Implementing Software Transactional
Memory Using STM Haskell
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Abstract Software transaction memory (STM) is a promising programming
abstract for shared variable concurrency. This paper presents a brief description of
one of the recently proposed STM and addresses the need of STM implementation.
The paper also describes the implementation technique of STM in STM Haskell. In
the STM implementation process, three different approaches have been presented
which employ different execution policies. In the evaluation process, transactions
with varying execution length are being considered which are executed in
multi-threaded environment. The experimental results show an interesting outcome
which focuses on the future direction of research for STM implementation.
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1 Introduction

Software Transactional memory (STM) [1] is a promising approach for concurrency
control in multi-core processors environment. A transaction in STM executes a
series of reads and writes to shared memory, which is grouped into an atomic
action. STM guarantees that every action will appear to be executed atomically to
the rest of the system.

There are several STM approaches those have worked on basic concurrency
implementation for avoiding deadlock. These approaches use blocking [2—4] or
non-blocking [5-8] process synchronization technique. In non-blocking process
synchronization, the major challenge is reducing abort of concurrently executing
transactions. A limited of works have been done in this area [7, 8]. In [7], aborting of
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transaction has been identified as a major limitation for STM solutions. The work in
[7] is on abort- free execution for a cascade of transactions. Although, theoretical
estimation shows a good performance improvement; however, the actual STM
implementation was not being done to explore the actual performance improvement.

Some STM solutions explore software engineering aspects either by using
realistic concurrent data [9, 10, 11] or by a theoretical study [12]. One of the major
breakthroughs is the implementation of composable software transactional memory
[10, 11] in Haskell.

STM Haskell [10] provides composable memory transaction, i.e., transactional
actions that are defined can be combined to generate a new transaction. STM
Haskell takes an action as its argument and performs it atomically by maintaining
two guarantees: Atomicity and Isolation. Atomicity ensures that execution of a
transaction is visible to other threads all at once. Isolation property guarantees that
execution of a transaction cannot be affected by other transactions. Since its
introduction, several extensions to the basic primitives have been proposed in STM
Haskell. This makes STM Haskell more flexible and easy customizable
implementation.

This paper describes an implementation of software transactional memory using
STM Haskell, using three different concurrency control mechanisms and compares
their performance.

The paper is organized as follows: Section 2 presents a brief description of one
of the recently proposed STM solution [7] that has claimed to improve throughput
in all possible scenarios. This section follows a critical observation on the said work
[7] and its analysis to establish the importance of implementing STM solutions on a
suitable platform towards appropriate performance analysis. Section 3 describes the
implementation technique of software transactional memory using STM Haskell.
Section 4 explores the performance and presents the result set. We have presented a
set of observations on the advantages of STM Haskell towards implementing STM
solutions. The paper concludes in Sect. 5 with a note on future direction of research
for STM implementation.

2 Retrospection of an OFTM Solution Towards Abort
Freedom

In [7], an interesting obstruction free implementation of STM was proposed that
allows contentious transactions to execute without causing any abort to other
transactions. The basic idea of this algorithm is that, a transaction, say T, may be in
active state even after the completion of update process of a transactional variable.
Now if another transaction, say 7,,, wants to access the same transactional variable,
it faces contention with 7. Thus, in conventional method, either T, will be blocked
or T,, will abort T} to get access of that transactional variable. In contrast, this
algorithm [7] allows T,, to access the transactional variable optimistically, with an
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expectation that T; will not update that transactional variable further, thus T, will
find a consistent data value at commit time. At commit time 7, will check the data
consistency, i.e., transactional value at the start time is same as at the time of its
commit. If data is consistent and T} is committed, then 7,, commits; otherwise, T,
re-executes its operation after reading the last updated value of the transactional
variable.

The paper elaborately explains how to execute read and write operations for two
transactions in presence of contention. This procedure is also extensible for a
cascade of transactions. The efficiency and performance improvement is compared
with DSTM (STM for Dynamic-sized Data Structures) [5] in terms of the average
execution time (AET) of the transactions. Three different cases are being consid-
ered: Where AET of two transactions are equivalent; AET of first transaction less
than the second transaction, and lastly, AET of first transaction is greater than the
second transaction. The result set shows the throughput of the algorithm is better or
at least equivalent to the DSTM [5]. In spite of having several potentials, the
algorithm in [7] suffers from some serious drawbacks.

e the solution [7] does not ensure isolation property as transactions communicate
between themselves and share the non-committed transactional data;

e the paper [7] proposes abort-free execution, which is tailored only for two
concurrent transactions. It has given only an idea on how cascade of transaction
may run without any abort;

e the algorithm [7] claims to execute in abort-free manner. However, in some
specific cases, transaction either aborts its enemy transaction or backs-off for
some arbitrary time;

e authors of [7] claimed that the approach yields higher throughput in comparison
to DSTM [5]. However, the actual STM implementation is not done.

These drawbacks can be actually verified and analyzed by implementation or at
least by some proper simulation of STM. The GHC STM Haskell could be one of
the suitable platforms for STM implementation due to the following reasons:

e GHC Haskell implements some major extensions to support both concurrent and
parallel programming, which is highly desirable in multi-core processor
environment;

e No new language construct has been introduced in concurrent Haskell, rather it
appears as libraries. The functions are exported by these libraries;

e In Haskell, the STM library includes various features like Atomic blocks,
Transactional Variables and more importantly the composability of transactions.

All these features make STM Haskell a promising language construct for STM
implementation. The algorithm presented in [7] has encouraged the authors of the
current paper to discuss on implementing STM in Haskell. In next section, the
implementation technique of STM using STM Haskell has been described with
different concurrency control mechanism available in GHC Haskell.
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3 Implementing STM Using STM Haskell

3.1 [Important System Variables

The STM Haskell uses a monad to encapsulate all access operation to shared
transactional variables (TVars). The operations in TVars are as follows:

data TVar a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM()

Both readTvar and writeTVar operations return STM actions, which can
be composed by do {} syntax. STM actions are executed by a function atomically,
with type atomically :: STMa -> IO a.

This function takes memory transaction and delivers I/O action. It runs the
transaction atomically with respect to all other transactions. An STM expression
can also retry to deal with blocking, when a transaction has to wait for some
conditions to be true.

retry :: STM a

The semantics of retry is to abort the current transaction and run it again. But,
instead of blindly rerunning the transaction again and again, transaction reruns only
when the TVar that has been read by the current transaction has changed.

Finally, the orElse function allows two transactions to be combined, where only
one transaction is performed but not both.

orElse :: STMa -> STMa -> STM a
The operation orElse T; T, has the following behavior:

o First T} is executed, if it returns result then orElse function returns.
e If T, retry instead then T is discarded and 7, is executed.

3.2 Implementation

To implement STM in Haskell, we have chosen three different implementation
approaches to execute a specific task. The task is to read a sharable data object,
calculate the Fibonacci value, and finally write that Fibonacci value to the sharable
data object. The whole job will be executed with the protection of atomically.
The first approach uses TVars of STM Haskell. The atomically function of STM
Haskell maintains a per-thread log that records the tentative access made to TVars.
Whenever atomically is invoked, it checks whether log is valid, i.e., no concurrent
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transactions has committed conflicting updates. If the log is valid then transaction
commits; otherwise, transaction re-executes with a fresh log.

The next two approaches use TMVars. In Haskell; Mvars, Mutable Variables,
can be either empty or full. When a value is tired to remove from an empty MVar or
to put a value into a full MVar, the operation is being blocked. TVar is modeled
with MVar that contains Maybe a, i.e. newtype TMVar a = TMVar (TVar
(Maybe a)). ‘Maybe a’ is very common data type used in Haskell, where a
function may or may not succeed. This data type is as follows:

Data Maybe a = Nothing

| Just a

The TMvVar implementation is included in the Control.Concurrent.
STM. TMVar module of STM package in Haskell.

The second approach uses TMVar to execute as per the shortest job first process
implementation. The third approach also uses TMVar to execute transactions
sequentially in a first-in-first-out basis.

The first approach uses non-blocking synchronization, where as other two use
blocking methodology of STM. All these three implementations guarantee
atomicity and isolation properties of STM.

Finding Fibonacci Value

Haskell’s Control.Parallel module provides a mechanism to allow users to
control the granularity of parallelism. The interface is shown below:

par ::a->b->b
pseq :: a->b->Db

The function par evaluates the first argument in parallel with the second
argument by returning its result to the second argument. The function pseqg
specifies which work of the main thread is to be executed first. The expression a
pseq b evaluates a and then returns b. An elaborated explanation on Haskell
parallelism is discussed in [13, 14].

While calculating Fibonacci value, the par and pseqg monad is used to gain
parallelism. The code is as follows:

nFib :: Int -> Int
nFib n | n <= 2 =1
| otherwise = par nl (pseq n2 (nl + n2 ))
where nl = nFib (n-1)

n2 = nFib (n-2)

Achieving Concurrency in Haskell

Haskell provides explicit concurrency features via a collection of library func-
tions. The module Control.Concurrent provides an abstract type ThreadId
to identify the Haskell thread. A new thread is created in the IO monad by calling
the forkIO function, which returns IO unit.
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forkIO :: IO () —> IO ThreadId

At the time of execution, while using TVars, the main thread in Haskell does not
wait for its children threads to complete. The mapConcurrently function has
been used to overcome this problem. This function is provided by Haskell’s
Control.Concurrent .Async module. The function mapConcurrently
ensures that main thread does not quit till all its children threads complete their
operations. The detailed explanation about this module is available in [14].

STM implementation using TVar
Function transTest is created to define the task of the transaction. The block of
code is as follows:
transTest :: TInt -> Int -> IO ()
transTest n t = do
atomically $ do
let x = nFib t
writeTVar n x
TInt is an integer type Transactional Variable. The type is defined as

type TInt = TVar Int

The function transTest has two parameters, a TVar and an integer. It calculates
Fibonacci value of the given integer and writes that value to the TVar. Calculation
of Fibonacci value determines the execution time of the transaction. As nFib 40
takes much more time than nFib 20, thus execution time in the prior case will be
higher.

The code for function main (), is as follows:

main :: IO ()
main = do
n <- newTVarIO 0
_ <- mapConcurrently (transTest n) [40, 20]

This code executes two transactions concurrently, where first one will write
Fibonacci value of 40 to the TVar n and the second one will write Fibonacci value
of 20. Now question is that how the Haskell STM will execute these two trans-
actions. As the execution time of the second transaction is less, it completes its
execution earlier than first one and finds a valid log value, thus commits. As a
result, first transaction will get invalid value in its per-thread log and thus it will
re-execute its operation with a fresh log value.

Now suppose we want to track the commit pattern of the transactions. To do so,
a list of MVar data type is to be created, where the threadIds will be stored
when transactions successfully commit. The modified code is as follows:
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type TInt = TVar Int

transTest::MVar [ (ThreadId, Int)] -> TInt -> Int -> IO ()
transTest mvar n t = do
tid <- myThreadId
atomically $ do
let x = nFib t
writeTVar n x
list <- takeMVar mvar
t2 <- atomically $ readTVar n
putMvVar mvar $ list ++ [(tid, t2)]
main :: IO () -- Asynchronous Thread
main = do
n <- newIVarIO 0
ms <- newEmptyMVar
putMvar ms []

_ <- mapConcurrently (transTest ms n) [40, 20]
mms <- takeMVar ms
putStrLn (show mms)

Steps for program compilation

The command to compile the program [13] in multi-threaded environment is as
follows:
$ ghc —o testTVar -—make testTVar.hs —threaded —rtsopts

To execute the program, we need to specify how many real threads are available
to execute the logical threads in the Haskell program. The command to execute the
program with two real threads is:

S ./testTVar +RTS N2 -s

The flag —s, if included, shows the actual evaluation thread executions. The
portion of the actual output, while executing with two threads, is as follows:

[ (ThreadId 6,6765), (ThreadId 4,102334155)

, ]

INIT time 0.00s ( 0.00s elapsed)

MUT time 7.25s ( 3.63s elapsed)

GC time 1.00s ( 0.50s elapsed)

EXIT time 0.00s ( 0.00s elapsed)

Total time 8.25s ( 4.13s elapsed)
Alloc rate 3,611,846,709 bytes per MUT second

Productivity 87.9% of total user, 175.6% of total elapsed
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The output shows that commit pattern of the transactions. The execution time is
4.13 s against actual 8.25 s. It also shows the 175.6 % productivity.

STM Implementation using TMVar (Shortest Job First)

In our attempt to implement this, we have used TMVar and threads together. We
have created an empty TMVar and forked the job to run in the background. The
main thread has been blocked until each results return. While calling Fibonacci,
BangPatterns [15] is used to evaluate the Fibonacci value, so that at the time of
execution, first thread to finish will have its result first.

We have taken the advantage of TMVar’s empty/full semantics to block the
main thread for each of the children threads. The program code is given below. The
function nFib is same as above. In this implementation also, transactions run
atomically and obey the basic principles of STM.

{-# LANGUAGE BangPatterns #-}
main :: IO ()
main = do
result <- newEmptyTMVarIO
forkIO $ do
atomically $ do
let !x = nFib 40
putTMVar result x
forkIO $ do
atomically $ do
let !x = nFib 20
putTMVar result x

t <- atomically $ takeTMVar result
putStrLn ("Fastest job is: " ++ (show t))

t <- atomically $ takeTMVar result
putStrLn ( "Slowest job is: " ++ (show t))

STM Implementation using TMVar (First-In-First-Out)

The implementation is same as the previous one, but in this case transactions
execute in first-in-first-out basis. Here, the second transaction waits till the first one
completes its execution. In this approach, transaction variables are also accessed

atomically.
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main :: IO ()
main = do
result <- newEmptyTMVarIO
forkIO $ do
atomically $ do
let x = nFib 40
putTMVar result x

t <- atomically $ takeTMVar result
putStrLn ("First value: " ++ (show t))

forkIO $ do
atomically $ do
let x = nFib 20
putTMVar result x

t <- atomically $ takeTMVar result
putStrLn ( "Second value: " ++ (show t))

In the next section, these three approaches are being implemented in
multi-threaded environment to analyze result set.

4 Simulation Results

In this experiment, parallelism and concurrency both are taken care of while
implementing Software Transactional Memory in STM Haskell. This case study
considers that transactions perform ‘some task’, which can be executed in parallel
and update the transactional variables. The whole task is to be executed atomically,
i.e., either all at once or none. The execution length of transaction depends on the
execution time of the task. Thus, throughput of the concurrent execution of
transaction also depends on the efficiency of the parallel and concurrent execution
of the task.

In this case study three different approaches, as stated in Sect. 3.2, are being
considered. The first one is STM Haskell by using TVar, second one (SJF) uses
TMVar while execution shortest job first, and third one (FIFO) also uses TMVar
but execution pattern is in first-in-first-out basis. The performance of these imple-
mentations varies due to these execution policies although all of them ensures STM
properties.

The experimental results are summarized by varying execution length of the
transaction. To do so, a set of transactions with different execution length are being
considered while they are executing concurrently and sharing a common resource.
Each set of transaction is formed up with five write transactions. Depending on the
AET, transactions are segregated into three groups. In the first group, the AET of
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transactions is comparatively lower. In the second group, AET is comparatively
medium and in third group the AET of transactions is comparatively higher.

In order to investigate scalability, the said three approaches are being executed
on these three different groups of transactions. While executing the program, the
number of threads is varied from 1 to 5 to observe the efficiency of each method in
terms of parallel and concurrent execution.

This implementation is performed on Intel Core 17, 64 bit processor with § GB
memory, and 2 MB L2 cache, running on Linux and GHC 7.8.3.

4.1 Case-1: Lower Average Execution Time

When transactions have lower execution time, SJF performs best up to three
threads. Although, with a higher number of threads, STM Haskell has the slightly
better throughput. Table 1 and Fig. 1 show these scenarios.

4.2 Case-II: Medium Average Execution Time

In the case of medium length transactions, performance varies with number of
threads, same way as stated in previous case, i.e., with higher number of threads

Table 1 Performance of the said approaches with lower average execution time

#Thread 1 #Thread 2 #Thread 3 #Thread 4 #Thread 5
STM Haskell 3.92 2.14 1.52 1.31 1.16
TMVar SJF 3.78 2.05 1.45 1.34 1.14
TMVar FIFO 4.01 2.15 1.60 1.42 1.33

Fig. 1 Performance graph of 4.50 A

the said approaches with 4.00 -

lower average execution time ’
3.50 4

3.00 4
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1.50 1

1.00 1
0.50 1
0.00 - T T T T

# Thread | # Thread 2 # Thread 3 # Thread 4 # Thread 5
STM Haskell ™ TMVar SJF TMVar FIFO
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Table 2 Performance of the said approaches with medium average execution time

#Thread 1 #Thread 2 #Thread 3 #Thread 4 #Thread 5
STM Haskell 8.57 4.66 3.30 2.96 2.62
TMVar SJF 8.36 4.55 3.23 3.19 2.72
TMVar FIFO 9.13 5.00 3.57 3.27 3.12

Fig. 2 Performance graph of 10.00 1
the said approaches with 9.00

medium average execution 8.00 4
time 7.00 -
6.00
5.00 A
4.00 A
3.00 A
2.00 A
1.00
0.00 - T T T T

# Thread 1 # Thread 2 # Thread 3 # Thread 4 # Thread 5
STM Haskell ®TMVar SJF TMVar FIFO

STM Haskell performs better. Table 2 shows the result and Fig. 2 depicts the
performance graph.
4.3 Case-11I: Higher Average Execution Time

When transactions are too lengthy, STM Haskell outperforms others, except in
single-threaded execution. The result set and corresponding graph are shown in
Table 3 and Fig. 3 respectively.

4.4 Productivity Improvement with Parallel Execution

Figure 4 shows the average productivity improvement in elapsed time while exe-
cuting transaction with a varying number of threads. Higher number of threads
shows higher productivity.

Table 3 Performance of the said approaches with higher average execution time

#Thread 1 #Thread 2 #Thread 3 #Thread 4 #Thread 5
STM Haskell 29.46 9.30 11.06 9.69 8.70
TMVar SJF 29.04 15.88 11.13 10.94 9.03
TMVar FIFO 31.35 17.64 13.05 11.19 9.67
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Fig. 3 Performance graph of 35.00
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4.5 Summary of Results

The shortest job execution policy has minimum waiting time, which implies low
turnaround time for processes. For this reason, in single-threaded environment, our
implementation performs better with shortest job first execution policy. In
multi-threaded environment, the parallel activities, i.e., scheduling the job for
multi-cores, switching between threads etc. are managed by Haskell compiler and
OS. Under this scenario, our STM implementation with TVar performs better than
other two approaches. When transactions’ execution length is higher, this approach
performs best while executing in multi-threaded environment. In our third imple-
mentation, where transactions execute in first-in-first-out basis, transactions’ aver-
age waiting time becomes higher, which results in high turnaround time and a lower
throughput.
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5 Conclusions

In this paper, we have critically described one of the recently proposed STM
solutions to establish the importance of STM implementation for appropriate per-
formance analysis. We have also implemented STM in Haskell using three different
approaches. The first implementation uses TVars (STM Haskell) to access trans-
actional variables concurrently. Each transaction maintains a log and depending on
its validity transaction re-executes with a fresh log. In second implementation, we
have combined TMVar and bang-pattern for strict evaluation, which enables
transactions to execute any job in the background. Using this technique, we
implemented shortest job first execution policy. The third implementation executes
transactions as per their initiation order in first-in-first-out basis.

In all these implementations, we have executed task of the transactions in par-
allel and observed the performance impact of different execution policies. The
experimental results show variations in performance depending on number of
threads and transactions’ execution length. Transactions with smaller execution
length perform better in shortest job first implementation when number of threads is
less. When number of threads is increased, the STM Haskell performs better. On the
other hand, when transaction execution length is high, STM Haskell performs
better, irrespective of number of threads available.
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