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Abstract The guard zone computation problem finds vast applications in the field
of VLSI physical design automation and design of embedded systems, where one of
the major purposes is to find an optimized way to place a set of 2D blocks on a chip
floor. Each (group of) circuit component(s) C; is associated with a parameter J;,
such that a minimum clearance zone of width §; is to be maintained around C;. In
this paper, we introduce the problem in its 3D version. Considering 3D simple solid
objects makes the guard zone computation problem more complex and helps to
solve many real life problems like VLSI physical design, Geographical Information
System, motion control in robotics, and embedded systems. In this paper, we
develop an algorithm to compute guard zone of a 3D solid object detecting and
excluding overlapped regions among the guard zonal regions, if any.
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1 Introduction

Guard zone computation problem is well defined in literature as an application of
Computational geometry. Often, this problem is known as safety zone problem [1].
In case of 2D guard zone computation problem, given a simple polygon P, its guard
zone G (of width r) is a closed region consisting of straight line segments and
circular arcs (of radius r) bounding the polygon P such that there exists no pair of
points p (on the boundary of P) and g (on the boundary of G) having their Euclidean
distance d(p,q) less than r. In case of VLSI layout design as well as in embedded
system, a chip may contain several million transistors. The goal of placement is to
find a minimum area arrangement for the blocks that helps to complete intercon-
nections among them. A good routing and circuit performance heavily depend on a
good placement algorithm. Placement of modules is an NP-complete problem.

Each circuit component P; is associated with a parameter p such that a minimum
clearance zone of width p must be maintained around that circuit component. The
location of the safety zone of specified width for a simple polygon is an important
problem for resizing the circuit components. If more than one polygonal region is
close enough, their safety zones overlap, violating the minimum separation con-
straint among them. Thus, with respect to resizing problems in VLSI, this is the
motivation of defining the safety zone of a polygon [2].

We have developed a number of algorithms to solve the guard zone computation
problem for only 2D simple polygons or objects. Now, the question arises whether
the problem can be visualized and solved for its 3D version. A 3D simple solid
object is surrounded by a number of planes such that no two planes cut each other
except at their edges. The pair of planes meeting at an edge is the neighboring
planes. In this paper, we develop an algorithm to compute guard zone of a 3D solid
object detecting and excluding overlapped regions among the computed guard
zonal regions, if any.

If two or more objects are close enough so that their guard zones overlap,
indicating the violation of the minimum separation constraint among them, the
intersecting regions are to be detected such that the guard zone can be computed
eliminating those intersecting regions. As our inclination in doing the task is in the
domain of computational geometry for a given 3D simple object, we like to detect
the part(s) of G that overlap(s) using the concept of analytical and coordinate
geometry.

In this paper, we have solved the problem of computation of the guard zone for a
simple solid object as well as detection of the overlapped regions (if any). While
computing the initial guard zone G, we enclose the solid object P by G, which is
essentially a collection of O(n) planar segments, cylindrical segments, and spherical
components corresponding to the planar surfaces, convex edges, and convex solid
vertices of the input simple solid object; we explain it in the subsequent sections.
After computing the guard zone trivially, we detect the overlapped regions of the
guard zone to find the union of all individual guard zonal regions of the object.
Again, the 3D guard zone computation algorithm proposed in this paper is output
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sensitive in nature, i.e., the computational complexity varies with the number of
overlapped regions in the guard zone of the solid object. Hence, the complexity
depends on the shape of the simple solid object provided.

2 Literature Survey

If P is a simple polygon and G is its guard zone of width r, then the boundary of
G is composed of straight line segments and circular arcs of radius r, where each
straight line segment is parallel to an edge of the polygon at a distance r apart from
that edge, and each circular arc of radius r is centered at a (convex) vertex of the
polygon. The boundary of the guard zone describes a simple region in the sense that
no two edges (straight line segment(s) and/or circular arc(s)) on its boundary
intersect in (or pass through) their interior. The problem originates in the context of
resizing the VLSI layout design [3].

In the context of guard zone computation, several different algorithms have been
proposed so far. The most discussed tool for guard zone computation is the
Minkowski sum. Essentially, Minkowski sum between a line (as polygonal seg-
ment) and a point (perpendicularly at a distance r apart) with same x- and
y-coordinates gives a line parallel to the given one. But a question arises whether
the parallel line is inside or outside the polygon. Here, the definition of Minkowski
sum [4] can be extended as follow: if A and B are subsets of R”, and A € R, then
A+B={x+y|x€A yeB},A-B={x-y|x€A,y€B},and JA {Ax|x € A}. Note
that A + A does not equal to 24, and A-A does not equal to ‘zero’ in any sense.
Apart from Minkowski sum, convolution can also be used as a tool for guard zone
computation.

A linear time algorithm is developed for finding the boundary of the minimum
area guard zone of an arbitrarily shaped simple polygon in [3]. This method uses the
idea of Chazelle’s linear time triangulation algorithm [5]. After having the trian-
gulation step, this algorithm uses only dynamic linear and binary tree data
structures.

Again, the problem of locating guard zone of a simple polygon has been solved
and a time-optimal sequential algorithm for computing a boundary of guard zone
that uses simple analytical and coordinate geometric concepts have been presented
in [6, 7]. It uses three different procedures to compute guard zone at convex,
concave, and linear regions of the polygon. The algorithm can easily be modified to
compute the regions of width r outside the polygon (as guard zone), and also inside
the polygon.

In paper [8], the authors have developed algorithm for detection of guard zonal
overlapping in case of a 2D simple polygon and the algorithm uses the concept of
line sweep algorithm for a set of parallel line segments. Most interestingly, the
algorithm is output sensitive, i.e., its behavior changes with the input. Thus, the
guard zone computation is easier for a polygon without notches than that of a
polygon with notches as well as overlapped guard zonal regions.
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3 Formulation of the Problem and the Algorithm

In case of 2D guard zone computation problem [8], our objective is to derive a 2D
imaginary region outside the polygon such that each point p on the polygon
maintains at least a distance r, which is predefined from each point g on that region.
Similarly, for the 3D version of the guard zone computation problem, we derive a
3D imaginary region bounding the solid object such that it maintains at least
distance r between them. For the sake of simplicity, we consider only that kind of
solid objects, which consist of only planes, i.e., no curved surfaces are there. Hence,
two neighboring planes meet at their edges, i.e., at a straight line where the cor-
responding planes make an angle that may either be convex or concave as it is
formed outside the object. If the planes meet at a convex angle outside the object,
such an edge is considered to be a convex edge; otherwise, it is considered as a
concave edge if the planes meet at a concave angle outside the object.

On the other hand, a simple solid object may contain both convex and concave
vertices in it; at such a vertex, we call a solid vertex, several planes of the solid
object intersect. It is important to observe that at each such vertex of a simple solid
object, the number of planes intersects is at least three. The vertices of a simple
solid object are defined as follows. A (solid) vertex v of a solid object S is defined as
concave, if for each pair of intersectional lines (for the associated planes) incident at
v form an angle outside the object (i.e., an external angle at vertex v) less than 180°;
otherwise, it is defined as convex.

As in Fig. la, which is a portion of solid object S where two adjacent planes
A and B intersect, the normal vector for plane B is n; and that of A is n,. Now, the
angle between planes A and B is same as the angle between the normal vectors to
planes A and B. Hence, 0 = cos—1(jn; n|/(|ny||n2))). This is how all external angles
of the solid object S can be computed (as concave or convex) in time O(¢), where ¢
is the number of intersection lines between adjacent planes of S. Now, it can be said
that, if at a solid vertex the number of convex edges meeting at the vertex is greater
than the number of concave edges, the vertex is a convex solid vertex; whereas, it is

(b) (©

-

Inside the 3D
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Fig. 1 a Part of a solid object with planes A and B, and a concave (external) angle 6 between
them. The dotted lines indicate the imaginary portion of the planes A and B (inside the solid
object); n; and n, indicate the normal vector to the planes B and A, respectively. b Deep or concave
solid vertex in a 3D solid object. ¢ Peak or convex solid vertex in a 3D solid object
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said to be a concave solid vertex if the number of concave edges meeting at the
vertex is greater than that of convex edges meeting at the vertex. A concave and a
convex solid vertex have been depicted in Fig. 1b, c, respectively.

A guard zone G of a 3D simple solid object S with n solid vertices can eventually
be obtained as follows. Let intersection lines created due to the intersection of
adjacent planes of the object be labeled as [;, I, ..., [, in some order. For each
intersection line /;, 1 <i < ¢, where two adjacent planes of S intersect, we bisect the
external angle. Then we draw a plane parallel to the plane (/;, [;;1), l i</, ata
distance r outside the solid object that may be a portion of the desired guard zone
G that is being computed, assuming that /; and [;,; are forming the plane under
consideration. To be precise, successive guard zonal planes must meet (or intersect)
each other only at an angle bisector of line /;, formed due to the intersection of allied
planes of the given 3D simple solid object. At the edges of the simple object, the
guard zonal region is cylindrical in shape. Furthermore, the parallel planes that are
guard zone of the neighboring planes are tangent to the cylindrical surface whose
axis is the line of intersection of the two assumed planes. At the peak, where more
than two planes coincide, the guard zonal regions result a spherical shape and the
guard zonal planes of the given object’s planes that meet at the peak are tangent to
the spherical surface.

As the input 3D simple solid object is made of a set of planes (by assumption),
for computing the guard zone of individual plane, we first need to compute planes
parallel to the ones specified in the form of 3D simple solid object, at a distance
r outside the object. For example, we have considered two planes for which we
would like to compute parallel planes at distance r outside the two believed planes.
Let ABCD and BEFC are two planes adjacent through the edge BC as shown in
Fig. 2a. Since we always consider a simple solid object as input, in reality these two
planes are also adjacent to some other planes of the input solid object through
different edges.

For ABCD, we draw four perpendicular line segments at A, B, C, and D of
length r. Thus, we get Aa, Bb, Cc, and Dd, respectively, and obtain the plane abcd

Fig. 2 a Two plane segments (ABCD and BEFC) meet at a line segment (BC) and their guard
zones (abcd and biefc,) meet at a cylindrical segment (bbc;c). b Planar surface ABC bounded by
the 3D box AGCDFHIE
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which is parallel to the plane ABCD at distance r. Similarly, for the plane BEFC we
get plane befc, as its parallel one.

Now, the guard zonal planes of two neighboring object planes meet at a
cylindrical surface which is considered to be the intermediate curved surface
between the two planes said above. To compute this surface, we have drawn a
cylindrical surface considering BC as its axis and making an angle, £bBb1 at the
axis. Now, the guard zonal planes of the object planes, i.e., abcd and blefcl, are
tangent to this cylindrical surface.

Now, there is a set of guard zonal components in the search space from which
we have to find out the pair of intersecting components. In case of 2D, i.e., the
sample space contains only a set of line segments, we could use plane sweep
algorithm to find out the interesting pairs of line segments. However, in 3D, space
sweep algorithm is only applied for a set of orthogonal planes though the guard
zonal plane segments are not necessarily orthogonal [9]. Furthermore, the search
space also contains cylindrical and spherical regions. Hence, space sweep algorithm
cannot be applied directly.

Let us take a different view toward the problem. If we could bind each guard
zonal component within its minimum possible orthogonal 3D box, then the problem
reduces to find the overlapping pairs of those boxes only. Again, a 3D orthogonal
box consists of six bounding surfaces parallel to one of the three coordinate planes
and the problem is reduced in finding overlaps among these boxes which are regular
in shape.

Now, we can imagine that in the search space there are only O(n) 3D orthogonal
boxes, where n is the total number of planes in a given 3D simple solid object.
Exhaustively, O(n”) checking needs to be performed to find all the intersections
among the set of boxes. Instead of the exhaustive method just described, we like to
use the space sweep method [9], which solves the problem in O(n log n) time. This
three-phase sequential algorithm computes O(n) number of 3D bounded boxes in its
first phase and in the second phase it checks for overlapping among the boxes,
whereas in the third phase it deals only with the corresponding guard zonal regions
for which overlapping has been detected in the second phase. Thus, if there is no
overlapping between any two boxes, the third phase of the algorithm is skipped and
the results we obtain are reported accordingly.

Phase I: Construction of Bounded Boxes for Individual Guard Zonal Surfaces
As the guard zone of a 3D simple solid object may consist of a set of planar,
cylindrical, and spherical surfaces, we compute bounded boxes for each such
surface individually. To bind a planar or a curved surface, we take orthogonal
projection of each surface on xy, yz, and zx planes of the coordinate system. Hence,
in each plane we obtain either a line segment or a curved segment or a bounded
region which are not necessarily identical. Thus, we get three 2D counterparts of
each surface of the 3D guard zone. For each of the 2D segments, we compute its 2D
bounded box as described in [8]. Now, we obtain three mutually perpendicular
planes, i.e., three surfaces of the 3D bounded box. The three other surfaces also
need to be constructed to complete the 3D bounded box of the guard zonal portion
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taken into consideration. We like to illustrate this concept with the help of an
example discussed below.

Let us consider a guard zonal planar surface ABC as shown in Fig. 2b, of which
we would like to construct the bounded box. At first, we take orthogonal projection
of ABC on xz, xy, and yz planes. This creates three 2D regions on the three planes
for which we find three 2D bounded rectangles. Here, AGHF, ADCG, and ADEF
are three bounded rectangles on the three coordinate axis planes, respectively.
Hence, the three adjacent planes are computed of the 3D box and other three planes
are yet to be constructed. The width of the 2D box on yz plane indicates the width
of the 3D box along y axis and z axis; similarly, we get the width along x axis from
the 3D box formed on planes xz and xy.

Now, to construct the remaining surfaces of the 3D box, we have to draw three
planes parallel to xz, xy, and yz planes. For an example, the plane DCIE is drawn
parallel to the plane AGBF maintaining a distance AD which is the width of the 2D
box on yz (or xy) plane as well as the width of the 3D box along y axis. Similarly,
the face GCIH and HIEF of the 3D box are drawn parallel to ADEF and ADCG,
respectively. Thus, we get the 3D box AGCDEFHI, which bounds the guard zonal
plane ABC. We perform similar task to get 3D bounded boxes for each of the guard
zonal (planar or curved) surfaces. The 3D bounded boxes computed in this fashion
are not necessarily disjoint to each other, i.e., they may have overlaps. Figure 3a, b
shows the projection of a spherical surface on three orthogonal coordinate planes.

Phase II: Detection of Overlapping among the Bounded Boxes

At the end of the first phase, there are O(¢) number of 3D boxes in the search space,
in which there may be overlap among the boxes, where ¢ denotes the number of
intersection lines at which the consecutive plane segments of the object meet. In the
second phase, we use the space sweep algorithm [4] that checks for intersection
among the boxes and report it accordingly.

In the search space, an infinite plane parallel to each of the xz, xy, and yz planes
is moved along its perpendicular direction (i.e., along y-, z-, and x-axis) consecu-
tively. For each sweep, we get information regarding overlapping of the boxes
along the corresponding direction. Suppose two boxes overlap while sweeping

@ ®
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»Y »Y
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X X

Fig. 3 a Projections are taken on the orthogonal coordinate planes X. b Projection of the spherical
surface S on xy plane (Sxy), yz plane (Syz), and xz plane (Sxz)
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through y axis; however, it does not necessitate having overlapping along other two
axes. It means that there was no overlapping between them; rather, they share their
y-interval. By Lemma 1, we can conclude that two boxes overlap if and only if
overlapping has been detected along all the three directions.

Lemma 1 Two boxes overlap if and only if they share x-, y- and z-interval.

Proof Let B1 and B2 be any two boxes in the search space. The x-, y-, and z-span
of By and By are {(x1; — x12), (V11 — ¥12)s (211 = z12)} and {(x21 = x22), (V21 = ¥22)s
(z21 — z22)}, respectively. In Fig. 4, we observe that x1; < xp1, y11 < y21, and
Z11 < z21. Now in a case, if any two boxes overlap, then the point(s) belonging to the
overlapped region is (are) also belonging to the individual boxes, and hence, if we
that consider boxes B, and B, have overlapped and an arbitrary point A(X, y, z) is a
point within the overlapped region, then the following inequalities hold.

Xip <X <Xig, iy <y <Y, and zj; <z <z, wherei=1,2. (1)

Considering the fact stated in the inequation (1), we can conclude that x,; < x15,
Y21 < Y12, and 251 < 712, 1.€., there are overlaps along all x-, y-, and z-direction. On
the flip side, if there is no overlapping between boxes B; and B,, the inequation (1)
stated above would not be satisfied and must deny the existence of any such point
A, which in turn ensures that there is no overlapping between the mentioned boxes.

Now, in our algorithm for overlapping detection among the 3D bounded boxes,
we store the information of overlapping for three different directions and boxes by
maintaining three different Binary Search Tree (BST) data structures. Again, we
extract the final information regarding overlapping by combining the results of
these three BSTs.

We illustrate the process through an example. Let us consider that there are three
3D boxes, namely 1, 2, and 3 on which we perform space sweep operations along
three coordinate axes. The surfaces of the boxes which are parallel to the sweep
plane are considered to be the event points during sweeping. For an example, when
we move the xz plane, the surfaces of the boxes parallel to xz plane are considered
to be the event points and the surface with lower y value is the starting point of the
allied box while the surface with higher y value is considered to be the end point. At
the beginning of the sweeping process, the event points are sorted depending on the
values of that coordinate along which the sweeping is being performed. Through

§

B,

e - =]
v \A

(%, y,2)

Fig. 4 Two boxes B, and B, are overlapped and A(x, y, z) is a point at the overlapped region
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the sweeping process whenever the sweep plane is at a starting point, the corre-
sponding box is inserted in the query tree and the overlapping list is updated by
inserting overlapping information of the newly inserted box and the existing boxes
in the query tree. On the other hand, at an end point the corresponding box is
deleted from the tree. Overlapping information for two boxes is stored in the form
of a dipole {box;, box,}.

Let us consider the example depicted in Fig. Sa—c. In Fig. 5a, xz plane is moving
along y axis and the event points have been denoted as 1s, le, 2s, 2e, 3s, and 3e.
Now, the event points are sorted according to their y-coordinate values and we
obtain 2s, 3s, 1s, 2e, le, and 3e. At each event point, the query tree is updated
through insertion or deletion and the event point is deleted from the event point list.
Hence, the sweeping ends when the event point list is empty and we obtain a list of
overlapping 3D boxes.

In Fig. 5a, when the sweep plane is at the starting plane 2s, the corresponding
box, is inserted in query tree. Next event point is 3s and it is also a starting point;
hence, boxj is inserted as the right child of box,, as its y-coordinate value is greater
than that of box,. The overlapping list which was initially empty is now updated by
inserting the pair of boxes {2, 3} or {3, 2}. To remove ambiguity, we prefer to store
the lower numbered box first, i.e., {2, 3} is inserted into the overlapping list. The
next event point is 1s and box; is inserted into the query tree as the right child of
bOX3.

After the insertion, as the tree becomes height imbalanced, AVL rotation is
performed to balance the tree. Now the overlapping list is updated by inserting
event points {1, 3} and {1, 2}. At the next three event points, as these are the end
points, the allied boxes are deleted from the query tree. Finally, the query tree as
well as the event point list becomes empty and we obtain a set of overlapping pairs
along y axis, say A. Here, A = {{1, 2}, {2, 3}, {1, 3}}. The query tree after each
update has been shown in Fig. 6a.

Next, the sweep plane is moved through z axis and the surfaces of the boxes that
are parallel to xy plane are considered to be the event points. Now, the starting and
ending event points are shown in Fig. 5b; after sorting we obtain the sequence of
the event points as 3s, 2s, 3e, 1s, 2e, and le and the query trees are updated at each
event point. After completion of the sweeping, the set of overlapping pairs of boxes,
say set B, becomes {{2, 3}, {1, 2}}. The series of query trees formed after each
operation performed for each event point has been shown in Fig. 6b. At the last step
of the space sweep phase, yz plane is swept along x axis where the sorted list
contains 1s, 2s, le, 2e, 3s, and 3e, the event points based on Fig. Sc.

At the end of sweeping, it provides the overlapping information through a set of
overlapping pairs. If the set is named as C, C = {{1, 2} }. The series of query trees
formed after each operation performed for each event point has been shown in
Fig. 6c.

We have already proved the phenomenon that if two 3D boxes have overlapped
with each other, they must overlap along all the three axes. Now, to detect the boxes
which overlap indeed, we have to find the common pair(s) in these three sets A, B,
and C. In our example, if we perform ANBNC, we obtain only one pair {1, 2},
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Fig. 6 Query trees during the sweep of the plane along a y axis, b z axis, and ¢ x axis

though there are three entries in set A and two entries in set B. Hence, box1 and
box?2 have intersection and we deal with only these boxes in the third phase, as only
these boxes contain the probable intersecting guard zonal surfaces.

Phase III: Detection of Intersection among the Guard Zonal Components
Contained in the Overlapped Boxes

The third phase of our algorithm deals with those guard zonal surfaces whose
bounded boxes are found overlapped in the second phase. As there are only three
types of guard zonal surfaces, any pair of them may intersect with the other, and
there are only six types of possible intersections, that are planar—planar,
planar-spherical, planar-cylindrical, spherical-spherical, spherical-cylindrical, and
cylindrical-cylindrical.

Planar—Planar Intersection If we like to check intersection between two plane
segments, we notice that two plane segments always cut at a line segment satisfying
the equation of both the planes [10]. Two plane segments intersect in two ways;
either one of them fully passes through the other or they intersect partially. If A and
B are two plane segments, the possible intersections are depicted in Fig. 7.

() (b) (0

B/iT' "'5;7/3 o /—;/’B:’ L

Fig. 7 a B passes through the plane segment A. b A passes through the plane segment B. ¢ The
planes partially cut each other
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In Fig. 7a, B passes through A resulting in two intersection points within the
boundary of A, whereas in Fig. 7b, A passes through B and results two intersection
points within the boundary of B. In Fig. 7c, they cut partially; hence, one of the
intersection points is within the boundary of B and the other one is within the
boundary of A.

As a planar surface is always adjacent to either a spherical or a cylindrical
surface, a partial cut refers to the fact that there may be intersection between the
plane segments that partially cut and the adjacent surface of the other plane, i.e., one
plane segment may cut the other in such a way that it cuts its neighboring cylin-
drical or spherical segment as well. In each of the cases, the planar—planar inter-
section is a line segment. But there is a difference in the above three cases; the first
one has the intersection line segment starting from one point on the plane segment
and ending at another point on the same plane segment having the intersection line
segment fully on the plane segment, the second one has the intersection line seg-
ment beyond the plane segment, and in the third case the intersection line segment
starts at a point on the plane segment while ending at a point beyond the plane
segment. We discuss all the three cases below.

We define each plane segment by the equation of the plane and its boundary line
segments, and therefore, the equations of lines. Now, we consider a plane and check
for intersection between the line segments of the other planes. If we consider plane
A, i.e., its equation and take the line segments of plane B, it results in #; and i,. The
points may either reside on or within the boundary of A. For each point, we traverse
the boundary of A clockwise (or anti-clockwise) if the point is always on the right
(or left) side, the point is within the boundary; otherwise, if the point satisfies one of
the boundary line segments of A, the intersection point is on the boundary of the
plane.

Planar—Spherical Intersection Whenever a plane cuts a spherical region once,
the shape of the intersection is of a circular curve [10, 11]. Now, if the plane
intersects a spherical region it results a circle, as the intersection curve has been
depicted in Fig. 8a. As a spherical surface is adjacent to a set of cylindrical and
planar surfaces, we may conclude that the planar surfaces that cut the spherical

Fig. 8 The surface Q intersects the spherical surface S. a It results a circle C as the intersection
curve. b When the surface (Q) partially intersects the spherical surface (S) that results a circular
curve which is extended through the junction of the spherical and cylindrical or planar surfaces.
¢ When a plane P intersects a cylinder Q resulting in two intersection line segments MX and NY
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surface once, cut one or more adjacent surfaces as well, as shown in Fig. 8b, and
has been discussed previously in case of planar—planar intersection.

Let S and Q be the spherical and planar surfaces. In Fig. 8a, a circle (C) is
produced after the plane cuts the spherical surface. We draw a perpendicular OP on
the plane. As we obtain the point P and the length of OP, we find the length of AP.
Thus, the center (P) and the radius (AP) are known to us, and hence, we get the
equation of the circle. Now, it may so happen that the plane does not cut the
spherical surface at all. In that case, we check OP with the radius of the sphere. If
OP is greater than the radius, there is no intersection.

Planar—Cylindrical Intersection When a plane segment cuts a cylinder, the
intersection is a line segment satisfying both the equations of the cylinder and the
plane [10, 11]. If the plane cuts the cylinder twice, we obtain two such line seg-
ments which are parallel to the axis of the cylinder. When the plane cuts the
cylinder once, it means that there may be intersection with the adjacent surfaces of
the cylindrical surface.

Let the plane P cut the cylinder Q twice, as shown in Fig. 8c. Then, we have to
find two line segments MX and NY. We have the equation of cylinder as
(ny-mz)2 + (Iz-nx)* + (mx—ly)2 =r*(I> + m” + n®) and its axis as (x/1) = (y/m) = (z/n).
Also the equation of the plane is ax + by + cz = d. We draw a perpendicular CO
from C, a point on the axis, on the plane. As we know, the radius of the cylinder
(CA or CB), AO (BO) can be directly found. Hence, we find the coordinate of point
A. As the intersecting line segment passes through A and is parallel to the axis, we
can derive its equation.

After knowing the equation, we check for intersection between the boundary line
segments of planar surface, and obtain two intersection points on the boundary of
the plane, here M and X. The line joining the two gives the line segment MX.
Similarly, for point B, we get the line segment NY.

Spherical—Spherical Intersection If two spherical surfaces intersect, we obtain a
circle as the intersecting curve and the equation of the circle satisfies equations of
both the spheres [10, 11]. Let two spheres S and S’ with their centers A and B,
respectively, intersect with each other as depicted in Fig. 9a. If their equations are

Fig. 9 a Two spheres with A and B as their centers intersect each other resulting in a circle as the
intersection curve with P as the center and PC as the radius of the circle. b A sphere intersects the
cylinder C resulting in M as the intersection curve in 3D, to find plane P that is drawn and the sphere
cuts it along a circle Q. X and Y be the common points on M and Q. ¢ Two cylinders C; and C, cut
each other keeping their axes AB and CD parallel, results in two intersection line segments PQ and RS
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S=x*+y +2° +2gx +2fy + 2hz+c=0and S’ = x> + y* + 22 + 2g'x + 2f'y + 2N’
z + ¢’ = 0, the coordinate of the points of their intersection satisfying the equation
S-S'=2(g-g")x + 2(f—f")y +2(h—h")z + (c—') = 0, which is the equation of the plane
of intersection of the two spheres. This plane cuts either of the spheres in a circle.
Our objective is to find out the circle thus obtained.

We draw a perpendicular from the center of one of the spheres on the plane.
Here in the figure, the perpendicular AP is drawn on the plane. From the length of
AP (as we can find the length of a perpendicular from a point outside a plane) and
AC (the radius of the sphere), PC is calculated which is the radius of the intersecting
circle. Again, as we know the coordinate of the center (P) and the radius (PC), the
equation of the circle is immediately derived.

Spherical—Cylindrical Intersection When a spherical surface intersects a
cylindrical surface, the intersecting curve does not lie in 2D plane [11]. It can be
visualized by drawing a circle on a plane and then the plane is wrapped over the
cylinder. The circle is not on the 2D plane now; rather, it is on the surface of the
cylinder.

Here, in Fig. 9b, a sphere intersects a cylinder C resulting in the intersecting
curve M. We have to derive the equation for M. At first, we draw a plane tangent to
the cylinder, on which the line segment normal to the axis of the cylinder from the
center of the sphere, is perpendicular. Now the sphere cuts the plane and results a
circle Q as their intersecting curve. We derive the equation for this circle as we did
in the planar-spherical intersection. Now, as we know the circle Q, we have its
center and radius.

At this moment, to find M we need to know a point on it and then the locus of the
point on the cylindrical surface. So, we draw a line passing through the center of the
circle Q and parallel to the axis of the cylinder. This line cuts the circle at two points
X and Y. The locus of either of the points satisfying the equation of the cylinder and
maintaining the distance from the center of the circle as a constant provides the
equation for M.

Cylindrical—Cylindrical Intersection If two cylinders intersect each other as in
Fig. 9¢c, we obtain two intersecting line segments satisfying equations of both the
cylinders. From the equations of the cylinders, we obtain the equation of the plane
satisfying both the equations of the cylinders.

Let C, and C, be two cylinders. We draw AO, perpendicular on the intersecting
plane from A. From AO and AP, we derive OP and hence obtain P. Also we find in
the same way the point Q. Then PQ is attained as one of the intersecting line
segments. Similarly, the other intersecting line segment RS is derived.

4 Computational Complexity

It is easy to observe that the guard zone of an n-vertex, ¢-intersection line and p-
plane convex solid object is a convex (3D) region with p planes, ¢ cylindrical arcs,
and n spherical arcs only, when there is no intersection, and with intersection there
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might be p planes only, where n = O(¢) as well as p = O(f). The planes of the guard
zone are parallel to the planes of the solid object at a distance r apart, outside the
solid object, and two adjacent planes of the guard zone are joined by a cylindrical
arc of radius r centered at the associated intersection line of the solid object.
Spherical arcs of radius r each are introduced as parts of the computed guard zone at
the vertices of the solid object, where the associated planes of the guard zone are
tangent to the cylindrical as well as spherical arcs and the cylindrical portions of the
guard zone are also ending with spherical arcs of the guard zone near the vertices of
the solid object. As a result, the time required for computing a 3D guard zone of a
convex solid object is O(n+{+p) = O(¥).

Now, as per the next step, we need to draw the orthogonal projections of the
individual guard zonal components, including planar, spherical, and cylindrical
surfaces onto Xy, yz, and zx planes. The projections can be drawn in linear time
with respect to the number of guard zonal components, which is O(¢), where / is the
number of intersection lines present in the given 3D simple solid object. Therefore,
for each guard zonal component, we obtain three different 2D objects at each of the
Xy, yz, and zx plane. Now, we need to merge the individual 2D components
belonging to a specific 3D guard zonal component in such a way that the 2D
components collectively form a 3D orthogonal box that encloses the corresponding
3D guard zonal component to its entirety. This step can be achieved in constant
time and hence, the complexity of this step is O(1).

Once the orthogonal boxes are ready, we feed these boxes into our customized
space sweep algorithm for further processing. During the execution of the space
sweep algorithm, the faces of each orthogonal boxes parallel to the xy, yz, and zx
plane have been considered as event points. The event points are maintained in a
dynamic list data structure, whereas the 3D boxes corresponding to the event points
are maintained in a separate BST data structure for subsequent processing. The
algorithm terminates when the event list becomes empty. Hence, the operations like
creation, insertion, and deletion from the BST take O(¢ log ¢) time, whereas the
similar operations for the dynamic list data structure consumes O(¢) time, for each
of the axis planes. Therefore, the overall time complexity to perform this particular
step requires O(¢ log /).

Now, let us assume that the execution of the previous step yields the following
result, where the sweep plane xy has produced a set I containing all the overlapped
box pairs while sweeping; afterward the yz plane operates on the pair of boxes
contained in set / and produces a reduced set named J. Similarly, zx plane operates
on the pair of boxes contained in set J and yields the final set K containing all the
possible boxes that needs further investigation. Thus, xy — I, yz — J, and zx — K.

All the operations explained above can be executed in O(¢ log ) + O(I log I) + O
(J log J) = O(¢ log ¢ + I log I) time, since I dominates J.

As per the final step, we are left with the detection of intersection among the
guard zonal components contained within the 3D boxes registered in set K. This
operation can be executed in constant time for each pair of such guard zonal
component, and hence, the time complexity for the intersection detection among the
guard zonal components is O(K).
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The overall time complexity for the 3D guard zone computation for a given
simple object is O(/) + O(¢ log £) + O(K) = O(¢ log ¢ + I log I).

5 Application

The guard zone computation problem occupies vast place of interest in the field of
VLSI physical design automation and design of embedded systems, robotic motion
control, geographic information system, etc. In VLSI physical design for optimized
placement on the chip, we have to consider 3D subcircuits and their 3D guard zone
for avoiding any parasitic effect. In this context, we deal each 3D subcircuit as a 3D
simple solid object and accordingly we compute its guard zone. As cited for its 2D
variation, we may achieve the goal in 3D counterpart.

In Robotics, it is important to have the motion planning feature built within the
robot itself. This motion planning feature ensures that the robot does not collide
with any obstacles while it is in motion unless it is programmed to do so. As we
have noticed that Minkowski sum finds a tremendous application in motion plan-
ning of an object among obstacles [3], the guard zone computation can also be used
to solve similar problems. Once a robot identifies the obstacles that it needed to
bypass and transforms them into 2D simple polygons, then it can use the computed
guard zone to avoid any possible collision. As the robot moves along its way, it
keeps checking whether it encounters the already computed guard zone of any of
the obstacles and if it finds one, then immediately it changes its direction unless it
reaches to its destination. This process can further be enhanced by incorporating a
learning mechanism within the robot where the robot records the objects found as
an obstacle so far along with the computed guard zone and later when the robot
encounters the similar objects, then it applies the already computed guard zone to
avoid any possible collisions.

3D guard zone computation plays a significant role in robot motion planning, as
the real life scenario conveys that the robots and obstacles faced are 3D in nature.
Considering this fact it is obvious to take into account the 3D guard zone computing
for efficient motion planning for 3D robots. Now, the problem of motion planning
for robots can further be simplified if the robot somehow acquires the information
of all the obstacles it is going to encounter from its start to final destination. Then
the robot can compute its own simplified guard zone along with the guard zone for
all the obstacles that it is going to encounter and then determines the path it is
supposed to take to reach its destination. Another important application of the 3D
guard zone computation problem is in the medical field. Consider the treatment of
cancer cells in human body; now the biggest unsolved mystery till date is finding a
targeted treatment for the cancer affected cells. There can be two different
approaches of applying the guard zone computation in this regard: (1) A guard zone
defining the growth of cancer affected cells in human body, definitely the medicine
that should target these cells should have a faster healing power compared to the
growth of the cancerous cells and also the medicines should have a predefined
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minimum guard zone which completely encompasses the affected cancerous cells.
(2) A comparative study (with respect to the guard zonal effects) of various
medicines that target the cancerous cells to determine which medicine needs to be
applied on human body to reduce the effect of medicine on the healthy cells.

It also finds application in computing the buffer zone in geographical informa-
tion systems [1], to name only a few.

6 Conclusion

As discussed earlier, resizing of electrical circuits is an important problem in VLSI
layout design as well as in embedded system design, while accommodating the
(groups of) circuit components on a chip floor. This problem motivates us to
compute a guard zone of a simple polygon. In robot motion planning, geographic
information system, embedded system 3D guard zone computation takes an
important role. In this paper, we have considered the problem of computing a guard
zone of a (3D) simple polygon, and developed a sequential algorithm for computing
the same that uses the concepts of analytical and coordinate geometry to detect
overlapped region(s) within the guard zone (if any) and accordingly exclude that
region to report the resulting outer guard zone. Our algorithm can easily be mod-
ified to compute the regions of width r (as guard zonal distance) outside the
polygon, and also inside the polygon (if necessary), which may find several
applications in practice. This work can also be extended for computing a guard zone
of a three-dimensional solid object that may not be a simple one, as a problem of
probable future work.
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