
A New Framework for Configuration
Management and Compliance Checking
for Component-Based Software
Development

Manali Chakraborty and Nabendu Chaki

Abstract Component-based software development (CBSD) decreases the time and
cost for developing high quality software. However, with CBSD, the maintenance
of the software is more difficult, as the whole system consists of several composite
components. In this paper, a three-layer framework is proposed toward designing an
efficiently configurable component-based system. We also developed an algorithm
to identify the primitive and composite components that are related in terms of
dependency. This helps managing multiple versions of a system. A smart meter
system is considered as a case study. Our algorithm is executed on this
component-based system using the semantic effect annotations of Business Process
Modeling Notation (BPMN) to validate the results of our algorithm. The success
reflects the effectiveness of the proposed algorithm toward identifying the com-
ponents affected by a change in a simple way.

Keywords CBSD � Configuration management � Compliance � Version
management

1 Introduction

Modern software systems become more large and complex, because of their
improved performance, efficiency, and better quality. Also, the production costs and
time for these systems should be minimized. Thus, the maintenance and modifi-
cations of those systems are also becoming more critical [1]. Traditional approaches
for software development cannot deliver software in short deadlines and with lower
costs. A new paradigm called CBSD is used to develop software with existing,

M. Chakraborty (&) � N. Chaki
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
e-mail: manali4mkolkata@gmail.com

N. Chaki
e-mail: nabendu@ieee.org

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_12

173



already built and used components. In CBSD, the software systems can be devel-
oped by selecting off-the-shelf components from some component repository and
then integrating them to build the intended software. The components can be
developed by different developers using different languages and technologies [2].
Instead of building every software from scratch, CBSD reuses the components,
modifies them to satisfy the requirements and then assembles them. This leads to
lower cost, smaller development time and better quality of the software, as the
components are already built and tested.

The differences between traditional software development (TSD) approaches and
CBSDs are listed in Table 1. In CBSD, the management of different components
and their versions is one of the most challenging tasks. To achieve this configu-
ration management is used. Configuration management is the task of managing the
configuration of different components in a system so that the system operates
seamlessly. For a large and complex system, a systematic use of configuration

Table 1 Difference between TSD and CBSD

Property TSD CBSD

Development
style

Each software is developed from
scratch

Already existing components are
assembled to build new software.
Reusing of software components are
the main theme of CBSD

Life cycle In TSDS the different activities are,
requirement analysis, feasibility
study, design, coding, testing,
maintenance etc.

Life cycle in CBSD consists of,
finding components, selecting those
that fit the requirements, adapting
them, and replacing them with
modified versions

Languages Programming languages are used to
implement the system

Primitive components are
implemented using programming
languages, and composite
components are built using
component description languages
and architecture description
languages

System
construction

The system is usually implemented
by a group of source code files
which can be compiled and linked
together to form the final system

System construction is a recursive
process, in which, primitive
components are used to construct
composite components. Both
primitive and composite
components are used to construct
larger composite components

Working
team

There are engineering teams, which
provide all the functionalities during
the life cycle of software and
end-users

There are component producer
teams developing components;
consumer teams developing
software reusing components and
hybrid teams that are both
consumer, producer, and end-users

174 M. Chakraborty and N. Chaki



management is used to maintain the correct operability of the components. The
different functions of configuration management are [3]: version management,
change management, build management, release management, and workspace
management.

Authors of paper [4–6] have discussed the various challenges of configuration
management in CBSD. They also suggested that run time configuration is needed
for CBSD and proposed a model for it. In [7], authors propose a component-based
configuration management model, where the components are the integral logical
constituents of the system. The model analyzes the relationship among the com-
ponents and the configuration management part is dependent on that analysis.
A model based on the component system and layered architecture is proposed in
[8]. Authors claimed that this layered architecture improves reusability and main-
tainability of configuration management in CBSD. Another distributive,
component-based layered model for configuration management in CBSD is pro-
posed in [9]. The layered architecture makes this model easily adaptive, dynamic to
changes and brings down the coupling of the system. In [10], dependency graphs
identify different types of dependencies among components and analyze them. The
graphs are used to facilitate maintenance by identifying differences, i.e., deviations
of a configuration from a functioning reference configuration. Based on the unique
features of CBSD, we summarize new requirements of CM for CBSD as follows:

(1) For component-based software development, the first step is to select a
component from the existing component database. The owners of the database
may update the components periodically. If there are more than one versions
of a component between two baselines, then there will be two aspects for
version management: either store the older versions in the repository, or
replace the older versions by the new version. For the first case, the user can
use older versions of a component if they want to. However, for the next
situation, users are forced to accept the new versions of the components. In
Fig. 1, two versions of component 1 exist between two baselines. If a user
wants to use version 3 of component 1, then, it will allow doing so, if the older
versions of the component are stored in the repository. Otherwise, it has no
choice, but to work with the new version of component 1.

(2) Suppose two composite components cc1 and cc2 are dependent on primitive
components pc1, pc3, pc5 and pc2, pc3, pc4, respectively, as in Fig. 2. Let us
update primitive components pc2, pc3, pc4, and form a new base line for
composite component cc2. Now, composite component cc1 is also dependent
on primitive component pc3. So, for cc1 there exist two scenarios:

(i) If older versions of primitive components are replaced by the new versions of
those components, then cc1 has to adopt itself with the new version of pc3.
And the other primitive components of cc1, such as pc1 and pc5, may also
need some up gradation to comply with the new version of pc3. Thus, the
modification of one component can lead to modification of several compo-
nents, which may or may not be directly linked with that component.

A New Framework for Configuration Management … 175



(ii) If older versions of primitive components are kept in a repository, then for a
given time instant (for a baseline), the two composite components of a system
will have two different versions of the same primitive components. This may
lead to a compliance error.

In order to overcome these problems, we propose a new framework for pro-
viding configuration and compliance management of components of a system. This
model consists of three layers: component management, configuration manage-
ment, and compliance management. There exists some research work on configu-
ration management in CBSD, but neither of them incorporates the idea of
compliance management with that. Compliance is a very important factor in CBSD
because the developer imports the components from outside. This makes them
vulnerable for violating the business terms and policies of an organization. Thus,
we propose a layered model which incorporates configuration management and
compliance checking with CBSD. The component management layer deals with the
selection of components and assembling them. It also modifies and replaces

Fig. 1 Version management
problem in CBSD

Fig. 2 Dependency between
components

176 M. Chakraborty and N. Chaki



components if necessary. The configuration management layer keeps tracks of the
dependencies and relationships between the components. It also analyzes them for
achieving maintainability. The compliance management layer is responsible for
compliance checking of each component, as well as the total system. We also
propose an algorithm to find the effect propagation within a system, when a
primitive component is modified. The algorithm is able to identify sets of primitive
and composite components, which may get affected with the modification of a
certain primitive component. Thus, it helps to configure a system properly.

The smart metering system of smart grid architecture is considered as an
application domain for this proposed framework. First, we identify some basic
functionalities of smart metering system and consider them as composite compo-
nents. To achieve each of these functionalities, several small and atomic processes
are needed to be executed. We consider all those atomic processes as primitive
components. All the composite components, with their respective primitive com-
ponents are stored in a tabular data structure. When a change request is placed for a
primitive component, then our algorithm is used to find how the effects of this
change propagate through the system. As an outcome of the algorithm, we can
identify the sets of primitive and composite components, which may get affected by
the proposed change.

In order to validate the proposed algorithm, Business Process Modeling Notation
(BPMN) has been used. BPMN is an agreement between multiple modeling tools’
vendors, who had their own notations. BPMN uses a single notation that is
understood by all the end-users. It can be used to analyze, simulate, or execute a
particular business model. A business process model describes the ordered
sequence of different tasks within a process and how the process achieves its
objectives [11].

BPMN is an internationally accepted, model-independent tool, which can create
a bridge to reduce the gap between business processes and their implementations by
providing a unified and standardized graphical representation of any business
model. Thus, as a basis of our proposed framework, we use BPMN, to graphically
describe smart metering systems, and analyze the effect of component changes on
the whole system. When a change request is placed, then the aftereffects of the
change for each individual component, as well as the cumulative effect on the
whole system is analyzed using semantic effect annotations [12]. This helps iden-
tifying the affected components through change propagation and how the system
can be reconfigured for a particular change request. The objective is to compare the
results produced by the proposed algorithm vis-à-vis finding from BPMN.

An obvious question may arise in this situation: if we can achieve the goal of our
algorithm using the semantic effect annotations in BPMN, then why a new algorithm
is required at all? Identifying the effects of a change by semantic effect annotation in
BPMN needs a certain amount of knowledge about both BPMN and propositional
logic. Besides developing the BPMN model for a process and maintaining the
semantic effect annotations is a complex task as changing any primitive component
results in changing its immediate effect. This change in immediate effect needs to be
propagated throughout the system so that the cumulative effects evaluated at

A New Framework for Configuration Management … 177



different points within the system remain consistent with this change. Also, using
BPMN requires maintenance of a graphical representation of the system. On the
other hand, our algorithm is inherently simple as it does not require any graphical
representations of the system or semantic effect annotations. A simple tabular data
structure is sufficient for the execution of the algorithm. As a result, it is a less
complex and more preferable solution compared to BPMN.

The rest of the paper is organized as follows: Sect. 2 describes the framework,
Sect. 3 explains the functionalities of smart metering system, and the effect of our
framework with the help of BPMN and Semantic effect annotation process. We
discuss on the future expansion of the work and draw conclusions in Sect. 4.

2 Working Principle of Proposed Framework

In this paper, we proposed a new framework for configuration of components of a
component-based software with run time compliance checking. The proposed
model has three different parts: (1) component management, (2) configuration
management, and (3) compliance management.

2.1 Component Management

The component management part basically deals with the selection of composite
and primitive components and maintains their relationships in the form of a list. The
functions of the component management are:

Select components Modify components Integrate components Replace components

Select Components The component manager first identifies the composite
components of the system. Then for each composite component, primitive com-
ponents are selected from the component repository.

Modify Components It is not always possible to find the exact component, which
meets the requirements of the system. So, then the component manager modifies the
components according to the requirements and adapts them to the system.

Integrate Component After collecting all the primitive components, the com-
ponent manager integrates those primitive components to develop a composite
component. The interconnections and dependencies between the composite com-
ponents are also maintained by the component manager.

Replace Component The component manager also replaces the older versions
of a component by the newer and upgraded versions of that component.

The component management layer maintains a data structure for storing the
composite components and the primitive components used for each composite

178 M. Chakraborty and N. Chaki



component. Let, there be n composite components, C1 to Cn. For every
Ci (1 ≤ i ≤ n), component manager maintains a list of all of its primitive
components.

Structure Component_Relation C
{

Primitive Component P1;
Primitive Component P2;
.
.
Primitive Component Pn;

}

2.2 Configuration Management

The configuration management part deals with the version management of each
primitive components and how it affects the whole system. Since primitive com-
ponents are interrelated, modification in one primitive component leads to the
modification of its dependent components. The functions of configuration man-
agement are:

Monitor Select a
component for
modification

Identify all the
related
components

Modify Report to
component
management

Store

Monitor the configuration manager monitors the whole system to assure that its
working properly and consistently.

Select a component for modification While monitoring the system, the con-
figuration manager also maintains a database for storing the versions of each
component. If a new version of a component arrives in the market, then the con-
figuration manager identifies that component for modification.

Identify all the related components Modifying one primitive component at run
time may affect all the other primitive components related with that component, and
the composite components which are associated with them. So to maintain con-
sistency it is necessary to modify all the other components. Configuration manager
uses an algorithm to identify the related components of an primitive component.

Modify After identifying the components, the configuration manager modifies
the components accordingly.

Report to Component management Then configuration manager reports to the
component manager about these modifications. The component manager then

A New Framework for Configuration Management … 179



checks the newly modified components and sends them to compliance manager to
make sure that they comply with the business rules of the company.

Store after the compliance checking of the modified components, the configu-
ration manager stores the new versions of those components in a database.

Suppose a primitive component Pj has been modified and a new version of Pj,
i.e., Pj.1 is introduced. The purpose of this algorithm is to identify the related
primitive as well as composite components.

Let us assume that a system has eight composite components. Figure 3 describes
the structure for eight composite components. Suppose primitive component P5 has
been modified due to some reasons. Therefore, a new version of P5 is introduced as
P5.1. In order to maintain the concurrency and compatibility, we must check the
other primitive components that are related to P5. In cascade, the composite
components which depends on those primitive components will also be checked.

First, we find P5 from the component table. It has been found in the list of C1.
Then C1 is added in the CArray, and all other primitive components of C1, i.e., P1
and P2 are added in the PArray. Next, P5 is also in the list of C3. So we put C3 in
CArray and P6 in PArray. P5 is not connected with any other composite component.
So we take the second element from the PArray, i.e., P1, and repeat the same
procedure. P1 is not connected with any other composite component, so we move
on to the next primitive component in PArray, P2. P2 is in the list of C4 and C7. So
we put both of them in CArray, and add their primitive components, i.e., P8 and P4
in PArray. The next primitive components in PArray are P6, P8, and P4. Since they are
not in the list of any other composite components, the procedure is terminated.
Figure 4 shows the content of PArray and CArray.

180 M. Chakraborty and N. Chaki



2.3 Compliance Management

The compliance management layer is responsible for checking the compliance of
each individual component and as well as the whole system. It also records new
compliance rules through the development process of the system. The functions of
the compliance management part are:

Check primitive components for
compliance

Record new
compliance rules

Monitor the integrated system for
compliance

Check primitive components for compliance When component manager
imports the primitive components from outside, then the compliance manager
checks every primitive component for compliance. If they do not comply, then
the compliance manager reports to the component management layer, and the
component management layer modifies that component accordingly, so that it can
comply with the system.

Record new rules While integrating the primitive components, it is sometimes
necessary that the components, both primitive and composite, should comply with

Fig. 3 Component relation structure

Fig. 4 Contents of PArray and CArray

A New Framework for Configuration Management … 181



some new rules for successful execution. Thus, another function of compliance
manager is to record new compliance rules at run time and keep the business rule
database up to date with each change in the system.

Monitor the integrated system for compliance Compliance of each primitive
and composite component does not always imply that the whole system is also
compliant with the business rules. Therefore, after checking the primitive and
composite components for compliance, the compliance manager monitors the
whole integrated system for compliance. A baseline is approved only when the
system is compliant with the business policies.

The workflow model of the proposed framework is depicted in Fig. 5.

3 Application of this Model in Smart Grid Architecture

In this paper, we consider the smart meter communication architecture of smart
grids as an application domain of our proposed model. A smart grid is an intelligent
electricity network that integrates the actions of all users connected to it and makes
use of advanced information, control, and communication technologies to save
energy, reduce cost and increase reliability, and transparency [13].

Fig. 5 Workflow diagram of proposed framework

182 M. Chakraborty and N. Chaki



Smart meter is an advanced energy meter that measures the energy consumption
of a consumer and provides added information to the utility company as compared to
a regular energy meter [14]. The smart meter communication architecture typically
consists of four different components: smart meter, smart energy utility network,
DCU (data collection unit), and MDMS (Meter data management System) [15].

The entire scenario is modeled using BPMN. When a change request is placed,
then the after effects of the change for each individual component, as well as the
cumulative effect on the whole system is analyzed using semantic effect annotations
of BPMN. This helps identifying the components affected by the change and how
the system can be reconfigured for a particular change request.

We assume that, there are five basic services provided by a smart meter. We
consider these five services as five composite components and each composite
component further decomposed into several primitive components.

Table 2 provides a detail list of the entire composite and their primitive com-
ponents for a smart metering system. Now we apply the proposed algorithm on this
system and analyze the effect of changing a primate component on the system.

If, primitive component P5 is modified, then the contents of PArray and CArray

will be,

PArray ¼ P6; P7; P8; P1; P9; P15; P16; P2; P3; P4; P10; P11; P12; P13; P14:

CArray ¼ C2;C3;C5;C1;C4:

Thus, if P5 is modified, then we have to check all the primitive and composite
components to check who also need modification. Figure 4 shows the BPMN
diagram of the smart meter system. BPMN provides a graphical diagram of how
different objectives can be achieved in a business process, with enough information,
so that the process can be analyzed, simulated and executed. There are different
elements in BPMN—activities, events, gateways, and connectors. A connector
links activities, events and gateways and shows the control flow relation. An event
can be a start event (start of the process), end event (end of the process), or an
intermediate event, that can either be some messages or a timer or error. An activity
or a task is an atomic activity and stands for work to be performed within a process.
Gateways determine the branching, forking, merging, and joining of paths [11, 16]
(Fig. 6).

Immediate effects can be described as the outcome of execution of an activity.
This model requires the designers to provide the immediate effects of each activity.
Then, the cumulative effect of each component can be calculated by accumulating
the immediate effects [12, 17].

In Fig. 4,

• e1 to e16 are the immediate effect of primitive components P1 to P16,
respectively.

• CEC1 to CEC5 are the cumulative effect of composite components C1 to C5,
respectively. The arrows toward CEC1 to CEC5 mark the points where the
cumulative effects have been calculated.

A New Framework for Configuration Management … 183



Cumulative effect of C1 CEC1ð Þ ¼ ðe1 ^ e2 ^ e3 ^ e4Þ
Cumulative effect of C2 CEC2ð Þ ¼ ðe5 ^ e6 ^ e8Þ _ ðe5 ^ e7 ^ e8Þ
Cumulative effect of C3 CEC3ð Þ ¼ ðe1 ^ e9 ^ e8Þ
Cumulative effect of C4 CEC4ð Þ ¼ ðe10 ^ e12Þ _ ðe10 ^ e11 ^ e13 ^ e14 ^ e4Þ

_ ðe10 ^ e11 ^ e13 ^ e12Þ
Cumulative effect of C5 CEC5ð Þ ¼ ðe1 ^ e15 ^ e16 ^ e8Þ _ ðe1 ^ e15 ^ e8 ^ e16Þ

Table 2 Component structure of smart metering system

Composite components Primitive components

C1: Generate the total electricity consumption of
a user

P1: Decode Receive message from DCU

P2: Collect the total unit of usage

P3: Generate the bill

P4: Send message to DCU

C2: Send SMS, if the consumption unit of a user
exceeds its previous bill

P5: check the current unit of usage, with
previous bill

P6: Generate an alert message for excess
bill amount

P7: Generate a intermediate bill

P8: Send message to the user

C3: Alert user before power cuts P1: Decode Receive message from DCU

P8: Send message to the user

P9: Generate an alert SMS for power cut

C4: Services provided for users, who generate
electricity in their own houses

P10: Check the electricity generation of a
home

P11: Draw current from home electricity
source

P12: Draw current from outside electricity
source

P13: Check if, generated electricity is
sufficient for the home

P14: calculate the amount of surplus
energy and generate a message

P4: Send message to DCU

C5: take necessary actions, if DCU reports a
power shortage

P1: Decode Receive message from DCU

P8: Send message to the user

P15: Generate an alert SMS for power
shortage

P16: cut off electricity to some appliances
after certain time period

184 M. Chakraborty and N. Chaki



Again, if a change request for P5 is made, then from the diagram and the
cumulative effects, we can conclude that,

• Cumulative effect of C2 may get affected, as well as the immediate effect of
other primitive components of C2, i.e., e6, e7, e8, and the immediate effects of
P6, P7, and P8, respectively.

• Now, P8 is further used in C3 and C5. Hence, if the immediate effect of P8
changes, due to P5, then it may also affect the immediate effects of P1, P9, P15,
and P16.

• Again P1 also had contributions in the cumulative effect of C1. Thus, P2, P3, P4
might be affected.

• P4 is also used in C4. So, P10, P11, P12, P13, P14 might also be affected.

Hence, we may conclude that, the BPMN with semantic effect annotation
confirms the result of our algorithm.

Fig. 6 BPMN diagram of a smart meter

A New Framework for Configuration Management … 185



4 Future Work and Conclusions

One of the most important criteria for a CBSD is to comply with the business
policies, rules and regulations of a company. Compliance often refers to the vali-
dation of a system against some legal policies, internal policies, or some basic
design facts [6]. Compliance checking can be of two types: compliance by detection
and compliance by design. In Compliance by detection method, the existing system
is checked thoroughly to detect whether it violates any rules or not. If it does not
comply, then corrective measures are taken to make it compliant. In compliance by
design method, the system is developed, by taking into account the business rules.
Thus, the system is designed in such a way, that it can comply with the rules [18].
In CBSD, the system is not developed from scratch. Thus, the compliance by
design method does not suit CBSD. Hence, in CBSD, compliance by detection
method is used. As an extension of this framework, we would like to work on the
detailed working principle of the compliance layer.

In this paper, a new framework for configuration of components with compli-
ance checking is proposed. This framework considers two main problems of CBSD:
maintenance and compliance, and solves them by incorporating both configuration
management and compliance management with CBSD. In this paper, we consider
two-level hierarchy between components, i.e., all the composite components are
developed using primitive components. However, the level of hierarchy can easily
increased in this model, so that we can consider a scenario where composite
components are again assembled together to develop another composite
component.

In Sect. 2, requirements for configuration management for CBSD is discussed.
Two main problems have been highlighted. One is due to version management, and
another is due to the complex and nested relationship between the primitive and
composite components. The model in this paper is able to overcome these prob-
lems. In this model, the component management layer replaces each component
with its latest version once it is accepted by the compliance layer, but the config-
uration management layer stores all the versions of a component to a database.
Thus, the active system is always executed with current versions of each compo-
nent, but the older versions are also stored in the database.

Also, the component management layer uses a tabular data structure and the
configuration management layer uses an efficient algorithm to search all the related
primitive and composite components for a particular primitive component. This
helps the model to perform efficiently and provides an easily maintainable and
compliant system.

Although it is not a theoretical proof for correctness of the proposed algorithm,
the validation using BPMN indeed shows the effectiveness of the new algorithm.
The proposed methodology builds the foundation for several meaningful extensions
in future. We want to apply this model to the entire smart grid architecture as a
future work.

186 M. Chakraborty and N. Chaki



5 Acknowledgment

This work is a part of the Ph.D. work of Manali Chakraborty, a Senior Research
Fellow of Council of Scientific and Industrial Research (CSIR), Government of
India. We would like to acknowledge CSIR, for providing the support required for
carrying out the research work.

References

1. Crnkovic, I.: Component-based software engineering—new challenges in software
development. J. Comput. Inf. Technol. CIT 11. 3, 151–161 (2003)

2. Pour, G.: Component-based software development approach: new opportunities and
challenges. In: Proceedings Technology of Object-Oriented Languages. TOOLS 26.
pp. 375–383 (1998)

3. Estublier, J.: Software configuration management: a roadmap. In: Proceedings of 22nd
International Conference on Software Engineering, the Future of Software Engineering. ACM
Press, New York (2000)

4. Larsson, M., Crnkovic, I.: Development experiences of a component-based system. In: 7th
IEEE International Conference and Workshop on the Engineering of Computer Based
Systems ECBS (2000)

5. Larsson, M., Crnkovic, I.: Component configuration management. In Proceedings of ECOOP
Conference, Workshop on Component Oriented Programming Nice, France (2000)

6. Lohmann, N.: Compliance by design for artifact-centric business processes. In: 9th
International Conference on Business Process Management, pp. 99–115 (2011)

7. Hong, M., Lu, Z., Fuqing, Y.: A component-based software configuration model and its
supporting system. J. Comput. Sci. Technol. 17(4), 432–441 (2002)

8. Mao., M, Jiang, Y.: A new component-based configuration management 3C model and its
realization. In: ISISE, International Symposium on Information Science and Engineering, vol. 1,
pp. 258–262 (2008)

9. Ruan, L., Yong, Z.: A new configuration management model for software based on distributed
components and layered architecture. Parallel Distrib. Comput. Appl. Technol. 665–669
(2003)

10. Larsson, M.: Applying configuration management techniques to component-based systems.
Licentiate Thesis Dissertation, Department of Information Technology Uppsala University,
vol. 7 (2000)

11. Object Management Group: Business Process Modeling Notation (BPMN) Version 1.0. OMG
Final Adopted Specification. Object Management Group (2006)

12. Hinge, K., Ghose, A., Koliadis, G.: Process SEER: a tool for semantic effect annotation of
business process models. In: Thirteenth IEEE International Enterprise Distributed Object
Computing Conference (EDOC) Los Alamitos, USA, pp. 54–63. IEEE (2009)

13. White Paper by United States Agency for International Development, USAID India: The smart
grid vision for India’s power sector (2010)

14. Kim, M.: A survey on guaranteeing availability in smart grid communications. Adv. Commun.
Technol. (ICACT) 314–317 (2012)

15. Jung, N.J., Yang, K., Park, S.W., Lee, S.Y.: A design of ami protocols for two way
communication in K-AMI. In: 11th International Conference on Control, Automation and
Systems, pp. 1011–1016 (2011)

16. Goel, N., Shyamasundar, R.K.: An executional framework for BPMN using Orc. APSCC,
pp. 29–36. IEEE (2011)

A New Framework for Configuration Management … 187



17. Koliadis, G., Vranesevic, A., Bhuiyan, M., Krishna, A., Ghose, A.: Combining i* and BPMN
for business process model lifecycle management. In: BPM’06 Proceedings of the 2006
international conference on Business Process Management Workshops, pp. 416–427 (2006)

18. Sackmann, S., Kahmer, M., Gilliot, M., Lowis, L.: A classification model for automating
compliance, pp. 79–86. CEC/EEE. IEEE (2008)

188 M. Chakraborty and N. Chaki


	12 A New Framework for Configuration Management and Compliance Checking for Component-Based Software Development
	Abstract
	1 Introduction
	2 Working Principle of Proposed Framework
	2.1 Component Management
	2.2 Configuration Management
	2.3 Compliance Management

	3 Application of this Model in Smart Grid Architecture
	4 Future Work and Conclusions
	5 Acknowledgment
	References


