
Comparative Analysis of Genetic
Algorithm and Classical Algorithms
in Fractional Programming

Debasish Roy, Surjya Sikha Das and Swarup Ghosh

Abstract This paper compares the performances of genetic algorithm with various
classical algorithms in solving fractional programming. Genetic algorithm is one of
the new forms of algorithms for solving optimization problems, which may not be
efficient but a generic way to solve nonlinear optimization problems. The traditional
optimization algorithms have difficulty in computing the derivatives and second
order partial derivatives, i.e., Hessian for the fractional function. The issues of
discontinuity seriously affects traditional algorithm. There are large numbers of
classical methods for searching the optimum point of nonlinear functions. The
classical search algorithms may be largely classified as gradient based methods and
nongradient methods. Here, a comparative performance analysis of different algo-
rithms is made through a newly defined function called algorithmic index. An
algorithm based on heuristics for computation of gewicht vector required to derive
algorithmic index has also been proposed here.

Keyword Fractional programming � Genetic algorithm � Optimization � DEA

1 Introduction

Rechenberg, a German scientist, introduced evolutionary strategies for airfoil shape
point optimization, in the 1960s. Fogel, Owen, and Walsh formulated evolutionary
programming for finite state machines. Evolutionary computation is a broad field

D. Roy (&) � S.S. Das
Department of Management Studies, Techno India University, Kolkata, India
e-mail: debasishroy7@gmail.com

S.S. Das
e-mail: surjyasikha.tiu@gmail.com

S. Ghosh
Department of Humanities and Social Sciences, Techno India University, Kolkata, India
e-mail: swarupghosh55.tiu@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_17

249

and remains a serious interest for research with sub areas as evolutionary pro-
gramming, evolutionary strategies, and genetic algorithm. Large number of
researchers worked on evolution-based algorithms, notable among them are
Box (1957); Friedman (1959); Bledsoe (1961); Bremermann (1962); Reed, Tombs,
and Baricelli (1967).

Genetic algorithm, developed by John Holland who published a book titled
‘Adaptation in Natural and Artificial Systems’ in 1960 in the University of
Michigan, mimic adaptation and traverses from one set of population to a new set of
population by crossover, mutation and selection to achieve and find fitter, and more
suitable population. Later schemas formed basis for all subsequent developments.
This paper compares performances of traditional methods like Random Search,
Box Evaluation, Gradient Descent method, and Hookes’ Jeeves method with
Genetic Algorithm on the Fractional Programming. In order to have an even
comparison, same fractional function is taken for experimentation and optimized
values have been derived using Matlab scripts. This paper also proposes algorith-
mic index for comparison of performances of these algorithms. The computation of
algorithmic index depends on gewicht vector; estimation of this vector can be done
by newly proposed heuristics dependent algorithm.

2 Literature Review

The optimization of the ratio of linear functions has attracted researchers for many
years. In many practical applications, multiple such fractions need to be optimized.
Von Neumann was the earliest to have started using fractional programming in
Equilibrium problems, in 1937.The linear fractional programming started with B.
Mortars and his associates. Charnes and Cooper [1] had proposed transformation LFP
to Linear Programming format and thereby solving the problem. Bitranes and Novaes
solved the problem by gradient descent method [2]. Bitranes and Magnant [3] made
analysis in the same score as Linear Programming for duality and sensitivity. Swarup
[4] extended simplexmethod to LFP, which is an extension of work of Danjtzig [5, 6],
for solving LFP. Bounded variable linear fractional programming was explored by
Bazalinov [7]. He also worked on scaling problems in LFP [8]. Interval Valued
Fractional Programming was studied by Shohrab Effati [9]. Fractional Programming
has often been addressed in the domain of generalized fractional programming [10].

Until 1980s, the single ratio problem has dominated the field. Various methods
have evolved; important among them are use of the LPP methods for solving
fractional functions. Gogia [11] suggested revised simplex method for solving
fractional programming. Horvath [12] gave a criteria for determining optimum for
linear fractional programming using duality considerations. A finite method for
solution to a simpler form of the fractional programming was developed by Stahl
[13]. A special class of linear fractional programming is fractional interval pro-
gramming, which has been studied by a number of authors [14]. Buhler solved
fractional interval programming using generalized inverses [15].

250 D. Roy et al.

2.1 Random Search Method

Random search method uses a population created either in random manner or by
performing unidirectional search along the random search direction. If the feasible
space is narrow, the system of random search may fail. Random Search method has
various algorithms starting from Pure Random Search and Random Walk to
Metaheuristic. Pure Random Search [16] is a stochastic search method of selecting
random population based on normal or Gaussian distribution. Convergence can be
proved in number of ways [17–19]. The procedure may guarantee convergence, but
is not efficient as it may require large number of iterations depending on nature of the
objective function, feasible zone, and dimension of variables. It may be enormously
large. One such Random Search algorithm is presented in supplementary material.

2.2 Box’s Evolutionary Method

Introduced by G.E.P Box in 1957, this evolutionary algorithm, centering on a point,
selects best point among 2 N points evaluated along N dimensions. The next iteration
starts from this point. The size of the hypercube is successively reduced with change
of the position of the center. Here, required number of function evaluation increases
exponentially with N. This is one of the strong drawbacks of the Box’sMethod. There
are other versions of Box’s Evolutionary Method like Random Evolutionary
Operation (REVOP), Simplex EVOP, etc. The convergence of the algorithm depends
on initial hypercube size, position, and reduction rate, ∂i. This is basically a multi-
dimensional systemic search on dimensions [20]. The algorithm is useful since it is a
derivative free optimization method (DFO) [21–23]. Subsequently, further
improvement was made by Wilson [24] and it was renamed as Response Surface
Methodology (RSM). Whereas RSM is based on least square, DFO is based on direct
function values or its interpolation. The hypercube is the focal point for searching
optimum point. The Box’s method was also opted in finding optimum solutions in
industrial applications [25]. The algorithm, however, does not guarantee convergence
to local or global optima. The algorithm is presented in supplementary material.

2.3 Hooke Jeeves’ Method

In 1961, Hooke and Jeeves [26] conceived that direct search method is effective
when the objective function is nondifferentiable or does not have derivative at all
points in feasible region. In this method, each trial is compared with the previous
best [27]. Therefore, direct search methods for unconstrained optimization works on
relative rank of countable set function values whereas, Armijo-Goldstein-Wolfe
condition for quasi-Newton line search algorithm requires a sufficient decrease in
objective function. The algorithm is presented in supplementary material.

Comparative Analysis of Genetic Algorithm … 251

2.4 Gradient Descent Method

Here, one of the two popular gradient descent methods is presented. The direct
search method eventually requires large number of steps or iterations to converge,
whereas gradient-based methods are faster. However, convex optimization methods
define subdifferentials for functions having discontinuity, which is defined as
follows:

@f x
¼� �

¼ v 2 Rn : f yð Þ � f x
¼� �

� v; y� x
¼D E

; 8y 2 Rn
n o

: ð1Þ

In cases where the objective function is differentiable, the gradient methods [28]
or derivative-based methods are useful and efficient, compared to direct search
method. One of the oldest systems of finding multivariable optimum points is
Newton’s Method [29]. This method is extremely important as it is the simplest
method and assures convergence [30]. Large numbers of improved algorithms have
emerged from this algorithm with slight or minimum modification. One of the most
accepted methods based on the Newton Method and that has been widely accepted
is the Conjugate Direction Method [31]. A generalized powerful extension of this is
the Spacer Step Theorem [32]. The algorithm for Gradient Descent Method is given
in supplementary material.

2.5 Genetic Algorithm

The schema based on genetic algorithm was developed in 1968, with famous
disposition of Schema Theorem [33]. Goldberg [34] developed building block
hypothesis from Schema Theorem. The criticism of Schema Theorem developed in
1990 that the effect of noise and other stochastic effects distort proportionate
selection [35, 36, 37].

The algorithmic flow is given in the supplementary material. The parameters of
genetic algorithm are

• Cross Over Probability—It is 0 %, if the offspring population is an exact copy of
the parent. It is 100 %, if all of the parent population is allowed to crossover.

• Mutation Probability—Mutation probability is zero, if no population is changed
after cross over. It is 100 %, if the whole chromosome is changed. Mutation is
necessary to prevent falling of the population in local optimum.

• Population Size: If population size is small, the search space will not be covered
well. If search space is large, the algorithm becomes slow. Population size also
determines the precision of the solution, i.e., the quality of the solution.

Besides choosing appropriate population size, the balance between selection
operator and exploration operator introduced by crossover and mutation operator is
also important. If selection operator uses too much selection pressure, then the

252 D. Roy et al.

population loses diversity. Genetic algorithm is used for NP-hard problems. It is
more robust than conventional algorithm, i.e., the algorithm does not collapse in the
presence of noise or change of inputs. Also, genetic algorithm is useful in searching
n-dimensional surface or multimodal search space.

3 Linear Fractional Programming

Linear Fractional Programming has various forms. Let p, q, and s denote real
valued functions which are defined over C ϵ Rn. Let us take

s xð Þ ¼ p xð Þ
q xð Þ : ð2Þ

The function s is defined over D ¼ x 2 Cf : s xð Þ� 1g assuming q(x) ≠ 0 for
x ϵ C.

Single Ratio Fractional Programming may be defined as

Max s xð Þ : x�Df g: ð3Þ

In many practical applications, multiple ratios appear for evaluation. This is also
referred to as max−min problem. The Generalized Fractional Programming may be
defined as

Max min si xð Þ : x � Df g; where si xð Þ ¼ pi
qi
;where i ¼ 1; 2. . .m and si [0: ð4Þ

We call it as concave fractional programming, if numerator pi is concave on D.
The denominator qi is convex function on D. It is further assumed that pi is non-
negative on D, if qi is not affine. The objective function in general is not assumed to
be concave. The objective function is assumed to be a ratio of convex and concave
function. The fractional programs are, in general, assumed to be nonconcave pro-
grams. The central point of fractional programming is objective function and point
of attraction is the ratio structure with a feasible region being a convex polyhedron.

Sometimes, functions in both numerator and denominator are affine functions.
If D is a convex polyhedron, the problem is called Linear Fractional Program. The
form of the function is as follows:

Max
aTxþ;
bTxþ h

: Ax� c; x� 0
� �

;Where a; b 2 Rn; ;; h R;A 2 Rmxn; c 2 Rm: ð5Þ

Comparative Analysis of Genetic Algorithm … 253

4 The Experiment

In this experiment, a standard two variable (0–1) fractional function is taken as
follows:

Maximize f x; yð Þ ¼ 3xþ 4yþ 1
5xþ 7yþ 5

8 x; yð Þ 2 R2 : 5xþ 7yþ 5 6¼ 0
� �

: ð6Þ

During the experiment, the optimum value that is the maximum value of this
sample fractional function is obtained. The goal is to maximize the fraction. This is
treated as unconstrained optimization problem. There are large numbers of method-
ologies available for finding the optimum value of this NP-hard problem. Here, three
nonderivative-based methods and one derivative-based method is chosen. Genetic
algorithm is also used to find the optimum value. The comparison of the computation
time, number of iterations, and optimum values of all the algorithms is found. The
parameter sensitivity and other studies can also be conducted. These algorithms are
primarily numerical methods; as a result, comparison of efficiency of algorithms
analytically is difficult. The efficiency of the algorithms depend not only on parameters
but also on type of function. The experiment has been conducted largely on same
setting, which is the same function and same computer. The precision of output is also
chosen same in all cases. The basic nature of the algorithms prevents complete
identical context generation. As a result, some intrinsic differentiation remains.

4.1 Random Search

Here, 1000 random values are chosen between 0 and 1, and function value is
evaluated at all these points. The maximum of the function value is chosen. The
random numbers are chosen based on normal distribution. The random numbers are
2-dimensional. The Matlab code is given below (Fig. 1)

Fig. 1 The plots of iteration points and f(x,y) versus iteration

254 D. Roy et al.

function
[foptxopttimespent]=rando
mOptim(iter)
tic;
xran=ones(iter,2);
f=ones(1,iter);
fori=1:iter
xran(i,:)=rand(1,2);

X=xran(i,:);
f(i)=fx1(X);
holdon;
subplot(2,1,1);

plot(X(1),X(2),'*');
holdoff;
title('RANDOM SEARCH
METHOD');
end
[fopt p]=max(f);
xopt=xran(p,:);
subplot(2,1,2);
plot(f);
timespent=toc;
end

The plot of output is:

The output is as follows:

fopt ¼ 0:4698; xopt ¼ 0:99950:9810; timespent ¼ 30:7039

4.2 Box Evolutionary Method

In the case of Box’s Evolutionary method, initial point is chosen as (x,y) = (2,3).
The precision or delta value is chosen as 0.01. The Matlab code is given below
(Fig. 2)

Fig. 2 The plot of (x,y) and f(x,y) with iterations

Comparative Analysis of Genetic Algorithm … 255

function
[fmaxXmaxiteriterTime]=bo
xEval(xinit,d)
clc;
tic;
iter=0;
x=xinit;
delta=5;
Xset=ones(100,2);
E=ones(100);
while(delta > .0001)
iter=iter+1;

[EmaxEmin
y]=maxbox2(x,d);
delta=Emax-Emin;

x=y;
Xset(iter,:)=y;
E(iter)=Emax;
end
disp(Xset);
plot(Xset);
fori=1:iter
subplot(1,2,1);
holdon;
plot(Xset(i,1),Xset(i,2),
'*');
holdoff;

end
subplot(1,2,2);
plot(E(1:iter));
Xmax=y;
fmax=Emax;
iterTime=toc;
end
function [EmaxEmin y]=
maxbox2(x,d)
Val=Eff2(x);
if Val < 1.0
x1=[x(1)+d x(2)];

E1=Eff2(x1);
x2=[x(1)+2*d x(2)];

E2=Eff2(x2);
x3=[x(1) x(2)+d];

E3=Eff2(x3);
x4=[x(1) x(2)+2*d];

E4=Eff2(x4);
E=[E1;E2;E3;E4];
[Emax,I]=max(E);

Emin=min(E);

y=eval(strcat('x',num2str
(I)));
end
end

The output is as follows:

fmax ¼ 0:5345;Xmax ¼ 2:74003:0000; iter ¼ 37; iterTime ¼ 0:2862

4.3 Hooke’s Jeeves Pattern Search

In this optimization method, the combination of exploratory and heuristic move is
used to find the optimum value. The initial starting point is chosen as (x,y) = (2,3).
The delta and alpha values are chosen as 0.1 and 2. The Matlab code is given below
(Fig. 3)

256 D. Roy et al.

function
[funcmaxXmaxitertimespent
]=hj(X,delta,alpha)
tic;
clc;
cleardata;
delta1=delta;
f=ones(100);
fnext=0;
iter=0;
fmax=.1;
funcmax=0;
while (abs(funcmax-
fmax)>.0001)
iter=iter+1;
funcmax=fmax;

[fmaxXmax
t]=expl(X,delta1);
if t==1

X1=X;
X2=Xmax;[fnextXnext]=patt
ern(X1,X2,alpha);
else
delta1=delta/2;
end
X=Xmax;
holdon;
subplot(2,1,1);
plot(X(1),X(2),'*');
title('Hookes Jeeves Plot
of X(1), X(2)');
holdoff;
f(iter)=funcmax;
timespent=toc;
end
subplot(2,1,2);
plot(f(1:iter));
end
function
[fnextXnext]=pattern(X1,X
2,alpha)
test=1;

count=0;
while (test==1)
count=count+1;
Xnext=X2+alpha*(X2-X1);
if ((fx1(X2)>fx1(Xnext))
|| count==2)
Xnext=X2;
test=0;
else test=1;
end
X2=Xnext;
end
fnext=fx1(Xnext);
end
function [fmaxXmax t] =
expl(X, StepSize)
D=StepSize;
X1=[X(1)+D X(2)];
X2=[X(1) X(2)+D];
X3=[X(1)-D X(2)];
X4=[X(1) X(2)-D];
if (X3(1)<0)

X3(1)=0;
end
if (X4(1) < 0)

X4=0;
end
f=fx1(X);
f1=fx1(X1);
f2=fx1(X2);
f3=fx1(X3);
f4=fx1(X4);
[fmax I]=max([f f1 f2 f3
f4]);
if I==1

t=0;Xmax=X;
else
t=1;Xmax=eval(strcat('X',
num2str(I-1)));
end
end

Comparative Analysis of Genetic Algorithm … 257

The output is as follows:

funcmax ¼ 0:5772;Xmax ¼ 17:70003:0000; iter ¼ 157; timespent ¼ 1:4124:

4.4 Gradient Ascent Method (Cauchy’s Method)

Here, the search direction is the direction of gradient of the function at the point of
evaluation in contrast to the negative of gradient in Gradient Descent Method. The
Matlab Code is given below

Fig. 3 The plot of (x,y) and f(x,y)

258 D. Roy et al.

function
[fgradmaxxoptitergradtime
]=gradDescent(xinit)
clc;
tic;
iter=0;
[dfx]=gradf(xinit);
f=ones(100);
xiter=ones(100,2);
[alpha]=gS(xinit,dfx);
x1=xinit-alpha*dfx;
Nfx=fx1(x1);
Ofx=fx1(xinit);
if (Nfx>Ofx)
xinit=x1;
end
while((Nfx-Ofx) > .00001)
iter=iter+1;

[dfx]=gradf(xinit);
[al-

pha]=gS(xinit,dfx);
x1=xinit-alpha*dfx;
Nfx=fx1(x1);
Ofx=fx1(xinit);
if (Nfx>Ofx)
xinit=x1;
end
f(iter)=Nfx;
xiter(iter,:)=x1;
disp(Nfx);
disp(Ofx);
end
xopt=x1;
fgradmax=Nfx;
gradtime=toc;
subplot(1,2,1);
plot(f(1:iter));
subplot(1,2,2);
plot(xiter((1:iter/100),1
),xiter((1:iter/100),2),'
*');

end
function [dfx]=gradf(x)
d=.001;
x1=[x(1)+d x(2)];
x2=[x(1)-d x(2)];
x3=[x(1) x(2)+d];
x4=[x(1) x(2)-d];
dfx(1)=(fx1(x2)-
fx1(x1))/(2*d);
dfx(2)=(fx1(x3)-
fx1(x4))/(2+d);
dfx=[dfx(1) dfx(2)];
end
function y=fx1(X)
y=(3*X(1)+4*X(2)+1)/(5*X(
1)+7*X(2)+5);
end
function [al-
pha]=gS(x,dfx)
a1=1;
a0=0;
ah=a1/2;
x1=x+a1*dfx;
xh=x+ah*dfx;
x0=x+a0*dfx;
while ((x1-x0)>.001)
if(fx1(x1)<fx1(xh))

a1=ah;
end
if(fx1(x0)<fx1(xh))

a0=ah;
end
ah=a1/2;
x1=x+a1*dfx;
xh=x+ah*dfx;
x0=x+a0*dfx;
end
alpha=a1;
end

The plots of number of iterations and the function value with respect to the
iterations are given below (Fig. 4).

Comparative Analysis of Genetic Algorithm … 259

The output is as follows:

gradmax ¼ 0:5595;Xopt ¼ 7:63152:9965½ �; iterations ¼ 1113; gradtime ¼ 0:3190

4.5 Genetic Algorithm

In case of genetic algorithm, a sample population in feasible region is selected at
random. The crossover and mutation within the sample population is performed to
get a new population based on the fitness level of sample population. The fitness
function is the criteria for survival in subsequent generation. Here, the value of the
objective function or Q(x) is the criteria for fitness. The sample population size
depends on the accuracy of result expected, i.e., number of bits required for
encoding the variable. We assume two decimal place accuracy of the variable. With
the increase in number of variables, the cross over and mutation operations become
complicated. The termination criterion has been chosen as difference of two suc-
cessive iterations less than 10�4: The population size has been chosen as 10. The
Matlab code is given below (Fig. 5)

Fig. 4 The plots of (x,y) and f(x,y) against iterations

Fig. 5 Plot of output of genetic algorithm

260 D. Roy et al.

function
[ZmaxiterXmaxYmaxtimespen
t]=callgeneFrac(x,y,tol,m
ax_iter)
clc;

tic;

r=randi([8,10]);

k=5;

output=ones(2,10,200);

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,5);

out=ones(1,10);

mut=ones(1,10);

zmean=mean(z);

emean=mean(e);

p=0;

while(abs(zmean-emean)>tol)

r=randi([9,10]);

p=p+1;

if (p>max_iter/2)

k=k+1;

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,k);

end

if(p>2*max_iter/3)

k=k+1;

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,k);

end

if (p>max_iter)

break;

end

x=x1;

y=y1;

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,5);

output(:,:,p)=[x1;y1];

zmean=mean(z);emean=mean(e);

out(p)=zmean;

[Zmax m]=max(z);

Xmax=x1(m);

Ymax=y1(m);

end

for k=p+1:10

out(k)=zmean;

end

iter=p;

timespent=toc;

figure;

subplot(2,1,1);

plot(out,'--

rs','LineWidth',2,'MarkerEdgeCol

or','k','MarkerFaceColor','g','M

arkerSize',10);

xlabel('Iteration

Number','FontSize',12);

ylabel('Z=(3x+4y+1)/(5x+7y+5)','

FontSize',12);

title(strcat('Mean Z Versus It-

eration, Saturation

after',blanks(4),

iter),'FontSize',12);

for k=1:p

for l=1:10

holdon;

subplot(2,1,2);

plot(output(1,l,k),output(2,l,k)

,'*');

title('PLOT OF X AND Y IN

GENETIC');

holdoff;

end

end

end

The output is as follows:

Zmax ¼ 0:5765; iter ¼ 4;Xmax ¼ 16;Ymax ¼ 0; timespent ¼ 0:5549

Comparative Analysis of Genetic Algorithm … 261

5 Result

This paper is intended to compare five algorithms. The five algorithms were run
with the following Matlab code:

tol=.001;max_iter=100;
clc;
disp('Genetic
Algorithm');
[ZmaxiterXmaxYmaxtimespen
t]=callgeneFrac(x,y,tol,m
ax_iter);
tgene=timespent;
itergene=iter;
disp('Hookes Jeeves');
[funcmaxXmaxitertimespent
]=hj([1 1],.1,2);
thj=timespent;
iterhj=iter;
disp('Random Search');
[foptxopttimespent]=rando
mOptim(1000);
trs=timespent;
maxpts=1000;
disp(' Box Evaluation Method');

[fmaxXmaxiteriterTime]=bo
xEval([1 1],0.01);
tbox=iterTime;

iterbox=iter;
disp('Gradient Ascent
Method');
[fgradmaxgraditergradtime
]=gradDescent([1 1]);
fprintf('Computation Time
Genetic=%f, Hookes=%f,
Random Search=%f,
BoxEval=%f Grad=%f\n',
tgene,thj,trs,tbox,gradti
me);
fprintf(' Optimum values Genetic=%f,

Hookes=%f, Random Search=%f, BoxEval=%f

Grad=%f\n',

Zmax,funcmax,fopt,fmax,fg
radmax);
fprintf('Iterations Ge-
netic=%d, Hookes=%d, Ran-
dom
Search=%d,BoxEval=%d,Grad
=%d\n',itergene,iterhj,ma
xpts,iterbox,graditer);

The comparative result of running five algorithms individually on the same
fractional function with almost same termination criteria and same initial starting
point is given below in tabular form (Table 1 and Fig. 6).

Table 1 Comparative figures for various algorithms

Algorithms Computation
time

Iterations Optimum
values

Computation
time/iteration

Random search 0.013811 1000 0.47016 0.138113

Box’s
evolution

0.154882 231 0.536978 6.704833

Hooke’s Jeeves 0.14433 191 0.5779115 7.7556552

Gradient ascent 0.186542 1213 0.562720 1.537856

Genetic 1.4901413 52 0.55645161 286.565718

262 D. Roy et al.

6 Conclusion

From the table of comparative performances, it is clear that computation time for
genetic algorithm is highest, while random search takes lowest time. Strangely,
Hooke’s Jeeves Pattern Search takes lesser time to execute than Box’s Evolution
and others except Random Search. There is no doubt that the performance of
genetic algorithm is the best. Though Gradient Descent is known to be a better
algorithm than non gradient algorithms, Hooke’s Jeeves algorithm performs better
than Gradient Search in terms of computation time. In regard to number of itera-
tions to reach termination, again genetic algorithm performs better than all other
algorithms. The worst is the Random Search Algorithm. The performance of
Hooke’s Jeeves Method is better than Box’s Evolutionary algorithm. This com-
pelled the derivation of computation time per iteration. From the computation time
per iteration, it is found that Gradient Descent Algorithm is having the best result,
whereas genetic algorithm is the worst. This may be due to the fact that more
complex is the algorithm, the computation time per iteration is higher.

The most interesting feature in Hooke’s Jeeves algorithm is that it is giving the
highest value in comparison to other algorithms. Gradient Descent Algorithm is
giving the next highest. The performance of Random Search in terms optimum
value is worst and highest in case of Hooke’s Jeeves Algorithm.

The fractional programming is NP-hard problem. As a result, computation of
algorithmic complexity is difficult. This paper does not intend to find the com-
plexity. However, in order to make comparative assessment, Algorithmic Index is
defined as follows:

g ¼D1ðCTÞþD2ðItÞþD3ðOptÞþD4ðCT/ItÞ: ð7Þ

CT Computation Time
It Iterations
Opt Optimum Values
CT/It Computation Time per Iteration
D ¼ ðD1D2D3D4Þ Relative gewicht vector

Fig. 6 Plot of (computation time/iteration)/optimum value/time per iteration for different types of
algorithms

Comparative Analysis of Genetic Algorithm … 263

Computation of Gewicht Vector: In order to estimate the gewicht vector, the
following algorithm has been formulated:

Step 1 Choose random set of initial starting points.
Step 2 Find optimum parameters.
Step 3 Set a heuristics for derivation of Algorithmic Index.
Step 4 Performance Matrix is computed as follows:

Performance Matrix = [CTAlgo ItAlgo OptAlgo (CT/It)Algo],
, where Algo = Gentic Algorithm, Gradient Ascent Algorithm,
Hooke’s Jeeves, Box, and Random.

Step5 Normalize Performance Matrix.
Step6 Derive Algorithmic Index as follows:

AlgoIndex = GewichtVector * Normalized Performance Matrix
Step7 Find the set of gewicht for which the heuristics satisfies.
Step8 The average gewicht over the set is computed.
Step9 If the average gewicht does not satisfy heuristics, readjust heuristics

by going to step2, and recompute till gewicht satisfies heuristics.
Step10 Estimated gewicht vector is derived.

Step11—Apply estimated gewicht vector to the Normalized
Performance Matrix on a new random initial starting point. Check
whether heuristics is satisfied.

The MATLAB code for estimation of gewicht vector is given in supplementary
material. The estimated gewicht turns out to be ðD1D2D3D4Þ ¼ ð0:237586 0:
292759 0:358276 0:111379Þ

With the random starting point figures, the performance matrix turns out to be
Table 2
After normalizing the performance index and using estimated gewicht vector,

algorithmic index turns to be:
Table 3
In a nutshell, it may be concluded that genetic algorithm performs far better than

other algorithms. The algorithmic index is highest for genetic algorithm. The ratio ofȠ

Table 2 Performance matrix

Performance matrix

Genetic Gradient Hookes Box Random

Computation time 1.49014173 0.186542 0.14433 0.154882 0.013811

Max value 0.55645161 0.56272 0.577915 0.536978 0.47016

No of iterations 52 1213 191 231 1000

CompTime/iteration 286.565718 1.537856 7.556552 6.704833 0.138113

264 D. Roy et al.

values of genetic and gradient, the nearest competitor is approximately 19.658. That
means, performance of genetic algorithm is nearly 20 times better than the remaining.
TheGradientAscent performs better thanHooke’s Jeeves andBox’sAlgorithm.Here,
two variable fractional functions have been studied. The research may be extended to
cases of higher dimensions.

Acknowledgements Special thanks go to my guides Dr. Sujyasikha Das and Dr. Swarup Prasad
Ghosh for inspiring me to write the paper and implementing the scenario in Matlab. The paper
would remain unfinished if I don’t convey my regards and heartfelt thanks to Dr. Nabendu Chaki
for relentless support to my academics. He has been the driving force for all the activities.

Appendix

Algorithm for Random Search

Step 1: Choose initial x0, z0, ϵ such that the minimum lies in (x0 − 1/2z0, x0 +
1/2z0). For each Q block, set q = 1 and p = 1.

Step 2: For i = 1,2…N, create points using uniform distribution of m in the
range (–0.5,0.5). Set xi

(p) = xi
q−1 + mzi

q−1.
Step 3: If x(p) is infeasible and p < P, repeat Step 2. If x(p) is feasible, save x(p)

and f(x(p)). Increment p and repeat step 2;
Else if p = P, set xq to be the point that has lowest f(x(p)) over all feasible
x(p) including xq−1

And reset p = 1.
Step 4: Reduce the range via zi

q = ϵ zi
q−1.

Step 5: If q > Q. Stop.
Else increment q and continue to Step 2.

Box’s Evolutionary Algorithm

Step 1: Choose initial point. Choose size reduction step δi and termination cri-
teria ϵ..

Step 2: If δi < ϵ. STOP.
Step 3: Else create 2N points by adding and subtracting δi from each variable at

the initial point.

Table 3 Normalised performance matrix

Normalized performance matrix

Genetic Gradient Hookes Box Random

Computation time 107.892569 13.50643 10.45011 11.21409 1

Max value 0.96286003 0.973707 1 0.929164 0.813544

No of iterations 1 23.32692 3.673077 4.442308 19.23077

CompTime/iteration 2074.85709 11.13473 54.71263 48.54583 1

Algorithmic index 257.37 13.092 10.185 9.935 7.477

Comparative Analysis of Genetic Algorithm … 265

Step 4: Compute function values at all 2N points. Find the optimum among these
points. Set it as initial point for next iteration.

Step 5: Reduce size of the step to δi/2 and go to Step 2.

Hooke’s Jeeves’ Algorithm

Step 1: Initial point is selected and objective function is evaluated.
Step 2: Search is made in the direction of each dimension by a step size Si to find

lowest of functional value.
Step 3: In case the function value does not decrease in any direction, the step

size is reduced and fresh search is made.
Step 4: If the value of objective function reduces, a new initial point is found as

follows:
Xi,o
(k+1) = Xi

k+1+θ(Xi
k+1 − Xi

k), θ > 1.
Step 5: This search continues till the termination criteria is met, i.e., θ < ϵ.

Gradient Descent Method

Step 1: Choose initial point x(0) and termination parameters ϵ1 and ϵ2.
Step 2: Compute first derivative rf xk

� 	
:

Step 3: If rf xk
� 	

� ϵ1 STOP.

Else go to next step
Step 4: By unidirectional search, find α k such that f(x(k+1)) = f(xk − α k rf xk

� 	
)

is minimum. One criteria for termination is | rf xkþ 1
� 	

:rf xk
� 	

| ≤ ϵ2.

Step 5: If jjxkþ 1�xk jj
xkj jj j � ϵ1, then STOP.

Else set k = k + 1, go to step 2.

Genetic Algorithm

Start and generate a random population of size n.
Fitness: Evaluate fitness of each chromosome.
New Population: Create new population by repeating the steps below
Select two parent chromosomes from the population according to best fitness.
Cross over the parents, with a crossover probability to form new population.
With a mutation probability, mutate the new offspring.
Add the new offspring in the population.
Replace: Use the new generation for next iteration.
Test: Check termination criteria.
Loop: Go to step 2.

MATLAB Code for Estimating Gewicht Vector

266 D. Roy et al.

ExtFiveMethods.m
function []=ExtFiveMethods()

 % for computing Parameters

 x=rand(1,10);

 y=rand(1,10);

 [avS avAlgoIndex]=pmComp(x,y);

 x=rand(1,10);

 y=rand(1,10);

 fn='fiveMethod.mat';

 [NPM1 PM]=FiveMethods(x,y);

 save(fn,'NPM1','PM');

 AlgoIndex=avS*NPM1;

 fn1='fiveMethod1.mat';

 save(fn1,'avS','AlgoIndex');

 disp('Estimated Algorithimic Index');

 fprintf('%1.3f %1.3f %1.3f %1.3f %1.3f\n',AlgoIndex);

 fprintf('\n');

end

pmComp.m

function [avS avAlgoIndex]=pmComp(x,y)

x1=x;

y1=y;

[NPM perfMatrix]=FiveMethods(x1,y1);

paramSt=ones(50,4);

t=1;

 for k=0.01:.1:1

 for j=0.01:.1:1

 for i=0.01:.1:1

 l=1-i-j-k;

 param=[i j k l];

 if ((l<=0)||(k==1)||(j==1)||(i==1)||(i==1))

 break;

 end

 AlgoIndex=param*NPM;

 if ((i<1) || (j<1) || (k<1) || (l<1))

 if((AlgoIndex(1,1)>AlgoIndex(1,2)) &&

...(AlgoIndex(1,2)>AlgoIndex(1,3)) &&

(AlgoIndex(1,3)>AlgoIndex(1,4))...

 && (AlgoIndex(1,4)>AlgoIndex(1,5)))

 paramSt(t,:)=param;

 t=t+1;

 end

 end

Comparative Analysis of Genetic Algorithm … 267

 end

 end

 end

 comps=sum(paramSt(1:t-1,:));

 avS=(1/(t-1))*comps;

 avAlgoIndex=avS*NPM;

 pause;

 end

FiveMethods.m

function [NPM perfMatrix]=FiveMethods(x,y)

tol=.001;max_iter=100;

[Zmax iter Xmax Ymax timespent]=callgeneFrac(x,y,tol,max_iter);

tgene=timespent;

itergene=iter;

 [funcmax Xmax iter timespent]=hj([x(1) y(1)],.1,2);

thj=timespent;

iterhj=iter;

[fopt xopt timespent]=randomOptim(1000);

trs=timespent;

maxpts=1000;

[fmax Xmax iter iterTime]=boxEval([x(1) y(1)],0.01);

tbox=iterTime;

iterbox=iter;

[fgradmax xopt graditer gradtime]=gradDescent([1 1]);

format;

perfMatrix=ones(4,5);

perfMatrix(1,:)=[tgene gradtime thj tbox trs];

perfMatrix(2,:)=[Zmax fgradmax funcmax fmax fopt];

perfMatrix(3,:)=[itergene graditer iterhj iterbox maxpts];

perfMatrix(4,:)=10000*[tgene/itergene gradtime/graditer

thj/iterhj tbox/iterbox trs/maxpts];

tmin=min(perfMatrix(1,:));

OutMax=max(perfMatrix(2,:));

iterMin=min(perfMatrix(3,:));

perIterMin=min(perfMatrix(4,:));

NPM=ones(4,5);

NPM(1,:)=(1/tmin)*perfMatrix(1,:);

NPM(2,:)=(1/OutMax)*perfMatrix(2,:);

NPM(3,:)=(1/iterMin)*perfMatrix(3,:);

NPM(4,:)=(1/perIterMin)*perfMatrix(4,:);

End

268 D. Roy et al.

References

1. Charnes, A.C.W.: An explicit general solution in linear fractional programming. Naval Res.
Logist. Quart. 20, 449–467 (1973)

2. Bitran, G.R., Novaes, A.G.: Linear programming with fractional objective function. Oper. Res.
21, 22–29 (1973)

3. Birtan, G.R., Magnanti, T.L.: Duality and sensitivity analysis of fractional objective function.
Oper. Res. 24, 675–699 (1976)

4. Swarup, K.: Linear fractional programming. Oper. Res. 13(6), 1029–1036 (1965)
5. Dantzig, G.B.: Linear Programming under uncertainty. Manage. Sci. 1(3 and 4), 197–206

(1955)
6. Dantzig, G.B., Mandansky, A.: on solution of two stage linear programming under

uncertainty. Barkley Symp. Maths Stat. 1(3 and 4), 165–176 (1961)
7. Bazalinov, E.B.: Linear Fractional Programming. Kluwer Academic Publishers, Dordrecht

(2003)
8. Bajalinov, E.: Scaling problems in linear fractional programming. In: proceeding of 10th

international conference on operation research, vol. 3, no. 1, pp. 22–24 (2004)
9. Shohrab, E., Morteza, P.: Solving the Interval Valued Fractional Programming. Am.

J. Comput. Math. 2(1), 51–55 (2012)
10. Barros, A.I., Frenk, J.B., Schaible, S., Zhang, S.: A new algorithm for generalised fractional

programming. Math. Program. 72(2), 147–175 (1996)
11. Gogia, N.: Revised simplex algorithm for linear fractional programming problem. Math.

Student 36(1), 55–57 (1969)
12. Horvath, I.: AsupraprogramliriifracJionare lineare cu restricJii suplimentare. Informatica

pentru Conducere, pp. 101–102 (1981)
13. Stahl, J.: Two new methods for solution of hyperbolic programming. In: Publications of the

Mathematical Institute of Hungarian Science, vol. 9, no. B, pp. 743–754 (1964)
14. Stancu-Minasian, I.M.: Stochastic Programming with MultiObjective Function. D. Reidel

Publishing Company, Dordrecht (1984)
15. Buhler, W.: A note on fractional interval programming. Oper. Res. A-B 19, 1, 29–36 (1975);

Z(19), 29–35 (1975)
16. Robins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407

(1951)
17. Costa, A., Jones, O., Kroese, D.: Convergence properties of the cross entropy method for

discrete optimization. Oper. Res. Lett. 35, 573–580 (2007)
18. Zhang, Q., Muhlenbein, H.: On the convergence of a class of estimation of distribution

algorithm. IEEE Trans. Evol. Comput. 8, 127–134 (2004)
19. Binglsley, P.: Convergence of probability measures. John Wiley and Sons, New York (1999)
20. Box, G.E.: Evolutionary operation: a method for increasing industrial productivity. Appl Stat

6, 81–101 (1957)
21. Brent, R.P.: Algorithms for Minimization without derivatives. Printice Hall, EngleWoods

Cliffs (2002)
22. Mifflin, R., Strodiot, J.J.: A Bracketing technique to ensure desirable convergence in univariate

minimisation. Math. Prog. 17, 100–117 (1975)
23. Mifflin, R., Strodiot, J.J.: A rapidly convergent five-point algorithm for univariate

minimisation. Math. Prog. 62, 299–319 (1993)
24. Box, G.P., Wilson, K.B.: On the experimental attainment of optimal conditions. Stat. Soc. 13,

1–13 (1951)
25. Box, G.E.P., Draper, N.R.: Evolutionary Operation: A Statistical Method For Process

Improvement. Wiley, New York (1998)
26. Hooke, R., Jeeves, T.A.: Direct search solution for numerical and statistical problem. ACM 8,

212–219 (1961)

Comparative Analysis of Genetic Algorithm … 269

27. Nelder, J.A., Mead, R.: A simplex method for function minimisation. Comput. J. 7, 308–313
(1965)

28. Fletcher, R.: Practical Methods for Optimisation. John Wiley and Sons, Chichester (1987)
29. Murray, W., Wright, M.H., Gill, P.E.: Practical Optimization. Academic Press, London (1981)
30. Gabay, D.: Reduced Quasi Newton method with feasibilty improvement for nonlinear

constrained optimisation. Math. Prog. Stud. 16, 18–44 (1982)
31. Fletcher, R.: Conjugate Gradient Methods for Indefinite Systems. Numer. Anal. Rep. 5, 11

(1975)
32. Zangwill, W.: Nonlinear Programming: A Unified Approach. Printice Hall, Englewood Cliffs

(1969)
33. Holland, J.H.: Hierarchical description of universal spaces and adaptive systems. Tech.

Rep ORA Project 01252 (1968)
34. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading (1989)
35. Grefenstette, J.J.: Deception considered harmful. In: Whitley, L.D. (ed.) Foundations of

genetic algorithms (1993)
36. Fogel, D.G.: Schema processing under proportional selection in the presence of random

effects. IEEE Trans. Evol. Comput. 1(4), 290–293 (1997)
37. Radcliffe, N.J.: Schema Processing. In: Handbook of evolutionary computation, pp. B2.5–

1.10. Oxford University Press (1997)

270 D. Roy et al.

	17 Comparative Analysis of Genetic Algorithm and Classical Algorithms in Fractional Programming
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Random Search Method
	2.2 Box's Evolutionary Method
	2.3 Hooke Jeeves' Method
	2.4 Gradient Descent Method
	2.5 Genetic Algorithm

	3 Linear Fractional Programming
	4 The Experiment
	4.1 Random Search
	4.2 Box Evolutionary Method
	4.3 Hooke's Jeeves Pattern Search
	4.4 Gradient Ascent Method (Cauchy's Method)
	4.5 Genetic Algorithm

	5 Result
	6 Conclusion
	Acknowledgements
	Appendix
	References

