Data-Flow Analysis-Based Approach
of Database Watermarking

Sapana Rani, Preeti Kachhap and Raju Halder

Abstract In this paper, we propose a persistent watermarking technique of
information systems supported by relational databases at the back-end. The per-
sistency is achieved by identifying an invariant part of the database which remains
unchanged w.r.t. the operations in the associated applications. To achieve this, we
apply static data-flow analysis technique to the applications. The watermark is then
embedded into the invariant part of the database, leading to a persistent watermark.
We also watermark the associated applications in the information system by using
opaque predicates which are obtained from the variant part of the database.

Keywords Persistent watermarking - Relational databases - Data-flow analysis -
Security

1 Introduction

Database watermarking of relational databases has received much attentions to the
research community over the last decade when various application scenarios, e.g.,
database-as-a-service, data-mining technologies, online B2B interactions, etc.,
demand an effective way to protect database information from various fraudulent
activities, like illegal redistribution, ownership claims, forgery, theft, etc. [15, 26].
Figure 1 depicts a pictorial view of database watermarking techniques, where a
watermark W is embedded into the original database using a private key K (known
only to the owner) and later the verification process is performed on any suspicious

S. Rani (X)) - P. Kachhap - R. Halder
Indian Institute of Technology, Patna, India
e-mail: sapana.pcs13 @iitp.ac.in

P. Kachhap

e-mail: preeti.cs10@iitp.ac.in

R. Halder
e-mail: halder@iitp.ac.in

© Springer India 2016 153
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,

Advances in Intelligent Systems and Computing 396,

DOI 10.1007/978-81-322-2653-6_11

154 S. Rani et al.

database using the same private key K by extracting and comparing the embedded
watermark (if present) with the original watermark information.

1.1 Related Works

Existing watermarking techniques are categorized into two: distortion-based and
distortion-free. Distortion-based techniques [1, 10, 11, 25, 27, 28] introduce dis-
tortion to the underlying database data, and hence, usability is a prime concern
while watermarking. Distortion should always be introduced in such a way that it is
tolerable and does not destroy the usability of the data at all. Watermarking in [1] is
performed by flipping bits in numerical values at some predetermined positions
based on the secret parameters. Image as watermark is embedded at bit-level in
[28]. Approaches in [10, 27] are based on database content: The characteristics of
database data is extracted and embedded as watermark into itself. Authors in [11]
proposed a reversible-watermarking technique which allows to recover the original
data from the distorted watermarked data. Khanduja et al. [19] proposed a secure
embedding of blind and multi-bit watermarks using Bacterial Foraging Algorithm.
Later, they used voice as biometric identifier for watermarking [18]. Unlike
numerical values, categorical data type and nonnumeric multi-word attributes are
also considered as cover for watermarking in [2, 25]. Distortion-free watermarking
techniques [5, 6, 13, 20, 21], on the other hand, do not introduce any distortion.
Unlike distortion-based techniques, watermark is generated from the database rather
than embedding. In [4, 21], hash value of the database is extracted as watermark
information. Approaches in [5, 6, 20] are based on the conversion of database
relation into a binary form to be used as watermark. In [17], watermark is generated
based on digit frequency, length of data values, etc. in the database, whereas [7]
generates the watermark based on the grouping of data into square matrix and the
computation of determinant and diagonals’ minor for each group. Although the
approach [7] is not economically viable, but suitable to detect multifaceted attacks
and is resilient against tuples insertion-deletion attack and value modification
attack.

1.2 Motivations

This is to be observed that most of the distortion-based techniques in the literature
use a part of the database content as cover [10, 27, 28], and therefore, a number of
update or delete operations may distort the watermark or may make the watermark
undetectable. Also re-watermarking the database is very expensive process. Authors
in [12, 13] first address a key issue, called persistency, in the context of database
watermarking where database tuples are being updated or deleted frequently by the
associated legitimate applications. Their approaches aim at preserving persistency

Data-Flow Analysis-Based Approach of Database Watermarking 155

Key (K)
Original Watermark Watermarked
Database Embedding Database

Watermark information (W)

Watermarked Database Key (K)
N
Anac;(; AN l
* Watermark Claim as true
_."" Suspicious Verification or false
.7 Database T
Innocent Database

Watermark information (W)

Fig. 1 Basic watermarking technique

of the embedded watermark under usual database operations: watermark is
embedded in an invariant part of the database (w.r.t. database operations), while the
same is generated from the abstract variant part representing properties instead of
actual values. However, they did not specify any approach to identify the
variant/invariant part while watermarking a complete information system consisting
of a set of applications interacting with a database at the back-end.

1.3 Contributions

In this paper, we propose a data-flow analysis-based approach which serves as a
generic framework for persistent database watermarking. Unlike existing approa-
ches, we consider watermarking of a complete information system which includes
both the back-end database and the associated applications legitimately accessing or
manipulating the data in the database. In particular, our proposal is unfolded into
the following phases:

e Formulation of data-flow equations for the applications embedding query
languages.

e Analysis of the applications based on the data-flow equations which effectively
identifies an invariant part of the underlying database instances.

e Watermarking of the invariant part by distortion-based technique.

e Generation of Opaque Predicates from the variant part respecting the integrity
constraints of the database systems.

e Embedding opaque predicates as watermarks into the associated applications.

The structure of the paper is as follows: Sect. 2 provides a motivating example.
Section 3 recalls some basic notions about persistent watermarking, data-flow

156 S. Rani et al.

analysis, etc. The proposed technique is discussed in Sect. 4. In Sects. 5 and 6, we
provide, respectively a brief discussion on the complexity and robustness of our
proposal. Experimental results are presented in Sect. 7. Finally, we draw our
conclusions in Sect. 8.

2 Running Example

Consider, three online trading companies, say x, y, z, who are maintaining their own
databases and the associated applications. Figure 1 depicts one such database which
stores the details of the customers, various products, and the purchase history.
Suppose, three companies have decided to collaborate, aiming at making the online
purchasing system more attractive to the customers in terms of product availability.

However, according to the policy, each company can perform, in addition, its
own business independently. A common interface after collaboration is developed
and is allowed to access any of the three databases. This makes the database
information vulnerable to various kinds of attacks, e.g., theft, illegal redistribution,
ownership claiming, etc. Therefore, it is mandatory to watermark individual data-
base in order to prevent above mentioned attacks.

Consider a code-fragment' P depicted in Fig. 2 which accesses and manipulates
database of Table 1. The code either inserts order details (statement 7—11) or offers
gifts to the premium customers (statement 13-16). This is to be noted that the
database part corresponding to the attributes “TotalAmt” and “Offer” can possibly
be updated by the application—hence it is a variant part. The rest of the database
acts as invariant part. This is immediate that any watermark embedded into this
variant part may get destroyed or undetectable due to the legitimate update oper-
ations on the values.

In the subsequent sections, we propose an efficient way to identify invariant and
variant part of the underlying databases w.r.t. the associated applications in the
system. This will enhance the existing watermarking techniques w.r.t. the persis-
tency issue.

3 Basic Concepts

In this Section, we recall some basic notion about persistent watermarking from
[13].

Persistent watermark Given a database dB and a set of associate applications A,
we denote by (dB, A) an information system model. Let d, be the initial state in
which the watermark W is embedded. When applications from A are processed on

'Observe that we do not follow any specific language syntax.

Data-Flow Analysis-Based Approach of Database Watermarking 157

0. start;
1. Statementstmt=DriverManager.getConnection(”jdbc:mysql://localhost:3306/demo”,"root”, " tiger”).
createStatement();
2. $choice = read();
3. $ltem = read();
4. $ltem_count = read();
5. $Cust.id = read();
6. if($choice == "purchase”){
7. $rsl = SELECT ItemNo, UnitPrice FROM Store WHERE item=$Item and NoAvail>0;
8. if($rsl.next()){
9. $0rd.no = generate();
10. INSERT INTO Order(Orderld, Customerld, ItemNum, count, date, offer) VALUES ($Ord-no,
$cust_id, $rs1.ItemNo, $Item_count, today(), NULL);
11. UPDATE Customer SET TotalAmt = TotalAmt + $Item_count * $rs1.UnitPrice WHERE CustId
= $Cust.id;}}
12. if($choice == "offer”){
13. $rs2 = SELECT Custld FROM Cust WHERE Total Amt>5000;
14. while($rs2.next()){
15. $gift = read();
16. UPDATE Order SET offer = $gift WHERE Customerld = $rs2.CustId;}}
17. stop;
Fig. 2 Program P
Table 1 Online trading (a) Table “cust”
database Custld CustName Address Age Total Amt
1001CIO1 Rachel London 22 2000
1001CI02 Albert New York 25 7000
1001CI03 John Japan 27 4500
(b) Table “Store”
ItemNo ItemName NoAvail UnitPrice
TNO1 Notebook 23 200
TNO2 Calculator 25 1000
(c) Table “Order”
Orderld | Customerld | ItemNum | Count | Date Offer
1110101 | 1001CI02 TNO2 2 2-12-2012 | NIL

1110102 | 1001CIO1 TNO2 1 4-1-2013 | NIL

158 S. Rani et al.

do, the state changes and goes through a number of valid states dy, d>..., d,—;. The
watermark W is persistent if we can extract and verify it blindly from any of the
following n — 1 states successfully.

Definition 1 (Persistent Watermark)

Let (dB, A) be an information system model where A represents the set of
associated applications interacting with the database dB. Suppose the initial state of
dB is d. The processing of applications from A over d, yields to a set of valid states
dy, ..., d,—1. A watermark W embedded in state d,, of dB is called persistent if

Vie [l..(n—1)], verify(dy, W) = verify(d;, W)

where verify(d, W) is a boolean function such that the probability of “verify(d,
W) = true” is negligible when W is not the watermark embedded in d.

Variant versus Invariant Database Part Consider an information system (dB,
A1) where A is the set of applications interacting with database dB. For any state d;,
i € [0...(n — 1)], we can partition the data cells in d; into two parts: Invariant and
Variant. Invariant part contains those data cells that are not updated or deleted by
the applications in A, whereas data cells in variant part of d; may change under the
processing of applications in A.

Let CELL,, be the set of cells in the state d;. The set of invariant cells of d; w.r.t.
A is denoted by Invf}l_ C CELLy,. For each tuple ¢ € d;, the invariant part of ¢ is
InvA C Inv/;i. Thus, Invﬁi = Uz,- cq, Inv/*. The variant part w.r.t. A, on the other hand,
is defined as Varj = CELL,, — Invj.

Data-flow Analysis Data-flow analysis is a technique for gathering information
about the dynamic behavior of programs by only examining the static code [24].
A program’s control-flow graph (CFG) is used to define data-flow equations for
each of the nodes in the graph. Data-flow analysis can be performed either in a
forward direction or in a backward direction, depending on the equations defined.
The least fix-point solution of the equations provides the required information about
the program. The information gathered is often used by compilers when optimizing
a program. A canonical example of a data-flow analysis is reaching definitions.

4 Proposed Technique

The intuition of our proposal is to make the embedded watermark persistent w.r.t.
all possible operations in the information system. As database states change fre-
quently under various legitimate operations in the associated applications, the
content dependent watermarks embedded into the database are highly susceptible to
benign updates. In particular, update and delete operations may remove or distort
any existing watermark of the database [10, 27, 28].

In order to make the watermark persistent, our proposal aims at identifying some
invariant parts of the database states which remain unchanged w.r.t. the

Data-Flow Analysis-Based Approach of Database Watermarking 159

applications. To this aim, we apply static data-flow analysis technique to the
associated applications which identifies various parts of the database, called variant
parts, targeted by update, or delete operations in the applications. The complement
of this variant part in the database acts as invariant part and is used for persistent
watermarking. For instance, any database part retrieved by SQL select statement
remains unchanged and is, of course, suitable for persistent watermarking. We also
watermark the associated applications in the information system by using opaque
predicates obtained from the variant part.
Summarizing, the proposed technique consists of the following phases:

e Identifying variant and invariant parts of the database, by performing data-flow
analysis to the associated applications.

e Watermarking of invariant database parts.

e Watermarking of associated applications by using opaque predicates obtained
from the variant part.

4.1 Data-Flow Analysis

In this phase, we analyze the associated applications based on the data-flow
equations in order to collect information about the part of the database information
updated or deleted at each point of the applications.

The data-flow equations for various commands in the applications embedding
query languages are defined in Fig. 3. The abstract syntax of update and delete

statements are denoted by (Vdugié', ¢) and (del(V,;), ¢) respectively, where V; =
(a1,aa,...,a,) denotes a sequence of database attributes, &= (ej,es,...,e,)
denotes a sequence of arithmetic expressions, and ¢ denotes the WHERE-part of the
statements following first-order formula [14]. We denote by notations upd(vy)|,

and del(Vy)|, the part of the database updated and deleted by (v, = €, ¢) and
(del(Vy), ¢) respectively. Observe that any database part is identified by a subset of
attributes ¥, values corresponding to a subset of tuples satisfied by ¢. The notation
(x, n) represents that x is defined at program point n, whereas (x, ?) represents that
x is defined by any program point. In case of conditional node with boolean
expression b, we denote by notation JOIN(n)|, the information restricted by b.
The data-flow analysis is performed by using data-flow equations for each node
of the control-flow graph and solves them by repeatedly calculating the output from
the input locally at each node until the whole system stabilizes, i.e., it reaches a fix
point. The least fix-point solution of the equations provides the information about
the variant part of the database possibly updated or deleted by the program. Observe
that during solving the data-flow equations, the result in any iteration may contain

160

Fig. 3 Data-flow equations
of applications embedding
query languages

S. Rani et al.

Assignment node n.

[[n] = QOIN(M)\{(x,)} U {(x, m)}

Conditional node n.
[[n1 = J0IN(n)ly

UPDATE node n.
[n] = JOIN(n) U {(@ils, 1)}
= JOIN(n) U {(a1ls, 1), (a2ly, 1),

DELETE node n.
[= J0IN(n) U {(Wils, m)}

= JOIN(”) U {(111 Itpl n)l (a2|zp/ 1’1), .

Other nodes.
[n] = JOIN(n)

where JOIN(n) = Uwepred(n)ﬂwﬂ.

covs (arlg, M)}

- (arlg, m)}

multiple definitions of the same attributes corresponding to different conditions (for
example, say V]|) and V| %).2 In such case, we use merge function defined below:

merge((a|¢l,n1), (a|(/)27n2)) = (a|¢l\/¢2» {n1,n2})

This yields a modified data-flow equations for UPDATE and DELETE as

follows:

UPDATE node n.

[n] = merge(JOIN(n) U {(v_;Iq),n)})
= merge(JOIN(n) U {(aly, n), (@2lo,), ..., (arls, m)})

DELETE node n.

[n] = merge(JOIN(n) U{(@a)ls, ”)})
= merge{0T0) (el 1),), @1,)

Lattice Structure Defining Data-flow. Let Lab, Var, y be the set of program
points, the set of program variables and the set of well-formed formulas (in
first-order logic), respectively. Let R = Var x X p(Lab). The Lattice is defined
as (p(R), C, &, R, U, N), where & is the bottom element and R is the top element of
the lattice. The lowest upper bound U is defined as:

By notation Val » We denote the part of the database corresponding to the attributes vz and tuples

satisfying the condition ¢.

Data-Flow Analysis-Based Approach of Database Watermarking 161

41 I3 11 21 (8W]] o

61
171
Is1
121 [141
'
191 Ga 61
051
Mot

Fig. 4 Control-flow graph of P

{(xi @i V by {lim}U{Lin}) }

{0 YA 5 1= { {05 () 507 (1)}

and the greatest lower bound N is defined as:

{(xis i A s {im 3L)} i = 5

() otherwise

{Gxiy di {lim) Y0 O, 0, {lj,n})}{

Example 1 Let us illustrate the data-flow analysis on the running example P of
Sect. 2. The control-flow graph of P and the data-flow equations for each node are
depicted in Figs. 4 and 5° respectively. If we solve the equations assuming the
initial value as empty set, we get the least fix-point solution depicted in Fig. 6. The
solution clearly indicates that the data corresponding to the attributes “Total Amt”
and “Offer” may possibly be defined at program points 11 and 16. Therefore, this
part act as variant part of the database, while the remaining acts as an invariant part.

3For the sake of simplicity, we omit set-curly-braces incase of singleton set.

162 S. Rani et al.

Fig. 5 Data-flow equations [on =10

of control-flow graph nodes [1] = (TOT\{(stmt, ?)})U{(stmt, 1)}
of P 21 = (I11\{($choice, 2)})U{($choice, 2)}
[31 = ([2I\{($Item, ?)})U{($Item, 3)}
4] = ([3]\{($Item_count, ?)})U{($Item_count, 4)}
5] = ([41\{($Cust_d, ?)})U{($Cust_id, 5)}
[[6]] = IIS]]|$choice::“purchase"
[71 = ([6I\{($rs1, 2)})U{($rs1, 7)}
[81 = II7]]|rsl.next()
91 = (I8T\{($Ord _no, ?)})U{($Ord_no, 9)}
[101 = 91
[11] = [10]u{upd(Total Amt)lWHERE Custld = $Cust.id!
[12] = ([[6]] U8y [[11]])|$choice::0ffer
[13] = ([121\{($rs2, 2)}u{($rs2, 13)}
[14] = ([13] v [[16]])|r524next()
[15] = ([140\{($gift, 2)HU{($gift, 15)}
[16] = [15]U{upd(offer)WHERE Customerld = $r52.CustId}
177 = [12] v [[14]

4.2 Watermarking of Invariant Parts

In this phase, we may use any of the existing watermarking techniques [15] to
watermark the invariant part of the database obtained in the previous phase. As
invariant parts are not prone to modification, of course the embedded watermark
will behave as persistent one.

However, the choice of existing watermarking technique is determined by (i) the
use of data in a particular application context, (ii) the size of invariant part which is
used as cover, (iii) the type of the cover, etc.

4.3 Watermarking of Applications Using Opaque Predicates

An opaque predicate is a predicate whose truth value is known a priori [8]. Moden
et al. [22] first used opaque predicates in softwares watermarking by inserting
dummy methods guarded by opaque predicates. The key challenge to design
opaque predicates is that they should be resilient to various forms of attack-analysis.
A variety of techniques such as using number theoretic results, pointer aliases, and
concurrency have been suggested for the construction of opaque predicates [8]. In
addition, Arboit also suggested a technique for constructing a family of opaque
predicates through the use of quadratic residues [3]. Arboit’s proposal is to encode

Data-Flow Analysis-Based Approach of Database Watermarking 163

o] =0
[1] = {(stmt, 1)}
[2]] = {(stmt, 1), ($choice, 2)}
[3] = {(stmt, 1), ($choice, 2), ($Item, 3)}
[4] = {(stmt, 1), ($choice, 2), ($Item, 3), ($Item_count, 4)}
[[5] = {(stmt, 1), ($choice, 2), ($Item, 3), ($Item_count, 4), ($Cust_id, 5)}
[6] = {(stmt, 1), ($choice, 2)|$choice==purchaser ($Item, 3), ($Item_count, 4), ($Cust-id, 5)}
[71 = {(stmt, 1), ($choice, 2)|$Choice::purchase/ ($Item, 3), ($Item_count, 4), ($Cust_id, 5),
($rs1, 7)}
[81 = {(stmt, 1), ($choice, 2)lgchoice==purchase, ($Item, 3), ($ltem_count, 4), ($Cust.id, 5),
(8151, 7)lges1 .next()}
[91 = {(stmt, 1), ($choice, 2)lschoice==purchase, ($ltem, 3), ($ltem_count, 4), ($Cust-id, 5),
($I‘Sl, 7)|$rsl.next()/ ($Ordno, 9)}
[10] = {(stmt, 1), ($choice, 2)|$choice::purchase/ ($Item, 3), ($Item_count, 4), ($Cust_id, 5),
($r51, 7)lgrs1.next()- ($Ord-no, 9)}
[11] = {(stmt, 1), ($choice, 2)|$Choice=:purchase, ($Item, 3), ($Item_count, 4), ($Cust_id, 5),
($I‘Sl, 7)|$rsl.next()/ ($Ordﬁ0/ 9)/ (TOtalAmt/ 11)|Custld:$CustJd}
[12] = {(stmt, 1), ($choice, 2)|$Choice::purchase, ($Item, 3), ($Item_count, 4), ($Cust_id, 5),
($rs1, 7)lgrs1.next()s ($Ord_no, 9), (TotalAmt, 11)|custid=sCust.id}
[13]] = {(stmt, 1), ($choice, 2)lschoice==purchase, ($Item, 3), ($ltem_count, 4), ($Cust.id, 5),
($I‘Sl, 7)|$rsl.next()r ($Ordm0, 9)/ (TotalAmt, 11)|Custld:$Custjdr ($r52/ 13)}
[14] = {(stmt, 1), ($choice, 2)lschoice==purchase, ($Item, 3), ($Item_count, 4), ($Cust id, 5),
($r§1/ 7)|$rslnext()r ($Ordm0, 9)/ (TOtalAmt/ 1])|Cust1d=$Custid/ ($I‘SZ, 13)|$r52.next()/
($glft, 15), (offer, 16)|Customerld:$r52.CustId}
[15]1 = {(stmt, 1), ($choice, 2)lschoice==purchase, ($ltem, 3), ($ltem_count, 4), ($Cust.id, 5),
($I‘Sl, 7)|$rsl.next()r ($Ordmo, 9)/ (TOtalAmt/ 11)|Custld:$CustJd/ ($I‘SZ, 13)|$r52.next()/
($gift, 15)}
[[16]] = {(stmt, 1), ($choice, 2)lschoice==purchase, ($Item, 3), ($ltem_count, 4), ($Cust.id, 5),
(8rsL, 7lsrst next), ($0rd-no, 9), (TotalAmt, 11)|custid=scust.id, (3152, 13)lsrs2 next
($glftr 15), (offer, 16)|Customerld=$rsZ.CustId}
[171 = {(stmt, 1), ($choice, 2)lgchoice==purchase, ($Item, 3), ($ltem_count, 4), ($Cust.id, 5),
($I‘§1, 7)|$rsl.next()/ ($0rd no, 9), (TotalAmt, 11)|custid=sCust.id, ($152, 13)|$r52.next()r
($g1ftr 15)r (Offerr 16)|Customerld:$rsZ.CustId}

Fig. 6 Least fix-point solution of equations in Fig. 5

the watermark information in the form of opaque predicates and to embed it into the
software without affecting the control-flow structures.

The integrity constraints defined on a database ensure that the attributes under
the constraints will have right and proper values in the database. Moreover, data-
base designers also have opportunity to define their own assertions. These con-
straints which in fact define the properties of attribute-values, can be represented in
terms of predicate formulas of first-order logic.

In this phase, we identify integrity constraints or we define assertions as a way to
represent the properties of values in the variant part of the database obtained in the

164 S. Rani et al.

phase before. Observe that, although values in the variant part are prone to be
updated or deleted, their properties represented by the constraints (integrity con-
straints or assertions) remain unchanged. Importantly, these constraints act as
opaque predicate as their truth value w.r.t. the values in variant part is always true.
We follow existing software watermarking techniques [16, 23] to watermark the
applications in the information system by using these opaque predicates. As the
applications contain SQL statements, we may use the conditional-part (WHERE
clause) of SQL statements as cover.

Consider the running example. Consider an integrity constraint defined on the
attribute “Age” which says that the age must belong to the range 15-70. This is
expressed as:

15<Age <70

Since the formula is always true, it acts as an opaque predicate. Following
Arboit’s proposal [3], we can watermark the code by embedding this opaque
predicate in the statement 13 as shown below:

$rs2 = SELECT Custld FROM Cust WHERE TotalAmt > 5000 AND 15 < Age < 70;

5 Complexity Analysis

Let n be the program size. Let p be the number of variables (which include database
attributes and application variables) in the program. The number of data-flow
equations associated with control-flow nodes of the program is n. Since each
data-flow equation depends on the results of the predecessor nodes, the worst-case
time complexity of each data-flow equation is O(n). At each iteration the analysis
provides us the information about the data defined up to each program point.
Therefore, the height of the corresponding finite lattice is O(p). Thus, the overall
worst-case time complexity of data-flow analysis is O(n x n x p) = O(nzp).

6 Security Analysis

The proposed approach focuses on information systems scenario where databases
are associated with a predefined set of applications. Our basic assumption is that
only the database statements in the associated applications are authorized to per-
form computations on the database. Since attackers are not allowed to issue any
other database operations, this mitigates the possibility of random value modifi-
cation attacks on watermark in invariant part. This is to note that attacker can

Data-Flow Analysis-Based Approach of Database Watermarking 165

perform attacks in the variant part (see in Sect. 7). The integrity constraints, which
are treated as opaque predicates, also do not change over time. Therefore, water-
mark detection in our approach is deterministic in practice. However, attackers may
perform static analysis to detect opaque predicates [9] in order to remove water-
marks from the associated applications codes.

7 Experimental Results

We have performed experiment on the Forest Cover Type data set.* The data set has
581012 tuples and 61 attributes. An extra attribute id is added in our experiment
that serves as primary key. The experiment is performed on server equipped with
Intel Xeon processor, 64 GB RAM, 3.07 GHz clock speed and Linux operating
system. The algorithms are implemented in java version 1.7 and MYSQL version
5.1.73.

In Table 2, we describe the notations used in the tables showing experimental
results. Table 3 depicts results of watermark detection after random update attacks
take place in AHK algorithm [1]. Observe that detection may fail when more tuples
are modified (updated) by attackers.

Experimental results obtained in our proposed scheme are depicted in Table 4.
We have taken results by changing the size of invariant part as 25, 50, 75 and 90 %
that include 145253, 290506, 435759 and 522910 tuples, respectively. Observed
that we follow AHK algorithm to embed and detect watermark in invariant
part. The experimental results depict that attackers may try to create a new
watermark in variant part by performing random modification attacks. The results
imply that probability of false-watermark detection in variant part increases if the
size of variant part decreases or the value of o (hence 7) decreases. For lower value

Table 2 Descriptions of the notations

Count No. of tuples used for particular experiment

v No. of attributes used for marking and detection in the relation
y Fraction of tuples used in the experiment

& No. of least significant bit available for marking in an attribute
TC Total count that is marked during embedding

o Significance level of the test for detecting watermark

T Threshold parameter for detecting watermark

“Available in the University of California-Irvine KDD Archive kdd.ics.uci.
edu/databases/covertype/covertype.html.

=
.m (panunuod)
& /S SIPSO9TT 90LIC SLO
v x §9569911 Ly09¢ 0gcee 60 0oL
Va S9868LIT (A K 80
x 6£8S0€CT L¥09C 9LIVC 60 0¢ 8
x 1ce861¢CI Ly09C r68¢C 60 0L
A 9L09C6C1 Ly09¢ r68¢C 60 0s (U 6£€0S¢el 1 r68¢C 4!
Va €SLLO6TT 90LTC SLo
x L8SY6ECT L¥09¢ 12924 60 0L
/S €01TTECT 6520C L0
S 918850CI A R4 80
x 6560661 1 LY09¢ €10LT 60 0s 8 Y0Y0r0CI r68¢C ST 0¢ 0l Cl018¢s
S LS6S80C1 yeoey SLo
x cCIovell 6v£CS CLL6Y 60 0L
Va CEOT19ETT (4354 80
x Y69¢CSTI 617¢CS 6611S 60 0S 8
A 19¢v9LIT Yoty SLO
x 10061CT1T 6v£CS 9LETS 60 0L
Va YOELS8TT 6Y€TS ¥8Ces 60 0S 01 11198811 9918¢ cl
/S 000v6¥ 11 yeoey SL0
x CPITILTT 6v£CS [43°14% 60 0L
Va 08¥CE9T 1 [435%0% 80
x 9COVLETT 617¢CS (49214 60 0S o1 LETBSOCT 9918¢ Sl 01 o1 Cl018¢s
(oasu) Junod (o9swr) oy
19919 ui) 199391 1 UYoreI 0 parepdn sofdn 9, payepdn-> paquig oL P) 4 a juno)

166

[1] wypuoSe YHV ur syoepe ojepdn wopuer Iajje sINSAI UONIRR(€ IqeL

167

Data-Flow Analysis-Based Approach of Database Watermarking

x LS8S6TCI §9901 0LTOT 60 0L
A 00LE86T 1T 08176 80
x LT8IS6T1 §9901 S8Y01 60 0s 8
/S SLT689T1 8888 SLo
x LT8ISOI1 §9901 SSYOl 60 0L
Va €ESTYOTL §9901 29801 60 0s 0l €88CCIIL 16811 cl
Va C8IVOLIT 8888 SLo
x 88900¢C1 $9901 9906 60 0L
A LOS8SETT 0876 80
x SL86ISTI §9901 L986 60 0s (] 1L68SECT 16811 ST 0s 0l Cl018¢s
(oasu) Junod (o9swr) o
19919 um) 199191 1 UYoreI 0 parepdn sofdn 9, paepdn-> paquig oL P) 4 a juno)

(panunuod) ¢ dqe],

(ponunuod)

m X 8CLLS6E ILYT 06
.m X 0788L8E | Covl 9LY1 S0 0s G8LOTLY | 9988 0¢
& ,r LEVSE6E STo¢ 06
v A oresTTy | 029¢ 629¢ S0 0s L¥T6199 | 10LIT | OC
X LS0006€ 6¥CL 06
A 089LI0V | CTSTL 69CL 0} 0¢ LT09SS9 | €99¢v | O1
A L1T690%Y (349 4! 06
A 0L8¢66E | €SI CLSYT | S0 0s 8 | €5TSPl L8GES99 | TOTL8 | S | SI| OT| 6SLSEY
X PSSESEL | 186C (444 S0 06
X LEYOOTL | 186C 6T S0 0s
X 806SCCL | S9€S £V6C 60 SC 106SL6C | 688S 0s
X 7806CEL | €STL L 0} 06
X 86800T1L | €SCL IveL S0
X creetel | 6L801 IveL | SLO 0s L8SI8IE | 9ev¥l | OC
X 068€0TL | 09S¥1 cIsvl| S0 06
A 00CLEOL | 09SP1 L9SYT | S0
X 0S0ESIL | O¥8IC LOSYT | SL°O 0¢ SSP8CIE | 9¥06C | OI
A 0IveLCL | STI6T 0S16C| €S0 06
a 06CLOCL | STI6T Lyeec | S0
X 9GY9TCL | 889¢Y L¥T6T | SL'O 0s 8 | 90506C 60LETOT | LT08S | S | ST| OT| 90506C
X 1989.86 | 0899 10y L1S08L | ¥¥6C 0s
X 01€Cy86 | TSI 9€L01 8LCI8L | CTLTL 0cC
X 1L6YL66 | T0LCE 6CLIT 18CI8L | ¥9Sv1 | O1
X €819L201 | 9¢¥S9 ¥99¢t | SL°O 0s 0T | 6SLSEY 18SI8L | 0Cc06C | § | CI| OI| €Scsvl
(oosur) Junod parepdn (oosu)
(39919 awin 19939 1 UyoreN 0 soidm 9 | pajepdn-3 | juno)d Qwiry paquug OL| 4| 2| a| 3wuno)
yred jueLe A jred juerreAuy
M Qwayos pasodoid ur juerreA uo syoepe jepdn wopuel Ioe UONINR(§ dqe],

169

Data-Flow Analysis-Based Approach of Database Watermarking

A 9L19891 119 06
X CSETILT | 019 019 ¢o 0S 0vOIIS6 | 0€901 | OS
A YSOVCLI [§94! 06
S ¥8900LT | Tevl 354! S0 0s 7566896 | 6L09C | 0T
A Y6S6VLI 976¢ 06
A €8ICILT | 888C 126¢ S0 0S 6C17986 | 68¢CS | OI
a SETOP9I1 £68S 06
A 0C8CI9l | €18¢S 1068 0] 0S 8 | COI8S 9661696 | Iv9v0L | ¢ | ST | O | 016CCS
(oosur) Jjunod porepdn (o9su)
{10319 awmn 10919 UoleN 0 sordny 9, | perepdn-3 | juno) auIn paquuiyg oLl 4| 2| a| wno)
jred juere A jred juereAuy

(panunuod) ¢ dqe],

170 S. Rani et al.

of a, attacker may successfully prove the existence of such false-watermark.
Parameters used by the attacker for detecting false-watermark are similar as those
used for marking by the owner. This situation may arise during proving the own-
ership in presence of all concerned people.

8 Conclusions

In this paper, we proposed a persistent watermarking of information systems
comprising of a set of applications supported by the database at the back-end. We
provided a unified framework by combining software watermarking and database
watermarking to watermark the complete system at a time. The proposal identifies
both variant and invariant part of the database by applying data-flow analysis to the
applications, aiming at making the embedded watermarks persistent. The proposed
technique serves as generalized framework which may enhance any of the existing
techniques in the literature in terms of persistency. We are now in process of
building a prototype tool based on the proposal.

References

1. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework, algorithms and
analysis. VLDB J. 12(2), 157-169 (2003)

2. Al-Haj, A., Odeh, A.: Robust and blind watermarking of relational database systems.
J. Comput. Sci. 4, 1024-1029 (2008)

3. Arboit, G.: A method for watermarking java programs via opaque predicates. In: Proceedings
of the 5th International Conference on Electronic Commerce Research (ICECR-5). pp. 184—
196. ACM Press, San Diego (2002)

4. Bhattacharya, S., Cortesi, A.: A distortion free watermark framework for relational databases.
In: Proceedings of the 4th International Conference on Software and Data Technologies, Sofia
(2009)

5. Bhattacharya, S., Cortesi, A.: A generic distortion free watermarking technique for relational
databases. In: Proceedings of the Fifth International Conference on Information Systems
Security (ICISS 2009). LNCS Springer Verlag, Kolkata (2009)

6. Bhattacharya, S., Cortesi, A.: Distortion-free authentication watermarking. In: Cordeiro, J.,
Virvou, M., Shishkov, B. (eds.) Software and Data Technologies, pp. 205-219.
Springer CCIS, Volume 170 (2013)

7. Camara, L., Li, J., Li, R., Xie, W.: Distortion-free watermarking approach for relational
database integrity checking. Mathematical Problems in Engineering (2014)

8. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and stealthy opaque
constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’98). pp. 184-196. ACM Press, San Diego (1998)

9. Dalla Preda, M., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates detection
by abstract interpretation. In: Johnson, M., Vene, V. (eds.) Algebraic Methodology and
Software Technology, pp. 8-95. Springer LNCS 4019 (2006)

10. Guo, H., Li, Y., Liua, A., Jajodia, S.: A fragile watermarking scheme for detecting malicious
modifications of database relations. Inf. Sci. 176, 1350-1378 (2006)

Data-Flow Analysis-Based Approach of Database Watermarking 171

11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.
217.

28.

Gupta, G., Pieprzyk, J.: Database relation watermarking resilient against secondary
watermarking attacks. In: Proceedings of the Fifth International Conference on Information
Systems Security (ICISS 2009). pp. 222-236. LNCS Springer Verlag, Kolkata (2009)
Halder, R., Cortesi, A.: Persistent watermarking of relational databases. In: Proceedings of the
IEEE International Conference on Advances in Communication, Network, and Computing
(CNC’10). IEEE CS, India (2010)

Halder, R., Cortesi, A.: A persistent public watermarking of relational databases. In:
Proceedings of the 6th International Conference on Information Systems Security (ICISS’10).
pp- 216-230. Springer LNCS 6503, India (2010)

Halder, R., Cortesi, A.: Abstract interpretation of database query languages. Comput. Lang.
Syst. Struct. 38, 123-157 (2012)

. Halder, R., Pal, S., Cortesi, A.: Watermarking techniques for relational databases: survey,

classification and comparison. J. Univ. Comput. Sci. 16(21), 3164-3190 (2010)

Hamilton, J., Danicic, S.: A survey of static software watermarking. In: 2011 World Congress
on Internet Security (WorldCIS’11). pp. 100-107. IEEE (2011)

Khan, A., Husain, S.A.: A fragile zero watermarking scheme to detect and characterize
malicious modifications in database relations. Sci. World J. (2013)

Khanduja, V., Chakraverty, S., Verma, O.P., Singh, N.: A scheme for robust biometric
watermarking in web databases for ownership proof with identification. In: Active Media
Technology, pp. 212-225. Springer (2014)

Khanduja, V., Verma, O.P., Chakraverty, S.: Watermarking relational databases using
bacterial foraging algorithm. Multimed. Tools Appl. pp. 1-27 (2013)

Li, Y., Deng, R.H.: Publicly verifiable ownership protection for relational databases. In:
Proceedings of the 2006 ACM Symposium on Information, computer and communications
security (ASIACCS’06). pp. 78-89. ACM, Taipei (2006)

Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data using fragile
watermarks. In: Proceedings of the 4th ACM workshop on Digital rights management
(DRM’04). pp. 73-82. ACM Press, Washington DC (2004)

Monden, A., lida, H., Matsumoto, K.i., Inoue, K., Torii, K.: A practical method for
watermarking java programs. In: Proceedings of the 24th Annual International Computer
Software and Applications Conference, (COMPSAC 2000). pp. 191-197. IEEE (2000)
Myles, G., Collberg, C.: Software watermarking via opaque predicates: implementation,
analysis, and attacks 6(2), 155-171 (2006)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer, New York
(1999)

Sion, R., Atallah, M., Prabhakar, S.: Rights protection for categorical data. IEEE Trans.
Knowl. Data Eng. 17, 912-926 (2005)

Yingjiu, L.: Database watermarking: A systematic view. Springer, Berlin (2007)

Zhang, Y., Niu, X., Zhao, D., Li, J., Liu, S.: Relational databases watermark technique based
on content characteristic. In: First International Conference on Innovative Computing,
Information and Control (ICICIC 2006). IEEE CS, Beijing (2006)

Zhou, X., Huang, M., Peng, Z.: An additive-attack-proof watermarking mechanism for
databases’ copyrights protection using image. In: SAC’07: Proceedings of the 2007 ACM
Symposium on Applied Computing. pp. 254-258. Seoul, Korea (2007)

	11 Data-Flow Analysis-Based Approach of Database Watermarking
	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Motivations
	1.3 Contributions

	2 Running Example
	3 Basic Concepts
	4 Proposed Technique
	4.1 Data-Flow Analysis
	4.2 Watermarking of Invariant Parts
	4.3 Watermarking of Applications Using Opaque Predicates

	5 Complexity Analysis
	6 Security Analysis
	7 Experimental Results
	8 Conclusions
	References

