
Resource Management in Native
Languages Using Dynamic Binary
Instrumentation (PIN)

Nachiketa Chatterjee, Saurabh Singh Thakur and Partha Pratim Das

Abstract Managed programming languages like Java and C# perform resource
management as a part of their language specification. They use a runtime system
like JVM or CLR for the management. In contrast native languages like C and C++,
designed to provide strong foundation for programs requiring speed or tight cou-
pling with operating system or hardware, are used with manual resource manage-
ment. These do not require the runtime system. Naturally, it will be nice to have a
managed layer for native languages which can be plugged in as and when we want
to manage resources in any point of time during execution. In this paper, we present
a GC Pintool which automates the garbage collection for C programs at run time
using PIN (a framework for dynamic binary instrumentation). Efficacy of the GC
Pintool has been tested over various benchmark C programs and our GC approach
using PIN is found to be correct and precise.

Keywords Garbage collection � Memory leak � Dynamic instrumentation

N. Chatterjee (&)
A. K. Choudhury School of Information Technology, University of Calcutta, Kolkata, India
e-mail: nachiketa.chatterjee@gmail.com

S.S. Thakur
School of Information Technology, Indian Institute Technology, Kharagpur, India
e-mail: saurabhjan07@gmail.com

P.P. Das
Department of Computer Science and Engineering, Indian Institute Technology,
Kharagpur, India
e-mail: partha.p.das@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_8

107



1 Introduction

The application programming languages available in market can be categorized into
two types depending upon their style of execution and resource management. Most
of the popular languages like Java, C#, etc., can automatically manage their
resources such as memory, graphics wizard, etc. So that they usually are termed as
managed languages. But, the managed languages need a runtime system for exe-
cution that adds additional overhead. In contrast, native languages like C and C++
facilitate users to write high performance and responsive applications with direct
interaction with hardware resources. But, the user experiences the overhead to
manage resources manually. With the speed and flexibility of C and C++ comes
increased complexity along with the complications in memory management.
Objects must be created and destroyed explicitly in program, and small mistakes in
this process can cause severe complications.

Garbage collection (GC) is the most popular automated technique for memory
management. A garbage collector detects objects that are not being used by the
program and attempts to reclaim the memory (garbage) occupied by those objects.
It liberates the programmer from the responsibility of taking care of dynamically
allocated memory and is based on the following principles:

1. To identify the objects in memory that cannot be accessed any further, and
2. To destroy these objects and reclaim the memory used by them.

While garbage collection is used, certain categories of bugs, as described below,
get eliminated or are substantially reduced.

1.1 Memory Leak

When an object becomes unreachable, the program fails to free its memory and leak
occurs. This memory then becomes unavailable to the system. Series of memory
leaks may cause a program to crash due to memory exhaustion. Even if not, then
also it can have an adverse effect on performance. Chunks of allocated but unused
memory cause fragmentation. It destroys the spatial locality and this can result in
poor cache performance or an increase in paging.

1.2 Dangling Pointer

When the program holds more than one pointer to a memory, the memory is made
free through one of them, and is then accessed by another, an illegal dereferencing
happens for the dangling pointer. By the time of access, the memory may have been

108 N. Chatterjee et al.



reassigned for some other use. Such dangling pointer access, therefore, may lead to
unpredictable results.

Managed programming languages currently in use perform Garbage Collection
automatically. So, it will be nice to have a managed layer for native languages
which can be plugged in when we want to manage resources in any point of time
during execution.

We organize the paper as follows. Section 2 describes about the various resource
management techniques in brief. Section 3 discusses about the strategy of resource
management using dynamic instrumentation. Section 4 explains about the details of
implementation of our resource management framework; discusses its various
modules and their implementation. The results for the test cases are presented in
Section 5. In this section, we will discuss our test plan and the various benchmark
codes that we have used to test the GC Pintool. Section 6 concludes and suggests
some possible future research directions resulting from this work.

2 Resource Management Techniques

There are a couple of classical resource management mechanisms available in
managed languages those that have been summarized as below. Also, we found
some attempts of recourse management for native languages.

2.1 Classical Resource Management

In general, a garbage collection process involves three basic steps as shown in
Fig. 1, i.e., scanning the root, marking, sweeping, and an optional step of com-
pacting. There are two generic tasks that a garbage collector needs to perform

1. Distinguish between garbage and live objects and
2. Remove garbage to reclaim memory.

The garbage collection process is initiated with the root scanning that examines
if a memory object includes any pointer. A reachability graph is then formed with

Fig. 1 Typical garbage collection cycle

Resource Management in Native Languages … 109



the objects and the pointers to the objects. Naturally, one can traverse this graph to
compute if an object is reachable. When an object is reachable (from the root) in
this graph, the program can (potentially) access it by navigating the pointers to it
and other objects. Hence, all reachable objects are detected and marked. Objects
that are not marked are not reachable, and are garbage by definition [1]. One can
then sweep (or walk) through the heap and deallocate the unmarked objects in the
process of reclamation. Alternately, in some systems, compaction is used on the
heap to narrow the gaps created by unmarked objects that are removed. Compaction
minimizes external fragmentation [2] at the cost of object relocation. Recently,
several garbage collection techniques have been proposed with their respective
properties. They can be grouped as follows:

Reference Counting is one of the oldest resource management techniques, where
every object has a counter holding the number of pointers that point to the object.
The counter is incremented when a new pointer starts pointing to the object. When a
pointer referencing the object is reassigned, the counter is decremented. The object
becomes unreachable by the mutator [3] (executing program) as soon as the counter
becomes zero. It is then returned to the free pool. The strength of this technique
apart from its simplicity is immediate recovery of unreferenced memory objects [4].
However, this method cannot handle cyclic references as the two (or more) objects
on the cycle are having nonzero counter value [5]. They are left unreclaimed.

Mark and Sweep GC, as the name suggests, first marks the reachable objects and
then sweeps them. It adheres strongly to the two-phase abstraction of garbage
collection. Marking is done recursively starting from the root set. For sweep, the
heap is scanned linearly and all unmarked objects are reclaimed [3, 6].

Copying Collector copies reachable objects from one part of memory to another
[3] and reclaims the garbage in the process.

Generational Garbage Collectors are based on generational hypotheses and
attempt to improve performance by using the age of objects. The weak generational
hypothesis professes that most objects must die when they are young [7]. In con-
trast, the strong generational hypothesis assumes that as an object becomes older, it
becomes less likely to die. Generational collectors have been shown to generally
outperform their nongenerational counterparts [8], and are today the most com-
monly used type of collectors for the majority of systems.

Incremental Garbage Collectors are meant to minimize the disruptiveness of
collectors, specifically, those that have long pauses. For this, the collector is run in
tandem with the application program so that it can gradually do its work [9].

2.2 Resource Management for Native Language

Two approaches for adding GC to C, namely Conservative GC [10] and Precise GC
[11], have been proposed earlier.

Conservative GC attempted to automate GC for C program where the pro-
grammer needs to link with Boehm GC Library and use its allocator/deallocator

110 N. Chatterjee et al.



functions. This GC technique operates roughly in four phases of the Mark-Sweep
algorithm. But it falls short in identifying pointer variables in some cases where it is
unable to determine whether a word is a pointer or wrongly assumes the dead
pointers as roots and leaves objects indefinitely in the heap. For long-running
programs like an IDE, a web server or an operating system kernel, Conservative GC
does not perform well. While managing threads and continuations, it can potentially
cause unbounded memory use due to linked lists [12]. The problem is caused by
liveness vagueness [13], rather than type imprecision.

Precise GC [11] is an improvement over the conservatism of Conservative GC
[10] in terms of memory and time. It uses Magpie and performs source-to-source
transformation that rely on an ontology of objects including “root references in
heap,” “location of reference in every kind of object,” and “types of objects in the
heap.” This results in overhead for the mutator besides requiring additional pro-
grammer effort and related complexities. For example, while using Precise GC for a
C program, a pointer must never be extracted from a variable typed as long—not at
least after a collection has taken place since the variable was assigned. However,
compared to Conservative GC, Precise GC makes weaker assumptions on the
compiler and the architecture. The original program is transformed to explicitly
cooperate with the GC.

In this paper, we have investigated the solution to the problems of memory
management in C programs. To overcome the shortcoming of Conservative GC
[10] and Precise GC [11], we use dynamic instrumentation that does not need any
modification in the source code as were required for both the above mentioned GC
techniques. In this work, a GC Pintool has been developed which automates the
process of garbage collection for C Programs. The tool addresses a wide range of
memory management issues for C programs and efficiently improves the perfor-
mance of C programs in context with the memory management.

3 Resource Management Using Dynamic Instrumentation

To design a pluggable managed layer for native languages, we have used a dynamic
instrumentation framework called Pin [14]. It is a platform for runtime binary
instrumentation of applications running on Linux. A broad range of program
analysis tools, called Pintools, can be built under this framework. The instrumen-
tation of binary at runtime dynamically generates code, allows generic morphing,
and alleviates the need to modify or recompile the source.

Here, we designed the GC Pintool in Fig. 2 to identify the dereferenced memory
addresses allocated during the application execution, but never freed up. Then, after
the end of each block execution all dereferenced memory can be released using this
tool and logged. PIN can be executed in the probing mode for dynamic invocation
of GC Pintool as and when required.

Resource Management in Native Languages … 111



4 Implementation

In this section, we will discuss the implementation infrastructure for GC Pintool.
The GC Pintool follows the basic principle of garbage collection, that is

1. Find inaccessible objects in memory and
2. Free these objects and reclaim the memory.

Further, since the GC Pintool is a dynamic instrumentation tool, so every action
happens at runtime which ensures zero modification in the source code. Now, first
the modus operandi of the tool is explained and then later various Pin APIs that
have been used by the Pintool to make GC possible at run time are described.
Throughout the discussion carried over in this section, the two terms namely
Mutator: to symbolize the application program; and Collector: to signify the GC
Pintool, has been frequently used. Initially, when mutator starts its execution under
Pins control, the collector sets its breakpoint as per the instrumentation routines.
The major breakpoints for the instrumentation are as follows:

1. Calling of any user function
2. Calling of any Memory Allocator function like malloc(), calloc(), and realloc().
3. Calling of any Memory Deallocator function like free().
4. Return from any user function

Fig. 2 Software architecture of PIN

112 N. Chatterjee et al.



Whenever any function of mutator is called, it is recorded by the collector.
Collector further waits for any heap allocation that is, dynamic memory allocation
to be made by the mutator. The collector captures the memory location of the heap
being allocated and save it in its master data structure along with some other
information in which scope (function) the allocation is made. In this manner, all the
allocations made by the mutator get captured by the collector in its data structure. If
there is any deallocation made by mutator, it is also checked in the data structure
and that log is removed from the data structure. When any function completes its
execution, the collector program sweeps away all dynamic memory allocated by
that function. Important is, collector takes care of the allocations made against
global or, if any reference is passed to some other function then in those cases,
collector does not make any deallocation rather that the scope is changed for those
allocations suitably. This way the collector ensures that there is no illegal or pre-
mature deallocation. Now, below we will present the GC Pintool algorithm

Resource Management in Native Languages … 113



The Flow Chart depicting the GC approach as described in above algorithm is as
shown in Fig. 3.

In order to keep the logs of memory addresses which are allocated or deallocated
dynamically, a master data structure has been used by the GC Pintool. During the
execution of the program, this data structure keeps on changing as per the instru-
mentation and accordingly GC Pintool collects information regarding performing
the garbage collection at a suitable point of time. Figure 4 shows the typical
transition in the data structure during the program execution.

Some important Pin APIs used in the Pintool are discussed below
RTN_InsertCall(RTN Rtn, IPOINT Action, AFUNPTR Funptr, ···)

This API is used to insert a call relative to a routine (rtn) and a suitable action is
taken like IPOINT_BEFORE to call funptr before execution of rtn, or
IPOINT_AFTER for immediately before the return from rtn. There are various
IARG_TYPE arguments to pass to funptr.

PIN_CallApplicationFunction(Const CONTEXT * Ctxt, THREADID Tid,
CALLINGSTD_TYPE Cstype, AFUNPTR OrigFunPtr, ···) This API allows
the tool to call a function inside the application. The function is executed under
control of Pin’s JIT compiler, and the application code is instrumented normally.
Tools should not make direct calls to application functions when Pin is in JIT mode.

Fig. 3 GC approach using dynamic instrumentation

114 N. Chatterjee et al.



For that reason, to call mutator’s free() this API has been used. This API in turn
deallocates the memory that has been allocated dynamically by the mutator.

PIN_SafeCopy(VOID * Dst, Const VOID * Src, Size_T Size) This function is
used by our tool to ensure safe access to the original content of the application’s
memory from our tool. This API is helpful in confirming the type of reference, i.e.,
local, global, etc. On this basis, the GC Pintool makes decision regarding the scope
of the allocation.

The instrumentation algorithm in GC Pintool has been tested on various
benchmark programs and is found to perform accurate detection of memory errors
and garbage collection for C programs.

Fig. 4 Transition in data structure during program execution

Resource Management in Native Languages … 115



5 Functional and Performance Testing

In this section, we first present the test plan for correctness of GC Pintool and then
discuss how the performance of the tool has been assessed.

5.1 Correctness of GC Pintool

Table 1 presents a test plan for the GC Pintool. It covers different scenarios for
memory issues in terms of variables of a C program while dynamic memory
allocation is used. Based on the test plan, a benchmark test suite comprising 168
small to medium C programs was created. In addition, 10 C programs with memory
issues as reported in different user forums were also added to the test suite. GC
Pintool performed correctly for the whole test suite.

5.2 Performance of GC Pintool

Since GC Pintool relies on dynamic instrumentation, the performance of a C pro-
gram running under the tool is expected to be significantly degraded compared to a
natively running C program. To estimate the performance impact, we recall that GC
Pintool performs two primary tasks: (1) Detect memory leaks and other issues and
(2) Releases memory that is no more usable.

The detection is implicit because unlike usual memory tools, no report is made to
the user; rather the information is used by the tool to release appropriate resources.
So, in this part, GC Pintool closely resembles the functionality of Valgrind and we
can make a direct comparison. It may be noted that Valgrind experiences 10–50
times slowdown1 and we would expect similar behavior.

In comparison with the Valgrind’s behavior, we prepared eight C programs
containing a variety of memory scenarios from Table 1 and executed them for five
varying data sets (using 10 MB–2.5 GB memories) under both Valgrind and GC
Pintool.2 While GC Pintool always performed correctly, we find that it runs about
35 % faster compared to Valgrind. This is rather encouraging, given that Valgrind is
a widely used tool.

In the other part (where memory is actually released to achieve GC), there is no
reference to compare against. So, we run GC Pintool (with doing GC) and compare
against the runof the tool that only performs thedetection, but doesnot release.Wefind
that for the above programs, our tool runs about one order slowerwhen it performsGC.

1“2.1. What Valgrind does with your program” in http://valgrind.org/docs/manual/manual-core.
html.
2We needed to tweak the tool to report memory issues.

116 N. Chatterjee et al.

http://valgrind.org/docs/manual/manual-core.html
http://valgrind.org/docs/manual/manual-core.html


Table 1 Test plan for GC pintool

Type Func. Block Case 1 Case 2 Case 3 Case 4

Scenarios for local variables

Local Single Function 1 Alloc. 2 Alloc. 2 Alloc. 2 Alloc.

No Dealloc. 1 Dealloc. 2 Dealloc. No Dealloc.

Nested Alloc. outer Alloc. outer Alloc. inner Alloc. inner

Dealloc. outer Dealloc inner Dealloc.
outer

Dealloc. inner

Loop Alloc. Alloc. outer Alloc. inner Alloc. inner

No Dealloc. Dealloc. outer Dealloc.
outer

Dealloc. inner

Recursive Alloc.

No Dealloc.

Two Function 1 Alloc. 2 Alloc. 2 Alloc. 2 Alloc.

No Dealloc. 1 Dealloc. 2 Dealloc. No Dealloc.

Nested Alloc. outer Alloc. outer Alloc. inner Alloc. inner

Dealloc outer Dealloc. inner Dealloc.
outer

Dealloc. inner

Loop Alloc. outer Alloc. inner Alloc. inner

Dealloc. outer Dealloc. outer Dealloc.
inner

Recursive Alloc.

No Dealloc.

Scenarios for global variables

Global Single Function 1 Alloc. 2 Alloc. 2 Alloc. 2 Alloc.

No DeAlloc. 1 Dealloc. 2 Dealloc. No Dealloc.

Nested Alloc. outer Alloc. outer Alloc. inner Alloc. inner

Dealloc. outer Dealloc. inner Dealloc.
outer

Dealloc. inner

Loop Alloc outer Alloc inner Alloc inner

Dealloc outer Dealloc outer Dealloc
inner

Recursive Alloc.

No Dealloc.

Two Function Alloc in 1 2 Alloc in 1 2 Alloc in 1 2 Alloc in 2

Dealloc in 2 No Dealloc 1 Dealloc No Dealloc.

Scenarios for parameters

Param Two Function One Alloc.,
Reference
returned back

Two Alloc., One Dealloc,
One Reference returned
back

Two Alloc.
Two
Dealloc.

Reference is
Pointer to
Pointer

Type Func. Block Cases

Scenarios for member variables and special cases

Data member Single Function Allocation against a data member of structure

Allocation against a pointer to a structure

Allocation against pointer to a structure till out of memory

Local Pointer reassignment

Allocation against the array of pointers

Resource Management in Native Languages … 117



6 Conclusion

Memory Management is an important aspect for any programming language.
Inefficient management of the memory in a program may lead to various conse-
quences like memory leak, dangling pointer, double free error, etc., resulting in
slow down of the program, fragmentation, incorrect execution, premature GC, or
program termination. As a solution to these memory management problems,
specifically for C programs, a novel garbage collection approach has been proposed
and developed in this paper that uses dynamic binary instrumentation which is
accurate and does not need any modification in the source code.

The GC Pintool has been successfully tested over a large set of distinct test
codes. It takes care of all the dynamically allocated memory whether it is allocated
against a local pointer variable, global pointer variable, or passed as parameter to
some other function. The tool deallocates the reserved memory at proper time
during the execution of the program. The tool has been shown to successfully detect
any kind of memory leak error and performs the garbage collection suitably.
Further, it is capable of handling issues like pointer reassignment, allocation made
against the data members of an object, arrays, array of pointer, and pointer to an
array. GC Pintool overcomes the drawbacks of Conservative GC [10, 12] and
Precise GC [11] and has been shown to run faster than Valgrind for memory
leak/error detection.

The GC Pintool is a work in progress. The present version is a functional
prototype, intended to operate on moderately large C programs to provide an
understanding of its behavior and to provide a platform for adding future
enhancements. The present tool may be extended in the following directions:

• Support for C++ Internally GC Pintool already has most of the infrastructure
required for C++. We can log the memory allocated and deallocated by new and
delete operators, but the challenge will be to deal with the constructors and
destructors of an object.

• Improving Efficiency At present, GC Pintool performs selective instrumentation
which has helped to restrict the slowdown while dynamic instrumentation is
used. This is manifest in GC Pintool which has a better performance than
Valgrind when it is used only for detection of memory issues, but no Garbage
Collection (GC) is actually done.
Unfortunately, while doing the GC, GC Pintool is confronted with a second
level of slowdown because it needs to dynamically call appropriate free function
for any memory that is about to be leaked. It may be noted that this call actually
does not exist in the user code and hence needs to be inserted at the runtime. GC
Pintool achieves this by using PIN_CallApplicationFunction, a function of PIN.
Incidentally, this function has a lot of overhead and substantially slows down
the GC Pintool further. We are working on a few schemes to overcome this
shortcoming—one is to move to a lazy collection strategy and the other is to use
the fact that GC only needs to call a fixed function, namely, free.

118 N. Chatterjee et al.



Further, the multimap structure used to log memory allocations and dealloca-
tions, may be improved to reduce space complexity.

• Testing on Legacy programs GC Pintool should be tested on large and complex
legacy programs so as to ensure its applicability in production environments.

References

1. Cohen, J.: Garbage collection of linked data structures. Comput. Surv. 13(3), 341–367 (1981)
2. Cohen, J., Nicolau, Alexandru: Comparison of compacting algorithms for garbage collection.

ACM Trans. Program. Lang. Syst. 5(4), 532–553 (1983)
3. Wilson, P., Johnstone, M., Neely, M., Boles, D.: Dynamic storage allocation: a survey and

critical review. In: Proceedings of the International Workshop on Memory Management,
Kinross Scotland (UK) (1995)

4. Jones, R.E.: Garbage collection: algorithms for automatic dynamic memory management.
Wiley, Chichester (1996)

5. Harold McBeth, J.: On the reference counter method. Commun. ACM 6(9), 575 (1963)
6. McCarthy, John: Recursive functions of symbolic expressions and their computation by

machine. Commun. ACM 3, 184–195 (1960)
7. Ungar, D.: Generation scavenging: a non-disruptive high performance storage reclamation

algorithm. In: Proceedings of the ACM Symposium on Practical Software Development
Environments, pp. 157–167 (1984)

8. Blackburn, S.M., Cheng, P., McKinley, K.-S.: Myths and reality: the performance impact of
garbage collection. In: Sigmetrics—Performance 2004, Joint International Conference on
Measurement and Modeling of Computer Systems, New York (2004)

9. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M:. On-the-fly garbage
collection: an exercise in cooperation. Commun. ACM 21(11), 965–975 (1978)

10. Boehm, H.-J.: Space efficient conservative garbage collection. In: Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation,
pp. 197–206. ACM Press (1993)

11. Rafkind, J., Wick, A., Regehr, J., Flatt, M.: Precise garbage collection for C. In: Proceedings
of ISMM 09 International Symposium on Memory Management, pp. 39–48. ACM Press
(2009)

12. Boehm, H.-J.: Bounding space usage of conservative garbage collectors. In: Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 93–100. ACM Press (2002)

13. Hirzel, M., Diwan, A., Henkel, J.: On the usefulness of type and liveness accuracy for garbage
collection and leak detection. ACM Trans. Program. Lang. Syst. 24(6), 593–624 (2002)

14. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Pin,
H.K.: Building customized program analysis tools with dynamic instrumentation. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (Chicago, IL, USA, June 12–15, 2005)

Resource Management in Native Languages … 119


	8 Resource Management in Native Languages Using Dynamic Binary Instrumentation (PIN)
	Abstract
	1 Introduction
	1.1 Memory Leak
	1.2 Dangling Pointer

	2 Resource Management Techniques
	2.1 Classical Resource Management
	2.2 Resource Management for Native Language

	3 Resource Management Using Dynamic Instrumentation
	4 Implementation
	5 Functional and Performance Testing
	5.1 Correctness of GC Pintool
	5.2 Performance of GC Pintool

	6 Conclusion
	References


