, no
standard project metrics was used as a tool for risk management. This method can
be applied in all the phases of SDLC as risk analyzer. However, new risks that are
occurred during the development process were not taken into consideration.

Software Engineering Institute in 1993 proposed SEI-SRE [2, 3, 11, 12]
(Software Engineering Institute, Software Risk Evaluation) model that provides a
framework for risk evaluation to overcome project failures. This model concentrates
on practical aspects of a project that makes it eligible to be applied successfully in
IT projects as a decision-making tool. However, there is no scope for modification
in the template-based design and sometimes inconclusive outcomes might occur as
it mostly relies on the experiences of project personnel. Unlike Boehm, it has proper
method to measure and evaluate the effectiveness of risk treatment; however, fails
to perform review of risk information periodically as performed by Boehm model.

Ronald P Higuera et al. in 1994 proposed Team Risk Management
(TRM) Process Set [5, 12, 13] that emphasizes on team structures and its activities
for managing risk in each phase of SDLC involving all individual connected to the
project to ensure continuous risk management throughout the project development.
This approach follows continuous risk evaluation process where new risks are
considered and mitigated or resolved risks are automatically removed from the
threat list and thereafter updated risk status is communicated to all the individuals
connected in the project. Like TRM, Agle et al. (2003) also proposed [14, 15] a risk
handling mechanism related to team structure in multi-team environment.

Another widely recognized method developed by Jyrki Kontio et al. in 1996 is
known as RISKIT [2, 3, 12, 16]. This risk management cycle performs risk iden-
tification, risk analysis, risk monitoring, and performs qualitative analysis to pri-
oritize according to probability and impact. It uses a graphical method called Risk
Analysis Graph (RAG) to monitor risk scenario development and the concept of
utility loss is used to assess the impact of risk. This model may be applied mainly in
large organizations, IT projects, and Nokia Telecommunications is one of its major
users. However, it is very much flexible to be implemented in different categories of
projects or areas such as business planning, marketing, and technology-related
fields. Due to the absence of correlation between risk estimation and risk metrics,
this method suffers inaccurate prediction possibilities of potential risks.

A Study on Software Risk Management Strategies … 123



In the year 1997 two different models were proposed: Software Engineering
Risk Understanding and Management (SERUM) [2, 3, 17] by D. Greer and Risk
Maturity Model (RMM) [18] by David A. Hillson where SERUM performs both
implicit risk and explicit risk management and RMM measures the maturity level of
an organization. Though SERUM is typically designed for software projects, it
suffers time management problem in analyzing risks. Unlike other maturity model
such as CMM, EFQM, etc., RMM is completely based on risk management. It
performs different risk management approaches of an organization to assess the
maturity level in managing risks.

Software Risk Assessment Model (SRAM) [19] and SoftRisk [5, 12, 20] are the
two different risk management approaches that came out during the year 2000
where SRAM uses a set of comprehensive questionnaire for different critical risk
elements to prioritize risks and SoftRisk generates a graphical tool helping the
managers to perform risk control mechanism. Like TRM model, SoftRisk approach
also considers the new risks in its continuous risk management process.

In 2007, William G. Snekir et al. proposed Enterprise Risk Management
(ERM) method that performs risk assessment with the help of graphical decision
tree and quantitative analysis.

Armestrome and Adens (2008) [15, 21] gave a very decent idea of identifying
most prominent area of exposure to risk to characterize those areas into different
risk factors and to prioritize them to perform risk management strategies. On the
contrary, Software Risk Assessment and Estimation Model (SRAEM) [3, 4, 22]
having weak risk identification strategies estimates the sources of risks from dif-
ferent paradigms and compute prioritization and ranking by MCRSRM (Mission
Critical Requirements Stability Risk Metrics) followed by quantitative assessment.
Unlike SRAEM, Analyzer for Module Operational Risk (ARMOR) [23] automat-
ically identifies the operational risks of software program modules. Being a
module-based approach this model can perform risk management in every stage of
software development and like SoftRisk model, can perform various types of data
analysis. A modified approach of SRAEM is Software Risk Assessment and
Evaluation Process using model-based approach (SRAEP) [3, 4, 24] that aims at
risk assessment and risk prioritization. This model uses SFTA (software fault tree
approach) to identify and analyzes the risk and uses RRL (risk reduction leverage)
for risk measurement.

Hoodat and Rashidi (2009) [15, 25] have proposed different classifications of
risk based on indexing of different risk factors followed by calculating their impact
on software project. Different categories of risk identified by them are (a) Internal
risk and external risk. (b) Process risk, product risk, and project risk.
(c) Performance risk, cost risk, and scheduling risk. (d) Requirement risk, cost risk,
scheduling risk, quality risk, and business risk. A similar risk management activity
performed by Software Project Risk Management model (SPRMQ) (2011) [7]
requires experience of project manager to manage software product risk. However,
unlike other models it does not consider the external risk. Another approach as
proposed by DANNY in 2006 [15, 26] reduces operational risk by performing risk

124 B. Roy et al.



classification and their qualitative analysis with an aim to save resources with a
consideration for small-sized projects or available funded projects.

Suebkuna and Ramingwong (2011) refined the approach of Project Oriented
Risk Management Model (PRORISK) [27] with a proposal to link project man-
agement and risk management having two phases of risk management: risk
assessment and risk control. It uses a risk database to record risk control related
information such as its impact, probability, type, mitigation strategy, etc.

Shahzad et al. (2011) proposed risk “handling and avoidance mechanism” in
Risk Identification, Management and Avoidance Model (RIMAM) [3, 28]. This
model provides a stepwise procedure of risk handling methodology that enables the
development team to handle risks locally. This model is suitable to be applied in
small and medium scale of software with tight budgetary and short-time period.

Project Risk Network Model (PRM) [6, 12] as proposed by Linda Westfall
(2011) is one of the well-known methods detailing a Decision Support System
framework consisting of five major steps: risk identification, risk assessment, risk
analysis, risk response planning, and risk monitoring and control enabling project
managers in choosing a set of risk mitigation action with minimum loss. The
drawback of this model is that it uses the classical method for risk identification and
evaluation during its initial phases with an assumption that risks are independent,
whereas there are lot of interactions and influences between different risks in the
project development.

Software Engineering Risk Index Management (SERIM) (2014) [2, 3, 29] is one
of such risk management models that is typically designed for software project
development focusing mainly on the assessment of risk factors (Organization,
estimation, development, methodologies, tools, risk, culture, usability, correctness,
reliability, and personnel) with periodic measurements on high priority risk areas
throughout software development stages. Though this method lags in providing
explicit guidelines to identify risks that may involve in the project, medium-sized
organization may consider it instead of expensive methods.

Most recently Loutchkina et al. (2014) proposed System Integration Technical
Risks’ Assessment Model (SITRAM) [12] that integrated Bayesian Belief
Networks (BBN) and Parametric models (PM) providing statistical information for
improving risk management during large software development.

In this section, we presented observations on some of the well-known risk
management models. These models cover really an wide and diverse range of
objective right from identification of risks to risk mitigation, risk assessment,
controlling of risks, prioritization of risks, risk probability computation, and even
proposing a four level of risk maturity model. Some of the existing risk models are
good specifically for either small or large organizations. On the other hand there
exist risk models that especially deals with risks associated with software projects
only. Many of these have been implemented using suitable tools. However, in the
current state scenario only a few models exist that considers risks associated with
different stages of SDLC. The study further reveals that such models, in use, lack

A Study on Software Risk Management Strategies … 125



Table 1 Observations of different risk models

SN Methods/models/proposed Observations

1 BOEHM [10] Does not handle generic risk; works on risk analysis
paradigm principle

2 SEI-SRE [11] Generates a template-based design that results in
inconclusive outcomes due to less scope for modification

3 RISKIT [16] Does not collaborate risk estimation and risk metrics,
thus reducing the prediction possibilities of potential risks

4 SERUM [17] As it performs a continuous evaluation of risks, hence
time management holds the key role as risk element in
the project

5 SERIM [29] Good for small organizations; handles multiple projects
for analyzing software risks; lacks explicit guidelines on
using information to identify possible risks in the project

6 SRAM [19] Risk ranking is done by AHP and entropy method. It
does not handle marketing risk

7 Agle et al. [14] Handles team structure; does not consider funding and
resources

8 Danny [26] Performs classification of risk by quantitative analysis;
aims at saving resources

9 Armestrong [21] Identifies the risk exposure areas and prioritizes them in
respect to business context

10 Rashidi [25] Perform risk classification and risk indexing

11 SRAEM [22] Risk prioritization and ranking is computed by
MCRSRM, decision through quantitative assessment;
model focuses on external risks related to the requirement
analysis

12 SRAEP [24] Model uses SFTA to identify and analyses the risk and
RRL for risk measurement; follows models based
approach

13 SPRMQ [7] Well suited for handling the product risk; does not
consider external risks such as marketing risk,
organizational risk, etc.; uses avoidance, minimization,
and contingencies strategies

14 RIMAM [28] Works on the principle of “handling and avoidance
mechanism”; some of the risks can be handled locally

15 TRM [13] Follows all the steps of SEI; handles new risks and risk
status are communicated to all individuals

16 SoftRisk [20] Documents all types of risks; performs qualitative and
quantitative analyses; Consider new risks in an iterative
process

17 ARMOR [23] Identifies source of risk and suggests solution to reduce
risk levels; uses regression analysis to validate generated
risk model

18 RAT [41] Performs hybrid assessment of risks in five phases; risks
are ranked based on ranking matrix

(continued)

126 B. Roy et al.



completeness from one or more perspectives. Based on the above discussion, we
have summarized the key features of these models in Table 1. However, other
research works [15, 30–40] deal with various special issues like Risk management
in requirement engineering, Risk-based testing, Project Risk dependencies, etc., and
not included in Table 1.

Based on above observations of risk management models under discussion it can
be summarized as indicated in Table 2 that different models are strong enough to be
applied in different application domains.

Risk management models that are discussed in this section involve different
participants in its risk management process and are summarized in Table 3.

Among the risk management models considered in our discussion, only few
models emphasized on the importance of project size in its risk management
strategies. It is general consideration that if a risk management model can handle a
large-sized project then it will surely be able to handle medium-and small-sized
project too. The medium- and small-sized projects face mainly two constraints: very
tight schedule and a limited budget [34]. These constraints do not permit to go for a
risk management strategy that may incur more costs and time [15]. Rather than
going for those complex and costly risk management models, a simple and effective
model would be used for relatively smaller projects. It has been found that there are
monitory losses in medium and smaller projects due to improper handling or not
considering the risks related to the projects [34]. During last decade the concen-
tration has been given on the risk management strategies for small and medium
projects [2, 3, 5]. Different researchers have proposed risk models for small and
medium software projects [15]; however, proper and detailed description of man-
agement process would require some standards. Risk management models under
discussion may be compared on the basis of effectiveness on budget, time, and size
of the project and is tabulated in Table 4.

Table 1 (continued)

SN Methods/models/proposed Observations

19 ERM [42] Evaluates level of an organization to propose risk
assessment tool using graphical decision trees and
quantitative analysis

20 PRORISK [27] Links project and risk management toward developing a
risk database; handles six types of risks for software
projects

21 RMM [18] Provides the benchmark to an organization to assess its
maturity level in terms of project risk management

22 PRM [6] Works on the assumption that risks are independent
which may lead to incorrect risk assessment

23 SITRAM [12] Provides statistical information in decision-making of
risk management using Bayesian belief networks and
Parametric models

A Study on Software Risk Management Strategies … 127



Table 2 Risk models categorization based on their application domain

SN Methods/models/proposed by Application domain

1 BOEHM [10], SEI-SRE [11], SPRMQ [7],
PRORISK [27], ARMOR [23], RISKIT [16]

Software/IT projects

2 TRM [13], Hoodat_Rashidi [25] Can be used as team risk management
tool in software development process

3 SoftRisk [20], PRM [6] Flexible to be implemented in different
categories of projects of any domain

4 RMM [18] Can be used by any organization to
assess its risk maturity level

5 ERM [42] To assess an organization’s level

6 SERIM [29], SRAM [19], RIMAM [28],
SRAEM [22], SRAEP [24]

Small- and medium-sized software
projects

7 Danny [26] Small projects with no costs risk
involvement

8 Armestrong [21] Projects with budget constraints

9 RAT [41] Web application

10 RISKIT [16], SERUM [17] Existing software’s new version release

11 SITRAM [12] Large and complex software projects

Table 3 Risk models categorization based on participants

SN Methods/models/proposed by Participants in the process

1 BOEHM [10], RISKIT [16], SRAEM [22],
SRAEP [24], SoftRisk [20], ARMOR [23]

Risk management team

2 PRM [6] Risk management team, project manager

3 RIMAM [28] Risk management team, development
team

4 RMM [18], SRAM [19] Risk assessment team

5 Armestrong [21], Hoodat_Rashidi [25] Project managers

6 SERIM [29], SPRMQ [7], PRORISK [27],
Danny [26]

Project managers, risk managers

7 ERM [42], SEI-SRE [11] (Experienced) risk managers

8 RAT [41] Risk managers, project development
team

9 SERUM [17] Software development team

10 TRM [13] Development team, stakeholders,
customers, users

11 SITRAM [12] Risk assessment team

128 B. Roy et al.



3 Risks at Each Level of SDLC

Software project development is a systematic process and risks may occur in every
stage of this process. Thus it is essential to look the entire risk management
mechanism from a different angle. Conventional approaches of study for internal
risk, external risk, known risk, unknown risk, etc., are necessary. However, these
cannot be considered as sufficient to identify the chances of occurrence, impact of
such risk(s) in terms of cost and time, etc., at each level of SDLC. As for example,
if a risk of conflicting requirements is left unidentified at the requirement specifi-
cation level as no conflict identification technique (mechanism) has been applied at
that level, the risk will naturally be carried forward and in worst case it might been
slipped as undetected and carried up to implementation. The risk, when occurred
might not only cause some serious business loss, identification, and mitigation of
the problem would also be very cumbersome and extremely difficult. On the other
hand, if appropriate mechanism be applied at every stages of SDLC, it not only will
identify and arrest a lot of risks to propagate further and cause serious damages,
maintenance overhead will also be minimized and more robust software can be
offered to the users. Moreover, the impact of the risk might be many folds higher
and serious, if it is propagated forward and occurred at a later stage, particularly,
when the customer’s dependency on the product has become higher and insepa-
rable. Loss of confidence, if happens, on the product and services is another issue
which neither can be measured and sometime may lead to irreparable damage and
cause change in business sentiments.

Table 4 Risk models categorization based on projects size, cost, and application

SN Methods/models/proposed by Effectiveness Applicable to
projects sizeBudget Time

1 BOEHM [10], RISKIT [16], SERUM [17],
PRM [6], RMM [18], Hoodat_Rashidi [25],
SoftRisk [20], ARMOR [23]

Tight Scheduled Large

2 SEI-SRE [11], SPRMQ [7], Armestrong [21] Tight Scheduled Large, medium

3 ERM [42] Tight Scheduled Large, medium,
small

4 SERIM [29], SRAM [19] Tight Scheduled Small, medium

5 RIMAM [28] Tight Critical
and short

Small, medium

6 SRAEM [22], SRAEP [24] Tight Critical Small, medium

7 TRM [13], RAT [41], PRORISK [27] Tight Scheduled Small, medium

8 Danny [26] Available Scheduled Small

9 SITRAM [12] Available Scheduled Large and
complex

A Study on Software Risk Management Strategies … 129



The necessity of new risk categorization at a more micro level is thus a necessary
requirement where risks can be categorized as per their chances of occurrences in
the various development stages. As risk management strategy involves both risk
assessment and risk mitigation, hence this classification will help in stagewise risk
identification and mitigation during software project development. Software project
risks may be grouped as per their occurrences in the phases of SDLC, i.e.,
requirements and planning, designing, coding, application and maintenance, and
other related parameters like scheduling, cost, quality, and business are also
affected.

As per SEI [1, 4, 5, 11] the following risk factors may be associated to software
development.

1. Incorrect resources estimation
2. User/customer uncertainty
3. Ambiguous requirements
4. Improper design risk
5. Development system and risk with development system
6. Inadequate management process
7. Improper work environment

Unlike other generic project risks, technical risks are matter of concern for
software and IT projects and generally lead to failure of functionality and perfor-
mance [12]. SEI also identifies following technical risks associated with technology
related projects

• Lack of strategic framework or conflict over strategy
• Lack of adaptation to technological change
• Supplier/vendor problems
• Poor management of change
• Too much faith in ability of the technology to fix the problems

In the context of SDLC, the various causes or factors have been identified
(Tables 5, 6, 7, 8 and 9) as technical risks at different phases against some key
factors.

4 Mapping of Models for Different Stages

Different risk management models discussed so far were performed considering
overall scenario of the project. Whereas risks in software projects may occur in any
of the phases of SDLC and depends on separate strategies adopted for individual
phases of SDLC. Software risks have been broadly grouped in literature [6] as
nontechnical risk (project and business) or as technical risk. However, risks related
to software project development also depend on factors like product engineering,
development environment, and program constraint. Again, there are scheduling
risks and quality risks that come under planning phase. In addition to software

130 B. Roy et al.



Table 5 Technical risks at requirements analysis and planning phase

Key factors Overview of key factors Technical risks

Stability Risks due to instability in requirement Continuous changing requirements

Completeness Incomplete or unrealistic planning Inaccurate sizing of deliverables

Unrealistic time schedule for
individual module development

Clarity Improper requirement or inadequate
analysis

Improper definition of
requirements

Inadequate software project risk
analysis

Validity Less or no knowledge about validity of
existing tool, inaccurate estimation

Inaccurate cost estimation

Inaccurate quality estimating

Inadequate software policies and
standards

Less knowledge about the
availability of resources

Incorrect estimation of resources

Inability to estimate the scope for
reusability of existing modules

Feasibility Lack of documentation, reusable
resources

Nonavailability of documentation
of previous projects

Lack of reusable requirements

Lack of reusable documentation

Scalability Scalability of resource requirements Inaccurate metrics

Inadequate assessments

Table 6 Technical risks at design phase

Key factors Overview of key factor Technical risks

Functionality Incorrect function design Inexperienced software module
designer

Difficulty Inability to design or unavailability
reusable design

Inadequate tools and methods for
quality assurance

Inadequate tools and methods for
software engineer

Lack of reusable data

Lack of reusable design

Lack of reusable architecture

Interfaces Less knowledge of interface design Incorrect interface design

Performance Incomplete designed module Error-prone module designed

Testability Unrealistic design Inexperienced software module
designer

Hardware Little or no knowledge of hardware
constraints

Incorrect hardware simulation or
interface

A Study on Software Risk Management Strategies … 131



Table 7 Technical risks at coding phase

Key factors Overview of key factor Technical risks

Functionality Non-functioning of
development team

Inexperienced technical staffs

Inexperienced development team

Malpractices of technical staff

Feasibility Non-mapping between design
and coding

Unrealistic module designed to
develop using existing technology

Difficult project modules integration

Testing Inaccurate or unrealistic
development

Wrong integration of modules
developed

Availability Nonavailability of
technology, reusable
resources, and experience

Unavailability of advanced
technology

The existing technology is in initial
stages

Less reusable code available in the
organization

Inadequate technical training to the
staff

Lack of reusable human interfaces

Lack of any specialization

Poor technology investment

Slow technology transfer

Coding/implementation Excessive coding and
development

Product is complex to implement
using existing technology and
technical staffs

Excessive load to development team

Overschedule due to erroneous
coding

Excessive coding due to lack of
standard programming guidelines

Table 8 Technical risks at testing phase

Key factors Overview of key factor Technical risks

Environment Inadequate testing
environment

Unable to identify ambiguity in the developed
product
Lack of reusable test plans, test cases, and test
data

Validity Inexperienced testing team Inexperienced testing team
Inability to identify and to fix problems or errors

Product Incorrect testing on product Improper testing strategies

System Improper developed system Improper defined objectives to the testing team

132 B. Roy et al.



engineering phases, risks can further be categorized into performance risks, cost
risks, support risks, and schedule risks.

In general, there are many risks in the software engineering process and it is
quite difficult to identify all of these. There are still some correlations between
management risks versus financial risks, technical risks versus personal risks,
business risks versus commercial risks, business risks versus economical risks and
between financial risks versus commercial risks.

Since software engineering is a systematic development process, one must fol-
low a proper sequence of steps irrespective of process model in use. None of the
above-discussed classifications provides a clear and exhaustive categorization of
risks in software projects.

It is, therefore, necessary to propose a new software risk classification where
risks are classified based on the stage where they are identified. We propose a novel
software risk classification approach where each category of risks follows a single
stage of software development.

Table 9 Technical risks at application and maintenance phase

Key factors Overview of key factor Technical risks

Maintainability Non-flexible, platform-dependent
design, high cost

No or less scope for change in the system
Platform-dependent application
High maintenance costs

Reliability Non-reliable, non-satisfaction
developed system

Unsatisfied customer of the developed
product
Partially developed product
Low productivity

Low user satisfaction

Safety Inadequate documentation, tools
for maintenance

Overbudget due to corrective
maintenance

Lack of proper help or manuals to the
users

Inadequate tools and methods for
technical document

Security Less or no security on developed
system

Lack of sufficient security in the
developed product

Human factors No clarity on functionality of
different users

Complex user interface developed

Nonuser friendly product developed

Specifications Wrongly specified,
underdeveloped system

Inappropriate product developed

Obsolete product developed

False productivity claims

Realistic Unrealistic modification request
from customer

Frequent change request due to bugs in
the product developed

Unrealistic change requirements

Ambiguous improvement targets

A Study on Software Risk Management Strategies … 133



In this classification, risks identified in a single stage are grouped together. This
classification will surely help the project managers to deal with the risks on that
particular stage only where it was identified instead of delaying the mitigation till
last stage. Following this classification, an early detection and early mitigation
strategy can be adopted in order to minimize the loss in software project
development.

Risk management strategies considered in most of the risk management models
deal with handling generic risks related to the completion of the project and its
analysis performed during requirement analysis only. These models highly focus on
the requirement analysis and planning phase and try to identify the risks on generic
sense. Since software project development is a systematic approach and it has clear
distinct phases, a risk management strategy needs to be discussed at macro level
where different risk management strategies may be adopted for individual phases of
SDLC. Few of the above-discussed models also considered risks related to
scheduling and quality during this phase. However, discussions on the risks related
to design phase are yet to be considered by these risk models. There are few models
[6, 11, 27] that focus on risks related to coding phase, whereas risk considerations
related to testing and debugging are being discussed in [11, 25].

Along with generic risks, models as described by RISKIT, Hoodat_Rashidi,
Danny also considered risks related to application phase and the risks related to
maintenance phase are being discussed by SEI-SRE, RISKIT, PRORISK,
ARMOR, SOFTRISK, PRM.

The existing risk management models barely consider software risks according
to the phases of SDLC. SEI-SRE model focuses on the phases of SDLC where it
emphasizes on the individual factors that may affect individual phases of SDLC.

Though SEI-SRE model is partially capable to deal with the practical aspects of
IT projects, there is a limitation in modification of the template-based design. This
may lead to inconclusive results for inexperienced user. It deals with risk from
product, process, and constraints. It sets a risk baseline for a project. Unlike
Boehm’s work, SEI-SRE model did not clearly define the responsibilities of the
project team.

Consequently, risk status data are not properly communicated between them.
SEI-SRE has no method to analyze newly identified risks and it does not perform
periodical review of risk treatment. This method only involves project personnel in
its risk analysis and thus exclusion of stakeholders may create a possibility of
incorrect requirements to the development team that incorporate some more risks
which can lead to failure (Table 10).

Hence, a clear mapping is desired so as to understand which risk management
model is best suited to follow the phases of SDLC. In our discussions a mapping is
drawn in between the existing software risk management models and risks related
to phases of SDLC. This mapping indicates a requirement of risk management
model that deals risks at each phase individually rather than considering whole
project at a time. An early detection of such risks is also essential so as to prepare
the mitigation strategy well ahead of occurring of risks in reality.

134 B. Roy et al.



Table 10 Risk models mapping with phases of SDLC

SN Methods/models Purpose Risk element
considered

Risks of which
SDLC phases are
considered

1 BOEHM [10] Risk identification,
analysis, prioritization,
control

Generic risks and
project-specific risks

Requirement
analysis and
planning

2 SoftRisk [20] Risk identification,
assessment, monitoring

Requirement and
planning phase,
maintenance
phase

3 ARMOR [23] Risk identification,
analysis

All program module
risks

4 PRORISK [27],
PRM [6]

Risk assessment, risk
control

Software-related
Generic risks

Requirement
phase, coding
phase,
maintenance
phase

5 RMM [18] Risk assessment Organizational risks Not followed

6 ERM [42] Risk identification,
assessment

Generic risks and
project-specific risks

7 RAT [41] Risk assessment,
treatment and monitoring

Project risks of
small and medium
software

8 TRM [13] Risk analysis, mitigation Team risks

9 Agle et al. [14] Risk handling Risk related to team
structure

10 SEI-SRE [11] Risk evaluation:
Detection, specification,
assessment,
consolidation, mitigation

Product risks,
process risks

Requirement
phase, coding
phase, testing
phase,
maintenance
phase

11 SRAM [19] Risk assessment,
prioritization

Development risk Requirement
analysis

12 Armestrong [21] Risk identification Economic risk,
business risk

13 RISKIT [16] Risk identification,
analysis, monitoring,
prioritize as per
probability and impact

Generic risk, project
risk, technical risk,
schedule risk,
business risk

Requirement
phase, application
and maintenance
phase

14 H. Rashidi [25] Risk measurement Project risk, product
risk, schedule risk,
cost risk, quality
risk, business risk

Planning phase,
testing and
debugging phase,
application phase

(continued)

A Study on Software Risk Management Strategies … 135



5 Conclusions

The major contribution of this paper is the SDLC phasewise classification of risks
that we have summarized in Sect. 3 using five tables and the consequent mapping of
various risk models with different steps of SDLC described in Sect. 4. This sys-
tematic study followed by the proposed classification will open up a big horizon for
entire risk management process. Researchers will now be able to apply various such
models and analyze the occurrence and impact of risks at all steps of SDLC and can
mitigate the risk once found meaningful. Generic tools might need to be developed
for such purposes with option for tuning them for some specific business model.

References

1. Stern, R., Arias, J.C.: Review of risk management methods. Bus. Intell. J. 4(1), 59–78 (2011)
2. Silva, P.S., Trigo, A., Varajão, J.: Collaborative risk management in software projects. In:

Proceedings of the 8th International Conference on the Quality of Information and
Communications Technology, pp. 157–160 (2012)

3. Guiling, L., Xiaojuan, Z.: Research on the risk management of IT project. In: Proceedings of
International conference on E-Business and E -Government (ICEE), pp. 1–4, 6–8 May 2011

Table 10 (continued)

SN Methods/models Purpose Risk element
considered

Risks of which
SDLC phases are
considered

15 SERIM [29] Risk assessment, risk
ranking

Technical risk, cost
risk, schedule risk,
organizational risk,
application risk

Requirement
analysis and
planning phase

16 RIMAM [28] Risk identification,
management, avoidance

Schedule risk and
cost risk

17 SRAEM [22] Risk estimation Technical risk,
organization risk,
environmental risk

18 SRAEP [24] Risk assessment,
prioritization

19 SERUM [17] Implicit and explicit risk
management

Generic risk, risk
related to planning,
development risk

20 SPRMQ [7] Risk factor identification,
risk probability
computation, effects on
product quality, risk
mitigation and monitoring

Product risks

21 SITRAM [12] Risk assessment Technical risks

22 Danny [26] Risk mitigation Operational risk Application phase

136 B. Roy et al.



4. Tianyin, P.: Development of software project risk management model review. In: Proceedings
of International Conference on AI, Management Science and Electronic Commerce,
pp. 2979–2982 (2011)

5. Avdoshin, S.M., Pesotskaya, E.Y.: Software risk management. In: Proceedings of 7th Central
and Eastern European Software Engineering Conference, Russia, pp. 1–6 (2011)

6. Westfall, L.: Software risk management. In: International Conference on Software Quality,
San Diego, California, 8–10, February, 2011

7. Mofleh, H.M., Zahary, A.: A framework for software product risk management based on
quality attributes and operational life cycle (SPRMQ). http://www.nauss.edu.sa/En/
DigitalLibrary/Researches/Documents/2011/articles_2011_3102.pdf

8. Sarigiannidis, L., Chatzoglou, P.D.: Software development project risk management: a new
conceptual framework. J. Softw. Eng. Appl. (JSEA) 4, 293–305 (2011)

9. Sathish Kumar, N., Vinay Sagar, A., Sudheer, Y.: Software risk management—an integrated
approach. Global J. Comput. Sci. Technol. (GJCST) 10(15), 53–57 (2010)

10. Bohem, B.W.: Software risk management: principles and practices. IEEE Softw. 8, 32–41
(1991)

11. Carr, M.: Taxonomy-based risk identification. Software Engineering Institute,
CMU/SEI-93-TR-6 (1993)

12. Loutchkina, I., Jain, L.C., Nguyen, T., Nesterov, S.: Systems’ integration technical risks’
assessment model (SITRAM). IEEE Trans. Syst. Man Cybern. Syst. 44(3), 342–352 (2014)

13. Higuera, R.P., Gluch, D.P., Murphy, R.L.: An introduction to team risk management. Special
report CMU/SEI, SEI/CMU, Pittsburg, May 1994

14. Alge, B.J., Witheoff, C., Klein, H.J.: When does the medium matter? Knowledge building
experiences and opportunities in decision making teams. Organ 91(1), 26–27 (2003)

15. Mead, N.R.: Measuring the software security requirements engineering process. In:
Proceedings of 36th International Conference on Computer Software and Application
Workshops, pp. 583–588 (2012)

16. Kontio, J., Basili, V.R.: Empirical evaluation of a risk management method. In: SEI
Conference on Risk Management, Atlantic City (1997)

17. Greer, D.: SERUM: software engineering risk: understanding and management. J. Proj. Bus.
Risk Manag. 1(4), 373–388 (1997)

18. Hillson, D.A.: Towards risk maturity model. Int. J. Proj. Bus. Risk Manag. 1(1), 35–45 (1997).
ISSN:1366-2163 (Spring)

19. Foo, S.-W., Muruganatham, A., Software risk assessment model. ICMIT 2000, IEEE,
pp. 536–544

20. Keshlaf, A.A., Hashim, K.: A model and prototype tool to manage software risks. In:
Proceedings of the 1st Asia-Pacific Conference on Quality Software (APAQS’00),
Washington, DC, USA (2000)

21. Armestrong, R., Adens, G.: Managing Software Project Risks. TASSC Technical paper, USA
(2008). www.tassc-solutions.com. January 2008 Copyright 2001–2010, Tassc Limited

22. Gupta, D., Sadiq, M.: Software risk assessment and estimation model. In: International
Conference on Computer Science and International Technology, pp. 963–967. IEEE
Computer Society, Singapore (2008)

23. Rabbi, M., Mannan, K.: A review of software risk management for selection of best tools and
techniques. In: Proceedings of 9th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 773–778 (2008)

24. Sadiq, M., Rahmani, M.K.I., Ahmad, M.W., Jung, S.: Software risk assessment and evaluation
process (SRAEP) using model based approach. In: International Conference on Networking
and Information Technology (ICNIT), pp. 171−177 (2010)

25. Hoodat, H., Rashidi, H.: Classification and analysis of risks in software engineering. In:
WASET-2009, pp. 446–452

26. Danny, L.: Reducing operational risk by improving production software quality. Softw. Risk
Reduction Rev. 13, 1–15 (2013)

A Study on Software Risk Management Strategies … 137

http://www.nauss.edu.sa/En/DigitalLibrary/Researches/Documents/2011/articles_2011_3102.pdf
http://www.nauss.edu.sa/En/DigitalLibrary/Researches/Documents/2011/articles_2011_3102.pdf
http://www.tassc-solutions.com


27. Suebkuna, B., Ramingwong, S.: Towards a complete project oriented risk management model:
a refinement of PRORISK. In: Eighth International Joint Conference on Computer Science and
Software Engineering (JCSSE), pp. 349–354, 11–13 May 2011

28. Shahzad, B., Al-Ohali, Y., Abdullah, A.: Trivial model for mitigation of risks in software
development life cycle. Int. J. Phys. Sci. 6(8), 2072–2082 (2011)

29. Roy, G.G.: A risk management framework for software engineering practice. In: Proceedings
of the Australian Software Engineering Conference (AAWEC’04) (2014)

30. Amber, S., Shawoo, N., Begum, S.: Determination of risk during requirement engineering
process. Int. J. Emerg. Trends Comput. Inform. Sci. 3(3), 358–364 (2012)

31. Pandey, D., Suman, U., Ramani, A.K.: Security requirement engineering issues in risk
management. Int. J. Comput. Appl. 17(5), 11–14 (2011)

32. Islam, S., Houmb, S.H.: Integrating risk management activities into requirements engineering.
RCIS-2010, Nice, France, May 2010, pp. 299–310

33. Drs. Erik, P.W.M.: Practical risk-based testing—product risk management: the PRISMA
method, EuroSTAR-2011, Manchester, UK, pp. 1–24, 21–24 November 2011

34. Kwan, T.W., Leung, H.K.N.: A risk management methodology for project risk dependencies.
IEEE Trans. Softw. Eng. 37(5), 635–648 (2011)

35. Lobato, L.L., Neto, S., da Mota, P.A., do Carmo Machado, I.: A study on risk management for
software engineering. In: Proceedings of the EASE, pp. 47–51 (2012)

36. Lobato, L.L., da Mota, P.A., Neto, S., do Carmo Machado, I., de Almeida, E.S., de Lemos
Meira, S.R.: Evidence from risk management in software product lines development: a
cross-case analysis. In: Proceedings of 6th Brazilian Symposium on Software Components,
Architectures and Reuse (2012)

37. Nolan, A.J., Abrahão, S., Clements, P.C., Pickard, A.: Requirements uncertainty in a software
product line. In: Proceedings of 15th International Software Product Line Conference,
pp. 223–231 (2011)

38. Lobato, L.L. et al.: Risk management in software product lines: an industrial case study. In:
Proceedings of ICSSP, Switzerland, pp. 180–189 (2012)

39. Gonzalo, E., Gallardo, E.: Using configuration management and product line software
paradigms to support the experimentation process in software engineering. RCIS-2012,
Valencia, May 2012. pp. 1–6

40. Khoo, Y.B., Zhou, M., Kayis, B., Savci, S., Ahmed, A., Kusumo, R.: An agent-based risk
management tool for concurrent engineering projects. Complex. Int. 12, 1–11 (2008)

41. Sharif, A.M., Rozan, M.Z.A.: Design and implementation of project time management risk
assessment tool for SME projects using oracle application express. In: World Academy of
Science, Engineering, and Technology (WASET), vol. 65, pp. 1221–1226 (2010)

42. Snekir, W.G., Walker, P.L.: Enterprise risk management: tools and techniques for effective
implementation. Institute of management Accounts, pp. 1–31 (2007)

138 B. Roy et al.


	9 A Study on Software Risk Management Strategies and Mapping with SDLC
	Abstract
	1 Introduction
	2 Risk Management Models
	3 Risks at Each Level of SDLC
	4 Mapping of Models for Different Stages
	5 Conclusions
	References


