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Abstract Groundwater level is regarded as an environmental indicator to quantify
groundwater resources and their exploitation. In general, groundwater systems are
characterized by complex and nonlinear features. Gaussian Process Regression
(GPR) approach is employed in the present study to investigate its applicability in
probabilistic forecasting of monthly groundwater level fluctuations at two shallow
unconfined aquifers located in the Kumaradhara river basin near Sullia Taluk, India.
A series of monthly groundwater level observations monitored during the period
2000–2013 is utilized for the simulation. Univariate time-series GPR and Adaptive
Neuro Fuzzy Inference System (ANFIS) models are simulated and applied for
multistep lead time forecasting of groundwater levels. Individual performance of
the GPR and ANFIS models are comparatively evaluated using various statistical
indices. In overall, simulation results reveal that GPR model provided reasonably
accurate predictions than that of ANFIS during both training and testing phases.
Thus, an effective GPR model is found to generate more precise probabilistic
forecasts of groundwater levels.

Keywords ANFIS � Groundwater system � Gaussian process regression �
Time-series forecasting

1 Introduction

Over the past decade, groundwater depletion is one of the major issues worldwide,
which is posing direct or indirect impacts on human livelihoods, flora and fauna,
natural habitat, and ecosystems. Depletion of groundwater storage, land subsidence,
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reductions in stream flow and lake water levels, saltwater intrusion, loss of wetland
and riparian ecosystems, and variations in groundwater quality are some of the vital
factors influencing the sustainability of groundwater resources [1]. Sustainable
groundwater resources development is the key issue to be addressed by policy
makers or water managers by implementing various alternative management
strategies. Groundwater restoration or recycle is not equally fast as that of surface
water; it may take place after many years. Thus, constant monitoring of ground-
water levels is extremely important for reliable assessment of temporal availability
of groundwater at any required location [2]. The benefits of groundwater level
forecasting include assessment of annual and long-term changes in groundwater
storage, estimation of recharge rates, manage drinking water demand, and to ensure
the sustainable use of groundwater resources [3].

Till date, several deterministic, stochastic and time-series based models have
been developed for the forecasting of groundwater levels [4–7]. In the recent past,
soft computing tools like Artificial Neural Network (ANN), ANFIS, Support Vector
Regression (SVR), and so on have also been widely utilized for groundwater level
prediction studies [8–14]. Quite a few hybrid artificial intelligence models devel-
oped by incorporating wavelet analysis efficiently forecast groundwater levels at
different time scales [15–18]. Determining a model which is capable to efficiently
capture the nonlinearities of the data without overfitting is the crucial job while
modeling using time-series data. The ability to select the hyper parameters of the
kernel automatically is one of the prominent benefits of Gaussian processes over
conventional kernel interpretations of regression. The Bayesian learning
algorithm-based Gaussian Process Regression is successfully applied for prediction
of nonstationary time-series [19], monthly stream flow forecasting [20], and stream
water temperature prediction [21], and so on. Compared to the conventional
time-series forecasting methods, GPR model is said to possess strong nonlinear
mapping ability, estimation of uncertainty, and is greatly fault-tolerant [22, 23].
Hence, in this paper, we demonstrate the state-of-the-art capability of Gaussian
process regression for multistep lead time probabilistic forecast of groundwater
level fluctuations. The ANFIS model is also employed for comparative study with
GPR forecasts.

2 Study Area and Data Analysis

The study area (Fig. 1) is located near to southwest coast in the state of Karnataka,
India. The observation wells selected for the current study are located inside the
Kumaradhara river basin which covers a geographical area of 1776 sq km and is
located in between 12º 29′ 04″ and 12º 58′ 33″ north latitude and from 75º 09′ 58″
to 75º 47′ 48″ east longitudes. The observation well located at Bellare lies at
12° 39′ 53″ north latitude and 75° 17′ 18″ east longitude, while the other well at
Guttigaru lies at 12° 37′ 53″ north latitude and 75° 31′ 44″ east longitude as shown
in Fig. 1.
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The study area has a tropical monsoon climate dominated by the southwest
monsoon (June–October). The mean annual rainfall over the basin is around
3,500 mm. The geology of the area is predominantly characterized by Lateritic soil
with highly porous and permeable nature. Due to this lateritic soil property, shallow
groundwater levels in the selected unconfined aquifers follow a regular cyclic
pattern of seasonal fluctuation, typically rising during the monsoon due to greater
precipitation and recharge, then declining during the summer.

The groundwater level data of the observation wells located at Bellare and
Guttigaru for the years 2000–2013 were retrieved from Department of Mines

Fig. 1 Study area (location of observation wells)
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and Geology, Dakshina Kannada Dist., Govt. of Karnataka, India. The topographic
elevation of these wells is about 100–130 m above mean sea level. This data
comprises of 166 monthly observations, in which 10 years of data during Jan 2000–
Dec 2009 is used for model training and remaining 4 years of data during Jan 2010–
Oct 2013 is used as out-of-sample set or testing set to measure the predictability of
the developed models.

The descriptive statistics of the observed groundwater levels in the two obser-
vation wells are presented in Table 1. The Xmax, Xmin, Xmean, Xmode, Sd, and Cv

denotes the maximum, minimum, mean, mode, standard deviation and coefficient of
variation respectively. Since the mean and coefficient of variation of the observed
groundwater level dataset don’t vary ominously during training and testing periods,
it could be inferred as a reasonable stationary time-series. In the present scenario,
GPR and ANFIS models are explored to forecast 1, 3 and 6 months ahead
groundwater level fluctuations. Monthly groundwater level time-series up to pre-
vious four time steps are taken as input variables. In order to test the hypothesis that
GWL(t–2),...GWL(t–p) further help in forecasting GWL(t), beyond GWL(t–1), one can
use an F-test. The lag order p = 4 was determined from the F-test statistic. F-test is
the test statistic to examine the significance of the components in the model [24].
The expected output from the developed models is the groundwater level at time
step t, t + 3, and t + 6. The input-output combinations are as presented below.

I. GWLðt�4Þ þGWLðt�3Þ þGWLðt�2Þ þGWLðt�1Þ ¼ GWLðtÞ
II. GWLðt�4Þ þGWLðt�3Þ þGWLðt�2Þ þGWLðt�1Þ ¼ GWLðtþ 3Þ
III. GWLðt�4Þ þGWLðt�3Þ þGWLðt�2Þ þGWLðt�1Þ ¼ GWLðtþ 6Þ

3 Methodology

In the present study, Gaussian Process Regression (GPR) and Adaptive Neuro
Fuzzy Inference System (ANFIS) approaches are proposed for model development
of groundwater level time-series forecasting. GPR and ANFIS is used for 1, 3, and
6 month lead groundwater level time-series forecasting using lagged input data up
to 4 months in the past.

Table 1 Statistical
parameters of groundwater
level dataset

Groundwater table below ground level (m)

Well location Bellare Guttigaru

Dataset Train Test Train Test

Xmax 13.05 12.13 11.24 12.38

Xmin 4.28 5.21 1.33 3.2

Xmean 9.25 8.53 7.11 7.37

Xmode 10.18 5.58 4.27 3.29

Sd 2.25 2.26 2.98 3.15

Cv 0.24 0.27 0.42 0.43
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3.1 Gaussian Process Regression

Gaussian process regression is a standard method in probability theory wherein the
interpolated values are modeled by a Gaussian process governed by prior covari-
ance. Incorporating appropriate assumptions on the priors, GPR renders the best
linear unbiased prediction of the values [25]. GPs constitute one of the most
important Bayesian discriminative kernel learning approach due to its practical and
theoretical simplicity and outstanding generalization ability. A sequence of random
variables {Xn} defining a stationary process can have any probability distribution.
A stationary process {Xn} is called a Gaussian process, if the joint distribution of
(Xn+1, Xn+2,…, Xn+k) is a k-variate normal for every positive integer k.

Consider an observation space χ. A GP f(x), where x ∊ χ, is defined by a set of
random variables, any finite number of which possess a joint Gaussian distribu-
tion function which is fully specified by its mean function m(x) and covariance
k(x, x′) [26].

So let,

mðxÞ ¼ E f xð Þ½ �
k x; x0ð Þ ¼ E f xð Þ � m xð Þð Þ � f x0ð Þ � m xð Þð Þ½ � ð1Þ

Now we can write GP as

f xð Þ�N m xð Þ; k x; x0ð Þð Þ ð2Þ

Consider a training set D ¼ xi; yið Þji ¼ 1; 2; . . .;Nf g, with m-dimensional input
variables, xi being the observed data related to the phenomenon that is to be
modeled and scalars yi being the associated target values given by yi ¼ f xið Þþ �i,
where ϵi is Gaussian noise with zero mean and variance σn

2.
The joint normality of the training target values y = [yi]i=1

N and some unknown
target value y*, are estimated by the value f* of the hypothesized GP assessed at the
observation point x*, yields

y
f�

� �
�N 0;

K X;Xð Þþ r2NIN k x�ð Þ
k x�ð ÞT k x�; x�ð Þ

� �� �
ð3Þ

where,

k x�ð Þ, k x1; x�ð Þ; . . .; k xN ; x�ð Þ½ �T ð4Þ

X = [xi]i=1
N , IN, is the N × N identity matrix, k(x*) is the vector of covariance

between f* and the training latent function values, and K is the matrix of the
covariance between the N training data points (design matrix)
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K X;X½ �,

k x1; x1ð Þ k x1; x2ð Þ . . .. . . k x1; xNð Þ
k x2; x1ð Þ k x2; x2ð Þ . . .. . . k x2; xNð Þ

:
:

k xN ; x1ð Þ

:
:

k xN ; x2ð Þ

:
:

. . .. . . k xN ; xNð Þ

2
666664

3
777775 ð5Þ

Then, from (Eq. 3) and conditioning on the available training samples, we can
derive the expression for the model predictive distribution, yielding

p f�jx�;Dð Þ ¼ N f�jl�; r2�
� �

; ð6Þ

where

l� ¼ k x�ð ÞT K X;Xð Þþ r2NIN
� ��1�y

r2� ¼ r2N � k x�ð ÞT K X;Xð Þþ r2NIN
� ��1

k x�ð Þþ k x�; x�ð Þ

(
ð7Þ

The covariance function is parameterized by optimal value of hyper parameters.
The predictive variance of the GP model is as given in Eq. (7), and it does not
depend on the training target values, but depends only on the training input values
[27]. The optimal value of hyper parameters of a Gaussian process with any kernel
θ, for any distinct data set can be derived by maximizing the log marginal likeli-
hood by means of general optimization procedures. The log marginal likelihood
function under the GPR model is presented in Eq. 8 given below.

log p yjX; h; r2� � ¼ �N
2
log 2p� 1

2
log K X;Xð Þþ r2NIN

�� ��
� 1
2
yT K X;Xð Þþ r2NIN
� ��1

y

8><
>:

9>=
>; ð8Þ

3.2 Adaptive Neuro Fuzzy Inference System (ANFIS)

ANFIS is the fuzzy-logic based paradigm integrated with the learning power of
Artificial Neural Network (ANN) to improve the intelligent system’s performance
utilizing knowledge acquired after learning. For a given input-−output data set,
ANFIS constructs a hybrid learning algorithm that associates the backpropagation
gradient descent and least squares methods to frame a fuzzy inference system
whose membership function (MF) parameters are iteratively tuned or adjusted.
Adaptive Neuro Fuzzy inference systems comprise of mainly five layers–rule base,
database, fuzzification interface, defuzzification interface and decision-making unit.
The generalized ANFIS architecture proposed by Jang [28] is summarized below
(Fig. 2).
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ANFIS architecture comprises of five layers. Every single node in layer 1 is an
adaptive node with a node function which may be anyone among the membership
functions. Every node of layer 2 is a fixed node labeled ‘M’ which signposts the
firing strength of each rule. All nodes of layer 3 are fixed nodes labeled as ‘N’
which demonstrates the normalized firing strength of each rule. The Layer 4 is as
similar to layer 1 wherein every node is an adaptive node governed by a node
function. The layer 5 being a single fixed node labeled ‘S’, representing the overall
output (z), defined as the summation of all incoming signals [29].

In the present study, we examine three types of membership functions
(MFs) namely trapezoidal, gaussian, and generalized bell. Among all the three types
of the MFs, we impart two MFs on each of our four inputs, in which eight alto-
gether. With this, the FIS structure consists of 16 fuzzy rules with 104 parameters.
A hybrid algorithm integrating the least squares method and the backpropagation
gradient descent method is applied to optimize and adjust the generalized bell
membership function parameters and coefficients of the output linear equations. The
number of epochs and error tolerance is set to 1000 and 0, respectively. From the
result as presented in Table 3, it is determined that the ANFIS structure with
Generalized bell MF to be better performing than Trapezoidal and Gaussian shaped
MFs based on the performance evaluation using correlation coefficient statistic as
mentioned below in Sect. 4. Hence, generalized bell MF-based ANFIS models are
developed for all the 1, 3 and 6 month lead time forecasting scenarios.

Fig. 2 General ANFIS architecture with two membership functions on each of the two inputs
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4 Performance Evaluation

The following statistical indices are used to evaluate the performance of both the
GPR and ANFIS models in forecasting groundwater level time-series.

CC ¼
PN
i¼1

Xi � X
� � � Yi � Y

� �	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i�1

Xi � X
� �2� Yi � Y

� �2n os ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Xi � Yið Þ
N

vuuut
ð10Þ

NSE ¼ 1�
PN
i¼1

Xi � Yið Þ2

PN
i¼1

Xi � X
� �2 ð11Þ

where,
CC Correlation Coefficient;
RMSE Root Mean Squared Error;
NSE Nash-Sutcliffe Efficiency;
X Observed/Actual values;
Y Modeled/Computed values;
X Mean of Actual data.

5 Results and Discussion

An appealing characteristic of time-series modeling is that it is based on relatively
few assumptions which usually lead to yield good fits. The GPR package in the
WEKA 3.6 software [30] is employed to develop the GPR models. The GPR
employing Pearson VII function-based universal kernel (PuK) is used for model
development. The GPR model developed in the present study is propelled to pro-
vide better groundwater level forecasting results. Table 2 presents the developed GP
regression model equations. The statistical adequacies of the GPR and ANFIS
models for 1, 3 and 6 month ahead forecasts are summarized in Tables 4, 5, and 6,
respectively. For both study sites (Bellare and Guttigaru), the GPR models are
found to provide more accurate groundwater level forecasts than that of ANFIS
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models for 1, 3 and 6 month lead time forecasting. The GPR models for the Bellare
and Guttigaru well sites have a testing RMSE of 0.632 and 1.05 m, respectively
(Table 4), and are superior to the ANFIS model forecast, which has a testing RMSE
of 0.742 m for the Bellare well site and 1.39 m for the Guttigaru well site during
1 month lead time forecasting (Table 3).

It can be observed (from Tables 4, 5 and 6) that the correlation coefficients of both
the GPR and ANFIS models are high during training (calibration). However, during
the testing phase, the GPR model is better when compared to ANFIS model. It is
noteworthy that the GPR model shows enhanced performance in contrast to ANFIS
model, in case of both the wells. The RMSE statistic ofmultistep lead time forecasting
is presented in Fig. 3 wherein it can be inferred that the GPR and ANFIS models are
more capable in the shorter lead time forecast. It can be seen that the forecasting
efficiency declines during longer lead time forecast. The ANFIS model performs
marginally similar to GPR model for 1 month ahead groundwater level forecasting,
but for the higher lead times, such as 3 and 6 month lead time, GPR performance is
observed better than ANFIS model results as presented in Tables 4, 5 and 6.

Table 2 Values of Gaussian process regression equations

GPR
forecast

Average target
value

Inverted covariance matrix Inverted covariance
matrix × target-value
vector

Lowest
value

Highest
value

Lowest
value

Highest
value

Groundwater monitoring well near Bellare

1 Month
lead

9.1686 −0.2107 0.9420 −4.2888 2.1221

3 Month
lead

9.1978 −0.2107 0.9420 −4.6319 3.5733

6 Month
lead

9.2933 −0.2107 0.9420 −5.0088 3.6627

Groundwater monitoring well near Guttigaru

1 Month
lead

7.0066 −0.1949 0.9179 −4.4780 3.4013

3 Month
lead

7.0806 −0.1949 0.9179 −3.6057 5.1893

6 Month
lead

7.2328 −0.1949 0.9179 −4.3094 4.5839

Table 3 Performance of
ANFIS models at 1 month
lead time forecasting

Correlation coefficient (CC)

ANFIS model with Bellare Guttigaru

Train Test Train Test

Trapezoidal MF 0.6 0.54 0.58 0.55

Gaussian MF 0.81 0.74 0.79 0.71

Generalized Bell MF 0.95 0.85 0.89 0.83
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Figures 4 and 5 illustrate observed versus forecasted groundwater level
time-series using GPR and ANFIS models. It can be seen from Figs. 4 and 5 that the
GPR model can efficiently mimic observed groundwater level time-series better
than ANFIS model during 1 month lead forecasting. Figures 6 and 7 are scatter

Table 4 Performance of GPR and ANFIS models during 1 month lead time forecasting

Well location Bellare Guttigaru

Statistical indices RMSE (m) NSE CC RMSE (m) NSE CC

GPR TRAIN 0.577 0.93 0.97 0.97 0.89 0.94

TEST 0.632 0.92 0.94 1.05 0.87 0.92

ANFIS TRAIN 0.66 0.91 0.95 1.32 0.84 0.89

TEST 0.742 0.82 0.85 1.39 0.8 0.83

Table 5 Performance of GPR and ANFIS models during 3 month lead time forecasting

Well location Bellare Guttigaru

Statistical indices RMSE (m) NSE CC RMSE (m) NSE CC

GPR TRAIN 0.74 0.89 0.91 1.105 0.86 0.91

TEST 0.82 0.86 0.89 1.211 0.83 0.88

ANFIS TRAIN 0.89 0.84 0.88 1.69 0.81 0.86

TEST 1.09 0.79 0.84 1.847 0.76 0.82

Table 6 Performance of GPR and ANFIS models during 6 month lead time forecasting

Well location Bellare Guttigaru

Statistical indices RMSE (m) NSE CC RMSE (m) NSE CC

GPR TRAIN 0.96 0.83 0.87 1.225 0.83 0.85

TEST 1.167 0.78 0.81 1.37 0.80 0.82

ANFIS TRAIN 1.281 0.79 0.82 1.82 0.76 0.8

TEST 1.41 0.74 0.78 1.97 0.71 0.75

Fig. 3 RMSE of GPR and
ANFIS models at multistep
lead time forecasting
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Fig. 4 Plot of observed versus forecasted groundwater level time-series with respect to the well
location at Bellare of 1 month lead time forecasting models

Fig. 5 Plot of observed versus forecasted groundwater level time-series with respect to well
location at Guttigaru of 1 month lead time forecasting models
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Fig. 6 Scatter plot of observed versus forecasted groundwater level with respect to well the
location at Bellare of 1 month lead time forecasting models during test phase
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plots comparing the observed and forecasted groundwater levels using the GPR and
ANFIS models for 1 month lead time forecasting during the testing period at the
Bellare and Guttigaru sites. It can be observed that the band of scatter plot is very
narrow and close to the line of perfect fit in case of GPR forecast, On the other hand
ANFIS shows marginally lesser performance as compared to the GPR model in test
phase. On a whole, it can be concluded that the GPR model provided more accurate
forecasting results at both the study sites than the best ANFIS model at all the 1, 3
and 6 month lead times considered.

6 Conclusions

The application of the Gaussian Process Regression to forecast monthly ground-
water level fluctuations at multistep lead times is investigated in the present study.
ANFIS modeling is also adopted for comparative performance evaluation of the
developed models. It is observed that the performance of the GPR is quite satis-
factory providing relatively close agreement predictions when compared to that of
ANFIS model in terms of the performance measures utilized in this study. It is
envisaged that GPR model could serve as a better alternate for forecasting
groundwater level fluctuation at multistep lead time. The GPR model has advan-
tages over other models in terms of model accuracy, feature scaling, and proba-
bilistic variance. In future one can test the applicability of GPR model with
multivariate input data to forecast groundwater levels by including rainfall, tem-
perature, and evaporation data.
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