
Advances in Intelligent Systems and Computing 396

Rituparna Chaki
Agostino Cortesi
Khalid Saeed
Nabendu Chaki Editors

Advanced
Computing
and Systems
for Security
Volume 2

Advances in Intelligent Systems and Computing

Volume 396

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on
theory, applications, and design methods of Intelligent Systems and Intelligent Computing.
Virtually all disciplines such as engineering, natural sciences, computer and information
science, ICT, economics, business, e-commerce, environment, healthcare, life science are
covered. The list of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Rituparna Chaki • Agostino Cortesi
Khalid Saeed • Nabendu Chaki
Editors

Advanced Computing
and Systems for Security
Volume 2

123

Editors
Rituparna Chaki
University of Calcutta
Kolkata, West Bengal
India

Agostino Cortesi
Università Ca’ Foscari
Venice
Italy

Khalid Saeed
Faculty of Computer Science
Bialystok University of Technology
Białystok
Poland

Nabendu Chaki
University of Calcutta
Kolkata, West Bengal
India

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-81-322-2651-2 ISBN 978-81-322-2653-6 (eBook)
DOI 10.1007/978-81-322-2653-6

Library of Congress Control Number: 2015951344

Springer New Delhi Heidelberg New York Dordrecht London
© Springer India 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer (India) Pvt. Ltd. is part of Springer Science+Business Media (www.springer.com)

Preface

The Second International Doctoral Symposium on Applied Computation and
Security Systems (ACSS 2015) took place during May 23–25, 2015 in Kolkata,
India. The University of Calcutta collaborated with Ca’ Foscari University of
Venice, Bialystok University of Technology, and AGH University of Science and
Technology, Poland, to make ACSS 2015 a grand success.

The symposium aimed to motivate Ph.D. students to present and discuss their
research works to produce innovative outcomes. ACSS 2015 invited researchers
working in the domains of Computer Vision & Signal Processing, Biometrics-based
Authentication, Machine Intelligence, Algorithms, Natural Language Processing,
Security, Remote Healthcare, Distributed Systems, Embedded Systems, Software
Engineering, Cloud Computing & Service Science, Big Data, and Data Mining to
interact.

By this year, the post-conference book series are indexed by ISI Compendex.
The sincere effort of the program committee members coupled with ISI indexing
has drawn a large number of high-quality submissions from scholars all over India
and abroad. A thorough double-blind review process was carried out by the PC
members and by external reviewers. While reviewing the papers, reviewers mainly
looked at the novelty of the contributions, at the technical content, at the organi-
zation, and at the clarity of presentation. The entire process of paper submission,
review, and acceptance process was done electronically. Due to the sincere efforts
of the Technical Program Committee and the Organizing Committee members, the
symposium resulted in a suite of strong technical paper presentations followed by
effective discussions and suggestions for improvement of each researcher.

The Technical Program Committee for the symposium selected only 37 papers
for publication out of 92 submissions. During each session, the authors of each
presented paper were given a list of constructive suggestions in a bid to improve
upon their work. Each author had to incorporate the changes in the final version
of the paper as suggested by the reviewers and the respective session chairs. The
symposium Proceedings are organized as a collection of papers, on a session-wise
basis.

v

We take this opportunity to thank all the members of the Technical Program
Committee and the external reviewers for their excellent and time-bound review
works. We thank all the sponsors who have come forward toward the organization
of this symposium. These include Tata Consultancy Services (TCS), Springer India,
ACM India, M/s Business Brio, and M/s Enixs. We appreciate the initiative and
support from Mr. Aninda Bose and his colleagues in Springer for their strong
support toward publishing this post-symposium book in the series “Advances in
Intelligent Systems and Computing.” Last but not least, we thank all the authors
without whom the symposium would not have reached this standard.

On behalf of the editorial team of ACSS 2015, we sincerely hope that this book
will be beneficial to all its readers and motivate them toward further research.

Rituparna Chaki
Agostino Cortesi

Khalid Saeed
Nabendu Chaki

vi Preface

Contents

Part I Signal Processing

Design and Development of Marathi Speech Interface System 3
Santosh Gaikwad, Bharti Gawali and Suresh Mehrotra

Fusion-Based Noisy Image Segmentation Method 21
Mateusz Buczkowski and Khalid Saeed

An Approach for Automatic Indic Script Identification
from Handwritten Document Images . 37
Sk. Md. Obaidullah, Chayan Halder, Nibaran Das and Kaushik Roy

Writer Verification on Bangla Handwritten Characters 53
Chayan Halder, Sk. Md. Obaidullah, Jaya Paul and Kaushik Roy

Face Recognition in Video Using Deformable Parts Model
with Scale Invariant Feature Transform (DPSIFT) 69
V. Mohanraj, V. Vaidehi, Ranajith Kumar and R. Nakkeeran

Registration of Range Images Using a Novel Technique
of Centroid Alignment. 81
Parama Bagchi, Debotosh Bhattacharjee and Mita Nasipuri

Part II Software Engineering

An Investigation into Effective Test Coverage . 93
Debashis Mukherjee and Rajib Mall

Resource Management in Native Languages Using Dynamic
Binary Instrumentation (PIN) . 107
Nachiketa Chatterjee, Saurabh Singh Thakur and Partha Pratim Das

vii

http://dx.doi.org/10.1007/978-81-322-2653-6_1
http://dx.doi.org/10.1007/978-81-322-2653-6_2
http://dx.doi.org/10.1007/978-81-322-2653-6_3
http://dx.doi.org/10.1007/978-81-322-2653-6_3
http://dx.doi.org/10.1007/978-81-322-2653-6_4
http://dx.doi.org/10.1007/978-81-322-2653-6_5
http://dx.doi.org/10.1007/978-81-322-2653-6_5
http://dx.doi.org/10.1007/978-81-322-2653-6_6
http://dx.doi.org/10.1007/978-81-322-2653-6_6
http://dx.doi.org/10.1007/978-81-322-2653-6_7
http://dx.doi.org/10.1007/978-81-322-2653-6_8
http://dx.doi.org/10.1007/978-81-322-2653-6_8

A Study on Software Risk Management Strategies
and Mapping with SDLC . 121
Bibhash Roy, Ranjan Dasgupta and Nabendu Chaki

A New Service Discovery Approach for Community-Based
Web . 139
Adrija Bhattacharya, Smita Ghosh, Debarun Das
and Sankhayan Choudhury

Data-Flow Analysis-Based Approach of Database
Watermarking . 153
Sapana Rani, Preeti Kachhap and Raju Halder

A New Framework for Configuration Management and Compliance
Checking for Component-Based Software Development 173
Manali Chakraborty and Nabendu Chaki

CAD-Based Analysis of Power Distribution Network
for SOC Design. 189
Ayan Majumder, Moumita Chakraborty, Krishnendu Guha
and Amlan Chakrabarti

Part III Algorithms

A New Hybrid Mutual Exclusion Algorithm in the Absence
of Majority Consensus. 201
Sukhendu Kanrar, Samiran Chattopadhyay and Nabendu Chaki

A Comprehensive Sudoku Instance Generator 215
Arnab Kumar Maji, Sunanda Jana and Rajat Kumar Pal

Implementing Software Transactional Memory
Using STM Haskell . 235
Ammlan Ghosh and Rituparna Chaki

Comparative Analysis of Genetic Algorithm and Classical
Algorithms in Fractional Programming . 249
Debasish Roy, Surjya Sikha Das and Swarup Ghosh

An Algorithm to Solve 3D Guard Zone Computation
Problem . 271
Ranjan Mehera, Piyali Datta, Arpan Chakraborty
and Rajat Kumar Pal

Multistep Ahead Groundwater Level Time-Series Forecasting
Using Gaussian Process Regression and ANFIS 289
N. Sujay Raghavendra and Paresh Chandra Deka

viii Contents

http://dx.doi.org/10.1007/978-81-322-2653-6_9
http://dx.doi.org/10.1007/978-81-322-2653-6_9
http://dx.doi.org/10.1007/978-81-322-2653-6_10
http://dx.doi.org/10.1007/978-81-322-2653-6_10
http://dx.doi.org/10.1007/978-81-322-2653-6_11
http://dx.doi.org/10.1007/978-81-322-2653-6_11
http://dx.doi.org/10.1007/978-81-322-2653-6_12
http://dx.doi.org/10.1007/978-81-322-2653-6_12
http://dx.doi.org/10.1007/978-81-322-2653-6_13
http://dx.doi.org/10.1007/978-81-322-2653-6_13
http://dx.doi.org/10.1007/978-81-322-2653-6_14
http://dx.doi.org/10.1007/978-81-322-2653-6_14
http://dx.doi.org/10.1007/978-81-322-2653-6_15
http://dx.doi.org/10.1007/978-81-322-2653-6_16
http://dx.doi.org/10.1007/978-81-322-2653-6_16
http://dx.doi.org/10.1007/978-81-322-2653-6_17
http://dx.doi.org/10.1007/978-81-322-2653-6_17
http://dx.doi.org/10.1007/978-81-322-2653-6_18
http://dx.doi.org/10.1007/978-81-322-2653-6_18
http://dx.doi.org/10.1007/978-81-322-2653-6_19
http://dx.doi.org/10.1007/978-81-322-2653-6_19

Anomaly Detection and Three Anomalous Coins Problem. 303
Arpan Chakraborty, Joydeb Ghosh, Piyali Datta, Ankita Nandy
and Rajat Kumar Pal

Author Index . 321

Contents ix

http://dx.doi.org/10.1007/978-81-322-2653-6_20

About the Editors

Rituparna Chaki has been an Associate Professor in the A.K. Choudhury School
of Information Technology, University of Calcutta, India since June 2013. She
joined academia as faculty member in the West Bengal University of Technology in
2005. Before that she has served under Government of India in maintaining
industrial production database. Rituparna has received her Ph.D. from Jadavpur
University in 2002. She has been associated with organizing many conferences in
India and abroad by serving as Program Chair, OC Chair or as member of Technical
Program Committee. She has published more than 60 research papers in reputed
journals and peer-reviewed conference proceedings. Her research interest is pri-
marily in ad hoc networking and its security. She is a professional member of IEEE
and ACM.

Agostino Cortesi received his Ph.D. degree in Applied Mathematics and
Informatics from University of Padova, Italy, in 1992. After completing his
post-doc at Brown University, in the US, he joined the Ca’ Foscari University of
Venice. In 2002, he was promoted to full professor of Computer Science. In recent
past, he served as Dean of the Computer Science program, as Department Chair,
and as Vice-Rector of Ca’ Foscari University for quality assessment and institu-
tional affairs. His main research interests concern programming languages theory,
software engineering, and static analysis techniques, with particular emphasis on
security applications. He has published over 100 papers in high-level international
journals and proceedings of international conferences. His h-index is 15 according
to Scopus, and 23 according to Google Scholar. Agostino served several times as a
member (or chair) of program committees of international conferences (e.g., SAS,
VMCAI, CSF, CISIM, ACM SAC) and he is in the editorial boards of the journals
such as “Computer Languages, Systems and Structures” and “Journal of Universal
Computer Science.”

Khalid Saeed received the B.Sc. degree in Electrical and Electronics Engineering
from Baghdad University in 1976, the M.Sc. and Ph.D. degrees from Wrocław
University of Technology, in Poland in 1978 and 1981, respectively. He received
his D.Sc. Degree (Habilitation) in Computer Science from Polish Academy of

xi

Sciences in Warsaw in 2007. He is a Professor of Computer Science with AGH
University of Science and Technology in Poland. He has published more than 200
publications—edited 23 books, journals and conference proceedings, eight text and
reference books. He has supervised more than 110 M.Sc. and 12 Ph.D. theses. His
areas of interest are biometrics, image analysis and processing, and computer
information systems. He gave 39 invited lectures and keynotes in different uni-
versities in Europe, China, India, South Korea, and Japan. The talks were on
biometric image processing and analysis. He received about 18 academic awards.
Khalid Saeed is a member of more than 15 editorial boards of international journals
and conferences. He is an IEEE Senior Member and has been selected as IEEE
Distinguished Speaker for 2011–2016. Khalid Saeed is the Editor in Chief of
International Journal of Biometrics with Inderscience Publishers.

Nabendu Chaki is a Senior Member of IEEE and Professor in the Department of
Computer Science and Engineering, University of Calcutta, India. Besides editing
several volumes in Springer in LNCS and other series, Nabendu has authored three
textbooks with reputed publishers like Taylor & Francis (CRC Press), Pearson
Education, etc. Dr. Chaki has published more than 120 refereed research papers in
Journals and International conferences. His areas of research interests include image
processing, distributed systems, and network security. Dr. Chaki has also served as
a Research Assistant Professor in the Ph.D. program in Software Engineering at the
Naval Postgraduate School, Monterey, CA, USA. He is a visiting faculty member
in many universities including the University of Ca’ Foscari, Venice, Italy. Dr.
Chaki has contributed in SWEBOK v3 of the IEEE Computer Society as a
Knowledge Area Editor for Mathematical Foundations. Besides being in the edi-
torial board of Springer and many international journals, he has also served in the
committees of more than 50 international conferences. He has been the founding
Chapter Chair for ACM Professional Chapter in Kolkata, India since January 2014.

xii About the Editors

Part I
Signal Processing

Design and Development of Marathi
Speech Interface System

Santosh Gaikwad, Bharti Gawali and Suresh Mehrotra

Abstract Speech is the most prominent and natural form of communication
between humans. It has potential of being an important mode of interaction with
computer. Man–machine interface has always been proven to be a challenging area
in natural language processing and in speech recognition research. There are
growing interests in developing machines that can accept speech as input. Normal
person generally communicate with the computer through a mouse or keyboard. It
requires training and hard work as well as knowledge about computer, which is a
limitation at certain levels. Marathi is used as official language at government of
Maharashtra. There is a need for developing systems that enable human–machine
interaction in Indian regional languages. The objective of this research is to design
and development of the Marathi speech Activated Talking Calculator (MSAC) as an
interface system. The MSAC is speaker-dependent speech recognition system that is
used to perform basic mathematical operation. It can recognize isolated spoken digit
from 0 to 50 and basic operation like addition, subtraction, multiplication, start, stop,
equal, and exit. Database is an essential requirement to design the speech recognition
system. To reach up to the objectives set, a database having 22,320 sizes of
vocabularies is developed. The MSAC system trained and tested using the Mel
Frequency Cepstral Coefficients (MFCC), Linear Discriminative Analysis (LDA),
Principal Component Analysis (PCA), Linear Predictive Codding (LPC), and
Rasta-PLP individually. Training and testing of MSAC system are done with indi-
vidually Mel Frequency Linear Discriminative Analysis (MFLDA), Mel
Frequency Principal Component Analysis (MFPCA), Mel Frequency Discrete

S. Gaikwad (&) � B. Gawali � S. Mehrotra
System Communication Machine Learning Research Laboratory (SCM-RL),
Department of Computer Science and Information Technology,
Dr. Babasaheb Ambedkar Marathwada University, Aurangabad,
Maharashtra, India
e-mail: santosh.gaikwadcsit@gmail.com

B. Gawali
e-mail: bharti_rokade@yahoo.co.in

S. Mehrotra
e-mail: mehrotra_suresh15j@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_1

3

Wavelet Transformation (MFDWT), and Mel Frequency Linear Discrete Wavelet
Transformation (MFLDWT) fusion feature extraction techniques. This experiment is
proposed and tested the Wavelet Decomposed Cepstral Coefficient (WDCC) with
18, 36, and 54 coefficients approach. The performance of MSAC system is calcu-
lated on the basis of accuracy and real-time factor (RTF). From the experimental
results, it is observed that the MFCC with 39 coefficients achieved higher accuracy
than 13 and 26 variations. The MFLDWT is proven higher accuracy than MFLDA,
MFPCA, MFDWT, and Mel Frequency Principal Discrete Wavelet Transformation
(MFPDWT). From this research, we recommended that WDCC is robust and
dynamic techniques than MFCC, LDA, PCA, and LPC. MSAC interface application
is directly beneficial for society people for their day to day activity.

Keywords Human-computer interaction �MSAC �MFCC � PCA �WDCC � LPC

1 Introduction

Speech is the most natural and efficient form of exchanging information between
human. Automatic speech recognition (ASR) is defined as the process of converting
a speech signal to a sequence of words by means of an algorithm implemented by a
computer program. Speech recognition systems help users who cannot be able to
use the traditional Input and Output (I/O) devices [1, 2]. The man–machine inter-
face using speech recognition has helpful ways to for enable the visually impaired
and computer laymen to use the updated technologies [3]. There are growing
interests in developing machines that can accept speech as input. Given the sub-
stantial research efforts in the speech recognition worldwide and the rate at which
computer becomes faster and smaller, we can expect more applications of speech
recognition. The concept of machines being able to interact with people in natural
form is very interesting. It is desirable to have machine interaction in voice mode in
one’s native language. This is exclusively important in multilingual country such as
India, where a majority of the people is not comfortable with speaking, reading, and
listening English language [4]. Research in ASR by machine has attracted a great
deal of attention over the past six decades. For centuries, researcher has tried to
develop machines that can produce and understand speech as humans do so nat-
urally in native language. Some successful applications of speech recognition are
virtual reality, multimedia searches, auto-attendants, IVRS, natural language
understanding and many more applications [5–7].

This paper is organized as follows: Sect. 2 describes the related work of this
experiment. Section 3 describes the speech recognition with feature extraction
techniques. Section 4 explains the design of the Marathi speech interface system.
Section 5 describes the experimental results and their extensive application for
talking calculator and Sect. 6 gives the concluding remark of paper followed by
references.

4 S. Gaikwad et al.

2 Related Work

The main goal of speech recognition is to develop techniques and recognition sys-
tems for speech input to the machine. Human beings are comfortable speaking
directly with computers rather than depending on primitive interfaces such as key-
boards and pointing devices. The primitive interfaces like keyboard and pointing
devices require a certain amount of skill for effective usage. Use of mouse requires
good hand-eye coordination. It is very difficult for visually handicapped person to
use the computer. Moreover, the current computer interface assumes a certain level
of literacy from the user. It expects the user to have certain level of proficiency in
English apart from typing skill. Speech interface helps to resolve these issues [8].
Computers which can recognize speech in native languages enable the common man
to make use of those benefits in education technology [9]. The researcher turns
toward performance improvement of speech recognition system for significant
innovation of real-time applications [10]. Many factors are affecting the speech
recognition such as regional, sociolinguistic, or related to the environment. These
create a wide range of variations that may not be modeled correctly (speaker, gender,
speaking rate, vocal effort, regional accent, speaking style, nonstationary, etc.),
especially when resources for system training are infrequent. Performance is affected
by speech variability [11]. The majority of technological changes have been directed
toward the purpose of increasing robustness of the recognition system [12].

N.S. Nehe et al., proposed an efficient feature extraction method for speech recogni-
tion. The features were obtained Linear Predictive Codding (LPC) and DiscreteWavelet
Transformation (DWT). The proposed approach provides effective (better recognition
rate), efficient (reduced feature vector dimension) features. Continuous Density Hidden
Markov Model (CDHMM) has been implemented for system classification. The pro-
posed algorithmswere evaluated using an isolatedMarathi digits database in the presence
of white Gaussian noise [13]. Rajkumar S. Bhosale et al., worked on speech-independent
recognition system using multi-class support vector machine and LPC [14].

The research work for Indian languages in speech recognition has not yet
grasped to a critical level for a real-time communication as compare to other
languages of developed countries. Countable attempts to develop a speech recog-
nition system had been attempted by HP Labs India and IBM research lab, Google,
IIT Powai, CDAC Pune [15, 16].

However, there is lots of opportunity to develop a speech recognition system for
Indian languages. To achieve such aspiring motivation, the research is to develop
Marathi speech interface system for talking calculator application.

3 Speech Recognition and Feature Extraction Techniques

For the development of Marathi speech activated calculator (MSAC) system, the
recognition of speech is necessary. The speech is recognized and then the action is
performed. For the speech recognition system speech recording (database creation),

Design and Development of Marathi … 5

feature extraction, training, classification, and testing are fundamental steps. The
step by step flow diagram of speech recognition system is described in Fig. 1.

3.1 Feature Extraction Techniques

The MSAC system is trained and tested using three approaches of feature extrac-
tion, such as basic feature extraction techniques, fusion approach of feature
extraction techniques and Wavelet Decomposed Cepstral Coefficients (WDCC):
Proposed Approach. In the basic feature extraction techniques, the Mel Frequency
Cepstral Coefficient (MFCC), Linear Discriminative Analysis (LDA), Principal
Component Analysis (PCA), LPC, Rasta-PLP Analysis, and Discrete Wavelet
Transformation were implemented.

(a) Mel Frequency Cepstral Coefficient

The enriched literature available on speech recognition, hence reported that the
MFCC is most popular and robust technique for feature extraction [17, 18].
The MFCC is based on the known variation of the human ear’s critical bandwidth
frequencies with filters spaced linearly at low frequencies [19]. In this experiment,
we extracted the 13 and 39 features of MFCC. Figure 2 shows the graphical
representation of shows 39 Mel Frequency Cepstral coefficients (MFCC) for
गणकयंत्र of first seven frames. The MFCC extracted the basic feature, variation of
energy feature.

Fig. 1 Working of speech recognition system

6 S. Gaikwad et al.

(b) Linear Discriminative Analysis (LDA)

LDA algorithm provides better classification compared to principal components
analysis [20]. From the literature the Linear Discriminant Analysis (LDA) is
commonly used technique for data classification and dimensionality reduction, but
in this research we used for feature extraction. Figure 3 shows the graphical rep-
resentation of extracted LDA feature of speech signal गणकयंत्र for first 10 frames.

The LDA feature is the combination of the Projection matrix feature, eigen-
values, Mean square representation error, Bias feature, and mean of training data.

(c) Principal Component Analysis (PCA)

The principal component analysis is the techniques for classification, but here we
are used as feature extraction and dimension reduction. Figure 4 represents the
graphical representation of interclass identification of PCA feature.

Fig. 2 Graphical representation of MFCC 39 coefficients of word गणकयंत्र

Fig. 3 The LDA feature set for the speech signal

Design and Development of Marathi … 7

The principal component analysis extracts the 30 feature which is the combi-
nations of projection feature, in class variation, the mean and eigenvalues of the
speech signal.

(d) LPC

The LPC is one of the robust and dynamic speech analysis techniques. In this
research, we used the LPC for feature extraction. The graphical representation of
the mean extracted LPC coefficient of speech signal गणकयंत्र is described in Fig. 5.
The LPC 7 coefficients contain the Pitch, gain, and duration coefficient parameters
of energy.

(e) Rasta—PLP

Rasta—PLP techniques is used for feature extraction. This extracted feature is
the combination of the graphical band of voice signal. Figure 6 represents the
graphical representation of the extracted Rasta PLP coefficients.

Fig. 4 PCA with class classification

Fig. 5 Mean of extracted LPC coefficient of the speech signal

8 S. Gaikwad et al.

The Rasta feature contains the pitch, gain and duration of energy and short-term
noise coefficients.

(f) DWT

The wavelet series is just a sampled version of continuous wavelet transfor-
mation and its computation may consume a significant amount of time and
resources, depending on the resolution required [21]. The DWT is also used for
feature extraction as well as dimension reduction approach. The graphical repre-
sentation of DWT approximation coefficient is described in Fig. 7.

DWT coefficient is calculated at approximation and detail level. Extracted DWT
coefficients include the frequency variation of each frequency band in approxi-
mation level and energy variation with time duration in detail coefficients.

Fig. 6 RASTA-PLP coefficient of speech signal गणकयंत्र

Fig. 7 The extracted approximation coefficient of the speech signal गणकयंत्र

Design and Development of Marathi … 9

3.1.1 Fusion-Based Feature Extraction Techniques

The fusion approach means combination of different techniques. Total 13 MFCC
features were extracted and feature vector was formed. The formed feature vector
was passed to fusion technique as an input. The detail fusion approach of different
techniques with MFCC and their properties is explained in Table 1.

For the fusion-based approach, this research implemented the Mel Frequency
Linear Discriminative Analysis (MFLDA), Mel Frequency Principal Component
Analysis (MFPCA), Mel Frequency Discrete Wavelet Transformation (MFDWT),
Mel Frequency Principal Discrete Wavelet Transformation (MFPDWT), and Mel
Frequency Linear Discrete Wavelet Transformation (MFLDWT) fusion approach
as feature extraction techniques. Figure 8 represents the graphical representation of
extracted MFLDA feature for word गणकयंत्र”

3.1.2 WDCC: Proposed Approach

In proposed WDCC, the original speech signal is decomposed to second level. The
packet coefficient offers different time, frequency representation qualities and
consequently potential, for adaptation of the time series phenomenon. This strategy
of decomposition offers richest analysis of signal [22–26]. In the WDCC tech-
niques, the original speech signal is decomposed second level. The approximation
and detail coefficient is a distinguished output from decomposition step. The DCT
operation is performed on horizontal coefficient, which is fused with basic acoustic

Table 1 Fusion approach with MFCC and their properties

Sr.
no

Name of
fusion
technique

Combination of
techniques

Input
feature
vector

Output
feature
vector

Properties

1 MFLDA Fusion of MFCC
and LDA

13 02 It is used for dimension
reduction

2 MFPCA Fusion of MFCC
and PCA

13 02 It is used for dimension
reduction

3 MFDWT Fusion of MFCC
and DWT

13 01 The speed is fast as
compare to other
techniques

4 MFPDWT Fusion of MFCC,
PCA and DWT

13 01 It is used to reduce time
complexity

5 MFLDWT Fusion of MFCC,
LDA and DWT

13 01 It is also used to reduce
time complexity

10 S. Gaikwad et al.

coefficient are derived to first and second derivation where we got 18, 36, and 54
WDCC coefficients. The graphical representation of the extracted WDCC 18, 36,
and 54 coefficient is shown in Figs. 9, 10 and 11 respectively.

Fig. 8 The fusion approach of MFLDA (MFCC and LDA) of speech signal “गणकयंत्र”

Fig. 9 The WDCC extracted 18 features of word “गणकयंत्र”

Design and Development of Marathi … 11

4 Design of Marathi Speech Interface System

For the speech recognition system speech recording (database creation), feature
extraction, training, classification, and testing are fundamental steps.

Fig. 10 The WDCC extracted 36 features of word “गणकयंत्र”

Fig. 11 The WDCC extracted 54 features of word “गणकयंत्र”

12 S. Gaikwad et al.

4.1 Database Design

The collection of utterances in the proper manner is called the database. We
implemented this prototyping application as a speaker dependent. The total number
of words with probability 372 utterance is 20, and the data were collected in 03
session so the overall 22,320/- vocabulary size are collected in the database. The
sampling frequency for all recordings was 16,000 Hz at the room temperature and
normal humidity. The speech data are collected with the help of microphone
realtech and matlab software using the single channel. The preprocessing is done
with the help of computerized Speech Laboratory (CSL).

4.2 Marathi Speech Activated Calculator (MSAC)

In this research, our objective is to develop MSAC application. Figure 12 describes
the basic structural diagram for talking calculator. The voice is recognized and

Fig. 12 The basic structural diagram for talking calculator

Design and Development of Marathi … 13

specific action taken toward voice commands. The MSAC is the speaker-dependent
interface system.

5 Experimental Analysis

This application deals with defined set of experiments related to calculator applied
on the database designed for this research work.

5.1 Performance of the Marathi Speech Activated
Calculator (MSAC) System

The performance of the system is calculated on the basis of accuracy as well as a
real time factor. The real-time factor (RTF) is the time required for recognition in
response to the operation. The accuracy is calculated on the basis of confusion
matrix in which number of token was passed randomly.

Accuracy ¼ N � C
N

� 100

where N is a number of token passed and C is a number of token confuse. The RTF
is a common metric for computing the speed of an ASR system. If it takes time P to
process an input of duration I, the RTF is defined as

RTF ¼ P
I

5.2 Training of MSAC System

• MSAC system was trained using individually for the MFCC (13 feature),
MFCC (39 feature), LDA, PCA, LPC, Rasta-PLP, DWT techniques, and tested
the performance on the basis of the Euclidian distance approach.

• MSAC system was also trained for MFPCA, MFLDA, MFDWT, MFPDWT,
and MFLDWT techniques. The performance of MSAC was tested on the basis
of the Euclidian distance approach.

• MSAC system was trained using WDCC with 18, 36, and 54 coefficients sep-
arately and evaluated for the performance.

14 S. Gaikwad et al.

5.3 Testing of MSAC System

(a) Basic Feature Extraction

In this approach, MSAC system was tested using MFCC (13 feature) and MFCC
(39 feature), LDA, PCA, LPC, Rasta-PLP, and DWT techniques. The 13 isolated
words are used for testing. The performance of these techniques is calculated on the
basis of average accuracy and RTF.

• MFCC based MSAC performance
The performance of MSAC using MFCC is considered on the basis of 18 and 39
coefficients. Total 13 words were tested for 32 trials. The average performance
of MFCC for 18 and 39 coefficients are calculated as 75.78 and 78.03,
respectively. The RTF for MFCC 18 and 39 coefficients is the 26 and 38 s,
respectively.

• LDA-based MSAC performance
Total 13 words were tested for 32 trials. The average performance of LDA is
calculated as 67.17 %. The responding time (RTF) for the action taken is 46 s.

• PCA-based MSAC performance
Total 13 words were tested for 32 trials. The average performance of PCA is
calculated as 62.19 %. The RTF for MSAC using PCA techniques is 38 s.

• LPC-based MSAC performance
Total 13 words were tested for 32 trials. The average performance of LPC is
calculated as 61.23 %. The RTF for recognition and action taken in calculator is
51 s.

• Rasta-PLP-based MSAC performance
Total 13 words were tested for 32 trials. The average performance of Rasta-PLP
is calculated as 68.27 %. The RTF for recognition and action taken in calculator
is 48 s.

• DWT based MSAC performance
Total 13 words were tested for 32 trials. The average performance of Rasta-PLP
is calculated as 71.02 %. The responding time for the calculator for performing
the action is 32 s.

The comparative performance of the MSAC with different feature extraction
techniques is described in Table 2.

From Table 2, it is observed efficient accuracy is achieved with MFCC for 39
coefficients but RTF is bit increased than MFCC with 13 coefficients. MFCC 13
coefficient proved to be effective in term of accuracy and RTF.

(b) Fusion-Based Feature Extraction Techniques

In the fusion feature extraction techniques base MSAC testing, we have tested
the system using MFLDA, MFPCA, MFDWT, MFLPDWT, and MFLDWT tech-
niques. We explored fusion approach for system implementation. If the dimension

Design and Development of Marathi … 15

of the features is reduced without loss of information, this will reduce the RTF and
the MFCC provides higher accuracy so we fuse these techniques with MFCC.

• MFLDA-based MSAC performance

Total 13 words were tested for 35 trials. The average performance of MFLDA is
calculated as 87.90 %. The responding time for the calculator for performing the
action is 22 s.

• MFPCA-based MSAC performance

Total 13 words were tested for 35 trials. The average performance of MFPCA is
calculated as 87.12 %. The responding time for the calculator for performing the
action is 20 s.

• MFDWT-based MSAC performance

. Total 13 words were tested for 35 trials. The average performance of MFPCA
is calculated as 86.17 %. The responding time for the calculator for performing the
action is 6 s.

• MFPDWT-based MSAC performance

Total 13 words were tested for 35 trials. The average performance of MFPCA is
calculated as 89.09 %. The responding time for the calculator for performing the
action is 12 s.

• MFLDWT-based MSAC performance

Total 13 words were tested for 35 trials. The average performance of MFPCA is
calculated as 90.12 %. The responding time for the calculator for performing the
action is 10 s.

The comparative performance of MFLDA, MFPCA, MFDWT, MFPDWT, and
MFLDWT are described in Table 3.

The MSAC Application is the real interface application which requires lowest
real time factor. From the above results, it is observed that the MFLDWT is proven
a higher accuracy than other techniques with acceptable RTF.

Table 2 The performance of
MSAC of available feature
extraction technique in
literature

Sr. no Technique Accuracy (%) RTF (%)

1 PCA 62.19 38

2 LDA 67.17 46

3 LPC 61.23 51

4 Rasta-PLP 68.27 48

5 DWT 71.02 32

6 MFCC (13 feature) 75.78 26

7 MFCC (39 feature) 78.03 38

16 S. Gaikwad et al.

In the above fusion approach, we observed that the wavelet play an important
role for the reducing the RTF so we proposed our own techniques on the basis of
wavelet basic properties known as WDCC.

(c) WDCC: A proposed approach

This wavelet decomposed Cepstral Coefficient is used for basic feature extrac-
tion. This technique extracted basic feature, first derivative as well as second
derivative. From this technique extracted the 18 basic features, 36 features
(18 + First Derivative) and 54 features (18 + First derivative + Second derivatives).

The performance of MSAC is tested on the basis of the proposed WDCC
approach. The MSAC system is tested using WDCC 18, 36, and 54 coefficients
approach. Total 13 words were tested for 35 trials. The average performance of
WDCC with 18, 36, and 54 coefficients is calculated as 94.03, 95.01, and 98.04,
respectively. The responding time for the calculator for performing the action using
WDCC 18, 36, and 54 coefficients are 9, 20, and 27 s. The comparative perfor-
mance of the MSAC system using WDCC technique of different features is
described in Table 4.

From the above result, the WDCC with 54 coefficients gives the high accuracy
with the RTF is slightly greater than other 18 and 36 coefficient. We observe that
WDCC with 18 coefficients provided lowest RTF so we tested the MSAC system
using WDCC using 18 coefficients.

For this MSAC interface system, we did 6 h training of the dataset. The testing
environment varied the system performance. We test the MSAC interface system
real time in the air conditioners in office environment, system processor sound, and
group talking environment.

Error Rate in Noisy Environment for MSAC System
This MSAC system is the speaker-dependent system. The experiment is tested in

noisy environment. The testing environment varied the system performance. We
test the MSAC interface system real time in the following noisy environment. The
error rate according to the acquisition environment is presented in Table 5.

Table 3 Performance of the
MSAC system using fusion
approach

Sr. no Fusion approach Accuracy (%) RTF

1 MFLDA 87.9 22

2 MFPCA 87.12 20

3 MFDWT 86.17 6

4 MFPDWT 89.09 12

5 MFLDWT 90.12 10

Table 4 Performance of
MSAC system using WDCC
approach

Sr. no Technique Accuracy (%) RTF

1 WDCC (18 coefficient) 94.03 9

2 WDCC (36 coefficient) 95.01 20

3 WDCC (54 coefficient) 98.04 27

Design and Development of Marathi … 17

• Air conditioners in an office environment (when the air conditions are started
in the office and the sound of the air conditions is mixed with test recorded
samples).

• System Processor sound (The system processor sound is become maximum
and it mixed with the test sample)

• Group talking environment (This system tested in real laboratory, number of people
talking of each other naturally, they not knowing the system testing background).

5.4 Significance of MSAC

The salient feature of this research as below…

• In the current era of technology, the evolution of speech recognition is done day
by day so it is very necessary to bring this technology to the societies in regional
language. It is observed that work done in Marathi has not received much more
attention. Thus, we have attempted to design and developed Marathi Speech
Activated Calculator (MSAC).

• The MSAC system is directly beneficial for society people, where no need of
computer literacy and knowledge of English.

• The clustering approach such as PCA, LDA, and LPC was considered for
feature extraction, and this gives a new path for speech researcher towards an
implementation of real-time application.

• From 1939 to till date, MFCC is one of the robust and dynamic feature
extraction techniques; in this experiment, we proposed WDCC feature extrac-
tion technique, which gives better performance than MFCC.

• It is very important to adapt research in real-time application; MSAC is the
real-time application in Marathi regional language. This will be a chance for
Marathwada people to adapt new technology in speech recognition through
which they become the part of today’s modern technology.

6 Conclusion

From the enrich literature, it is observed that MFCC, PCA, LDA, LPC Rasta-PLP,
and much more techniques available for feature extraction. Individual techniques
have their own limitation. We tried to come up with these limitations using fusion
approach. The database for the said application is recorded by standard protocol.

Table 5 Error rate of MSAC
in the different testing
environment

Sr. no Environment Error rate (%)

1 Air conditioners 13

2 System processor sound 11

3 Group talking environment 10

18 S. Gaikwad et al.

The MSAC system is tested on the basis of individual feature extraction tech-
niques, fusion approach of MFCC and proposed WDCC approach. From the
analysis, we observed the following:

• Efficient accuracy is achieved with MFCC for 39 coefficients but RTF is bit
increased than MFCC with 13 coefficients. MFCC 13 coefficient proved to be
effective in term of accuracy and RTF.

• MFLDWT is proven a higher accuracy than other fused techniques with
acceptable RTF.

• WDCC with 54 coefficients gives the high accuracy but the real time factor is
slightly greater than other 18 and 36 coefficients.

• WDCC with 18 coefficients provided acceptable accuracy with lowest RTF.
• The testing environment such as air conditioners in office, system processor

sound and group talking environment varies the performance of MSAC.

From the above study the author recommended the WDCC feature extraction
techniques are robust and dynamic as compare to MFCC, LPC, Rasta, LDA, and
PCA.

References

1. A review on speech recognition technique. Int. J. Comput. Appl. 10(3), 0975–8887 (2010)
2. Picheny, M.: Large vocabulary speech recognition 35(4):42–50 (2002)
3. Arokia Raj, A., Susmitha, R.C.: A voice interface for the visually impaired. In: 3rd

International Conference: Sciences of Electronic, Technologies of Information and
Telecommunications March 27–31, Tunisia (2005)

4. Roux, J.C., Botha, E.C., Du Preez, J.A.: Developing a multilingual telephone based
information system in African languages. In: Proceedings of the Second International
Language Resources and Evaluation Conference, no. 2, pp. 975–980. ELRA, Athens (2000)

5. Robertson, J., Wong, Y.T., Chung, C., Kim, D.K.: Automatic speech recognition for
generalized time based media retrieval and indexing. In: Proceedings of the Sixth ACM
International Conference on Multimedia, pp. 241–246. Bristol (1998)

6. Scan soft: Embedded speech solutions. http://www.speechworks.com/ (2004). Accessed 25
Jan 2013

7. Kandasamy, S.: Speech recognition systems. SURPRISE J. 1(1) (1995)
8. Dusan, S., Rabiner, L.R.: On integrating insights from human speech perception into

automatic speech recognition. In: Proceedings of INTERSPEECH 2005. Lisbon (2005)
9. Shrawankar, U., Thakare, V.: Speech user interface for computer based education system. In:

International Conference on Signal and Image Processing (ICSIP), pp. 148–152 (2010) (15–17
Dec)

10. Alt, F.L., Rubinoff, M., Yovitts, M.C.: Advances in Computers, pp. 165–230. Academic Press,
New York

11. Rebman Jr., C.M., Aiken, M.W., Cegielski, C.G.: Speech Recognition in the Human–
Computer Interface, vol. 40, Issue 6, pp. 509–519, Information & Management. Elsevier
(2003)

12. Furui, S.: 50 Years of progress in speech and speaker recognition research. ECTI Trans.
Comput. Inf. Technol. 1(2) (2005)

Design and Development of Marathi … 19

http://www.speechworks.com/

13. Nehe, N.S., Holambe, R.S.: New feature extraction techniques for Marathi digit recognition.
Int. J. Recent Trends Eng. 2(2) (2009)

14. Bhosale, R.S.: Enhanced speech recognition using ADAG SVM approach. Int. J. Emerg.
Trends Technol. Comput. Sci. (IJETTCS) 1(4) (2012)

15. Anumanchipalli, G., Chitturi, R., Joshi, S., Kumar, R., Singh, S.P., Sitaram, R.N.V., Kishore,
S.P.: Development of indian language speech databases for large vocabulary speech
recognition systems. In: Proceedings of International Conference on Speech and Computer
(SPECOM). Patras (2005)

16. Neti, C., Rajput, N., Verma, A.: A large vocabulary continuous speech recognition system for
Hindi. In: Proceedings of the National conference on Communications, pp. 366–370. Mumbai
(2002)

17. Gawali, B.W., Gaikwad, S., Yannawar, P., Mehrotra, S.C.: Marathi Isolated Word
Recognition System using MFCC and DTW Features. ACEEE (2010)

18. Chakraborty, K., Talele, A., Upadhya, S.: Voice recognition using MFCC algorithm. Int.
J. Innovative Res. Adv. Eng. (IJIRAE) 1(10) (2014). ISSN: 2349-2163

19. Patel, K., Prasad, R.K.: Speech recognition and verification using MFCC & VQ. Int. J. Emerg.
Sci. Eng. (IJESE) 1(7) (2013). ISSN: 2319–6378

20. Oh-Wook Kwon, Chan, K., Lee, T.-W.: Speech feature analysis using variational bayesian
PCA. IEEE Signal Process. Lett. 10, 137–140 (2003)

21. Gaikwad, S., Gawali, B., Mehrotra, S.C.: Novel Approach Based Feature Extraction For
Marathi Continuous Speech Recognition, pp. 795–804. ACM Digital Library, New York
(2012). ISBN: 978-1-4503-1196-0/2012

22. Hermansky, H., Morgan, N.: RASTA processing of speech. IEEE Trans. Speech Audio
Process. 2, 578–589 (1994). doi:10.1109/89.326616

23. Ali, H., Ahmad, N., Zhou, X., Iqbal, K., Muhammad Ali, S.: DWT features performance
analysis for automatic speech recognition of Urdu. SpringerPlus 3:204 (2014) doi:10.1186/
2193-1801-3-204

24. Tiwari, A., Zadgaonkar, A.S.: Debauchee’s wavelet analysis of speech signal of different
speakers for similar speech set. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(8) (2014)

25. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1998)
26. Chan, Y.T.: Wavelet Basics. Kulwer Academic Publications (1995)

20 S. Gaikwad et al.

http://dx.doi.org/10.1109/89.326616
http://dx.doi.org/10.1186/2193-1801-3-204
http://dx.doi.org/10.1186/2193-1801-3-204

Fusion-Based Noisy Image Segmentation
Method

Mateusz Buczkowski and Khalid Saeed

Abstract A modified algorithm for segmenting microtomography images is given
in this work. The main use of the approach is in visualizing structures and calcu-
lating statistical object values. The algorithm uses localized edges to initialise
snakes for each object separately then moves curves within the images with the help
of gradient vector flow (GVF). This leads to object boundary detection and obtain
fully segmented complicated images with the aid of methods like region merging
and multilevel thresholding.

Keywords Image segmentation � Canny-Deriche edge detector � Gradient vector
flow � Active contour � Bilateral filter

1 Introduction

Images studied in this paper are obtained using microcomputed tomography (µCT)
method. Imaging using µCT is a powerful technique for non-destructive internal
structure imaging of small objects. Best µCT devices available today can obtain the
resolution even better than one micrometer. That advantage lets µCT to be widely
used in biology, geology, material science and many other areas where imaging of
small structures is required. The general idea behind µCT measurements is to
generate electromagnetic radiation with X-ray tube. That radiation after penetrating
the sample is deposited in 2D detector on the opposite side of the sample. The
detector registers the attenuation of the X-ray intensity. The registered 2D array of

M. Buczkowski (&)
Faculty of Physics and Applied Computer Science,
AGH University of Science and Technology, Krakow, Poland
e-mail: mateusz.buczkowski1@gmail.com

K. Saeed
Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
e-mail: k.saeed@pb.edu.pl

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_2

21

X-ray intensities is called “projection”. Intensity of registered radiation depends on
the material radiation absorption property across the single ray. Generally denser
materials absorb more radiation. Sample is rotating and few hundred or thousand
projections are registered. Computer software is used to reconstruct 3D object from
a set of 2D projections using one of the available methods, such as one of the most
popular filtered back projection methods based on Radon transform theorem [1].
The 3D object obtained from this step is represented by a 3D matrix of voxels. 2D
slices of objects voxels could be represented as 2D image. In this paper images of
porous structures are studied. Porous materials can be described as a two-phase
composite where one phase is a solid phase and the other is a void or some gas or
liquid phase. Separation of these phases by segmenting 2D cross-section images
separately is studied in this paper. When differences in X-ray linear attenuation
factor for both phases are high, the solution is easier but for images studied in this
paper the differences are small in intensities of pixel values for both phases. Studied
images have large amount of noise which is also a difficulty. In easy cases, the
segmentation could be performed using filtering step such as median or bilateral
filter and binarized by simple thresholding method, even with one threshold. This
approach could be then applied to all images in stack to obtain all properly seg-
mented images. From binary image stack we could render a 3D visualization, for
example. Images studied in this paper require a more sophisticated method to obtain
fully segmented images.

The work is the extended version of the authors’ work in the Second
International Doctoral Symposium on Applied Computation and Security Systems
organized by University of Calcutta [2]. More details and examples are given in this
paper. Some theoretical aspects are repeated for the reader’s convenience.

2 Used Methods

2.1 Bilateral Filter

For obtaining properly detected edges from a noisy image, a proper smoothing
stage is required prior to edge detection. When processing noisy images this step is
crucial for obtaining good results of entire approach. We found bilateral filter is the
proper way of smoothing microtomography images presented in this paper.
Bilateral filter is a technique which allows to remove unwanted details (textures,
noise), and still preserving edges without blurring is the great advantage of this
method. Bilateral filter uses a modified version of Gaussian convolution. In
Gaussian filtering, weighted average of the adjacent pixels intensities in the given
neighbourhood results in new value of the considered pixel. Weights decrease along

22 M. Buczkowski and K. Saeed

with the increasing spatial distance from the central pixel (1). Moreover, pixels are
less significant for new value of the processed pixel. That dependency is given as

G½I�p ¼
1

WpG

X
q2S

Grðj p� qj jjÞIq; ð1Þ

where Gr xð Þ is Gaussian convolution kernel given by (2).

Gr xð Þ ¼ 1
2pr2

exp � x2

2r2

� �
ð2Þ

where: S is the spatial domain, WpG—sum of all weights, I—intensity of pixel,
j p� qj jj—the Euclidean distance between the considered central pixel p and
another pixel q form the given neighbourhood. Profile of weights changes
depending on spatial distance as given by r. Higher sigma results in higher
smoothing level. Main disadvantage of Gaussian filter is edge blurring.

Bilateral filter is defined by (3).

B½I�p ¼
1

WpB

X
q2S

Grsðj p� qj jjÞGrr ðj Ip � Iq
�� ��jÞIq; ð3Þ

where

WpB ¼
X
q2S

Grs p� qj jj jð ÞGrr Ip � Iq
�� ���� ��� �

: ð4Þ

Only pixels close in space and intensity range are considered (close to the central
pixel). Spatial domain Gaussian kernel is given by Grs Weights decrease with
increasing distance. Range domain Gaussian kernel is given by Grr . Weights
decreaseswith increasing intensity distance. Simultaneous filtering in both spatial and
intensity domain gives bilateral filter capability of smoothing image (background and
object area) and preserve edges at the same time [3]. That kind of behaviour is crucial
when processing noisy images demanding high level of smoothing to remove noise.

2.2 Canny–Deriche Edge Detector

Canny formulated three important criteria for effective edge detection in his paper [4]:

• Good detection—low probability of failing to detect existing edges and low
probability of false detection of edges

• Good localization—detected edges should be as close as possible to the true
edges

Fusion-Based Noisy Image Segmentation Method 23

• One response to one edge—multiply responses to one real edge should not
appear

Canny combined these criteria into one optimal operator (approximately the first
derivative of Gaussian) [4, 5]—see (5).

f xð Þ ¼ � x
r2

e�
x2
2 �r2 : ð5Þ

Deriche modified Canny’s approach to obtain a better optimal edge detector [5].
He presented his optimal edge detector in the form of:

f xð Þ ¼ k � e�a�jxj sinxx ð6Þ

and for the case when x tends to 0

g xð Þ ¼ k � xe�a�jxj: ð7Þ

Performance of that approach is better than Canny’s original idea. At the
beginning calculation of magnitude and gradient direction are performed to obtain
gradient map. Higher gradient values are obtained near to the edges of objects. Then
non-maximal suppression selects the single brightest pixel across the width of an
edge which is a thin edge. Last stage involves hysteresis thresholding performed to
get the final result of edge detection. Hysteresis thresholding uses two thresholds as
parameters. Accordingly thresholds pixels are divided into three groups. Pixels with
values below low threshold are removed which means that they are classified as
non-edges. Pixels with values above high threshold are retained so they are con-
sidered as edges. Pixel with intensity value between low and high threshold is
considered as edge pixel only if connected to some pixel above high threshold [4, 5].

2.3 Active Contours (Snakes) and Gradient Vector Flow
(GVF)

Snake could be described as parametric curve

x sð Þ ¼ x sð Þ; y sð Þ½ �; s 2 0; 1½ �: ð8Þ

That snake could move in spatial domain of the image to minimize energy
functional

E ¼ Z1

0

1
2

a x0 sð Þj j2þb x00 sð Þj j2
h i

þ Eext x sð Þð Þds: ð9Þ

24 M. Buczkowski and K. Saeed

where a and b are weighting parameters controlling tension (first derivative) and
rigidity (second derivative). Eext is obtained from image gradient map. It takes
smaller values near objects of interest such as edges. In our approach this external
force obtained from gradient vector flow (GVF) method is computed as a diffusion
of the gradient vectors. GVF method could be applied for example to a grey-level or
a binary edge map derived from the image. GVF fields are dense vector fields
derived from images by minimizing energy functional. The minimization is
achieved by solving a pair of decoupled linear partial differential equations that
diffuses the gradient vectors of edge map obtained from the image. Active contour
using GVF field as external force could be named GVF snake. Detailed description
and numerical implementation could be found in original GVF paper [6].

2.4 Statistical Region Merging (SRM) and Multilevel
Thresholding

In region merging-based method, regions are described as sets of pixels with
homogeneous properties and they are iteratively grown by combining smaller
regions. Pixels are elementary regions. Statistical test is performed to decide if
merge tested regions. Detailed description is available in original SRM paper [7].
Multilevel thresholding modify Otsu method allowing to get more than two pixel
classes by choosing the optimal thresholds by maximizing a modified between-class
variance. In this paper pixels were divided into three classes (background, object,
holes inside objects together with objects shadows). Detailed description is avail-
able in original multilevel thresholding paper [8].

3 The Proposed Methodology

Images analysed in this paper are quite complicated to segment. The major diffi-
culty is that the objects can have intensities of pixels very similar to the back-
ground. Sometimes even humans cannot say where exactly object edge is placed.
To obtain proper segmentation of these images complex approach combining
several methods is required. Simple segmentation methods based on pixel intensity
like thresholding do not apply here because they are not good with segmenting
noisy images with non-uniform objects [9–13]. This paper focuses on combining
various methods like: Canny–Deriche edge detection [5], bilateral filtering [3],
gradient vector flow [6], active bontour [6], statistical region merging [7] and
multilevel thresholding based on Otsu method [8] to obtain multistage approach
with good segmentation results.

In this paper data in the form of 8-bit grayscale images were used. First his-
togram normalization is applied to the original image. Due to high noise level of
images, efficient smoothing is crucial to make proper segmentation possible.

Fusion-Based Noisy Image Segmentation Method 25

Smoothing step is based on bilateral filter. Adjustable Parameters for bilateral filter
are: mask size, intensity range, spatial sigma and intensity sigma. Finding proper
values of these parameters using semi-automatic approach was described in the
authors’ previous work [14]. When proper values of the parameters are obtained for
one image from bigger set those values could be used to process entire µCT images
set. Smoothing step was iteratively applied twice, once with bigger parameters
values (more smoothing) and then with smaller parameters values (less smoothing,
see Fig. 1). This step removes significant amount of noise and unwanted textures
resulting in the simplified image.

In the edge detection stage Canny–Deriche edge detector is applied. Adjustable
Parameters for edge detection step are: alpha, high threshold, low threshold.
Finding proper values of these parameters were described in previous article [14].
In this step, gradient magnitude and direction are calculated then non-maximum
suppression is performed which allows thin edges (Fig. 2a, b). Hysteresis thresh-
olding is performed at the end of process to obtain most relevant edges (Fig. 2c).

Object grouping is performed to group all edges into array of objects constructed
from edges. This is achieved by grouping all edge pixels which are close to each
other within chosen radius. From that point all objects are processed separately.
Objects are processed with GVF method (Fig. 3) to obtain gradient map proper for
active contour method. Snake is initialized outside each object and evolves to find
object boundaries by minimalizing energy of snake at each iteration (Figs. 4 and 5).
Energies used: internal energy (first and second derivative), external energy (ob-
tained from gradient map) and external pressure force. Parameters were chosen to
perform well on this kind of images. In our approach snake is discretized. Finite
number of control points was used to calculate total snake energy. For each iteration,
snake was resampled to assure proper behaviour. Viterbi algorithm helps with
optimization of the contour evolution.

Fig. 1 Bilateral filtering: first iteration (a) and second iteration (b)

26 M. Buczkowski and K. Saeed

Snake curve allows to create mask which in combination with original object
coordinates allows to cut off pixels inside this snake from original image after
smoothing (Fig. 6).

Statistical region merging is performed to merge pixels into regions of similar
intensity to simplify image (Fig. 7).

Simplified images are finally segmented using multilevel thresholding based on
Otsu method (Fig. 8). If objects are smaller than 60 px (width or height) or all pixels
in image are higher than some threshold, simple thresholding with one threshold is
used. Algorithm flow is shown in Fig. 9.

Finally all binary objects images are combined to obtain a fully segmented input
image (Fig. 10).

Fig. 2 Canny–Deriche edge detector: gradient map (a), non-maximum suppression (b), final edge
detection result after hysteresis thresholding (c) and original image (d)

Fusion-Based Noisy Image Segmentation Method 27

Fig. 3 Example of gradient vector flow field after 100 iterations (a), 300 iterations (b) and 700
iterations (c)

Fig. 4 Example of snake evolution after 15 iterations (a) and final snake (b)

Fig. 5 Two examples of gradient map obtained with GVF method and snake evolved to find
object boundaries on top of it (blue pixels are discrete points used to calculate snake energy)

28 M. Buczkowski and K. Saeed

4 Experimental Results and Interpretation

Presented method allows to treat weak contrast images of porous structures and
images containing separate objects giving good results of image segmentation.
Further enhancements will be applied in the future to improve results of segmen-
tation. Proper filtering using two-step bilateral filter prior to Canny–Deriche edge
detection allows to obtain images with proper localized edges with very small
amount of false edges detected and true edges omitted. Some small gaps in edges
occurred after edge detection step which was resolved by using active contour

Fig. 6 Two examples of pixels cut off from original image after smoothing with use of mask
obtained from snake curve coordinates

Fig. 7 Two examples of pixels cut off from original image after smoothing with use of mask
obtained from snake curve coordinates and after use of statistical region merging method

Fusion-Based Noisy Image Segmentation Method 29

method along with GVF. Full segmentation of processed image fragments was
achieved by using statistical region merging and multilevel thresholding based on
Otsu method. All binarized objects were combined into a fully segmented image
(Fig. 10). The approach introduced in this paper expands the idea presented in the
authors’ previous papers [14, 15] which concerned only edge detection. Much
better results are achieved with this upgraded approach resulting in fully segmented
binary images. Presented approach leaves possibility for future upgrades to obtain
even better results.

Fig. 8 Two examples of binary images obtained after use of multilevel thresholding based on
Otsu method

Fig. 9 Flowchart of proposed approach

30 M. Buczkowski and K. Saeed

5 Evaluation and Comparison of Results

To evaluate the results we need to know the exact position of all object and
background pixels. Evaluating results obtained from that kind of images is a dif-
ficult task. Marking object contour by hand is time consuming and not so precise

Fig. 10 Fully segmented
image with bigger objects
(a) and smaller objects (b)

Fusion-Based Noisy Image Segmentation Method 31

especially when complex object with non-trivial shapes are considered. In this
paper the results were evaluated with the aid of mock input image prepared to
imitate the real µCT image. That image was obtained from the algorithm with final
output as binarized image. Objects and background grayscale level were set
according to the average values of those elements obtained from the original µCT
images. Then noise with various standard deviations was added to make mock
images similar to the real data obtained from µCT device (Fig. 11).

Artificial mock image, with added standard deviation of noise equals to 12
which is similar value to the original one, was prepared. Image was processed using
our algorithm noise filtering part (see Fig. 9) combined with single threshold
binarization (Fig. 12a), using multilevel Otsu thresholding after the algorithm noise
filtering part (Fig. 12c), using multilevel Otsu thresholding after filtering stage
without second bilateral filter (Fig. 12b) and using the full approach presented in
this paper (Fig. 12d). Several statistical evaluation measures of binary classification
for our algorithm such as sensitivity, specificity, precision, negative predictive
value and accuracy were presented in Table 1. Accordingly, the results are good and
they become even better after some further modification in the last stage of the
algorithm after a much precise binarization at this step. Test performed with arti-
ficial mock image shows that the approach with simple thresholding gives weak
results whilst the approach with multilevel Otsu thresholding produces results
comparable to our algorithm output but still produces little noise artefacts (Fig. 12).
The same methodology used to binarize real µCT image, shows that the algorithm
presented in this paper performs much better with original µCT images than the
compared approaches (Fig. 13). Original µCT images are much harder to binarize
than artificial mock images introduced to evaluate results. Real images have much
more complex structure of objects, such as shadows near borders and various
grayscale levels inside objects, sometimes with intensities similar to the background

Fig. 11 Fragments of mock test images with noise standard deviation equals to: 12 (a), 20 (b)

32 M. Buczkowski and K. Saeed

Fig. 12 Fragments of mock test images with noise standard deviation equals to 12, processed by:
a authors’ algorithm filtering part with single threshold binarization, b filtering part without second
bilateral filter and with multilevel Otsu thresholding, c filtering part with multilevel Otsu
thresholding, d final result of authors’ algorithm

Table 1 Segmentation
evaluation test results

Noise
standard
deviation

6 8 10 12 20

Sensitivity 0.964 0.955 0.944 0.932 0.711

Specificity 0.990 0.989 0.980 0.983 0.978

Precision 0.887 0.874 0.803 0.816 0.729

Negative
predictive
value

0.997 0.996 0.995 0.994 0.976

Accuracy 0.988 0.986 0.978 0.979 0.958

Fusion-Based Noisy Image Segmentation Method 33

level. Noise also seems to have much more complex structure than simple random
noise with given standard deviation. Other tested methods fail because they could
not produce uniform and noise-free objects.

Acknowledgements The research was partially supported by doctoral scholarship IUVENES—
KNOW, AGH University of Science and Technology in Krakow and by The Rector of Bialystok
University of Technology in Bialystok, grant number S/WI/1/2013.

Fig. 13 Fragments of original input image processed by authors’ algorithm: a filtering part with
single threshold binarization, b algorithm filtering part without second bilateral filter and with
multilevel Otsu thresholding, c filtering part with multilevel Otsu thresholding, d final result of
authors’ algorithm

34 M. Buczkowski and K. Saeed

References

1. Radon, J.: Uber die Bestimmung von Funktionen durch ihre Integralwerte Langs Gewisser
Mannigfaltigkeiten. Ber. Saechsische Akad. Wiss. 29, 262 (1917)

2. Buczkowski, M., Saeed, K.: A multistage approach for noisy micro-tomography images. In:
ACSS 2015—2nd International Doctoral Symposium on Applied Computation and Security
Systems organized by University of Calcutta (2015)

3. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral filtering: theory and applications.
Found. Trends Comput. Graph. Vis. 4(1), 1–73 (2008)

4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 6, 679–698 (1986)

5. Deriche, R.: Using Canny’s criteria to derive a recursively implemented optimal edge detector.
Int. J. Comput. Vis. 1(2), 167–187 (1987)

6. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7
(3), 359–369 (1998)

7. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26
(11), 1452–1458 (2004)

8. Liao, P.-S., Chen, T.-S., Chung, P.-C.: A fast algorithm for multilevel thresholding. J. Inf. Sci.
Eng. 17(5), 713–727 (2001)

9. Chenyang, X., Pham, D.L., Prince, J.L.: Image segmentation using deformable models.
Handbook Med. Imaging 2, 129–174 (2000)

10. He, L., et al.: A comparative study of deformable contour methods on medical image
segmentation. Image Vis. Comput. 26(2), 141–163 (2008)

11. Rogowska, J.: Overview and fundamentals of medical image segmentation. In: Handbook of
Medical Imaging, pp. 69–85. Academic Press Inc. (2000)

12. Jahne, B.: Digital Image Processing: Concept, Algorithms, and Scientific Applications.
Springer, New York (1997)

13. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative
performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)

14. Buczkowski, M., Saeed, K.: A multistep approach for micro tomography obtained medical
image. J. Med. Inf. Technol. 23/2014 (2014). ISSN 1642-6037

15. Buczkowski, M., Saeed, K., Tarasiuk, J., Wroński, S., Kosior, J.: An approach for
micro-tomography obtained medical image segmentation. In: Chaki, R., et al. (eds.) Applied
Computation and Security Systems, Advances in Intelligent Systems and Computing, vol.
304 (2015)

Fusion-Based Noisy Image Segmentation Method 35

An Approach for Automatic Indic
Script Identification from Handwritten
Document Images

Sk. Md. Obaidullah, Chayan Halder, Nibaran Das and Kaushik Roy

Abstract Script identification from document images has received considerable
attention from the researchers since couple of years. In this paper, an approach for
HSI (Handwritten Script Identification) from document images written by any one of
the eight Indic scripts is proposed. A dataset of 782 Line-level handwritten document
images are collected with almost equal distribution of each script type. The average
Eight-script and Bi-script identification rate has been found to be 95.7 % and
98.51 %, respectively.

Keywords Document image analysis � Handwritten script identification �
Multi-classifier � Document fractal dimension � Directional morphological kernel �
Interpolation

1 Introduction

One of the important area of research under document image processing is optical
character recognition or in short OCR. First, physical documents are digitized by
camera, scanner, etc. devices, and then textual information is generated from them

Sk.Md. Obaidullah (&)
Department of Computer Science & Engineering, Aliah University, Kolkata,
West Bengal, India
e-mail: sk.obaidullah@gmail.com

C. Halder � K. Roy
Department of Computer Science, West Bengal State University, Barasat,
West Bengal, India
e-mail: chayan.halderz@gmail.com

K. Roy
e-mail: kaushik.mrg@gmail.com

N. Das
Department of Computer Science & Engineering, Jadavpur University, Kolkata,
West Bengal, India
e-mail: nibaran@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_3

37

by applying OCR techniques. Document digitization and text conversion has its
usefulness for better indexing and retrieval of huge volume of data which is
available in our modern society. But the problem of OCR become complex due to
multilingual and multi-script nature of a country like India, where 22 official lan-
guages are present and 13 different scripts are used to write them [1, 2]. Including
English which is a very popular language in India the total number of languages
increases to 23. In our daily life we come across various documents which are
multi-script in nature. Postal documents, preprinted application form, etc. are good
example of such documents. To process these documents automatically, we need to
design a general class OCR system which will be able to cater all class of scripts.
Another solution is to design a script identification system which will identify the
nature of the script first, then supply those scripts to the script specific OCR. The
feasibility criterion of the former solution is not realistic due to larger number of
languages and scripts in India, so we try to solve the problem in the light of second
idea. In this scenario the need of an automatic script identification system has
become an essential.

Following Fig. 1 shows a block diagram of a script identification system in
Indian scenario. Multi-script (both single document written by single script/multiple
scripts) is supplied to the system, followed by preprocessing, feature extraction,
classification. Finally, specific script type is produced as an output. Afterwards
script specific OCR can be called.

• Previous Work

The whole work of script identification can be classified into two main cate-
gories namely PSI (Printed Script Identification) or HSI (Handwritten Script
Identification) problem based on type of the document acquired (machine generated
or human written). The problem of HSI is more challenging than PSI due to
dynamic nature of writing, i.e., versatility of writing style, variation in interline,
interword spacing, character sizes from different writers across the globe. In the

Fig. 1 Block diagram of the proposed multi-script document processing system

38 Sk.Md. Obaidullah et al.

literature, many works are reported related to PSI and HSI on Indic scripts. Among
those set of works, few of the PSI techniques are depicted in [3–8]. To talk about
HSI category, a scheme was proposed by Hochberg et al. [9] to identify six Indic
and non-Indic scripts namely Arabic, Chinese, Cyrillic, Devanagari, Japanese and
Latin using some features like sphericity, aspect ratio, white holes, etc. Another
technique was proposed by Zhou et al. [10] to identify Bangla and English scripts
using connected component profile-based features. Singhal et al. [11] proposed an
approach to identify Roman, Devanagari, Bangla, and Telugu scripts from
line-level handwritten document images. They used rotation invariant texture fea-
tures based on multichannel Gabor filtering and Gray level co-occurrence matrix as
principal feature set. Roy et al. [12] proposed a technique to identify Bangla and
Roman scripts for Indian postal automation using the concept of water reservoir and
busy zone. Hangarge et al. [13] identified Roman, Devanagari, and Urdu script
using a texture-based algorithm. The work was done at the block level using some
visual discriminating features. In a recent work, the same author [14] proposed a
word-level directional DCT-based approach to identify six different Indic scripts. In
another very recent work, Pardeshi et al. [15] proposed a scheme for word-level
handwritten script identification from 11 Indic scripts using transform-based fea-
tures like discrete cosine transform, radon transform, etc. But in terms of different
performance matrices HSI techniques are still lagging far behind the PSI techniques
developed so far. That is why HSI on Indic scripts is still an open challenge.

In this paper, we propose an HSI technique to identify eight handwritten Indic
scripts namely Bangla, Devnagari, Kannada, Malayalam, Oriya, Roman, Telugu,
and Urdu. A multidimensional feature set is constructed by observing different
properties of these eight scripts. The paper is organized as follows: In Sect. 2
proposed methodologies are described which includes preprocessing and feature
extraction. Section 3 provides experimental details where dataset preparation,
experimental protocol, evaluation methodologies, results, and analysis are dis-
cussed. Conclusion and future scopes are discussed in Sect. 4. Finally, references of
the literature are mentioned in the last section.

2 Proposed Methodology

2.1 Preprocessing

Data collected from different sources are initially stored as gray scale images.
A two-stage-based binarization algorithm [12] is used to convert these 256-level
grayscale images to two-tone binary images. At first stage local window-based
algorithm is applied to get information about different ROI (Region Of Interest).
RLSA (Run Length Smoothing Algorithm) is applied afterwards on those
pre-binarized images to reduce presence of stray or hollow regions. Then using
component labeling each component obtained after the first stage is selected and
mapped into the original gray scale image. Final version of the binarized image is

An Approach for Automatic Indic … 39

obtained by applying a global binarization algorithm on each of these regions. This
two-stage-based technique has advantage that the binarized image will be at least as
good as if only global thresholding method would have been applied. After pre-
processing feature extraction is carried out to generate multidimensional feature set.
Following section discusses the major features used for the present work.

2.2 Feature Extraction

One of the most important tasks in any pattern recognition work is to collect
‘proper’ feature set. Here, by the term ‘proper’ we mean the set of features which
are robust enough to capture maximum interscript variability, while obtain mini-
mum intrascript variations. These features should be computationally easy and fast
also. Following section provides a glimpses of the important features used for the
present work.

• Shape or Structure based feature

Shape or structure of the graphemes of different scripts is a very useful feature on
the overall visual appearance of the particular script. We have computed different
structural features like convex hull, circularity, rectangularity, etc. on the input
images at component level. Following Fig. 2 shows few sample output images:
(a) Convex hull drawn on the roman script, (b) Inner and outer circle drawn on the
Urdu image component. Here maximum circularity will be obtained when the
difference between two radii will be zero. Our observation is Oriya script gra-
phemes are maximum circular nature in compared to others. (c) Rectangular box is
drawn on the Roman script component. From each of these structure or shape
drawn on different image components we calculate some feature values like con-
vexity distances, maximum, minimum length, their average value, ratios, variance,
standard deviation, etc.

• DFD (Document Fractal Dimension)

Another important topological feature which is based on the pixel distribution of
upper and lower part of the image component has been introduced here. This

Fig. 2 Computation of structural features (blue minimum encapsulating and red best fitted)

40 Sk.Md. Obaidullah et al.

feature is named here as Document Fractal Dimension or in short DFD. DFD
feature is motivated by the concept of Mandelbrot’s fractal geometry theory [17].
A fractal is defined as a set for which the Hausdorff-Besikovich dimension is strictly
larger than the topological dimension. The dimension of the fractal is an important
property because it contains information about their geometric structure at pixel
level. For present work the fractal dimension of the upper part and lower part of
each script components has been calculated. Box counting algorithm has been
followed where size of a box is assumed to be a unit pixel. A significant role is
played by these top and bottom potion of an image component to qualify as a
distinguishing feature among ‘matra’ and non-‘matra’-based scripts. For example,
Bangla, Devnagari, etc. scripts contains ‘matra,’ which is a collection of continuous
pixel at the top portion of each word or line. Whereas Urdu, Roman, etc. scripts are
example of non-‘matra’-based scripts. Now if ration of the pixel density is com-
puted for these two cases then there will be a significant difference between these
two categories. Figure 3 shows example of DFD obtained from each script images.
(a) Sample word of original script, (b) DFD of the upper part of the contour,
(c) DFD of the lower part of the contour.

Fig. 3 Fractal dimension a original component b upper-fractal upper part of the contour as fractal
c lower-fractal lower part of the contour (customized word-level outputs are shown)

An Approach for Automatic Indic … 41

• DMK (Directional Morphological Kernel)

Important morphological operations considered for the present work are dilation,
erosion, opening, closing, top-hat, and black-hat transforms. But novelty of the
present work is: based on our visual observation of different directional strokes
presence in different Indic scripts Directional Morphological Kernel or DMK has
been defined. Four kernels namely H-kernel, V-kernel, RD-kernel, and LD-kernel
are defined. They are 3 × 11, 11 × 3, 11 × 11, and 11 × 11 matrices correspondingly
where horizontal, vertical, right diagonal, and left diagonal pixels are 1 and rests
are 0. These four kernels are capable enough to capture the presence of different
directional strokes in eight different angles namely 0º, 45º, 90º, 135º, 180º, 225º,
270º, 315º, and 360º. Using these kernels, we computed different morphological
transformational operations. Initially original image is dilated using default kernel
of OpenCV. The dilated image is then eroded four times using four different kernels
(H-kernel, V-kernel, RD-kernel, and LD-kernel). The ratio of those eroded images
with the dilated image is obtained. The average and standard deviation of the
eroded images are also computed. Similar kinds of operations are followed for
opening, closing, top-hat, and black-hat transformations also.

• Interpolation based feature

Image upsize and downsize operation can be performed using interpolation. This
simple property has been successfully employed as a useful feature extractor for the
present work. Initially image dilation is performed using default 3 × 3 kernel [18].
Then, the images are interpolated using different mechanism namely nearest
neighbor, bilinear, pixel area resampling method, bicubic interpolation. Normally
nearest neighbor interpolation takes the closest pixel value for resizing calculation.
The 2 × 2 surroundings are taken for bilinear operation. The virtual overlapping
between the resized image and original image is performed and then the average of
the covered pixel values is computed in case of pixel area re-sampling method. For
bicubic operation a cubic spline between the 4-by-4 surrounding pixels in the
source image is fitted then reading off the corresponding destination value from the
fitted spline is performed.

• Feature inspired by Gabor filter

It is a convolution-based technique used widely for texture analysis. It is one of
the most popular band pass filter. It has been observed that the frequency response
of Gabor filter is similar to human visual system. The response of Gabor filter to an
image is determined by the 2-D convolution operation. In general, the filter will
convolve with the input image signal and a Gabor space is generated. If I(x, y) is an
image and G(x, y, f, ϕ) is the response of a Gabor filter with frequency f and
orientation ϕ to an image on the (x, y) spatial coordinate of the image plane [19, 22].

Gðx; y; f ;/Þ ¼
ZZ

Iðp; qÞgðx� p; y� q; f ;/Þ dpdq ð1Þ

42 Sk.Md. Obaidullah et al.

Figure 4 shows the 2-D representation of a Gabor filter.
In the proposed approach, multiple feature values are computed forming a Gabor

filter bank. The texture variations of different Indic scripts considered for the pre-
sent work are analyzed. Experimentally, we set the filter with frequency 0.25 and
orientation of 60º, 90º, 120º, and 150º for computations of varying Gabor filter
inspired features. Afterwards the standard deviation of the real part and imaginary
part are computed and considered as feature values.

3 Experimental Details

3.1 Dataset Development

The most time consuming and tedious task for any experimental work is data
collection. Availability of benchmark dataset is a problem in this kind of work.
Though few works are going on by different researchers on Indic script identifi-
cation problem but till date no standard handwritten dataset of all official Indic
scripts is made available. We collected document image dataset from different
persons with varying sex, age, educational qualification, etc. to incorporate maxi-
mum variability and realness within the data. For Kannada script we have used the
available KHTD [20] handwritten dataset. Lines are extracted from those document
pages using a semi-automated technique [12]. Special care was taken to handle
touching or skewed handwritten text lines. Finally, a Line-level dataset of total 782
document images with a distribution of 100 Bangla, 100 Devnagari, 102 Kannada,
100 Malayalam, 100 Oriya, 90 Roman, 90 Telugu, and 100 Urdu images are
prepared (sample shown in Fig. 5). Document digitization was done using HP
flatbed scanner and stored initially at 300 dpi. Binarization was done using existing
two-stage-based algorithm that was discussed already. Finally, experimentation was
carried out on the prepared dataset (sample shown in Fig. 5).

Fig. 4 2-D Gabor filter, a a Sinusoid b a Gaussian kernel c corresponding Gabor filter [19]

An Approach for Automatic Indic … 43

3.2 Experimental Protocol

The training phase of any classification technique initiates the learning process of
distinguishable properties for each of the target script class. During the test phase
the dissimilarity measure of the script classes are evaluated. Generation of training
and test set data is very crucial decision for any classification scheme. For present
work whole data set is divided into training and test sets in equal ratio, i.e., 1:1 ratio.
Following section describes about the outcome of the test phase.

3.3 Evaluation Using Multiple Classifiers

Evaluation process is carried out using MLP classifier which we have implemented
for experimentation. Simultaneously performance of the proposed technique is also
evaluated in multi-classifier environment [21] to observe the robustness of our
system. Table 1 shows performances of different classifiers on the present dataset.
Six different classifiers namely MLP, logistic model tree, simple logistic,
LIBLINEAR, RBFNetwork, and BeyesNet are used here with customized tuning.

Fig. 5 Sample line-level document images from our prepared dataset. (top to bottom) Bangla,
Devnagari, Kannada, Malayalam, Oriya, Roman, Telugu, and Urdu

44 Sk.Md. Obaidullah et al.

Seven evaluation matrices namely AAR (Average Identification Rate), MBT
(Model Building Time), TP rate (True Positive Rate), FP rate (False Positive Rate),
precision, recall and F-measure are evaluated. Detail information about these
classifiers and evaluating matrices are available from the work of Obaidullah et al.
[16]. Experimental results shows effectiveness of MLP classifier, which obtain
highest Eight-script average identification rate of 95.7 %, followed by LMT and
simple logistic both 94.9 %, LIBLINEAR 90.1 %, RBFNetwork 88.3 %, and
BayesNet 86.7 %. In terms of MBT, BayesNet converges very fast among all and
MLP takes maximum time to build the model on present dataset. A tradeoff
between AAR and MBT need to be chosen while selecting appropriate classifier in
real life scenario.

Following Fig. 6 shows a sample diagram of a MLP with input, hidden and
output layers. In present work, the configuration of MLP is 148-34-8 as the number
of neurons in input and output layers are 148 and 8, respectively. The number of
neurons in hidden layer is calculated by a heuristic formula. The experimentation
was carried out for an epoch size of 500.

3.4 Result and Analysis

Table 2 shows the confusion matrix using MLP on the test dataset. Three and two
Bangla scripts images are misclassified with Malayalam and Telugu correspond-
ingly. For Devnagari, total three images are misclassified, out of which one with
Bangla and two with Malayalam. Similar kind of few misclassified instances can be
found for other scripts also. It has been observed that scripts like Urdu whose
characters/graphemes are unique in nature compared to other Indic scripts has
successfully identified and no misclassification has been found. We have deeply
observed the misclassification patterns and found that, this misclassification occurs
due to dynamic change of handwriting of different writes at different time instances.
Structural similarity is another important issue that has been found as a reason of
misclassification.

A graph is shown in Fig. 5 comparing the average identification rate of different
classifiers. MLP obtained highest average identification rate and others appear in

Table 1 Statistical performance analysis of different classifiers for eight-script combination

Classifier versus
parameter

AAR
(%)

MBT
(s)

TP
rate

FP
rate

Precision Recall F-measure

MLP 95.7 202.5 0.957 0.006 0.958 0.957 0.957

LMT 94.9 61.36 0.949 0.007 0.949 0.949 0.949

Simple logistic 94.9 17.22 0.949 0.007 0.949 0.949 0.949

LIBLINEAR 90.1 4.79 0.900 0.014 0.900 0.900 0.901

RBFNetwork 88.3 8.55 0.882 0.017 0.882 0.882 0.884

BayesNet 86.7 0.28 0.867 0.019 0.867 0.867 0.868

An Approach for Automatic Indic … 45

very near proximity. This performance graph justifies the robustness of the feature
set implemented for the present work (Fig. 7).

Table 3 shows the average Bi-script classification rate using MLP. In intro-
ductory section we have mentioned that multi-script documents are in general two
types. One is single document written by single script and another is single doc-
ument written by multiple scripts. The all-script (here Eight-script) average iden-
tification rate is suitable evaluating parameter for the former case (single document

Table 2 Confusion matrix using MLP classifier on the test dataset

Script name BEN DEV KAN MAL ORY ROM TEL URD

BEN 44 0 0 3 0 0 2 0

DEV 1 47 0 2 0 0 0 0

KAN 0 0 45 2 0 1 1 0

MAL 0 2 1 50 0 0 0 0

ORY 0 0 0 0 41 0 0 0

ROM 0 0 0 0 0 42 0 0

TEL 0 0 0 0 0 2 53 0

URD 0 0 0 0 0 0 0 52

Average eight-script identification rate using MLP: 95.7 %

Fig. 6 Sample diagram of MLP neural network with input, hidden, and output layers

46 Sk.Md. Obaidullah et al.

written by single script) and Bi-script average identification rate is truly justified for
the later one (single document written by multiple scripts). That is why we have
thoroughly experimented 8C2 or 28 Bi-script combinations and 98.51 % average
identification rate is found for the same. Among all, 100 % identification rate is
obtained by 10 combinations. Total 26 combinations shows higher identification
rate compared to Eight-script average identification rate. Only two instances namely
Bangla-Devnagari and Devnagari-Malayalam has obtained 95 and 92 % identifi-
cation rate correspondingly which is 0.7 and 3.7 % lower than the Eight-script
average identification rate. The case of Bangla-Devnagari is due to some similar
features in their writing style (presence of topological feature like ‘matra’ in both
cases). Devnagari-Malayalam combination produces discouraging results due to

Fig. 7 Performance comparison of different classifiers

Table 3 Bi-script identification rate using MLP classifier

Sl. No. Script combination AAR (%) Sl. No. Script combination AAR (%)

1 Bangla, Urdu 100 15 Bangla, Oriya 99

2 Devnagari, Roman 100 16 Malayalam, Oriya 99

3 Devnagari, Urdu 100 17 Roman, Telugu 98.9

4 Kannada, Telugu 100 18 Bangla, Malayalam 98

5 Kannada, Urdu 100 19 Devnagari, Oriya 98

6 Malayalam, Telugu 100 20 Malayalam, Urdu 98

7 Oriya, Roman 100 21 Bangla, Roman 97.9

8 Oriya, Urdu 100 22 Devnagari, Telugu 97.9

9 Roman, Urdu 100 23 Malayalam, Roman 97.9

10 Telugu, Urdu 100 24 Bangla, Telugu 96.9

11 Bangla, Kannada 99.01 25 Kannada, Roman 96.9

12 Devnagari, Kannada 99.01 26 Oriya, Telugu 96.9

13 Kannada, Malayalam 99.01 27 Bangla, Devnagari 95

14 Kannada, Oriya 99.01 28 Devnagari, Malayalam 92

Average Bi-script identification rate: 98.51 %

An Approach for Automatic Indic … 47

presence of few structural similarities of the graphemes of these two scripts. We
need to investigate this issue in more detail and some fine set of features need to be
developed for them. Hopefully we will achieve this very shortly.

Figure 8 shows a bar graph where the Bi-Script average accuracy rate of different
Bi-Script combinations and their reported AAR (%) has been shown.

3.5 Comparative Study

To understand the performance of any proposed technique, we generally compare
the standard performance measuring parameters namely average accuracy rate,
model building time, etc. with other state-of-the-art available. But unfortunately we
are unable to compare our results because no work is available till date for above
mentioned handwritten Eight-script combination at Line level to the best of our
knowledge. The issue of unavailability of benchmark dataset inspired us to prepare
our own document image data bank. Our present result can be considered as a
benchmark one for this Eight-script combination on the present Line-level dataset.

4 Conclusion and Future Scope

Different techniques have been proposed by the researchers for Indic script iden-
tification. But the solution to the handwritten script identification problem con-
sidering all official Indic scripts is still far from the complete solution. In this paper,
an approach for automatic script identification from eight official Indic scripts has
been proposed. The method is robust enough against standard skew and noise that
presents in real-life handwritten documents. Experimental result shows an average

Fig. 8 Bi-script average accuracy rate (%) for different combinations

48 Sk.Md. Obaidullah et al.

Eight-script identification rate of 95.7 % using MLP classifier which is really
encouraging. Other classifiers have also shown comparable performance on our
developed method. Experimentation on 8C2 or 28 possible Bi-script combinations
are also performed. Average Bi-script identification rate is found to be 98.51 %,
which is very much promising in HSI category. The present result can be consid-
ered as a benchmark one for Eight-script combinations on the present dataset. The
authors will be happy to contribute this dataset for the document image processing
research community for non commercial use and will be available freely on request.

Script identification techniques may be applied on Page/Block/Line/Word/
Character level. The overhead of segmentation is not applicable for Page level
script identification. But in other cases namely Block/Line/Word/Character level,
the accuracy rate solely depends on the performances of the segmentation algorithm
followed. Researchers sometimes considered pre-segmented images for their
experimentation. This is because segmentation itself is another broad area of
research in document image processing. The problem becomes extremely chal-
lenging when handwritten documents are considered. The present work followed a
semi-automatic segmentation technique while extracting lines from handwritten
document images. Special care was taken to handle touching or skewed handwritten
text lines. All the experimentation carried out is based on the pre-segmented output
line-level images.

Availability of benchmark database is a real constraint in document image pro-
cessing research. Though printed document may be available from some easy sources
like news paper, book chapters, etc. but collection of handwritten samples is more
challenging because of psychological barriers of the contributors who are writing
to generate the corpus. So, future plan of the authors includes building benchmark
dataset for all official handwritten Indic scripts. Scopes can be further extended
to work on real-life script identification problem namely video-based script identi-
fication, script identification from scene images, character-level script identification
from multi-script artistic words (few samples are shown in Figs. 9 and 10), etc.

Fig. 9 Character-level
multi-script artistic
document images

An Approach for Automatic Indic … 49

References

1. Obaidullah, S.M., Das, S.K., Roy, K.: A system for handwritten script identification from
indian document. J. Pattern Recogn. Res. 8(1), 1–12 (2013)

2. Ghosh, D., Dube, T., Shivprasad, S.P.: Script recognition—a review. IEEE Trans. Pattern
Anal. Mach. Intell. 32(12), 2142–2161 (2010)

3. Pal, U., Chaudhuri, B.B.: Identification of different script lines from multi-script documents.
Image Vis. Comput. 20(13-14), 945–954 (2002)

4. Hochberg, J., Kelly, P., Thomas, T., Kerns, L.: Automatic script identification from document
images using cluster-based templates. IEEE Trans. Pattern Anal. Mach. Intell. 19, 176–181
(1997)

5. Chaudhury, S., Harit, G, Madnani, S., Shet, R.B.: Identification of scripts of Indian languages
by combining trainable classifiers. In: Proceedings of Indian Conference on Computer Vision,
Graphics and Image Processing, 20–22 Dec 2000, Bangalore, India (2000)

6. Pal, U., Chaudhuri, B.B.: Script line separation from Indian multi-script documents.
IETE J. Res. 49, 3–11 (2003)

7. Pati, P.B., Ramakrishnan, A.G.: Word level multi-script identification. Pattern Recogn. Lett.
29(9), 1218–1229 (2008)

8. Obaidullah, S.M., Mondal, A., Das, N., Roy, K.: Structural feature based approach for script
identification from printed Indian document. In: Proceedings of International Conference on
Signal Processing and Integrated Networks, pp. 120–124 (2014)

9. Hochberg, J., Bowers, K., Cannon, M., Kelly, P.: Script and language identification for
handwritten document images. Int. J. Doc. Anal. Recogn. 2(2/3), 45–52 (1999)

10. Zhou, L., Lu, Y., Tan, C.L.: Bangla/English script identification based on analysis of
connected component profiles. In: Lecture Notes in Computer Science, vol. 3872/2006, 24354
(2006). doi:10.1007/11669487_22

11. Singhal, V., Navin, N., Ghosh, D.: Script-based classification of hand-written text document in
a multilingual environment. In: Research Issues in Data Engineering, p. 47 (2003)

Fig. 10 Real life video script
images

50 Sk.Md. Obaidullah et al.

http://dx.doi.org/10.1007/11669487_22

12. Roy, K., Banerjee, A., Pal, U.: A System for word-wise handwritten script identification for
indian postal automation. In: Proceedings of IEEE India Annual Conference, pp. 266–271
(2004)

13. Hangarge, M., Dhandra, B.V.: Offline handwritten script identification in document images.
Int. J. Comput. Appl. 4(6), 6–10 (2010)

14. Hangarge, M., Santosh, K.C., Pardeshi, R.: Directional discrete cosine transform for
handwritten script identification. In: Proceedings of 12th International Conference on
Document Analysis and Recognition, pp. 344–348 (2013)

15. Pardeshi, R., Chaudhury, B.B., Hangarge, M., Santosh, K.C.: Automatic handwritten Indian
scripts identification. In: Proceedings of 14th International Conference on Frontiers in
Handwriting Recognition, pp. 375–380 (2014)

16. Obaidullah, S.M., Mondal, A., Das, N., Roy, K.: Script identification from printed Indian
document images and performance evaluation using different classifiers. Appl. Comput. Intell.
Soft Comput. 2014(Article ID 896128), 12 (2014). doi:10.1155/2014/896128

17. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)
18. Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Med., California (2008)
19. Shiv Naga Prasad, V., Domke, J.: Gabor filter visualization. Technical Report, University of

Maryland (2005)
20. Aleai, A., Nagabhushan, P., Pal, U.: A benchmark kannada handwritten document dataset and

its segmentation. In: Proceedings of International Conference on Document Analysis and
Recognition, pp. 140–145 (2011)

21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

22. Obaidullah, S.M., Das, N., Roy, K.: Gabor filter based technique for offline indic script
identification from handwritten document images. In: IEEE International Conference on
Devices, Circuits and Communication (ICDCCom 2014), Ranchi, India, pp. 1–5. doi:10.1109/
ICDCCom.2014.7024723

An Approach for Automatic Indic … 51

http://dx.doi.org/10.1155/2014/896128
http://dx.doi.org/10.1109/ICDCCom.2014.7024723
http://dx.doi.org/10.1109/ICDCCom.2014.7024723

Writer Verification on Bangla
Handwritten Characters

Chayan Halder, Sk. Md. Obaidullah, Jaya Paul and Kaushik Roy

Abstract Writer Identification/Verification being a biometric personal authenti-
cation technique can be extensively used for personal verification. Currently, it has
gained a renewed interest in researchers due to the promising prospect in real life
applications like forensic, security, access control, etc. In the proposed work, we
have modified and evaluated the performance of different textural features for writer
verification on unconstrained Bangla isolated characters. A collection of 500 doc-
uments of isolated Bangla characters from 100 writers consisting of total 35,500
Bangla characters (25,500 alphabets + 5000 Bangla numerals + 5000 Bangla vowel
modifiers) are used in this respect. The combination of features yields better
performance. The evaluation of results shows that our method is effective and can
be applied on large database.

Keywords Writer verification � Bangla handwriting analysis � Mahalanobis
distance � Textural features

C. Halder (&) � K. Roy
Department of Computer Science, West Bengal State University,
Barasat, Kolkata 700126, West Bengal, India
e-mail: chayan.halderz@gmail.com

K. Roy
e-mail: kaushik.mrg@gmail.com

Sk.Md.Obaidullah
Department of Computer Science and Engineering, Aliah University,
Kolkata, West Bengal, India
e-mail: sk.obaidullah@gmail.com

J. Paul
Department of Information Technology, Government College of Leather Technology,
Kolkata 700098, West Bengal, India
e-mail: jayapl2005@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_4

53

1 Introduction

The authentication of the persons based on biometric techniques is a challenging
problem which has been an active area of research over the years. Handwriting is
one of the primitively used biometric techniques to authenticate an individual.
Every individual has some certain degree of stability in their handwriting which
enables the handwriting analyser to verify the writer. Writer verification is the task
of authenticating the writer of an unknown handwritten document. Mostly this is
done by the experts of handwriting analysis manually by visual examination of the
documents, but the reliability of those decisions is not conclusive. Automation of
this task is less attempted than identification as verification requires a local
decision-making techniques which is generally more dependent on the content of
the writing. This writer verification system can be developed using text-dependent
input data set or using text-independent input data set. In text-dependent writer
verification system the system is dependent on a given text content. In a
text-dependent method the known and unknown writers need to write the same text
accordingly and the system matches the same characters and texts to verify the
writer. The text-independent methods are able to identify writers independent of the
text content and the system uses a generalized method to verify writers by finding
similarities between writing patterns. Text-independent methods have got a wider
applicability, but text-dependent methods have obtain higher accuracy.
Text-dependent system can increase the possibility of forgery due to text depen-
dency, but it can be very useful in case of low security applications or applications
where genuine user uses the system most of the time where frequent rejection is not
suitable. In case of text-independent method, possibility of forgery is less but it
needs more input data set and rejection can be possible in case of genuine user also.
The writer verification can be used in different fields like security, access control,
graphology, historical document analysis [1] and hand held, and mobile devices [2].
To some extent it can be considered as strong as DNA and fingerprints in terms of
verification [3].

The paper is outlined as follows: a brief overview of the significant existing
contribution on writer identification/verification techniques is discussed in Sect. 2.
A summarized description of the proposed method is presented in Sect. 3. In Sect. 4
data collection and preprocessing steps are described. The description of features
that are used for the current work can be found in Sect. 5. Section 6 describes about
verification methodologies followed by results in Sect. 7. At last conclusion is
presented in Sect. 8.

54 C. Halder et al.

2 Brief Survey on Writer Verification/Identification

Writer verification technique is quite similar to signature verification and very close
to writer identification but there exists a certain dissimilarities between them which
make it a different problem in document analysis domain. Various works can be
found in the literature on automatic signature verification since 1989 [4–12]. There
is a lot of progress in signature verification but most of them are based on online
mode as seen in [6]. Working on verification techniques in offline mode is more
challenging than in online mode. In online mode prior information of strokes and
their starting and ending points are available but not in case of offline mode.
Different systems can be found regarding writer identification systems [13–27].
Most of the works are on Roman script [13–16] like the works of Srihari et al. [13],
Said et al. [14], Bulacu et al. [15] and Siddiqi and Vincent [16], etc. Jain and
Doermann proposed multi script writer identification on English, Greek, and Arabic
languages [17]. In [18], Ghiasi and Safabakhsh presented text-independent writer
identification using codebook on English and Farsi handwriting database. Some
writer identification works can be found in [19, 20]. Djeddi et al. in [21] have
proposed writer identification on multiple languages like English and Greek using
ICFHR 2012 Latin/Greek database. Recently, Halder et al. [22] have proposed
writer identification on Devanagari script. They have used isolated characters for
their work. Ding et al. in [23] have worked on Chinese, English, and Greek lan-
guages for writer identification. Also there are few writer identification works on
Bangla scripts which can be seen in [24–27]. Garain and Paquet [24] proposed an
AR coefficient feature-based writer identification system for Roman and Bangla
script. Chanda et al. [25] have developed a text-independent writer identification
system on Bangla script using the Gaussian kernel SVM (Support Vector Machine)
as their classifier. They experiment their work on 104 writers and got 95.19 %
accuracy on their system. Halder and Roy in [26] used only isolated Bangla
numerals and in [27] used all characters (alphabets + numerals + vowel modifiers)
for writer identification from 450 documents of 90 writers using 400 and 64
dimensional features and LIBLINEAR and MLP classifiers. In the work of [26]
highest writer identification accuracy of 97.07 % has been achieved while in [27]
99.75 % accuracy has been achieved for the same. But the work on writer verifi-
cation is very rare. Though there are few contributions on writer verification but
most are in non-Indic scripts [28–35]. Yamazaki et al. [28] have proposed an online
Writer verification process using hidden Markov models (HMM) on Chinese and
Japanese characters. They have used 20 writers each with 20 different characters to
generate the code book text. A single word-based writer identification and verifi-
cation has been implemented by Zois and Anastassopoulos [29]. Experiments have
been performed on a data set of 50 writers. An English word and its corresponding
Greek word with same meaning and length were used. 20-dimensional feature
vectors have been used for the work. Bayesian classifier and Multilayer Perceptron
classifier have been used to test the efficiency of their approach. For Bayesian
classifier they have got identification accuracy of 92.48 % on English and 92.63 %

Writer Verification on Bangla Handwritten Characters 55

on Greek words. For MLP the accuracies have been increased to 96.5 % and 97 %
on English and Greek, respectively. They have achieved verification accuracies of
97.7 % and 98.6 %, respectively. As their approach is dependent on the dimen-
sionality of the feature vector which is dependent on the length of the word so the
success is also dependent on the word length, length of the SEs, and partition levels.
As the results for both the languages are very close so it can be concluded that the
approach can be language independent. In [30], Srihari et al. proposed different
macro features with Gaussian and Gamma parameters along with log-likelihood
ratio (LLR) on English handwritten samples from 1000 writers for writer verifi-
cation. Bulacu et al. in [31] implemented writer identification and verification on
Roman script using three different databases namely IAM database [32], Firemaker
set [33], Unipen database [34]. The IAM database contains 650 writers, the
Firemaker set contains 250 writers and the Unipen database contains 215 writers.
They have also combined the IAM and Firemaker databases to form a database
namely Large with 900 writers. The four different features directional probability
distribution functions (PDFs), grapheme emission PDF, run-length PDFs, and
autocorrelation are used by them. In another work by combining some textural and
allographic features they have proposed text-independent Arabic writer identifica-
tion [35]. The IFN/ENIT dataset [36] has been used for their work. For the allo-
graphic features, a codebook of 400 allographs has been generated from the
handwritings of 61 writers and the similarities of these allographs have been used as
another feature. The database has been collected from 350 writers with five samples
per writer [each sample contains two lines (about 9 words)]. The best accuracies
that have been seen in experiments are 88 % in top-1 and 99 % in top-10. There are
very few works done on Indic script like Gupta and Namboodir [37] proposed a
writer verification system using boosting method on Devanagari script on 20 writers
to achieve error rates of 5 % for 7 words, 11 % when chosen randomly, and 22 %
for primitive selection methods. According to our knowledge there no methods
attempted on writer verification considering Bangla script which motivates us to
work in this area. In this proposed method, some modification on fast Fourier
transform (FFT), discrete cosine transform (DCT) and gray level co-occurrence
matrix (GLCM) is done to extract textural features from superimposed characters
images. Though the selected feature set is small considering the writer verification
modality, satisfactory results are achieved.

3 Method

In this section, a brief description and outline of the proposed system has been
presented. For the current work we have considered a database consisting of isolated
characters collected from 100 writers. The inter writer (the variation between the
handwriting samples of two different people) and intra writer (the variation within a
person’s own handwriting samples) variation can be seen in handwriting of different
writers. This difference can be seen in Fig. 1, where in Fig. 1a three different isolated

56 C. Halder et al.

characters from three different writers are shown. In Fig. 1b superimposed version of
three characters of these three writes (writer wise) are shown and in Fig. 1c super-
imposed version of these three characters for 10 different writers (inter writer
including the three writers) are shown. Here, the concentrated areas of characters of
Fig. 1b are very high than in Fig. 1c due to the reason that the inter writer variation is
very high compared to intra writer variation. This is due to the individuality property
of the characters. The experts analyze and verify the writer on the basis of these
visual differences. For more details on intra, inter writer variation, and individuality
see [27]. Here we have used textural features to obtain that difference by means of
automation for writer verification. After calculation of textural features, distance
measure, and threshold are applied to verify an unknown writer from a set of known
writers. Figure 2 gives a brief overview of the proposed writer verification technique.
First, the collected data are preprocessed and superimposed in each character cate-
gory and then textural features MFFT (modified fast fourier transform), MGLCM
(modified gray level co-occurrence matrix), and MDCT (modified discrete cosine
transform) are applied individually and combined.

Fig. 1 a Example of three
different isolated characters
from three different writers.
b Example of three
superimposed characters of
each writer from the same
three writers. c Example of
three superimposed characters
from ten different writers
including the three writer
from (a) and (b)

Writer Verification on Bangla Handwritten Characters 57

4 Database and Preprocessing

The current experiment is conducted using the database taken from [27] but with
more number of writers. The database contains 500 documents of isolated Bangla
characters from 100 writers consisting of total 35,500 Bangla characters (25,500
alphabets + 5000 Bangla numerals + 5000 Bangla vowel modifiers). An example of
our designed sample data collection form for isolated characters is shown in Fig. 3.
There exists no restrictions for writers regarding the type of pen and ink they have
used; some of them have used pencils also. The documents were scanned using a
flat-bed scanner and digitized in gray-scale mode at 300 dpi in TIF format. In
Preprocessing stage the global binarization of the whole document is carried out.
Now, maximum run length in both horizontal and vertical directions are calculated
to identify boundary lines in each directions and then these lines are being deleted.
After that, using bounding boxes and location information of the suggestive
characters, the isolated characters are extracted from the raw document images. The
details about the data collection, type of data, digitization of the raw collected
handwritten data and preprocessing techniques can be found in [27].

In our proposed work the isolated images are not directly used for feature
extraction. The characters of each writers are superimposed onto each other to
create a single character image of each character category belong to that writer only.
It means the same characters of a writer from five different sets are taken and
superimposed to create a single character of that writer which contains the intra
writer variation of that writer for that particular character. First, the bounding box of
isolated gray character images are calculated. After applying global binarization the
images are normalized to fixed 128 × 128 pixels size. Next, the normalized
128 × 128 binary images are projected into a white 128 × 128 image. In the
projection technique, for each object pixel of the original image, corresponding
pixel of the white 128 × 128 image has been decremented by a fixed value that is
calculated using the formula (1). Thus, a single gray character image is created
capturing the writing variation. This procedure is repeated for each character

Fig. 2 Brief overview of the
writer verification system

58 C. Halder et al.

category writer wise. Figure 1b shows some sample superimposed images that are
used for feature extraction.

N
s

� �
ð1Þ

where N Total number of gray levels
where s Total number of image samples that are used to create a superimposed

image.

Fig. 3 Sample data collection form used for collection of Bangla Handwritten isolated characters
and Vowel modifiers

Writer Verification on Bangla Handwritten Characters 59

5 Feature Extraction

In this proposed work, the textural features of the superimposed images are
extracted to distinguish between the intra writer and inter writer variations. Two
frequency domain features FFT (fast Fourier transform) and DCT (discrete cosine
transform) are modified along with GLCM (gray level co-occurrence matrix) to
extract the textural features. In general, the FFT and DCT are used to capture the
varying frequency of an image but in this experiment the varying gray level
intensity (gray-level frequency) values, i.e., the textural differences are calculated
by modifying FFT, DCT, and GLCM. The MFFT (modified fast Fourier transform)
is used to get the variation of gray level intensity values. The MGLCM (modified
gray level co-occurrence matrix) is used to get the local variation among gray level
pixel values, probability of occurrence, uniformity, closeness of the distribution of
the gray-level pixel values. The MDCT (modified discrete cosine transform) is used
to get the similar textural measures like MFFT but with less computational cost.

5.1 MFFT (Modified Fast Fourier Transform)

The Fourier transform has many different variations. Among those the discrete
Fourier transform (DFT) is very widely used. The fast Fourier transform (FFT) is a
quicker version of DFT where the computational overhead is lower compared to
DFT. Using FFT pixel values of an image along a row or column can be trans-
formed into a periodic sequence of complex number. To obtain image information
of the frequency domain space FFT can be used. After a Fourier decomposition of
the image, the phase spectrum contains texture and structure information about the
image. More details about FFT can be found in [38]. The 2D FFT function com-
putes transformation of a given 2D image of length M × N using the Eq. (2).

Fðx; yÞ ¼
XM�1
m¼0

XN�1
n¼0

f ðm; nÞe�j2pðxmMþ ynNÞ ð2Þ

In the current method the Modified FFT feature is calculated on the superim-
posed images using the following steps: First, the 128 × 128 dimensional feature
vectors has been computed using 2D FFT algorithm then using Gaussian filter and
Eq. (3) MFFT is calculated on the images to get 64 dimension feature vectors.

FðxÞ ¼ f ðmÞ
M

;FðxÞ� 1
� �

ð3Þ

60 C. Halder et al.

where

M ¼ maxðf ðmÞÞ

f ðmÞ ¼
XN
n¼1

mn

and
N Total number of feature dimension for a single column of the feature set.

5.2 MGLCM (Modified Gray Level Co-occurrence Matrix)

The GLCM (gray level co-occurrence matrix) is a statistical calculation of how
often different combination of gray level pixel values occur in an image. It has been
the workhorse for textural analysis of images since the inception of the technique by
Haralick et al. [39]. GLCM matrix describes the frequency of occurrence of one
gray level with another gray level in a linear relationship within a defined area.
Here, the co-occurrence matrix is computed based on two parameters, which are the
relative distance between the pixel pair d measured in pixel number and their
relative orientation φ. Normally, φ is quantized in four directions (0°, 45°, 90°, and
135°). The GLCM is a matrix where the number of rows and columns are equiv-
alent to the number of gray levels of the image. The matrix element P(i, j|Δx, Δy) is
the relative frequency with which two pixels, separated by a pixel distance (Δx, Δy),
occur within a given neighborhood, one with intensity i and the other with intensity
j. One may also say that the matrix element P(i, j|d, θ) contains the second-order
statistical probability values for changes between gray levels i and j at a particular
displacement distance d and at a particular angle (θ). Detail description of GLCM
may be available in [39]. In the current approach the MGLCM is calculated with

Fig. 4 GLCM calculation for both type of pixel pairs in all four directions

Writer Verification on Bangla Handwritten Characters 61

contrast, correlation, energy, and homogeneity statistical measures in all four
directions considering both type of pairs like P[i, j] and P[j, i]. The following Fig. 4
is showing the GLCM calculation technique in this respect for all four directions
and both pixel pair types considering eight gray levels. After the calculation of
GLCM using the Eq. (3) the MGLCM feature vectors are calculated to get eight
dimensional features.

5.3 MDCT (Modified Discrete Cosine Transform)

Discrete cosine transform (DCT) is one of the widely used transform in the image
processing applications for feature extraction. The approach involves taking the
transformation of the image as a whole and separating the relevant coefficients.
DCT performs energy compaction. The DCT of an image basically consists of three
frequency components namely low, middle, high each containing some detail
information in an image. The low frequency generally contains the average
intensity of an image. The DCT is very similar to FFT. The main difference
between a DCT and a DFT is that the DCT uses only cosine functions, while the
DFT uses both sin and cosine. To get more details on DCT see [40]. The 2D DCT
function computes the transformation of a given M × N image by using the Eq. (4).
The 64 dimensional MDCT feature vectors of the superimposed images has been
calculated using the following steps: first, the 128 × 128 dimensional feature vector
has been computed using 2D DCT then Gaussian filter and Eq. (3) is used.

Fðx; yÞ ¼ ð 2
M
Þ12ð2

N
Þ12
XM�1
m¼0

XN�1
n¼0

KðmÞKðnÞ

cos½ px
2M
ð2mþ 1Þ� cos½py

2N
ð2nþ 1Þ�f ðm; nÞ

ð4Þ

where
f(m, n) The gray intensity value of the pixel (m, n).

6 Verification

In this study, the writer verification is performed using Mahalanobis distance
measure technique between features of known writers of the database and the
unknown writer. In the proposed system, the textural features are extracted from the
isolated handwritten characters of the unknown writer and after calculating
Mahalanobis distance the varying decision threshold is applied to verify the writer.
During the verification phase the features extracted from the known writers are used
to calculate the distance between the known and questioned writer. The feature

62 C. Halder et al.

vectors of the known and questioned writer in the feature space during a certain
comparison can be defined as follows:

KWj
 �� ¼ ðkf1j; kf2j; kf3j; . . .; kfNjÞ ð5Þ

and

QW
 �� ¼ ðqf1; qf2; qf3; . . .; qfNÞ

where
kfij and qfi represent each features of the known writer and the questioned writer,

respectively.

and
N is the feature dimension.

Mahalanobis distance on each of these feature vector pair has been calculated
which can be defined as follows:

DðxÞ ¼
ffi
ðkf ij � qf iÞTS�1ðkf ij � qf iÞ

q
ð6Þ

where kfij and qfi are same as defined in (5)
and
S−1 is the inverse covariance matrix of the feature data set.
The decision threshold has been calculated after the distance measure and if the

distance is greater than the threshold then the questioned writer is verified.

7 Results

The proposed experiment has been carried out on total 35,500 Bangla characters
from 100 writers taking five samples of isolated characters from each writer. The
textural features MFFT, MGLCM, and MDCT are used for feature extraction and
Mahalanobis distance measure and varying decision threshold has been used to
verify the writers. In the current system from 100 writers four samples are used to
create the training feature set and the remaining samples are selected at random as
the set of unknown writers. The features capture different aspects of handwriting
individuality. By combining all the features improvement in the performance of
verification has been achieved.

7.1 Result of Writer Verification

In order to get a reliable result two types of errors are considered along with two
types of accuracy calculations. The true acceptance rate (TAR), (where the ques-
tioned writer is properly accepted) and the true rejection rate (TRR), (where the

Writer Verification on Bangla Handwritten Characters 63

questioned writer is properly rejected) are summed up to get the accuracy value.
The false acceptance rate (FAR), (where the questioned writer is not the original
writer and the system wrongly accepted it) and false rejection rate (FRR), (where
the questioned writer is the original writer but the system wrongly rejected it) are
considered as the total error rate. Table 1 shows the writer verification results in
terms of individual features and combination of features. From the table it can be
observed that in case of individual features MFFT scores highest with 56.27 %
verification accuracy where GLCM scored very low due to the very high False
acceptance rate (FAR) of 46.68 %. When the three features are combined the
accuracy has been increased to 62.17 % which is quite satisfactory.

7.2 Comparative Study

In the current method, we have used 100 writers and textural features. According to
our knowledge of the literature there is no such work of writer verification on
Bangla script so currently we are unable to compare our experiment with others. In
our current approach three different textural features are applied. A comparative
study on writer verification results of these features and their combinations can be
seen in Fig. 5. In Fig. 6 a comparative analysis of different features and their
combination with respect to accuracy and error rate is shown. Analyzing these
figures, it can be seen that the MFFT feature gives better performance compared to
others regarding single and combined use. The performance of MGLCM feature is
quite low due to the higher False Acceptance Rate (FAR), while performance of
MDCT is moderate. When combination of different features is used the accuracy is
improved and error rate are also decreased. Though the results are not very high due

Table 1 Writer verification result on different textural features

Features Dimension Accuracy (%) Error (%)

FAR FRR

MFFT 64 56.27 31.75 11.98

MGLCM 8 26.37 46.68 26.95

MDCT 64 48.57 35.33 16.09

MFFT + MGLCM 72 57.84 28.59 13.57

MFFT + MDCT 128 60.25 27.17 12.58

MGLCM + MDCT 72 52.42 29.00 18.58

MFFT + MGLCM + MDCT 136 62.17 26.22 11.61

64 C. Halder et al.

to high false acceptance rate (FAR) but the results show some encouragement
toward the works of handwritten Bangla writer verification. Our approach is open
for comparison with other works.

8 Conclusion

In this document a study has been conducted on Bangla isolated characters for
writer verification. The lack of standard Bangla handwriting analysis system and a
standard Bangla database with writer information, has initiated our interest in this
work. In the current work, we have used a database consists of 100 writers and
modified some simple frequency domain features to use as textural features for our
approach. Although the used feature set is small regarding writer verification
modality, encouraging results are successfully achieved. At present there is no such
writer verification system on Bangla with which we can compare our system, still it
can be used as a stepping stone towards this type of works on Bangla. The amount
of data is relatively large enough which indicates that this method can be applied in
real-life environment.

Future scope includes increasing the size of the database both in terms of writers
and samples per writer to create a standard database for the community of hand-
writing analysers. Also we are looking forward to introduce handwriting of skilled
forgers to give an extra dimension to our work. In future fuzzy measures can be
introduced during feature selection so that false acceptance rate can be minimized.

Fig. 5 Comparison of accuracy and error rate of writer verification results with respect to different
features and their combinations

Writer Verification on Bangla Handwritten Characters 65

We are also planning to use different kind of statistical distance measure and
analysis methods for decision making during verification. We believe that this kind
of approach can be applied on other similar Brahmic scripts.

Acknowledgments One of the author would like to thank Department of Science and
Technology (DST) for support in the form of INSPIRE fellowship.

References

1. Fornes, A., Llados, J., Sanchez, G., Bunke, H.: Writer identification in old handwritten music
scores. In: Proceedings of 8th IAPR workshop on DAS, pp. 347–353 (2008)

2. Chaudhry, R., Pant, S.K.: Identification of authorship using lateral palm print: a new concept.
J. Forensic Sci. 141, 49–57 (2004)

3. Schomaker, L.: Advances in writer identification and verification. In: Proceedings of 9th
ICDAR, vol. 2, pp. 1268–1273 (2007)

4. Plamondon, R., Lorette, G.: Automatic signature verification and writer identification: the state
of the art. Pattern Recogn. 22(2), 107–131 (1989)

5. Chan, L.F., Kamins, D., Zimerann, K.: Signature recognition through spectral analysis. Pattern
Recogn. 22, 39–44 (1989)

6. Wan, L., Wan, B., Lin, Z.-C.: On-line signature verification with two stage statistical models.
In: Proceedings of 8th ICDAR, pp. 282–286 (2005)

Fig. 6 Comparative study of different features and their combinations with respect to accuracy
and error rate of writer verification results

66 C. Halder et al.

7. Prakash, H.N., Guru, D.S.: Offline signature verification: an approach based on score level
fusion. Int. J. Comput. Appl. 1(18), 52–58 (2010)

8. Yilmaz, M.B., Yanikoglu, B., Tirkaz, C., Kholmatov, A.: Offline signature verification using
classifier combination of HOG and LBP features. In: Proceedings of IJCB, pp. 1–7 (2011)

9. Malik, M.I., Liwicki, M., Dengel, A.: Evaluation of local and global features for offline
signature verification. In: Proceedings of 1st AFHA, pp. 26–30 (2011)

10. Liwicki, M., Malik, M.I., van den Heuvel, C.E., Xiaohong, C., Berger, C., Stoel, R.,
Blumenstein, M., Found, B.: Signature verification competition for online and offline skilled
forgeries (SigComp2011). In: Proceedings of 11th ICDAR, pp. 1480–1484 (2011)

11. Ferrer, M., Vargas, J., Morales, A., Ordonez, A.: Robustness of offline signature verification
based on gray level features. IEEE Trans. Inf. Forensics Secur. 7(3), 966–977 (2012)

12. Neamah, K., Mohamad, D., Saba, T., Rehman, A.: Discriminative features mining for offline
handwritten signature verification. 3D Res. 5(1), 1–6 (2014)

13. Srihari, S., Cha, S., Arora, H., Lee, S.: Individuality of handwriting. J. Forensic Sci. 47(4),
1–17 (2002)

14. Said, H.E.S., Tan, T.N., Baker, K.D.: Personal identification based on handwritting. Pattern
Recogn. 33, 149–160 (2000)

15. Bulacu, M., Schomaker, L., Vuurpijl, L.: Writer identification using edge-based directional
features. In: Proceedings of 7th ICDAR, vol. 2, pp. 937–941 (2003)

16. Siddiqi, I., Vincent, N.: Writer identification in handwritten documents. In: Proceedings of 9th
ICDAR, pp. 108–112 (2007)

17. Jain, R., Doermann, D.: Writer identification using an alphabet of contour gradient descriptors.
In: Proceedings of 12th ICDAR, pp. 550–554 (2013)

18. Ghiasi, G., Safabakhsh, R.: Offline text-independent writer identification using codebook and
efficient code extraction methods. Image Vis. Comput. 31, 379–391 (2013)

19. Djeddi, C., Souici-Meslati, L., Ennaji, A.: Writer recognition on Arabic handwritten
documents. In: Proceedings of 5th ICISP, pp. 493–501 (2012)

20. Abdi, M.N., Khemakhem, M.: A model-based approach to offline text-independent Arabic
writer identification and verification. Pattern Recogn. 48(5), 1890–1903 (2015)

21. Djeddi, C., Siddiqi, I., Souici-Meslati, L., Ennaji, A.: Text-independent writer recognition
using multi-script handwritten texts. Pattern Recogn. Lett. 34, 1196–1202 (2013)

22. Halder, C., Thakur, K., Phadikar, S., Roy, K.: Writer Identification from handwritten
Devanagari script. In: Proceedings of INDIA-2015, pp. 497–505 (2015)

23. Ding, H., Wu, H., Zhang, X., Chen, J.P.: Writer identification based on local contour
distribution feature. Int. J. Signal Process. Image Process Pattern Recogn. 7(1), 169–180
(2014)

24. Garain, U., Paquet, T.: Off-line multi-script writer identification using AR coefficients. In:
Proceedings of 10th ICDAR, pp. 991–995 (2009)

25. Chanda, S., Franke, K., Pal, U., Wakabayashi, T.: Text independent writer identification for
Bengali script. In: Proceedings of ICPR, pp. 2005–2008 (2010)

26. Halder, C., Roy, K.: Individuality of isolated Bangla numerals. J. Netw. Innov. Comput. 1,
33–42 (2013)

27. Halder, C., Roy, K.: Individuality of isolated Bangla characters. In: Proceedings of ICDCCom,
pp. 1–6 (2014)

28. Yamazaki, Y., Nagao, T., Komatsu, N.: Text-indicated writer verification using hidden
Markov models. In: Proceedings of 7th ICDAR, pp. 329–332 (2003)

29. Zois, E., Anastassopoulos, V.: Morphological waveform coding for writer identification. IEEE
Trans. Pattern Recogn. 33(3), 385–398 (2000)

30. Srihari, S.N., Beal, M.J., Bandi, K., Shah, V.: A statistical model for writer verification. In:
Proceedings of 8th ICDAR, pp. 1105–1109 (2005)

31. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using
textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717
(2007)

Writer Verification on Bangla Handwritten Characters 67

32. Marti, U., Bunke, H.: The IAM-database: an english sentence database for offline handwriting
recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

33. Schomaker, L., Vuurpijl, L.: Forensic writer identification: a benchmark data set and a
comparison of two systems. NICI, Nijmegen (2000). technical report

34. Guyon, I., Schomaker, L., Plamondon, R., Liberman, R., Janet, S.: UNIPEN project of online
data exchange and recognizer benchmarks. In: Proceedings of 12th ICPR, pp. 29–33 (1994)

35. Bulacu, M., Schomaker, L., Brink, A.: Text-independent writer identification and verification
on offline arabic handwriting. In: Proceedings of 9th ICDAR, pp. 769–773 (2007)

36. Pechwitz, M., Maddouri, S., Margner, V., Ellouze, N., Amiri, H.: IFN/ENIT-database of
handwritten arabic words. In: Proceedings of CIFED, pp. 129–136 (2002)

37. Gupta, S., Namboodiri, A.: Text dependent writer verification using boosting. In: Proceedings
of 11th ICFHR (2008)

38. Duhamel, P., Vetterli, M.: Fast Fourier transforms: a tutorial review and a state of the art. Sig.
Process. 1(9), 259–299 (1990)

39. Haralick, R.M., Shanmugan, K., Dinstein, I.: Textural features for image classification. IEEE
Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)

40. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. C-23
(1), 90–93 (1974)

68 C. Halder et al.

Face Recognition in Video Using
Deformable Parts Model with Scale
Invariant Feature Transform (DPSIFT)

V. Mohanraj, V. Vaidehi, Ranajith Kumar and R. Nakkeeran

Abstract Face recognition is a complex task due to the challenges of varying pose,
illumination, scaling, rotation, and occlusion in live video feed. This paper proposes
a hybrid approach for face recognition in video called Deformable Parts Model with
Scale Invariant Feature Transform (DPSIFT), to make face recognition system
invariant to illumination, scaling, rotation, and limited pose. The proposed method
identifies the significant points of the face using deformable part model and SIFT
feature descriptors are extracted for those significant points. Fast Approximate
Nearest Neighbor (FLANN) algorithm is used to match the SIFT descriptors
between gallery image and probe image to recognize the face. The proposed
method is tested with video datasets like YouTube celebrities, FJU, and MIT-India.
DPSIFT method was found to perform better than the existing methods.

Keywords Face detection and recognition � SIFT � Deformable parts model �
FLANN

V. Mohanraj (&) � V. Vaidehi
Madras Institute of Technology, Anna University, Chennai, India
e-mail: mohanraj4072@gmail.com

V. Vaidehi
e-mail: vaidehi@mitindia.edu

R. Kumar
BARC, Mumbai, India
e-mail: ranajitk@barc.gov.in

R. Nakkeeran
Christ College of Engineering and Technology, Pondicherry, India
e-mail: sudhandhiram64@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_5

69

1 Introduction

Face recognition (FR) has received significant attention during the past years. This
is due to its use in a wide range of commercial and law enforcement applications.
Computational complexity is the major bottleneck for real-time face recognition in
video. Also, a face recognition system in real-time environment should handle the
differences in the training and test database.

Face recognition system is a biometric software application for automatically
identifying or verifying a person from a digital image by comparing with a stored
database of faces. Face recognition includes both face identification and face ver-
ification, (i.e., authentication). Face verification is concerned with validating a
claimed identity based on the image of a face, and either accepting or rejecting the
identity claim. It computes similarity with only the claimed class in the database.
This approach is one-to-one matching. Face identification is identifying a person
based on the image of a face. This face image has to be compared with all the
registered persons, thus increasing the computation time. This approach is
one-to-many matching. There are two phases in face recognition, namely training
and testing phase. In training phase, all the registered and authenticated persons in
the database are processed to obtain facial features. These facial features are stored
in the database for testing purpose. In testing phase, images of different persons are
processed in the same manner as in the training phase and feature descriptors are
compared with the database features. Similarity measures are used to verify or
identify the test face with the database face.

There are basically two types of approaches in face recognition, the holistic
approach and the feature-based approach. Holistic methods use the whole face
region as the raw input to a recognition system. In feature-based methods, com-
pressed features (geometric and/or appearance) are first extracted and fed into a
structural classifier. Just as the human perception system uses both local features
and the whole face region to recognize a face, a robust hybrid face recognition
system takes the best advantage of both the features. Face Recognition System
(FRS) has three main steps: face detection from input image or video, face
recognition by comparison with database, and authorization results using similarity
measures.

This paper proposes a novel approach for face recognition called DPSIFT.
Deformable part model is used to localize the prominent features in face and scale
invariant feature transform is used to extract the feature descriptor from interest
point. Fast approximate nearest neighbor is used to match the feature descriptor
between gallery image and probe image. This paper is organized as follows: Sect. 2
deals with related works, Sect. 3 elucidates the proposed DPSIFT method, and
Sect. 4 presents the details of implementation and results. Finally, Sect. 5 concludes
the paper.

70 V. Mohanraj et al.

2 Related Works

Face detection and recognition in video is a challenging task due to large variations
in the face compared to gallery face images. In the past few decades many works on
face recognition have been developed, yet the accuracy was not good due to large
variations in illumination, scale, rotation, and occlusion so the system failed to
recognize the person. Face recognition is classified into holistic features, local
features, and hybrid features. Recently most works on face recognition using
prominent features is used to identify the person. The prominent features will
reduce the feature dimension. This paper also uses the prominent features for face
identification, challenges in identification of prominent features is difficult due to
variation in pose, illumination, scale, and occlusion.

The intersection of two edges [1] for two distinct directions are represented as
interest points in Harris corner detection. The Harris corner method is invariant to
rotation of the image. If the image is rotated then the corners are detected with the
same interest points, but is variant to scale. Lowe et al. [2] suggests Scale Invariant
Feature Transform (SIFT) to identify the interest points. The interest points are
localized by constructing three levels of pyramids, i.e., below one scale and above
one scale input image size. Interest points are invariant to scale, rotation, noises,
and illumination changes. However, it consumes more time for interest point
detection. In order to reduce time for interest points detection [3] suggested a
method called Speeded up Robust Features (SURF). It is invariant to rotationand
scale, but SIFT and SURF are not open source for commercial purpose.

A joint statistical method is suggested to estimate a shape of face image [5]. This
method detects eyes, nose, and mouth part of face image by mapping the given
input image and estimated shape of face image. It provides a large set of features for
face image. However, it requires high resolution images and large training anno-
tation dataset at high cost. The error between the estimated shape of face image with
the given face image fails to predict the interest point’s localization under tilted face
image conditions. Another method [4] for interest point’s localization is
Viola-Jones algorithm based on the adaboost classifier. The method consists of a set
of training images for eyes, nose, and mouth features of face image. It locates the
interest points independently using adaboost classifier for each of the features by
trained dataset for the input face image.

The Deformable Parts Model (DPM) goes one step further by fusing the local
appearance model and the geometrical constraint into a single model. The DPM is
given by a set of parts along with a set of connections between certain pairs of parts
arranged in a deformable configuration. A natural way to describe the DPM is an
undirected graph with vertices corresponding to the parts and edges representing the
pairs of connected parts. The DPM-based detector estimates all landmark positions
simultaneously by optimizing a single cost function composed of a local appearance
model and a deformation cost. The complexity of finding the best landmark

Face Recognition in Video Using Deformable Parts Model … 71

configuration depends on the structure of the underlying graph. If the graph does
not contain loops, e.g., it has star-like structure with the central node corresponding
to the nose, the estimation can be solved efficiently by a variant of dynamic pro-
gramming. The proposed system combines the deformable parts model and scale
invariant feature transform for face recognition in video.

3 Proposed System

The proposed system combines deformable parts model and scale invariant feature
transform for efficient face recognition in video. The proposed method has two
phases, namely training and testing. Figure 1 shows the framework of the proposed
method.

3.1 Face Detection

Face detection is the first stage in face recognition system. The proposed DPSIFT
method uses haar features for face detection in video as it works faster due to
rejection of non-face images at the earliest stage and thus is suited for face detection
in real time. Figure 2 shows some of the haar features used for face detection.

3.2 Interest Point Detection

The proposed DPSIFT method uses the deformable parts model to find the
prominent feature points in the detected face image. The center point of the detected
face is identified by referring to the bounded rectangle of the detected face. Further,
the keypoints are localized in the extracted face image by matching a ground truth
template upon the identified center point. Figure 3 shows the ground truth model for
localizing the prominent feature points.

The center point lies upon the nose tip of detected face image and it is denoted as
‘S0’ as shown in Fig. 3. The left corner of the left eye is represented as S5, the right
corner of the left eye is represented as S1, the left corner of the right eye is
represented as S2, and the right corner of the right eye is represented as S6. The left
and right corners of the mouth region are represented as S3 and S4.

Let J = {I1, I2,…., In} be a set of grayscale images, where {Ii} is an image of size
{h × w} pixels, where ‘h’ denotes height and ‘w’ denotes width of an image. The
localized set of N prominent feature is represented as a graph where N = G (V, E),
where V = {0,. .. ., N-1} is a set of prominent feature points. The quality of
prominent feature points is measured by Eq. 1. Figure 4 shows prominent feature
points localization after face detection.

72 V. Mohanraj et al.

Face Recognition

Result

Input Video Stream

Face Detection

Interest Points
Localization

SIFT Feature Extraction

Fig. 1 Proposed system architecture for face recognition system

Face Recognition in Video Using Deformable Parts Model … 73

f ðI; SÞ ¼
X
i2V

qiðI; SiÞþ
X
ði;jÞ2E

gijðSi; SjÞ ð1Þ

The first part of this equation identifies the prominent feature point for the
detected face image by ground truth. The second part of this equation evaluates the

(a)

(b)

(c)

Fig. 2 Haar features (a) Edge Features, (b) line Features, (c) four rectangle features

S5 S1

S0

S3 S4

S2
S6

Fig. 3 List of prominent feature points

Fig. 4 Localized facial
feature points

74 V. Mohanraj et al.

deformation cost by considering neighborhood pixel value for each prominent
feature to locate the prominent feature points in the proper location.

3.3 Feature Descriptors

The proposed DPSIFT method uses scale invariant feature transform (SIFT) to
extract the feature descriptor for each prominent feature point. After detection of
prominent feature points from the cropped face image, the SIFT feature descriptor is
applied to extract the features. A 16 × 16 neighborhood is constructed around each
prominent feature point and it is divided into 16 sub blocks of 4 × 4 size. For each
sub block 8 bin orientation histogram is calculated, so a total of 128 bins histogram
are created for each prominent feature point. Figure 5 shows the feature descriptor
for each prominent feature point.

3.4 Descriptors Matching

The proposed DPSIFT method uses fast approximate nearest neighbor (FLANN) to
match the feature descriptor between gallery image and probe image. FLANN
algorithm works faster than brute force matcher algorithm for larger database. The
descriptor of one feature is taken in probe set and matched with all other features in
the gallery set using Euclidian distance and the closest one is identified as matching
descriptor.

4 Implementation and Results

The proposed DPSIFT method is implemented in Alienware Intel core i7 processor,
6 GB RAM, and 1 TB hard disk with Open Source Computer Vision library
(OpenCV). The proposed system contains two phases, training and testing phase.

Fig. 5 SIFT feature
descriptor

Face Recognition in Video Using Deformable Parts Model … 75

3000 positive and 5000 negative images were collected for face detection training.
Positive images mean images that contains face and negative means other than face.
Viola–Jones algorithm is used for face detection in video. The proposed DPSIFT
method is tested with YouTube celebrity, FJU and MIT––India Video face dataset.
Figures 6, 7, and 8 show the sample video face dataset taken for testing of face
recognition system. MIT–India face dataset is created by author to test the real-time
video-based face recognition system. The dataset consists of a variety of poses,
different illumination conditions, and scaling. The range for the face to be detected
should be between 30 cm and 3.5 m approximately and illumination should be a
minimum of 50–70lux.

Figures 9 and 10 show Viola–Jones face detection algorithm for MIT-India and
FJU video face dataset.

After the detection of face, deformable parts model is applied to identify the
prominent feature points in face image. Figures 11 and 12 show the prominent
feature points localization for MIT-India and FJU video face dataset.

After the detection of prominent feature points in face image, SIFT feature
descriptor is applied to extract the feature for face recognition. Figure 13 shows
existing SIFT interest point detection and feature descriptors matching.

During testing phase the probe image feature descriptors is compared with
gallery image feature descriptors using fast approximate nearest neighbor
(FLANN). Figure 14 shows proposed DPSIFT method for feature descriptors

Fig. 6 YouTube celebrity face dataset

Fig. 7 FJU video face dataset

76 V. Mohanraj et al.

matching. Time taken for the interest point detection and feature descriptors
matching process is less than the existing method.

DPSIFT algorithm is proposed to reduce the time required for interest points
detection and feature descriptors matching between probe face image and gallery
face image. DPSFIT algorithm is proposed in order to increase the performance of
face recogntion with limited pose, invariant to illumination, orientation and scale.

Fig. 8 MIT–India face dataset

Fig. 9 Face detection for MIT–India face dataset

Fig. 10 Face detection for FJU face dataset

Face Recognition in Video Using Deformable Parts Model … 77

Fig. 11 Prominent feature points for MIT—India video face dataset

Fig. 12 Interest point detection for FJU video face dataset

Fig. 13 Existing SIFT interest points detection and descriptor matching

Fig. 14 Proposed interest points detection and feature descriptors matching

78 V. Mohanraj et al.

Figure 15 shows the performance of the DPSIFT method for FJU, YouTube
celebrity and MIT-India video face datasets. From the performance analysis, it is
observed that the number of key points is reduced by considering only the promient
features. These interest points are used to identify the person. The proposed
DPSIFT algorithm performs well for face recognition with reduced number of
features and takes lesser time to recognize the face. Figure 15 shows recognition
accuracy of the proposed DPSFIT method.

Table 1 shows that recognition rate of the proposed method gives better accuracy
than the existing method with three different datasets.

5 Conclusion

This paper proposes a hybrid approach for face recognition in video using
Deformable Parts Model with Scale Invariant Feature Transform (DPSIFT). The
proposed method takes less time for significant interest points detection, descriptors

Fig. 15 Time complexity
analysis of DPSIFT method

Table 1 Accuracy rate of
recognition for various
datasets

Accuracy in %

Gabor DPSIFT

MIT dataset 1 73 88.06

MIT dataset 2 70 84.77

FJU dataset 92.47 97.72

YT_video dataset 71.91 85.9

Face Recognition in Video Using Deformable Parts Model … 79

extraction, and descriptor comparison for face recognition. The proposed method is
tested with FJU, YouTube celebrity, and MIT-India face video datasets. It was
found that the proposed DPSFIT method gives better results in terms of accuracy.

Acknowledgment The authors thank BRNS-BARC for support in the successful completion of
the project work titled “Face Recognition System using Video Analytics.”

References

1. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision
Conference, 147–152 (1988)

2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
(2004)

3. Bay, H., Ess, A., Tuytelaars, Tinne, Van Gool, Luc: Speeded up robust features. Comput. Vis.
Image Underst. 110, 346–359 (2008)

4. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), (2004)
5. Cootes, T., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal.

Mach. Intell. 23(6), 681–685 (2001)
6. Beumer, G., Tao, Q., Bazen, A., Veldhuis, R.: A landmark paper in face recognition. In: 7th

International Conference on Automatic Face and Gesture Recognition (FGR-2006). IEEE
Computer Society Press (2006)

7. Cristinacce, D., Cootes, T.: Facial feature detection using adaboost with shape constraints. In:
14th Proceedings British Machine Vision Conference (BMVC-2003), 231–240 (2003)

8. Erukhimov, V., Lee, K.: A bottom-up framework for robust facial feature detection. In: 8th
IEEE International Conference on Automatic Face and Gesture Recognition (FG2008), 1–6
(2008)

9. Cristinacce, D., Cootes, T., Scott, I.: A multistage approach to facial feature detection. In: 15th
British Machine Vision Conference (BMVC-2004), 277–286 (2004)

10. Uricar, M., Franc, V., Hlavac, V.: Detector of facial landmarks learned by the structured output
SVM, VISAPP ‘12: Proceedings of the 7th International Conference on Computer Vision
Theory and Applications (2012)

11. Uricar, M.: Detector of facial landmarks, Master’s Thesis, supervised by V. Franc (2011)

80 V. Mohanraj et al.

Registration of Range Images Using
a Novel Technique of Centroid Alignment

Parama Bagchi, Debotosh Bhattacharjee and Mita Nasipuri

Abstract Here, the problem of 3D face registration across poses is addressed using
the concept of alignment of principal components. First the alignment is done based
on some coarse registration and then fine registration is computed using Iterative
Closest Point. The registration scheme used is novel because for computing the
coarse registration the distance between the centroids has been used. Subjective
evaluation of registered images shows excellent registration.

Keywords Range image � ICP � Registration

1 Introduction

Recognition of human faces has been an important field of research. Past few years
have found 3D face recognition to be more important than 2D face recognition,
because of its enormous capability to handle pose, expressions, and occlusions
[1–3]. Earlier, the problem of face recognition in humans had mainly relied on 2D
images. The approach had certain limitations. Moreover, the information of a 2D
face is often confined to pixel information only, thus making it difficult to assess the
role of 3D shape processing. Also, a 3D face has more views that are necessary to

P. Bagchi (&)
Department of Computer Science and Engineering, RCC Institute of Information
Technology, Beliaghata, Kolkata, India
e-mail: paramabagchi@gmail.com

D. Bhattacharjee � M. Nasipuri
Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
e-mail: debotosh@ieee.org

M. Nasipuri
e-mail: mitanasipuri@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_6

81

register for effective face recognition. The main characteristics of the present work
have been enlisted below:

1. A new approach has been attempted which registers 3D faces based on their
centroids.

2. This approach of centroid-based registration works well on poses.
3. The present method of registration is fully automatic and less complex, unlike

landmark-based registration methods.

In Sect. 2, a literature survey has been given on 3D face registration. The present
method has been discussed in Sect. 3. A comparative analysis with other methods
existing in the literature has been demonstrated in Sect. 4. In Sect. 5, conclusion and
future scope have been enlisted.

2 Literature Survey on 3D Face Registration

Illumination, expression, occlusions, and pose easily affect the performance of
recognition rates in case of 2D face images because, 2D face images are incapable
of capturing the depth information that is usually found only in case of 3D face
images. Nowadays, it is possible to overcome these problems by 3D technology.
Here, a survey is presented, which aims to address the various challenges and issues
challenged by different 3D face registration techniques. Image Registration is
defined as the process to align two different point clouds to each other. One point
cloud is selected to be the reference, i.e., in frontal pose, and the other point cloud is
the non-frontal, which is to be registered to the frontal point cloud. The process of
registration continues till a minimum distance is attained between the frontal and
the registered point cloud. There are two broad classifications of face registration:

(1) Coarse Registration Methods
(2) Fine Registration Methods

(a) Coarse Registration Methods: This form of registration could be categorized
into the following:

(i) Point Signature—This [4] descriptor is only for finding correspondences
between two frontal and unregistered point clouds. The process is quite
fast. However, the algorithm is very complex, and it is the main draw-
back of this algorithm.

(ii) Spin Image—This [5] is a two-dimensional visualization. Initially, the
method was used for recognition. One problem of the method is the
resolution of the image. So, a filter is used, in this case, to remove false
triangles and to give a smooth finish to the interpolated image.

(iii) Principal Component Analysis—PCA [6] is usually used as a popular
method for dimensionality reduction. This process is used for the alignment

82 P. Bagchi et al.

of two point clouds. The disadvantage of principal component analysis is to
cope with surfaces containing symmetries.

(iv) Algebraic Surface Model—Here [7], at first, from the two point clouds
two implicit polynomial models are determined based on least squares
method. However, this method is far better than (i) and (ii) above because
it requires less time. The model is computed on the basis of a function of
the distance between polynomial models and the points.

(b) Fine Registration Methods: This form of registration is used when a coarse
registration has already been computed. The fine registration is computed based
on an initial guess to converge to an optimal solution. The optimal solution is
that the distance function between the two point clouds must be minimized after
fine registration. Following are the categories of fine registration:

(i) Iterative Closest Point
(ii) Matching Signed Distance Fields
(iii) Procrustes Analysis.
Fine registration methods could be categorized into the following:

(a) ICP—Besl and McKay first presented the ICP [8] method. Here, the main
aim is to obtain a solution in terms of fine registration between two different
point clouds. In this case, an initial estimation between the two different
point clouds is known, and so, all the points are thereby transformed to a
common reference frame that is the frame for the registered image.

(b) Matching Signed Distance Fields—The method [7] is based on matching
of signed distance fields and that is a multiview type of registration. First,
all views are aligned with a common system based on an initial estimation
of motion. Then, some key-points are generated on the three-dimensional
mesh grid. Then, the closest key point would be searched to find out the
necessary translational and rotational parameters required for the purpose
of registration.

(c) Procrustes Analysis—Landmark forms the basis of the registration tech-
nique called Procrustes [8] analysis. For the alignment of two 3D shapes,
landmarks are essential. So, the comparison of two shapes forms the basis
of Procrustes analysis. Generalized orthogonal Procrustes analysis
(GPA) is the registration of “k” sets of configurations.

3 Present Method

A depth map image (also called as a range image) is a 2.5D image. The speciality of
the image is that at each (x, y) position of the image depth values of the image is
stored, i.e., how far from the camera each point is situated. The 3D face registration
is at this moment defined to be the process, by which, an unregistered point cloud is
aligned to a registered or a frontal point cloud.

Registration of Range Images Using a Novel … 83

3.1 3D Face Registration

Face registration [1, 2] is defined to be the process to align an unregistered face
image to a frontal face image. Registration requires some landmark points. So,
registration is necessarily a transformation, which would align an unregistered point
cloud to a registered point cloud (Fig. 1).

Face registration is important both in case of 2D and 3D face recognition. For
registration, it is necessary to have a set of landmarks. For registration, translation
of a probe image to a gallery image is necessary. The probe image is the unreg-
istered point cloud. The gallery image is the image to which the probe image has to
be registered. Point cloud is thus a 3D view of an image. The process of image
registration can be of three different types [9]:

(i) Registration of one face to another.
(ii) Registration to a fixed face model.
(iii) Registration to a coordinate system using facial landmarks.

The first approach registers two point clouds with an iterative procedure. One of
the point clouds is the unregistered image while the other is the frontal image to
which the unregistered image is to be registered. The second approach deals with
the registration of an unregistered point cloud to a model that has been learned from
a training set. Registration to a coordinate system using facial landmarks requires a
mapping of the current landmarks of the facial system to the intrinsic coordinate
system and thereby computing necessary translational and rotational parameters.
The present approach may be visualized in the form of a block diagram in Fig. 2.

The following are the steps of the proposed algorithm:

(i) 2.5D Range Image Acquisition: The images acquired or downloaded are in
the form of a Virtual Reality Modeling Language (VRML) file. The 3D data
points to be visualized should be in the mesh format.

(ii) 3D Face Registration by ICP [5, 6]: ICP is a method to register an unregis-
tered face with a mean face template. In the present work, a simpler version of
the ICP algorithm has been used. The ICP algorithm implemented in the present

Fig. 1 Image for a Unregistered Image b Registered Image of a person

84 P. Bagchi et al.

work inputs two 3D mesh images, one image in frontal pose and an unregis-
tered 3D mesh image from the 3D database, and tries to find a closest match
between the two oriented models to find correspondences between the two. At
first, the smallest average distance between the frontal and the unregistered
model is used as an input for a coarse registration, after which a fine registration
is sought.
ICP uses a transformation using a combination of:

a. PCA
b. SVD
At first, a coarse transformation is computed by aligning two point clouds based
on the basic initial estimation of the closest points. Then the principal com-
ponents are extracted. Next, the principal components are aligned using a fine
transformation, for which it is necessary to compute the rotation matrix, which
is required to register the unregistered point cloud to the frontal one.

• To perform the coarse registration, it is necessary to input the distance
between corresponding points. The distance between the corresponding
points (i.e., between the centroids) is passed as an input to the ICP algo-
rithm, for the purpose of an initial coarse registration, after which the fine
final registration is sought.

• When the distance between the closest points is passed to the ICP algorithm,
the first initial transformation is found between the principal component of
the unregistered and the mean frontal point cloud using reduction by prin-
cipal component analysis.

• Next, a fine registration transformation is sought by aligning the two principal
components and finally the 3D mesh is converted to the range image.
The main contribution of the present work lies in the fact that, at first the
smallest distance has been found between the two models for coarse reg-
istration. This distance is the distance between the centroids of the two point
clouds.

Fig. 2 Diagram showing the proposed approach (Range images are shown besides the 3D mesh
for visualization purpose only)

Registration of Range Images Using a Novel … 85

Algorithm 1
ICP_Centroid_Align(model X, object P) //To Align Object P

to model X
Input: Initialize by finding the smallest correspondence

between each point on the three-dimensional surface between
principal components of the unregistered image and frontal
image. This smallest distance is taken to be the distance
between the centroids of the two point clouds.

Output: Registered Image
Coarse Registration:

1. At first, compute the distance between the centroids of the
registered and the unregistered point clouds and save the
distance in a variable that called as cen.

2. Roughly align the principal components of the unregis-
tered mesh to that of the neutral mesh by applying steps 2.1
to 2.3

2:1 Compute the closest points in the unregistered mesh and
find out the rotational and translational parameters

2:2 Discard points in the unregistered meshes that are
greater than cen.

2:3 Find out the translational and rotational parameters by
matching the closest points of the unregistered mesh
and the neutral frontal mesh to which the unregistered
model is to be registered

2:4 Execute steps 2.1 to 2.3 for a fixed number of iterations

Fine Registration:
Input: Principal components of the coarsely registered

mesh X, the neutral frontal mesh P.
Output: The final fully registered mesh.

3. Repeat steps 4 to 5 for a specified threshold.
4. For all points that belong to P find closest x ε X.
5. Transform each point of the coarsely aligned point cloud X

to minimize distances between P and X.
6. Output the registered image X

Figure 3 shows some images from GavabDB database, which has been regis-
tered using centroid alignment technique for poses. Figure 4 shows the corre-
sponding principal components for the registered faces.

86 P. Bagchi et al.

(iv) Noise Removal: After registration of 3D mesh images have been done, the
surfaces of 3D mesh images are processed for noise removal. For this, two
steps are followed:

(a) Interpolation: Here, entire 3D mesh image is preprocessed using an
interpolation [4, 10] technique namely the trilinear interpolation.

Fig. 3 Some registered face images from GavabDB database with pose variations

Fig. 4 A snapshot of the registration technique applied: first column showing principal
components of unregistered mesh, second column showing the principal components to which the
unregistered point clouds is to be registered and the third column shows principal components of
the final registered image

Registration of Range Images Using a Novel … 87

(b) Surface smoothing: Gaussian filter has been used for smoothing here.
Gaussian smoothing uses a 2D distribution as a point-spread function, and
convolution achieves this. Once a kernel has been calculated, then
Gaussian smoothing can be performed.

(v) 3D Face Recognition: The final stage, in the face recognition process, is
feature extraction and classification. Here in this proposed work some efficient
feature detection and extraction scheme is be used for final recognition
preferably WLD feature extraction technique.

4 Comparative Analysis of the Present Approach
with Other Methods Existing in the Literature

Table 1 depicts the manner in which the present method of face registration out-
performs the already existing methods in the literature.

Analysis: In Table 1 some of the most recent works on ICP and some other
methods are enlisted. Table 1 clearly shows that the present method of 3D face
registration outperforms all the other methods present in the literature. Most
methods that are present in the literature have registered small poses using ICP, but
here the present method is quite an innovative one because it registers extreme
poses too using ICP by centroid alignment.

5 Conclusion and Future Scope of the Work

The proposed work demonstrates the fact that registration is an essential transfor-
mation used for ill-posed subjects. In this work, ICP has been utilized in an entirely
novel way, and the method is proposed to register extreme poses also. So, here, in

Table 1 A comparative analysis of present technique over other methods existing in the literature

Sl.
no

Name of the
method

Database used Novelty of technique used

1. P. Bagchi
[11]

Frav3D Registration was performed by calculating the
angle of pose variation.

2. B.B. Amor
[8]

Multiview 3D
Face Database

Small poses registered using ICP

3. Present
method

GavabDB Automatic registration using ICP using
Euclidean distance between centroids

88 P. Bagchi et al.

this proposed work, 3D face registration, its interpretability is expressed in regis-
tering extreme poses. Registration is a transformation that is used as a tool to
convert an ill-posed object to its frontal one. Once a subject is registered in a frontal
pose, after that, effective recognition could be done. Though the present method has
been tried on GavabDB dataset, the same is proposed in future to be tried on some
other existing datasets too. There are many advantages of 3D face recognition over
2D face recognition, and registration, as well as recognition, is an important field of
research work. As a part of future work, a proposal is being made to register and
recognize 3D faces across extreme poses by registering input face images using the
registration technique mentioned in this present work.

Acknowledgement The work has been supported by the grant from DeiTy, MCIT, Govt. of India.

References

1. http://bosphorus.ee.boun.edu.tr/HowtoObtain.aspx
2. http://www.gavab.etsii.urjc.es/recursos_en.html#GavabDB
3. Sangineto, E.: Pose and expression independent facial landmark localization using dense

SURF and the hausdorff distance. In: Pattern Analysis and Computing Vision (PAVIS),
Genoa, Italy (2013)

4. Chua, C., Han, F., Ho, Y.K.: 3D human face recognition using point signature. In:
International Conference on Automatic Face and Gesture Recognition (2000)

5. Li, Y., Smith, A.P, Hancock, E.R.: Face recognition with irregular region spin images. Lecture
Notes in Computer Science, vol. 4522, pp. 730–739

6. Russ, T., Boehnen, C., Peters, T.: 3D face recognition using 3D alignment for PCA. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (2006)

7. Tarel, J., Civi, H., Cooper, D.: Pose estimation of free form 3D objects without point matching
using algebraic surface models. In: IEEE Workshop on Model Based 3D, (1998)

8. Amor, B.B., Ardabilian, M., Chen, L.: New Experiments on ICP Based 3D Face Recognition
and Authentication. In: 18th International Conference on Pattern Recognition (ICPR) (2006)

9. Spreeuwers, L.: Fast and Accurate 3D Face Recognition. Int. J. Comput. Vis. 93(3), 389–414
(2011)

10. Akima, H.: A method of bivariate interpolation and smooth surface fitting for values given at
irregularly distributed points. In: ACM, TOMS (1978)

11. Bagchi, P., Bhattacharjee, D., Nasipuri, M., Basu, D.K.: A method for nose-tip based 3D face
registration using maximum intensity algorithm. In: IEEE International Conference on
Computation and Communication Advancement (2013)

Registration of Range Images Using a Novel … 89

http://bosphorus.ee.boun.edu.tr/HowtoObtain.aspx
http://www.gavab.etsii.urjc.es/recursos_en.html%23GavabDB

Part II
Software Engineering

An Investigation into Effective Test
Coverage

Debashis Mukherjee and Rajib Mall

Abstract Metric for coverage test addresses certain structures of the test program
to infer on the test complexity. In our work we explore a popular metric in unit
testing namely definition-use, and analyse the evolution of test criteria defined
within du testing. We analyse examples to describe subsumption and ordering in the
set of criteria, and strength and weakness of one criteria with another. We examine
a test metric to infer on coverage and adequacy of testing achieved through it using
Weyuker’s set of properties. We enumerate a list of desirables those we thought
contributed the effective structure in test coverage metric.

Keywords Test coverage � Control flow graph � Data and control dependence �
Dataflow testing and properties

1 Introduction

The objective of a coverage metric is to quantitatively measure the thoroughness of
software testing. The requirement for quantitative measurement of test coverage is
to determine whether a given set of test cases achieve adequate amount of testing.
This includes the unit test any incremental change with a least redundancy to
changes introduced to the original test set, and regression testing [1, 2] of subset of
the system in functional and structural dependence with the set of program state-
ments in the change at the former; and towards an equivalence with best practices
and established axioms later [2–4].

D. Mukherjee (&) � R. Mall
Department of Computer Science and Engineering, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
e-mail: debashis_mukherjee@yahoo.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_7

93

1.1 Definition-Use (Du-Paths) Path Coverage

A large body of the literature exists on test coverage and metrics [3, 5–7]. Every test
coverage is based on some program model. One of the earliest proposed program
models is control flow graph (CFG) of the program execution from start to stop of a
test run, with the program statements at the nodes of the graph. Along the control
path, the data flow from one node to another is tested in data flow testing [4, 8, 9].
Testing is measured between a pair of nodes in each time. The node where the data
is defined is known as def node, and the node where the data is used is known as use
node. The testing of data flow between pairs of def and use nodes is mainstream in
definition-use (du) testing.

Paths are defined from each definition node to one or all uses of definitions in
sets or collections of paths in du-coverage, where each sub-path from a def to use
node is of the type of simple cycle path, and a sub-path with no intervening
re-definition of the variable after the def node to the use node (def-clear). The use
node for computation is known as c-use, and when used in branch statements as
predicate, is known as p-use. All-defs-paths is the sets of paths containing cycle free
def-clear sub-paths from each def node to at least one use node from the definition
in all def nodes in the du-pairs. All-uses-paths is the sets of paths containing cycle
free def-clear sub-paths from each def node to all use nodes reachable from the
definition in all def nodes of the du-pairs. All-du-paths is the sets of paths con-
taining cycle free and simple cycle def-clear sub-paths from each def node to all use
nodes reachable from the definition in all def nodes of the du-pairs. Set of the all
possible paths on any pair of nodes on the control flow graph is called as all-paths,
and amounts countably infinite in number in presence of cycles and loops in the
control flow graph.

The sets of du-paths in definition-use metric, forms a subsumption structure,
represented by partially ordered relation. Statement coverage refers to execution of
each of the program statements by a set of test cases, or test suite. Decision or
branch coverage refers to execution of each of the boolean outcome (true and false)
of each of the conditions in the program statement. CFG-edge coverage refers to
execution of each of the ordered pair of nodes or the edges of the control flow graph
model of the program. Statement coverage is subsumed in branch coverage, branch
coverage is subsumed in CFG-edge coverage, branch or CFG-edge coverage is
subsumed in all-uses-paths coverage, all-defs-paths coverage is subsumed in all-
uses-paths coverage, all-uses-paths coverage is subsumed in all-du-paths coverage,
and each coverage metric in subsumed in all-paths coverage. The subsumption
hierarchy defined by du-coverage [4] is shown in Fig. 1.

The program model for du-coverage is the control flow graph and a notion of du-
pair describing temporal data dependence between two nodes at an instant on a test
run on the graph. A data dependence is exercised on CFG, is utilised to describe
sequence of definition-use pairs, and definition by definition pairs to represent
dynamic interactions of test scenario and test context, and are named as k-dr
interaction [8] and DC and ODC of test context [9] respectively.

94 D. Mukherjee and R. Mall

1.2 Enhancement in Coverage on Path-Based Metric

It is possible to define more paths as sets of paths by building on the coverage
inherent in du-path coverage. Data flow between a pair of nodes with one def node
on a variable to one of its use nodes on a path, or sets of paths from one def node to
all of its use nodes along all possible paths is used as criteria in du-path. The
coverage criteria can be enhanced with additional paths defined as below: A mul-
tiple-definition-to-use-path, is a path to a use node, from def node of each variable
to the use node on a simple cycle path in test from start to end node in the CFG.
A definition-to-definition-use-path, is a path through a def node on a variable to an
intermediate use node on the variable, followed by definition of another variable or
re-definition (undef) of the variable by a def at the same intermediate node, further
followed by, use of the intermediate variable at a use node observed in the
sequence. The above criteria, may be applied in sets of paths in conjunction with
all-paths in the type, applies more constraint to paths, for enforcing test paths in
specification to pass through required def and use nodes in the program.

1.3 Dependence Paths Coverages

A graph defined on the nodes of the control flow graph, and edges defined by
relation due to control dependence and data dependence on a single procedure
program is called program dependence graph (PDG). An extension of PDG to
model the semantics of procedure calls, containing multiple dependence graphs for
procedures other than the main method with additional edges to interconnect the
graphs to the main program dependence graph is called system dependence graph
(SDG).

Coverage metric defined on PDG is known as dependence path coverage.
A sub-graph of PDG, containing only the data dependence edges is called data
dependence graph (DDG), and those with only the control dependence edges is

all−paths

all−c−uses/

all−nodes

all−edges

all−p−uses

all−du−paths

all−uses

all−defs

all−p−uses/
some−c−usessome−p−uses

Fig. 1 Subsumption of test
coverages [4]

An Investigation into Effective Test Coverage 95

called control dependence graph (CDG), used together with PDG is defining data
and control dependence path coverages, respectively. Dependence path coverage is
due to augmentation of coverage criteria of shorter/disjoint data dependence paths,
to longer and non-increasing number of paths in the coverage criteria, with addition
of sequences of control dependence paths/edges [10]. It could be shown that du-
paths coverage is subsumed by data dependence path coverage, and data depen-
dence path coverage is subsumed by dependence path coverage. Dependence path
coverage applies non-intervening data definition sub-paths on paths of CFG. Hence,
dependence path coverage cannot subsume all-paths coverages.

We have so far discussed preliminaries of test coverage and two specific metric-
du-path and dependency path coverage. The rest of paper is organised as follows.
We describe the very basic concepts and investigate some topics in subjective
interest in the context of test coverage in Sect. 2. In Sect. 3, we enumerate a list of
desirables from a metric.

2 Basic Concepts

2.1 Control Flow Graph

The control flow graph (CFG), GC(V, E) for a program β is a directed graph in
which the vertices υ 2 V represent the statements in a program and the edges e 2
E represent the control flow between two statements in succession. A path in a
control flow graph is a sequence of edges. A CFG consists of two additional nodes,
start and stop node, representing entry to the system, and exit from the system
respectively. All complete test path starts from start node and ends at the stop node
of the CFG. Figure 2a shows an example procedure and its corresponding control
flow graph.

Domination A vertex, υi is said to dominate (or predominate) a vertex υj in a
control flow graph, if every path from the start to vertex υj passes through υi.
A vertex υm is said to post-dominate a vertex υn, if every path from υm to the stop
vertex passes through υn. In the CFG in Fig. 2, vertex 9 is dominated by vertex 8;
vertices 6 and 7 is dominated by vertex 5; vertices 2, 3, 4 and 5 dominate vertex 8;
vertices 6, and 7 post-dominate vertex 5; and vertex 9 do not post-dominate vertex 8.

Control dependence A vertex υj is control dependent on vertex υi on the control
flow graph (CFG) GC iff, there exist a path p from υi to υj; vertex υi dominates and
does not post-dominate vertex υj. In the CFG in Fig. 2, vertex 9 is control dependent
on vertex 8; vertices 6 and 7 is control dependent on vertex 5. Please note that vertex
9 does not post-dominate vertex 8; whereas, vertices 6 and 7 does to vertex 5.

Data dependence A vertex υj is data dependent on vertex υi on the CFG GC of a
program β, and x be a variable in β iff, vertex υi defines x; vertex υj uses x; and there
exists a path from υi to υj along which there is no intervening definition of x. In the

96 D. Mukherjee and R. Mall

example in Fig. 2, vertex 6 is data dependent on vertices 3, 4 and 6 (itself); and
vertex 10 is data dependent on vertices 4, 6 and 9.

2.2 Definition-Use Graph

A definition-use graph (DUG) is an annotated control flow graph in which the nodes
are annotated with two sets of variables: a set of variables that are defined; and a set
of variables that are used at the statements represented by the nodes. DUG is also
referred to as def-use graph or def/use graph, and is formally defined on control flow
graph GC for program β and set of vertices V, in the following.

def(υi), use(υi) For each vertex υi 2 V in GC, def(υi) denotes the set of variables
defined at the statement represented by υi, and use(υi) denotes the set of vertices
used at that statement.

def(p) Let p = (υi,υi+1,…,υj) be a path in GC, then
def ðpÞ ¼ def ðti; tiþ1; . . .; tjÞ ¼

S
tk2p def ðtkÞ.

Def-Use graph A def-use graph for a program β is defined as a quadruple
GD = (GC, S, def, use), on control flow graph GC defined for program β; S is finite
number of symbols called variables that are used in the program; and def:V → 2S,
and use:V → 2S as functions. A definition-use graph of example program in Fig. 2
is shown in Fig. 3.

def-clear Path Let x be a variable in a program β, and p = (υi,υi+1,…,υl,υj), k > i,
k ≤ l < j be a path in GC, then the path p is said to be a def-clear path from υi to υj
with respect to x if x 62 def(υk,…,υl).

10: println("res="+res);

stop

3

2

1

8 6

7

start

4

10

9

F

T

T

F

5

1: void test() {
2: int x = read();
3: int y = read();
4: int res = 1;
5: while (x > 0) {
6: res = res * y;
7: x−−;

4: if (res < 0)
9: res = −res;

 }

 }

Fig. 2 An example procedure and its control flow graph representation

An Investigation into Effective Test Coverage 97

2.3 Concept Learning

A perspective on machine learning involves searching a large space of hypotheses
and infers boolean-valued function from examples of its input and output in an
inductive learning to approximate a target function [11]. A boolean hypothesis hj is
said to be more_general_than_or_equal_to boolean hypothesis hk (hj ≥ g hk) iff, (8x
2 X) [(hk(x) = 1) → (hj(x) = 1)], where instance x in X, and hypothesis h in
H. Maximally specific hypothesis is searched (aka Find-S) using more_gen-
eral_than partial ordering consistent with the examples observed, and is said that a
hypothesis “covers” a positive example if it correctly classifies the example. The
version space VSH,D, with respect to hypothesis space H and consistent (in absence
of satisfactory boolean function at its disposal) set of examples D, is represented as
VSH,D ≡ {h 2 H|Consistent(h, D)}.

The concept of a program instance in Fig. 5 is realised as shown in Fig. 4a,
represented of instances of test paths for test input 〈7,1〉, 〈6,1〉 and 〈8,1〉 (with
equivalent representative set of nodes of corresponding CFG paths of 4a as
{1,2,3,4,5,6,7,8,9}, {1,2,3,4,5,6,4′′,5′′,6′′,7,8,9} and {1,2,3,4′,7′,8′,9′}, respec-
tively) on consistent hypothesis under program model of program dependence
graph (PDG) (dependence path coverage [10]) in Fig. 4b to some well-formed
version in Fig. 4c.

use(10) = {res}

stop

3

2

1

8 6

7

start

5

def(1) = {}
use(1) = {}

4

10

9

def(2) = {x}
use(2) = {}

def(3) = {y}
use(3) = {}

def(4) = {res}
use(4) = {}

def(5) = {}
use(5) = {x}

def(6) = {res}
use(6) = {res,y}

def(7) = {x}
use(7) = {x}

def(10) = {}

def(9) = {res}
use(9) = {res}

def(8) = {}
use(8) = {res}

Fig. 3 Definition-use graph for the example program in Fig. 2

98 D. Mukherjee and R. Mall

2.4 Abstract Interpretation

An unique test run through a program may contain cyclic sub-paths on the CFG
representation. Such paths may not be du-path, or may not even possible to be
included (enforced/covered) into the set of paths belonging to test cases (as test
paths defined on the CFG) and included into the test coverage using coverage
criteria of dependence coverage, under static constraints of dependency paths
coverage in program model of program dependence graph (PDG).

Static analysis of the program is required in such cases using data flow equations
on the control flow graph (CFG). Coverage of each static blocks (nodes or state-
ments on CFG) and branches, needed to be correlated to include these to test
scenarios covering for statements reachable, into statically analysed dependency
paths coverage.

The paths through a program might be of the type feasible or infeasible, and is
determined by the branch predicates at runtime. Certain subsets of such paths can
be interpreted through static analysis of data flow equation and reachability analysis
of regions or labels or locations in the CFG. The range of values taken by the
variable or propagation of interval values determines the choice of branch in the
dynamic case. A test metric is required for attempts to support in the choice and
inclusion of test paths precisely. For example, in Fig. 6, it is possible to reach to

1 2 3

7’

8’ 9’

4

4’’

5

7

8 9

5’’

6’’

4’

6

3

74

1

1

4

6

9

8

2

5

7

5

32

7

6

4

5

PDG
node

PDG
node

test case

3

4

5 6

1

S:

G:
2

data dep.control dep.

(a) (b) (c)

Fig. 4 A test concept learning scenario: a test set instances, b hypothesis space, c concept/version
representation of a while loop of sample program in Fig. 5a

S2. read(b);
S3. sum = 0;
S4. while(a<8){
S5. sum = sum + b;
S6. a = a + 1;}
S7. write(sum);
S8. sum = b;
S9. write(sum);

int a, b, sum;

9 8

1 2

34

56 7

Start

Stop

S1. read(a);

(a) (b)Fig. 5 An example instance
to learning. a Sample
program. b Control flow
graph (CFG)

An Investigation into Effective Test Coverage 99

sub-path 8-9 and 6-2-3 as incorrect and potentially failing to match a specification
of correctness through static analysis, however, creation of a test run in support to a
proof might not be trivial. The sub-path 8-9 could appear in a feasible path at
random, in the path 1-[2-3-4-5-6 5 times]-7-8-9.

2.5 Reliability of Networks

The edges of control flow graph (CFG) or the dependence graphs (PDG, SDG),
could be labelled with responses from a system test coverage on test suites,
assuming that the system resembles a network whose reliability would be reflected
as weights against tolerate the faults. The nature of statistical data is whether a
passing or failing run of the tests include or exclude a node or vertex of the graph
[12], consequently those edges explored to reach the vertices.

2.6 Acceptance Tests

A system is tested for a range of validations of output on given input, assumed as
acceptable or as specified in its acceptance testing. Effectiveness of a test depends
on narrowness and width of the range, alternatively termed as sensitivity and
specificity [1, 13] of the test, respectively. Program model of the statements or the
system may be useful in acceptance test coverage structure on isolation specificity
in granularity ranging modules in black-box testing to statements in the program in
white-box testing [1].

S1. int i=0,j,val;
S2. do {

S6. } while(i<5);

S3. assert(i<=10);
S4. i++;
S5. j=−rand()%i;

S7. val=i*j;
S8. if(val<=10) {
S9. assert(val<=5);
 }

9

1

3

4

6

5

7

8

2

Error9

1

3

4

6

5

7

8

2

Error

(b) (c)(a)Fig. 6 Path with cyclic
sub-paths in critical test. a
Sample program. b CFG. c
PDG

100 D. Mukherjee and R. Mall

2.7 Program Slicing

The value of a variable at program point is influenced by only a subset of all
possible statements executed before the statement. Similarly, a variable at a pro-
gram point influences only a subset of all statements. These two types of analyses
are referred as forward and backward slice, respectively in the literature on program
slicing [14]. The slice of program computed statically on the entire program, is
known as static slice and when computed with respect to statements executed in a
test run (or path) is known as dynamic slice. The criteria for slice are comparable
with control dependence and data dependence, and transitive closure of the
dependences at a program point forms the corresponding slice [10]. Slicing when
applied to extract relevant statements that have been transformed from the original
set of statements is known as amorphous slice. Slicing is used to reduce complexity
of program analysis at a program point by lowering redundancy and increasing
parallelism.

2.8 Complexity Metric

Notion of cyclomatic complexity is an account of graphical model of flow of control
with respect to constructs in programming languages in structured programs.
Complexity for a simple program is estimated as number of conditional statements,
alternatively as the number of complete paths through the program to test the
program at a minimum [6]. The number of du-path, effectively indicate the required
number of structural paths to test the program adequately with data flow as con-
straints into consideration, with one data constraint exercised per test run on per
path. In dependency paths, an adequacy is determined in relation to the exercising
one or more data and control dependence per test run on per test path. Complexity
as number of test runs to explore to test a program could reduce summarily lower in
dependency path coverages than du-paths coverage; and cyclomatic complexity
would be almost equal and least in most cases with multiple unstructured
branching.

3 Desirables of the Test Metric

A test metric requires to exercise all the corners of bounded region in the program
those presumed as adequate in its model to test its subject, or set of program
statements, and could be in response to queries as follows:

An Investigation into Effective Test Coverage 101

3.1 Set of Test Paths Included

A metric should be able to include as many paths in the program defined on the
model. On a control flow graph, a set of all such paths uniquely and may not as
simply, could be described as def-clear and simple cycle complete paths through
the program statements. A metric describe all paths through program statements
defined by the nodes reachable through connectivity in a graph model.

3.2 Definition of Underlying Hypothesis and Structure

Every program model defines a set of constraints or hypothesis, to represent the
coverage that it targets to describe. An implicit structure helps in describing the
constraints to model a coverage problem. A general to specific structure [11] is
natural in the representation of the space of hypothesis.

3.3 Extendability, Subsumption, Relation on Established
Metric

Coverage metrics extend and build on established metric to an available extent, and
tries to intervene at best possible points in the subsumption structure. The definition
of criteria in the coverage metrics aim to attain the partial order and overcome any
weakness of criterion in immediate lower through the criterion in its upper using an
order.

3.4 Hypothesis Induced Per Path in the Tests Run,
and/or Paths Induced Per Hypothesis

Specificity of an included path, to specificity of a constraint finds necessary in
isolation of critical components for attention on any cause and its effect. The
effectiveness of a coverage metric may be attributed by fractional effect on these
ratios when contributed in its model. For example, the du criteria uses, extends
description through set of specific def-clears, and the all-uses addresses almost
every tests which are not simple cycle. Specificity of tests required to simple cycle
path is increased through all-du-paths.

102 D. Mukherjee and R. Mall

3.5 Compatibility with Specific Applications

Compatibility features in programming with high level language, in presence of
arrays referencing, inter procedure calls and handling of exception conditions; and
specific application goals in domains of fault localization, test for redundancies,
parallelism, etc. are necessary deliverables of a test coverage metric to the front-end
of validation/verification tools.

4 Weyuker’s Properties and Dependence Path Coverage
Metric

Table 1, describes properties of test adequacy [15] as realised in a dependence path
coverage metric. Referring to program dependence graph (PDG) as the program
model for dependence paths coverage, let us denote PDGs/dependence graphs

Table 1 Weyuker’s properties and dependency metric

Weyuker’s set of properties Dependency metric

(9P)(9Q)(|P| ≠ |Q|), interpreted as “Class
identifier” measure

Dependence path coverage admits the
property, as two unequal PDGs, correspond
to two distinct complexity measures, on
trivial case

Let c be a non-negative number. Then there
are only finitely many programs with
complexity c, interpreted as “Size
Independent” measure

There are only finitely many PDGs possible
to be constructed, on sub-case where
complexity correspond to functions mapping
to integer from discrete graph structure, hence
dependence path coverage admits the
property

There are distinct programs P and Q such that
(|P| = |Q|), interpreted as “Indexing functions”
measure

Two distinct programs, irrespective of their
PDGs distinct, could correspond to
complexity measures (as monotonic function
from connectivity, vertices, edges, etc.on the
graph, to numbers as non-negative integers)
which may be equal, hence the dependence
path coverage admits the property

(9P)(9Q)(P ≡ Q and |P| ≠ |Q|), interpreted as
“Interface sensitive and implementation
insensitive” measure

Two unequal PDGs (consequently,
corresponding to unequal complexities), may
correspond to be equivalent programs
considered on input/output, etc., hence
dependence path coverage admits the
property

(8P)(8Q)(|P| ≤ |P; Q| and |Q| ≤ |P; Q|),
interpreted as “Interaction sensitive metrics”

Concatenation of two programs would
correspond to a PDG, which would contain
the PDG corresponding to the concatenating
programs, as a sub-graph, and the property

(continued)

An Investigation into Effective Test Coverage 103

corresponding to sub-program P as PP 〈VP, EP〉, Q as PQ 〈VQ, EQ〉, and a
combined/concatenated program P;Q as PPQ 〈VPQ, EPQ〉, in the rest of the tabu-
lation, where notation V correspond to set of vertices and E correspond to set of
directed edges (data and control dependence edges) for PDG P 〈V, E〉, in an usual
sense.

Table 1 (continued)

Weyuker’s set of properties Dependency metric

holds, with the equivalent measure of
complexity metric being “monotonic” on
variables (as, vertices and edges on PDG)

(9P)(9Q)(9R)(|P| = |Q| and |P; R| ≠ |Q; R|).
and (9P)(9Q)(9R)(|P| = |Q| and |R; P| ≠ |
R; Q|)., interpreted as “Interaction insensitive
metrics”

Two different programs (such as, with
renamed variables, or permuted statements,
etc.) could correspond to PDGs which are
equal. Concatenation of such programs, with
a known program, could correspond to PDGs,
which may not be equal, hence dependence
path coverage admits the property

There exists programs P and Q such that Q is
formed by permuting the order of the
statements of P and (|P| ≠ |Q|), interpreted as
“Building block count metrics”

If PDG PQ 〈VQ, EQ〉 is obtained after
permuting the set of program statements
corresponding to PDG PP 〈VP, EP〉, then
EP ≠ EQ, would imply PP ≠ PQ, hence
dependence path coverage admits the
property

If P is renaming of Q then (|P| = |Q|),
interpreted as “Name sensitive metrics”

Assuming a renaming would only impact the
program variables consistently in the
language, with no impact to the structure of
the program dependence graph, such that the
PDG P 〈V, E〉 remains equal, hence
dependence path coverage admits the
property

(9P)(9Q)(|P| + |Q| < |P; Q|). Dependence path coverage admits the
property due to the program model of PDG,
as |VPQ| ≥ |VP| + |VQ| + 1, and |EPQ| ≥ |EP| +
|EQ| + 2, as PPQ would contain at least one
more vertex and two more edges
(corresponding to entry node representing
control dependence, and two edges to at least
to one statement in each set in the combined
PDG PPQ 〈VPQ, EPQ〉) over PDGs PP, PQ as
sub-graphs in PDG PPQ

104 D. Mukherjee and R. Mall

5 Conclusion

Each of the metrics proposed in test coverage in the prior research has some
shortcomings. In our work we investigate for a test metric that is based on some
established program model, and is capable of addressing cases of programming
language features spanning, global variables, arrays referencing and exceptions
handling in structured programming languages and intended on object oriented
software systems in the future.

References

1. Mall, M.: Fundamentals of Software Engineering. PHI learning pvt. ltd., New York (2009)
2. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.

Surv. (CSUR) 29(4), 366–427 (1997)
3. Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Softw. Eng. 14(9),

1357–1365 (1988)
4. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In: Proceedings

of the Sixth International Conference of Software Engineering, Tokyo, Japan, pp. 272–277
(1982)

5. Chidamber, S.R., Kernerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

6. Nejmeh, B.A.: NPath: a measure of execution path complexity and its applications. Commun.
ACM 188–200 (1988)

7. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 308–319 (1976)
8. Natofos, S.C.: On testing with required elements. In: Proceedings on COMPSAC’81, IEEE

Computer Society, pp. 132–139 (1981)
9. Laski, J.W., Korel, B.: A data flow oriented program testing strategy. IEEE Trans. Softw. Eng.

9(3), 347–354 (1983)
10. Mukherjee, D.: Dependency cov. criterion is testing. Technical report, submitted to CSE

Dept., IIT Kharagpur (2015)
11. Mitchell, T.: Machine learning. McGraw-Hill, New York (1997)
12. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault

localization. In: Proceedings of the 24th International Conference on Software Engineering,
ICSE ’02, pp. 467–477. ACM, New York (2002)

13. Koren, I., Krishna, C.M.: Fault Tolerant Systems. Elsevier, San Francisco (2007)
14. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on Software

Engineering, ICSE’81, pp. 439–449. IEEE Press, Piscataway (1981)
15. Weyuker, E.J.: The evaluation of program-based software test data adequacy criteria.

Commun. ACM 31(6) 1988
16. Halstead, M.H.: Elements of software science. Elsevier, North-Holland (1977)
17. Myers, G.: An extension to the cyclomatic measure of program complexity. ACM SIGPLAN

12, 61–64 (1977)
18. Chen, E.T.: Program complexity and programmer productivity. IEEE. Trans. Softw. Eng.

187–194 (1978)
19. Baker, A., Zwehen, S.: A comparison of measures of control flow complexity. IEEE Trans.

Softw. Eng. 506–512 (1980)
20. Evangelist, W.: Software complexity metric sensitivity to program structuring rules. J. Syst.

Softw. 231–243 (1983)

An Investigation into Effective Test Coverage 105

21. Kernighan, B., Plauger, P.: The elements of programming style, 2nd edn. McGraw-Hill, New
York (1978)

22. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling, vol. 1.
Prentice-Hall, Englewood Cliffs (1972)

23. Beth McColl, R., McKim, J.C. Jr.: Evaluating and extending NPath as a software complexity
measure. J. Syst. Softw. 17, 275–279 (1992)

24. Lakshmanan, K.B., Jayaprakash, S., Sinha, P.K.: Properties of control-flow complexity
measures. IEEE. Trans. Softw. Eng. 17(12) 1991

25. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of data flow path
selection criteria. IEEE Trans. Softw. Eng. 15(11), 1318–1332 (1989)

26. Mund, G.B., Mall, R., Sarkar, S.: Computation of intraprocedural dynamic program slices. Inf.
Softw. Technol. 45, 499–512 (2003)

27. Mund, G.B., Mall, R.: Chapter 8: program slicing: the compiler design handbook:
optimizations and machine code generation. CRC Press, Boca Raton (2003)

28. Schwarze Braunschweig, J.: An algorithm for hierarchical reduction and decomposition of a
directed graph. Computing Springer, 25, 47–47 (1980)

29. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs.
J. Discrete Appl. Math. Struct. decompos. width parameters graph label. 145(2) (2005)

30. Najumudheen, E.S.F., Mall, R., Samanta, D.: A dependence representation for coverage
testing of object oriented programs. J. Object Technol. 9(4), 1–23 (2010)

31. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Symposium of ACM special
interest group on automata and computability theory special interest group on programming
languages (1997)

106 D. Mukherjee and R. Mall

Resource Management in Native
Languages Using Dynamic Binary
Instrumentation (PIN)

Nachiketa Chatterjee, Saurabh Singh Thakur and Partha Pratim Das

Abstract Managed programming languages like Java and C# perform resource
management as a part of their language specification. They use a runtime system
like JVM or CLR for the management. In contrast native languages like C and C++,
designed to provide strong foundation for programs requiring speed or tight cou-
pling with operating system or hardware, are used with manual resource manage-
ment. These do not require the runtime system. Naturally, it will be nice to have a
managed layer for native languages which can be plugged in as and when we want
to manage resources in any point of time during execution. In this paper, we present
a GC Pintool which automates the garbage collection for C programs at run time
using PIN (a framework for dynamic binary instrumentation). Efficacy of the GC
Pintool has been tested over various benchmark C programs and our GC approach
using PIN is found to be correct and precise.

Keywords Garbage collection � Memory leak � Dynamic instrumentation

N. Chatterjee (&)
A. K. Choudhury School of Information Technology, University of Calcutta, Kolkata, India
e-mail: nachiketa.chatterjee@gmail.com

S.S. Thakur
School of Information Technology, Indian Institute Technology, Kharagpur, India
e-mail: saurabhjan07@gmail.com

P.P. Das
Department of Computer Science and Engineering, Indian Institute Technology,
Kharagpur, India
e-mail: partha.p.das@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_8

107

1 Introduction

The application programming languages available in market can be categorized into
two types depending upon their style of execution and resource management. Most
of the popular languages like Java, C#, etc., can automatically manage their
resources such as memory, graphics wizard, etc. So that they usually are termed as
managed languages. But, the managed languages need a runtime system for exe-
cution that adds additional overhead. In contrast, native languages like C and C++
facilitate users to write high performance and responsive applications with direct
interaction with hardware resources. But, the user experiences the overhead to
manage resources manually. With the speed and flexibility of C and C++ comes
increased complexity along with the complications in memory management.
Objects must be created and destroyed explicitly in program, and small mistakes in
this process can cause severe complications.

Garbage collection (GC) is the most popular automated technique for memory
management. A garbage collector detects objects that are not being used by the
program and attempts to reclaim the memory (garbage) occupied by those objects.
It liberates the programmer from the responsibility of taking care of dynamically
allocated memory and is based on the following principles:

1. To identify the objects in memory that cannot be accessed any further, and
2. To destroy these objects and reclaim the memory used by them.

While garbage collection is used, certain categories of bugs, as described below,
get eliminated or are substantially reduced.

1.1 Memory Leak

When an object becomes unreachable, the program fails to free its memory and leak
occurs. This memory then becomes unavailable to the system. Series of memory
leaks may cause a program to crash due to memory exhaustion. Even if not, then
also it can have an adverse effect on performance. Chunks of allocated but unused
memory cause fragmentation. It destroys the spatial locality and this can result in
poor cache performance or an increase in paging.

1.2 Dangling Pointer

When the program holds more than one pointer to a memory, the memory is made
free through one of them, and is then accessed by another, an illegal dereferencing
happens for the dangling pointer. By the time of access, the memory may have been

108 N. Chatterjee et al.

reassigned for some other use. Such dangling pointer access, therefore, may lead to
unpredictable results.

Managed programming languages currently in use perform Garbage Collection
automatically. So, it will be nice to have a managed layer for native languages
which can be plugged in when we want to manage resources in any point of time
during execution.

We organize the paper as follows. Section 2 describes about the various resource
management techniques in brief. Section 3 discusses about the strategy of resource
management using dynamic instrumentation. Section 4 explains about the details of
implementation of our resource management framework; discusses its various
modules and their implementation. The results for the test cases are presented in
Section 5. In this section, we will discuss our test plan and the various benchmark
codes that we have used to test the GC Pintool. Section 6 concludes and suggests
some possible future research directions resulting from this work.

2 Resource Management Techniques

There are a couple of classical resource management mechanisms available in
managed languages those that have been summarized as below. Also, we found
some attempts of recourse management for native languages.

2.1 Classical Resource Management

In general, a garbage collection process involves three basic steps as shown in
Fig. 1, i.e., scanning the root, marking, sweeping, and an optional step of com-
pacting. There are two generic tasks that a garbage collector needs to perform

1. Distinguish between garbage and live objects and
2. Remove garbage to reclaim memory.

The garbage collection process is initiated with the root scanning that examines
if a memory object includes any pointer. A reachability graph is then formed with

Fig. 1 Typical garbage collection cycle

Resource Management in Native Languages … 109

the objects and the pointers to the objects. Naturally, one can traverse this graph to
compute if an object is reachable. When an object is reachable (from the root) in
this graph, the program can (potentially) access it by navigating the pointers to it
and other objects. Hence, all reachable objects are detected and marked. Objects
that are not marked are not reachable, and are garbage by definition [1]. One can
then sweep (or walk) through the heap and deallocate the unmarked objects in the
process of reclamation. Alternately, in some systems, compaction is used on the
heap to narrow the gaps created by unmarked objects that are removed. Compaction
minimizes external fragmentation [2] at the cost of object relocation. Recently,
several garbage collection techniques have been proposed with their respective
properties. They can be grouped as follows:

Reference Counting is one of the oldest resource management techniques, where
every object has a counter holding the number of pointers that point to the object.
The counter is incremented when a new pointer starts pointing to the object. When a
pointer referencing the object is reassigned, the counter is decremented. The object
becomes unreachable by the mutator [3] (executing program) as soon as the counter
becomes zero. It is then returned to the free pool. The strength of this technique
apart from its simplicity is immediate recovery of unreferenced memory objects [4].
However, this method cannot handle cyclic references as the two (or more) objects
on the cycle are having nonzero counter value [5]. They are left unreclaimed.

Mark and Sweep GC, as the name suggests, first marks the reachable objects and
then sweeps them. It adheres strongly to the two-phase abstraction of garbage
collection. Marking is done recursively starting from the root set. For sweep, the
heap is scanned linearly and all unmarked objects are reclaimed [3, 6].

Copying Collector copies reachable objects from one part of memory to another
[3] and reclaims the garbage in the process.

Generational Garbage Collectors are based on generational hypotheses and
attempt to improve performance by using the age of objects. The weak generational
hypothesis professes that most objects must die when they are young [7]. In con-
trast, the strong generational hypothesis assumes that as an object becomes older, it
becomes less likely to die. Generational collectors have been shown to generally
outperform their nongenerational counterparts [8], and are today the most com-
monly used type of collectors for the majority of systems.

Incremental Garbage Collectors are meant to minimize the disruptiveness of
collectors, specifically, those that have long pauses. For this, the collector is run in
tandem with the application program so that it can gradually do its work [9].

2.2 Resource Management for Native Language

Two approaches for adding GC to C, namely Conservative GC [10] and Precise GC
[11], have been proposed earlier.

Conservative GC attempted to automate GC for C program where the pro-
grammer needs to link with Boehm GC Library and use its allocator/deallocator

110 N. Chatterjee et al.

functions. This GC technique operates roughly in four phases of the Mark-Sweep
algorithm. But it falls short in identifying pointer variables in some cases where it is
unable to determine whether a word is a pointer or wrongly assumes the dead
pointers as roots and leaves objects indefinitely in the heap. For long-running
programs like an IDE, a web server or an operating system kernel, Conservative GC
does not perform well. While managing threads and continuations, it can potentially
cause unbounded memory use due to linked lists [12]. The problem is caused by
liveness vagueness [13], rather than type imprecision.

Precise GC [11] is an improvement over the conservatism of Conservative GC
[10] in terms of memory and time. It uses Magpie and performs source-to-source
transformation that rely on an ontology of objects including “root references in
heap,” “location of reference in every kind of object,” and “types of objects in the
heap.” This results in overhead for the mutator besides requiring additional pro-
grammer effort and related complexities. For example, while using Precise GC for a
C program, a pointer must never be extracted from a variable typed as long—not at
least after a collection has taken place since the variable was assigned. However,
compared to Conservative GC, Precise GC makes weaker assumptions on the
compiler and the architecture. The original program is transformed to explicitly
cooperate with the GC.

In this paper, we have investigated the solution to the problems of memory
management in C programs. To overcome the shortcoming of Conservative GC
[10] and Precise GC [11], we use dynamic instrumentation that does not need any
modification in the source code as were required for both the above mentioned GC
techniques. In this work, a GC Pintool has been developed which automates the
process of garbage collection for C Programs. The tool addresses a wide range of
memory management issues for C programs and efficiently improves the perfor-
mance of C programs in context with the memory management.

3 Resource Management Using Dynamic Instrumentation

To design a pluggable managed layer for native languages, we have used a dynamic
instrumentation framework called Pin [14]. It is a platform for runtime binary
instrumentation of applications running on Linux. A broad range of program
analysis tools, called Pintools, can be built under this framework. The instrumen-
tation of binary at runtime dynamically generates code, allows generic morphing,
and alleviates the need to modify or recompile the source.

Here, we designed the GC Pintool in Fig. 2 to identify the dereferenced memory
addresses allocated during the application execution, but never freed up. Then, after
the end of each block execution all dereferenced memory can be released using this
tool and logged. PIN can be executed in the probing mode for dynamic invocation
of GC Pintool as and when required.

Resource Management in Native Languages … 111

4 Implementation

In this section, we will discuss the implementation infrastructure for GC Pintool.
The GC Pintool follows the basic principle of garbage collection, that is

1. Find inaccessible objects in memory and
2. Free these objects and reclaim the memory.

Further, since the GC Pintool is a dynamic instrumentation tool, so every action
happens at runtime which ensures zero modification in the source code. Now, first
the modus operandi of the tool is explained and then later various Pin APIs that
have been used by the Pintool to make GC possible at run time are described.
Throughout the discussion carried over in this section, the two terms namely
Mutator: to symbolize the application program; and Collector: to signify the GC
Pintool, has been frequently used. Initially, when mutator starts its execution under
Pins control, the collector sets its breakpoint as per the instrumentation routines.
The major breakpoints for the instrumentation are as follows:

1. Calling of any user function
2. Calling of any Memory Allocator function like malloc(), calloc(), and realloc().
3. Calling of any Memory Deallocator function like free().
4. Return from any user function

Fig. 2 Software architecture of PIN

112 N. Chatterjee et al.

Whenever any function of mutator is called, it is recorded by the collector.
Collector further waits for any heap allocation that is, dynamic memory allocation
to be made by the mutator. The collector captures the memory location of the heap
being allocated and save it in its master data structure along with some other
information in which scope (function) the allocation is made. In this manner, all the
allocations made by the mutator get captured by the collector in its data structure. If
there is any deallocation made by mutator, it is also checked in the data structure
and that log is removed from the data structure. When any function completes its
execution, the collector program sweeps away all dynamic memory allocated by
that function. Important is, collector takes care of the allocations made against
global or, if any reference is passed to some other function then in those cases,
collector does not make any deallocation rather that the scope is changed for those
allocations suitably. This way the collector ensures that there is no illegal or pre-
mature deallocation. Now, below we will present the GC Pintool algorithm

Resource Management in Native Languages … 113

The Flow Chart depicting the GC approach as described in above algorithm is as
shown in Fig. 3.

In order to keep the logs of memory addresses which are allocated or deallocated
dynamically, a master data structure has been used by the GC Pintool. During the
execution of the program, this data structure keeps on changing as per the instru-
mentation and accordingly GC Pintool collects information regarding performing
the garbage collection at a suitable point of time. Figure 4 shows the typical
transition in the data structure during the program execution.

Some important Pin APIs used in the Pintool are discussed below
RTN_InsertCall(RTN Rtn, IPOINT Action, AFUNPTR Funptr, ···)

This API is used to insert a call relative to a routine (rtn) and a suitable action is
taken like IPOINT_BEFORE to call funptr before execution of rtn, or
IPOINT_AFTER for immediately before the return from rtn. There are various
IARG_TYPE arguments to pass to funptr.

PIN_CallApplicationFunction(Const CONTEXT * Ctxt, THREADID Tid,
CALLINGSTD_TYPE Cstype, AFUNPTR OrigFunPtr, ···) This API allows
the tool to call a function inside the application. The function is executed under
control of Pin’s JIT compiler, and the application code is instrumented normally.
Tools should not make direct calls to application functions when Pin is in JIT mode.

Fig. 3 GC approach using dynamic instrumentation

114 N. Chatterjee et al.

For that reason, to call mutator’s free() this API has been used. This API in turn
deallocates the memory that has been allocated dynamically by the mutator.

PIN_SafeCopy(VOID * Dst, Const VOID * Src, Size_T Size) This function is
used by our tool to ensure safe access to the original content of the application’s
memory from our tool. This API is helpful in confirming the type of reference, i.e.,
local, global, etc. On this basis, the GC Pintool makes decision regarding the scope
of the allocation.

The instrumentation algorithm in GC Pintool has been tested on various
benchmark programs and is found to perform accurate detection of memory errors
and garbage collection for C programs.

Fig. 4 Transition in data structure during program execution

Resource Management in Native Languages … 115

5 Functional and Performance Testing

In this section, we first present the test plan for correctness of GC Pintool and then
discuss how the performance of the tool has been assessed.

5.1 Correctness of GC Pintool

Table 1 presents a test plan for the GC Pintool. It covers different scenarios for
memory issues in terms of variables of a C program while dynamic memory
allocation is used. Based on the test plan, a benchmark test suite comprising 168
small to medium C programs was created. In addition, 10 C programs with memory
issues as reported in different user forums were also added to the test suite. GC
Pintool performed correctly for the whole test suite.

5.2 Performance of GC Pintool

Since GC Pintool relies on dynamic instrumentation, the performance of a C pro-
gram running under the tool is expected to be significantly degraded compared to a
natively running C program. To estimate the performance impact, we recall that GC
Pintool performs two primary tasks: (1) Detect memory leaks and other issues and
(2) Releases memory that is no more usable.

The detection is implicit because unlike usual memory tools, no report is made to
the user; rather the information is used by the tool to release appropriate resources.
So, in this part, GC Pintool closely resembles the functionality of Valgrind and we
can make a direct comparison. It may be noted that Valgrind experiences 10–50
times slowdown1 and we would expect similar behavior.

In comparison with the Valgrind’s behavior, we prepared eight C programs
containing a variety of memory scenarios from Table 1 and executed them for five
varying data sets (using 10 MB–2.5 GB memories) under both Valgrind and GC
Pintool.2 While GC Pintool always performed correctly, we find that it runs about
35 % faster compared to Valgrind. This is rather encouraging, given that Valgrind is
a widely used tool.

In the other part (where memory is actually released to achieve GC), there is no
reference to compare against. So, we run GC Pintool (with doing GC) and compare
against the runof the tool that only performs thedetection, but doesnot release.Wefind
that for the above programs, our tool runs about one order slowerwhen it performsGC.

1“2.1. What Valgrind does with your program” in http://valgrind.org/docs/manual/manual-core.
html.
2We needed to tweak the tool to report memory issues.

116 N. Chatterjee et al.

http://valgrind.org/docs/manual/manual-core.html
http://valgrind.org/docs/manual/manual-core.html

Table 1 Test plan for GC pintool

Type Func. Block Case 1 Case 2 Case 3 Case 4

Scenarios for local variables

Local Single Function 1 Alloc. 2 Alloc. 2 Alloc. 2 Alloc.

No Dealloc. 1 Dealloc. 2 Dealloc. No Dealloc.

Nested Alloc. outer Alloc. outer Alloc. inner Alloc. inner

Dealloc. outer Dealloc inner Dealloc.
outer

Dealloc. inner

Loop Alloc. Alloc. outer Alloc. inner Alloc. inner

No Dealloc. Dealloc. outer Dealloc.
outer

Dealloc. inner

Recursive Alloc.

No Dealloc.

Two Function 1 Alloc. 2 Alloc. 2 Alloc. 2 Alloc.

No Dealloc. 1 Dealloc. 2 Dealloc. No Dealloc.

Nested Alloc. outer Alloc. outer Alloc. inner Alloc. inner

Dealloc outer Dealloc. inner Dealloc.
outer

Dealloc. inner

Loop Alloc. outer Alloc. inner Alloc. inner

Dealloc. outer Dealloc. outer Dealloc.
inner

Recursive Alloc.

No Dealloc.

Scenarios for global variables

Global Single Function 1 Alloc. 2 Alloc. 2 Alloc. 2 Alloc.

No DeAlloc. 1 Dealloc. 2 Dealloc. No Dealloc.

Nested Alloc. outer Alloc. outer Alloc. inner Alloc. inner

Dealloc. outer Dealloc. inner Dealloc.
outer

Dealloc. inner

Loop Alloc outer Alloc inner Alloc inner

Dealloc outer Dealloc outer Dealloc
inner

Recursive Alloc.

No Dealloc.

Two Function Alloc in 1 2 Alloc in 1 2 Alloc in 1 2 Alloc in 2

Dealloc in 2 No Dealloc 1 Dealloc No Dealloc.

Scenarios for parameters

Param Two Function One Alloc.,
Reference
returned back

Two Alloc., One Dealloc,
One Reference returned
back

Two Alloc.
Two
Dealloc.

Reference is
Pointer to
Pointer

Type Func. Block Cases

Scenarios for member variables and special cases

Data member Single Function Allocation against a data member of structure

Allocation against a pointer to a structure

Allocation against pointer to a structure till out of memory

Local Pointer reassignment

Allocation against the array of pointers

Resource Management in Native Languages … 117

6 Conclusion

Memory Management is an important aspect for any programming language.
Inefficient management of the memory in a program may lead to various conse-
quences like memory leak, dangling pointer, double free error, etc., resulting in
slow down of the program, fragmentation, incorrect execution, premature GC, or
program termination. As a solution to these memory management problems,
specifically for C programs, a novel garbage collection approach has been proposed
and developed in this paper that uses dynamic binary instrumentation which is
accurate and does not need any modification in the source code.

The GC Pintool has been successfully tested over a large set of distinct test
codes. It takes care of all the dynamically allocated memory whether it is allocated
against a local pointer variable, global pointer variable, or passed as parameter to
some other function. The tool deallocates the reserved memory at proper time
during the execution of the program. The tool has been shown to successfully detect
any kind of memory leak error and performs the garbage collection suitably.
Further, it is capable of handling issues like pointer reassignment, allocation made
against the data members of an object, arrays, array of pointer, and pointer to an
array. GC Pintool overcomes the drawbacks of Conservative GC [10, 12] and
Precise GC [11] and has been shown to run faster than Valgrind for memory
leak/error detection.

The GC Pintool is a work in progress. The present version is a functional
prototype, intended to operate on moderately large C programs to provide an
understanding of its behavior and to provide a platform for adding future
enhancements. The present tool may be extended in the following directions:

• Support for C++ Internally GC Pintool already has most of the infrastructure
required for C++. We can log the memory allocated and deallocated by new and
delete operators, but the challenge will be to deal with the constructors and
destructors of an object.

• Improving Efficiency At present, GC Pintool performs selective instrumentation
which has helped to restrict the slowdown while dynamic instrumentation is
used. This is manifest in GC Pintool which has a better performance than
Valgrind when it is used only for detection of memory issues, but no Garbage
Collection (GC) is actually done.
Unfortunately, while doing the GC, GC Pintool is confronted with a second
level of slowdown because it needs to dynamically call appropriate free function
for any memory that is about to be leaked. It may be noted that this call actually
does not exist in the user code and hence needs to be inserted at the runtime. GC
Pintool achieves this by using PIN_CallApplicationFunction, a function of PIN.
Incidentally, this function has a lot of overhead and substantially slows down
the GC Pintool further. We are working on a few schemes to overcome this
shortcoming—one is to move to a lazy collection strategy and the other is to use
the fact that GC only needs to call a fixed function, namely, free.

118 N. Chatterjee et al.

Further, the multimap structure used to log memory allocations and dealloca-
tions, may be improved to reduce space complexity.

• Testing on Legacy programs GC Pintool should be tested on large and complex
legacy programs so as to ensure its applicability in production environments.

References

1. Cohen, J.: Garbage collection of linked data structures. Comput. Surv. 13(3), 341–367 (1981)
2. Cohen, J., Nicolau, Alexandru: Comparison of compacting algorithms for garbage collection.

ACM Trans. Program. Lang. Syst. 5(4), 532–553 (1983)
3. Wilson, P., Johnstone, M., Neely, M., Boles, D.: Dynamic storage allocation: a survey and

critical review. In: Proceedings of the International Workshop on Memory Management,
Kinross Scotland (UK) (1995)

4. Jones, R.E.: Garbage collection: algorithms for automatic dynamic memory management.
Wiley, Chichester (1996)

5. Harold McBeth, J.: On the reference counter method. Commun. ACM 6(9), 575 (1963)
6. McCarthy, John: Recursive functions of symbolic expressions and their computation by

machine. Commun. ACM 3, 184–195 (1960)
7. Ungar, D.: Generation scavenging: a non-disruptive high performance storage reclamation

algorithm. In: Proceedings of the ACM Symposium on Practical Software Development
Environments, pp. 157–167 (1984)

8. Blackburn, S.M., Cheng, P., McKinley, K.-S.: Myths and reality: the performance impact of
garbage collection. In: Sigmetrics—Performance 2004, Joint International Conference on
Measurement and Modeling of Computer Systems, New York (2004)

9. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M:. On-the-fly garbage
collection: an exercise in cooperation. Commun. ACM 21(11), 965–975 (1978)

10. Boehm, H.-J.: Space efficient conservative garbage collection. In: Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation,
pp. 197–206. ACM Press (1993)

11. Rafkind, J., Wick, A., Regehr, J., Flatt, M.: Precise garbage collection for C. In: Proceedings
of ISMM 09 International Symposium on Memory Management, pp. 39–48. ACM Press
(2009)

12. Boehm, H.-J.: Bounding space usage of conservative garbage collectors. In: Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 93–100. ACM Press (2002)

13. Hirzel, M., Diwan, A., Henkel, J.: On the usefulness of type and liveness accuracy for garbage
collection and leak detection. ACM Trans. Program. Lang. Syst. 24(6), 593–624 (2002)

14. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Pin,
H.K.: Building customized program analysis tools with dynamic instrumentation. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (Chicago, IL, USA, June 12–15, 2005)

Resource Management in Native Languages … 119

A Study on Software Risk Management
Strategies and Mapping with SDLC

Bibhash Roy, Ranjan Dasgupta and Nabendu Chaki

Abstract In recent years, despite several risk management models proposed by
different researchers, software projects still have a high degree of failures. Improper
risk assessment during software development was the major reason behind these
unsuccessful projects as risk analysis was done on overall projects. This work
attempts in identifying key risk factors and risk types for each of the development
phases of SDLC, which would help in identifying the risks at a much early stage of
development.

Keywords Risk management � Risk models � SDLC � Technical risk

1 Introduction

Software project management is crucial for development, services and maintenance
of software products. Management of diverse activities during software engineering
process needs to be handled carefully for any software project. One of the most
important yet often overlooked aspects in the complete process is risk and its
management [1]. A risk may be considered as a probabilistic term that has the
potential to affect the overall project in a negative way. Failure of the projects,
especially IT projects, is often due to these unwanted and rather less explored

B. Roy (&)
Tripura Institute of Technology, Tripura, India
e-mail: bibhashroy10@yahoo.co.in

R. Dasgupta
National Institute of Technical Teachers’ Training and Research, Kolkata, India
e-mail: ranjandasgupta@ieee.org

N. Chaki
University of Calcutta, Kolkata, India
e-mail: nabendu@ieee.org

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_9

121

threats or issues [2, 3]. Some works during the last two decades on risk manage-
ment strategies have emerged as survival component for software projects [4, 5].
However, it is important to identify the possible risks in all the stages of the
software development process so that proper mitigation strategy can be adopted at
the appropriate level to reduce the possible financial and temporal loss.

Any software project may face different categories of risks, either internal or
external, in its engineering process. There are different kinds of risks encountered in
different phases of software development life cycle (SDLC) and these risks can be
classified as technical risks and nontechnical risks. The internal risks are due to the
factors within the organization and external risks come from outside the organi-
zation and are difficult to control. Software risks can be grouped into project risks,
process risks, and product risks. Risks for software project management have been
classified as Known risk, Unknown risk, Predictable risk, Unpredictable risk [3].
Another approach used in [6] identifies risks as Technical risk, Management risk,
Financial risk, Contractual and legal risk, and Personal risk. On the other hand in
[7], it was observed that risks are identified as Business risk, Commercial risk,
Economical risk, Project risk, Product risk.

In the last few decades the researchers all over the globe had done lots of works
and various risk models had been proposed and applied at different cases with
various levels of success. All such models have lots of merits; however, no single
model can be applied to all cases. Moreover, for a complex and big projects looking
the risk analysis from the top level might not be appropriate as the risks occurred in
the lower level might not be identifiable if the tool for identification is not applied at
that level where the actual risk might occur. In this paper, risk management models
are reviewed in such a way that the models can be mapped with the different stages
of the life cycle of a software development process. For this purpose, major
objectives and capacities of various risk management models had been studied
(Sect. 2). All steps of activities of a software development process had also been
studied with an eye to identify the types of risks that may occur at each level
(Sect. 3). In Sect. 4, mapping has been done from the outcomes of Sects. 2 and 3 so
that insight knowledge can be extracted from the final result to design the mitigation
strategy.

2 Risk Management Models

Risk management is a set of activities required to manage risk. Organizations who
apply risk management methods and techniques have greater control over the
projects [8]. The risk management methods that are being proposed till date follow
mainly two characteristics—probability and impact. Most of the proposed methods
are static in nature that performs qualitative and quantitative analysis to assess and
control the risks. Most of the methods divide the risk management into some basic
processes like risk identification, risk analysis, risk planning or mitigation, risk
monitoring and control, etc. [3, 9]. It is very much essential to identify the causes as

122 B. Roy et al.

well as effects of the risks for a comprehensive analysis of risks and many of the
methods perform this but concentrate on a single risk.

One of the oldest as well as mostly discussed risk management models is Barry
Boehm’s (1991) BOEHM Model [1–3, 10] that emphasizes on the concept of ‘risk
exposure’ and can be applied to almost any software-related project. BOEHM
divides the risk management into two primary steps—Risk assessments (risk
identification, risk analysis, and risk prioritization) and risk control (risk man-
agement planning, risk resolution, and risk monitoring). Boehm proposed an
effective risk control strategy where each risk is thoroughly tracked with the aim
that this risk either can be eliminated or its effect into the project in terms of cost or
time can be reduced to certain extent. Boehm has discussed different tools like
checklists, cost models, cost–benefit analysis, etc., in each step, however, no
standard project metrics was used as a tool for risk management. This method can
be applied in all the phases of SDLC as risk analyzer. However, new risks that are
occurred during the development process were not taken into consideration.

Software Engineering Institute in 1993 proposed SEI-SRE [2, 3, 11, 12]
(Software Engineering Institute, Software Risk Evaluation) model that provides a
framework for risk evaluation to overcome project failures. This model concentrates
on practical aspects of a project that makes it eligible to be applied successfully in
IT projects as a decision-making tool. However, there is no scope for modification
in the template-based design and sometimes inconclusive outcomes might occur as
it mostly relies on the experiences of project personnel. Unlike Boehm, it has proper
method to measure and evaluate the effectiveness of risk treatment; however, fails
to perform review of risk information periodically as performed by Boehm model.

Ronald P Higuera et al. in 1994 proposed Team Risk Management
(TRM) Process Set [5, 12, 13] that emphasizes on team structures and its activities
for managing risk in each phase of SDLC involving all individual connected to the
project to ensure continuous risk management throughout the project development.
This approach follows continuous risk evaluation process where new risks are
considered and mitigated or resolved risks are automatically removed from the
threat list and thereafter updated risk status is communicated to all the individuals
connected in the project. Like TRM, Agle et al. (2003) also proposed [14, 15] a risk
handling mechanism related to team structure in multi-team environment.

Another widely recognized method developed by Jyrki Kontio et al. in 1996 is
known as RISKIT [2, 3, 12, 16]. This risk management cycle performs risk iden-
tification, risk analysis, risk monitoring, and performs qualitative analysis to pri-
oritize according to probability and impact. It uses a graphical method called Risk
Analysis Graph (RAG) to monitor risk scenario development and the concept of
utility loss is used to assess the impact of risk. This model may be applied mainly in
large organizations, IT projects, and Nokia Telecommunications is one of its major
users. However, it is very much flexible to be implemented in different categories of
projects or areas such as business planning, marketing, and technology-related
fields. Due to the absence of correlation between risk estimation and risk metrics,
this method suffers inaccurate prediction possibilities of potential risks.

A Study on Software Risk Management Strategies … 123

In the year 1997 two different models were proposed: Software Engineering
Risk Understanding and Management (SERUM) [2, 3, 17] by D. Greer and Risk
Maturity Model (RMM) [18] by David A. Hillson where SERUM performs both
implicit risk and explicit risk management and RMM measures the maturity level of
an organization. Though SERUM is typically designed for software projects, it
suffers time management problem in analyzing risks. Unlike other maturity model
such as CMM, EFQM, etc., RMM is completely based on risk management. It
performs different risk management approaches of an organization to assess the
maturity level in managing risks.

Software Risk Assessment Model (SRAM) [19] and SoftRisk [5, 12, 20] are the
two different risk management approaches that came out during the year 2000
where SRAM uses a set of comprehensive questionnaire for different critical risk
elements to prioritize risks and SoftRisk generates a graphical tool helping the
managers to perform risk control mechanism. Like TRM model, SoftRisk approach
also considers the new risks in its continuous risk management process.

In 2007, William G. Snekir et al. proposed Enterprise Risk Management
(ERM) method that performs risk assessment with the help of graphical decision
tree and quantitative analysis.

Armestrome and Adens (2008) [15, 21] gave a very decent idea of identifying
most prominent area of exposure to risk to characterize those areas into different
risk factors and to prioritize them to perform risk management strategies. On the
contrary, Software Risk Assessment and Estimation Model (SRAEM) [3, 4, 22]
having weak risk identification strategies estimates the sources of risks from dif-
ferent paradigms and compute prioritization and ranking by MCRSRM (Mission
Critical Requirements Stability Risk Metrics) followed by quantitative assessment.
Unlike SRAEM, Analyzer for Module Operational Risk (ARMOR) [23] automat-
ically identifies the operational risks of software program modules. Being a
module-based approach this model can perform risk management in every stage of
software development and like SoftRisk model, can perform various types of data
analysis. A modified approach of SRAEM is Software Risk Assessment and
Evaluation Process using model-based approach (SRAEP) [3, 4, 24] that aims at
risk assessment and risk prioritization. This model uses SFTA (software fault tree
approach) to identify and analyzes the risk and uses RRL (risk reduction leverage)
for risk measurement.

Hoodat and Rashidi (2009) [15, 25] have proposed different classifications of
risk based on indexing of different risk factors followed by calculating their impact
on software project. Different categories of risk identified by them are (a) Internal
risk and external risk. (b) Process risk, product risk, and project risk.
(c) Performance risk, cost risk, and scheduling risk. (d) Requirement risk, cost risk,
scheduling risk, quality risk, and business risk. A similar risk management activity
performed by Software Project Risk Management model (SPRMQ) (2011) [7]
requires experience of project manager to manage software product risk. However,
unlike other models it does not consider the external risk. Another approach as
proposed by DANNY in 2006 [15, 26] reduces operational risk by performing risk

124 B. Roy et al.

classification and their qualitative analysis with an aim to save resources with a
consideration for small-sized projects or available funded projects.

Suebkuna and Ramingwong (2011) refined the approach of Project Oriented
Risk Management Model (PRORISK) [27] with a proposal to link project man-
agement and risk management having two phases of risk management: risk
assessment and risk control. It uses a risk database to record risk control related
information such as its impact, probability, type, mitigation strategy, etc.

Shahzad et al. (2011) proposed risk “handling and avoidance mechanism” in
Risk Identification, Management and Avoidance Model (RIMAM) [3, 28]. This
model provides a stepwise procedure of risk handling methodology that enables the
development team to handle risks locally. This model is suitable to be applied in
small and medium scale of software with tight budgetary and short-time period.

Project Risk Network Model (PRM) [6, 12] as proposed by Linda Westfall
(2011) is one of the well-known methods detailing a Decision Support System
framework consisting of five major steps: risk identification, risk assessment, risk
analysis, risk response planning, and risk monitoring and control enabling project
managers in choosing a set of risk mitigation action with minimum loss. The
drawback of this model is that it uses the classical method for risk identification and
evaluation during its initial phases with an assumption that risks are independent,
whereas there are lot of interactions and influences between different risks in the
project development.

Software Engineering Risk Index Management (SERIM) (2014) [2, 3, 29] is one
of such risk management models that is typically designed for software project
development focusing mainly on the assessment of risk factors (Organization,
estimation, development, methodologies, tools, risk, culture, usability, correctness,
reliability, and personnel) with periodic measurements on high priority risk areas
throughout software development stages. Though this method lags in providing
explicit guidelines to identify risks that may involve in the project, medium-sized
organization may consider it instead of expensive methods.

Most recently Loutchkina et al. (2014) proposed System Integration Technical
Risks’ Assessment Model (SITRAM) [12] that integrated Bayesian Belief
Networks (BBN) and Parametric models (PM) providing statistical information for
improving risk management during large software development.

In this section, we presented observations on some of the well-known risk
management models. These models cover really an wide and diverse range of
objective right from identification of risks to risk mitigation, risk assessment,
controlling of risks, prioritization of risks, risk probability computation, and even
proposing a four level of risk maturity model. Some of the existing risk models are
good specifically for either small or large organizations. On the other hand there
exist risk models that especially deals with risks associated with software projects
only. Many of these have been implemented using suitable tools. However, in the
current state scenario only a few models exist that considers risks associated with
different stages of SDLC. The study further reveals that such models, in use, lack

A Study on Software Risk Management Strategies … 125

Table 1 Observations of different risk models

SN Methods/models/proposed Observations

1 BOEHM [10] Does not handle generic risk; works on risk analysis
paradigm principle

2 SEI-SRE [11] Generates a template-based design that results in
inconclusive outcomes due to less scope for modification

3 RISKIT [16] Does not collaborate risk estimation and risk metrics,
thus reducing the prediction possibilities of potential risks

4 SERUM [17] As it performs a continuous evaluation of risks, hence
time management holds the key role as risk element in
the project

5 SERIM [29] Good for small organizations; handles multiple projects
for analyzing software risks; lacks explicit guidelines on
using information to identify possible risks in the project

6 SRAM [19] Risk ranking is done by AHP and entropy method. It
does not handle marketing risk

7 Agle et al. [14] Handles team structure; does not consider funding and
resources

8 Danny [26] Performs classification of risk by quantitative analysis;
aims at saving resources

9 Armestrong [21] Identifies the risk exposure areas and prioritizes them in
respect to business context

10 Rashidi [25] Perform risk classification and risk indexing

11 SRAEM [22] Risk prioritization and ranking is computed by
MCRSRM, decision through quantitative assessment;
model focuses on external risks related to the requirement
analysis

12 SRAEP [24] Model uses SFTA to identify and analyses the risk and
RRL for risk measurement; follows models based
approach

13 SPRMQ [7] Well suited for handling the product risk; does not
consider external risks such as marketing risk,
organizational risk, etc.; uses avoidance, minimization,
and contingencies strategies

14 RIMAM [28] Works on the principle of “handling and avoidance
mechanism”; some of the risks can be handled locally

15 TRM [13] Follows all the steps of SEI; handles new risks and risk
status are communicated to all individuals

16 SoftRisk [20] Documents all types of risks; performs qualitative and
quantitative analyses; Consider new risks in an iterative
process

17 ARMOR [23] Identifies source of risk and suggests solution to reduce
risk levels; uses regression analysis to validate generated
risk model

18 RAT [41] Performs hybrid assessment of risks in five phases; risks
are ranked based on ranking matrix

(continued)

126 B. Roy et al.

completeness from one or more perspectives. Based on the above discussion, we
have summarized the key features of these models in Table 1. However, other
research works [15, 30–40] deal with various special issues like Risk management
in requirement engineering, Risk-based testing, Project Risk dependencies, etc., and
not included in Table 1.

Based on above observations of risk management models under discussion it can
be summarized as indicated in Table 2 that different models are strong enough to be
applied in different application domains.

Risk management models that are discussed in this section involve different
participants in its risk management process and are summarized in Table 3.

Among the risk management models considered in our discussion, only few
models emphasized on the importance of project size in its risk management
strategies. It is general consideration that if a risk management model can handle a
large-sized project then it will surely be able to handle medium-and small-sized
project too. The medium- and small-sized projects face mainly two constraints: very
tight schedule and a limited budget [34]. These constraints do not permit to go for a
risk management strategy that may incur more costs and time [15]. Rather than
going for those complex and costly risk management models, a simple and effective
model would be used for relatively smaller projects. It has been found that there are
monitory losses in medium and smaller projects due to improper handling or not
considering the risks related to the projects [34]. During last decade the concen-
tration has been given on the risk management strategies for small and medium
projects [2, 3, 5]. Different researchers have proposed risk models for small and
medium software projects [15]; however, proper and detailed description of man-
agement process would require some standards. Risk management models under
discussion may be compared on the basis of effectiveness on budget, time, and size
of the project and is tabulated in Table 4.

Table 1 (continued)

SN Methods/models/proposed Observations

19 ERM [42] Evaluates level of an organization to propose risk
assessment tool using graphical decision trees and
quantitative analysis

20 PRORISK [27] Links project and risk management toward developing a
risk database; handles six types of risks for software
projects

21 RMM [18] Provides the benchmark to an organization to assess its
maturity level in terms of project risk management

22 PRM [6] Works on the assumption that risks are independent
which may lead to incorrect risk assessment

23 SITRAM [12] Provides statistical information in decision-making of
risk management using Bayesian belief networks and
Parametric models

A Study on Software Risk Management Strategies … 127

Table 2 Risk models categorization based on their application domain

SN Methods/models/proposed by Application domain

1 BOEHM [10], SEI-SRE [11], SPRMQ [7],
PRORISK [27], ARMOR [23], RISKIT [16]

Software/IT projects

2 TRM [13], Hoodat_Rashidi [25] Can be used as team risk management
tool in software development process

3 SoftRisk [20], PRM [6] Flexible to be implemented in different
categories of projects of any domain

4 RMM [18] Can be used by any organization to
assess its risk maturity level

5 ERM [42] To assess an organization’s level

6 SERIM [29], SRAM [19], RIMAM [28],
SRAEM [22], SRAEP [24]

Small- and medium-sized software
projects

7 Danny [26] Small projects with no costs risk
involvement

8 Armestrong [21] Projects with budget constraints

9 RAT [41] Web application

10 RISKIT [16], SERUM [17] Existing software’s new version release

11 SITRAM [12] Large and complex software projects

Table 3 Risk models categorization based on participants

SN Methods/models/proposed by Participants in the process

1 BOEHM [10], RISKIT [16], SRAEM [22],
SRAEP [24], SoftRisk [20], ARMOR [23]

Risk management team

2 PRM [6] Risk management team, project manager

3 RIMAM [28] Risk management team, development
team

4 RMM [18], SRAM [19] Risk assessment team

5 Armestrong [21], Hoodat_Rashidi [25] Project managers

6 SERIM [29], SPRMQ [7], PRORISK [27],
Danny [26]

Project managers, risk managers

7 ERM [42], SEI-SRE [11] (Experienced) risk managers

8 RAT [41] Risk managers, project development
team

9 SERUM [17] Software development team

10 TRM [13] Development team, stakeholders,
customers, users

11 SITRAM [12] Risk assessment team

128 B. Roy et al.

3 Risks at Each Level of SDLC

Software project development is a systematic process and risks may occur in every
stage of this process. Thus it is essential to look the entire risk management
mechanism from a different angle. Conventional approaches of study for internal
risk, external risk, known risk, unknown risk, etc., are necessary. However, these
cannot be considered as sufficient to identify the chances of occurrence, impact of
such risk(s) in terms of cost and time, etc., at each level of SDLC. As for example,
if a risk of conflicting requirements is left unidentified at the requirement specifi-
cation level as no conflict identification technique (mechanism) has been applied at
that level, the risk will naturally be carried forward and in worst case it might been
slipped as undetected and carried up to implementation. The risk, when occurred
might not only cause some serious business loss, identification, and mitigation of
the problem would also be very cumbersome and extremely difficult. On the other
hand, if appropriate mechanism be applied at every stages of SDLC, it not only will
identify and arrest a lot of risks to propagate further and cause serious damages,
maintenance overhead will also be minimized and more robust software can be
offered to the users. Moreover, the impact of the risk might be many folds higher
and serious, if it is propagated forward and occurred at a later stage, particularly,
when the customer’s dependency on the product has become higher and insepa-
rable. Loss of confidence, if happens, on the product and services is another issue
which neither can be measured and sometime may lead to irreparable damage and
cause change in business sentiments.

Table 4 Risk models categorization based on projects size, cost, and application

SN Methods/models/proposed by Effectiveness Applicable to
projects sizeBudget Time

1 BOEHM [10], RISKIT [16], SERUM [17],
PRM [6], RMM [18], Hoodat_Rashidi [25],
SoftRisk [20], ARMOR [23]

Tight Scheduled Large

2 SEI-SRE [11], SPRMQ [7], Armestrong [21] Tight Scheduled Large, medium

3 ERM [42] Tight Scheduled Large, medium,
small

4 SERIM [29], SRAM [19] Tight Scheduled Small, medium

5 RIMAM [28] Tight Critical
and short

Small, medium

6 SRAEM [22], SRAEP [24] Tight Critical Small, medium

7 TRM [13], RAT [41], PRORISK [27] Tight Scheduled Small, medium

8 Danny [26] Available Scheduled Small

9 SITRAM [12] Available Scheduled Large and
complex

A Study on Software Risk Management Strategies … 129

The necessity of new risk categorization at a more micro level is thus a necessary
requirement where risks can be categorized as per their chances of occurrences in
the various development stages. As risk management strategy involves both risk
assessment and risk mitigation, hence this classification will help in stagewise risk
identification and mitigation during software project development. Software project
risks may be grouped as per their occurrences in the phases of SDLC, i.e.,
requirements and planning, designing, coding, application and maintenance, and
other related parameters like scheduling, cost, quality, and business are also
affected.

As per SEI [1, 4, 5, 11] the following risk factors may be associated to software
development.

1. Incorrect resources estimation
2. User/customer uncertainty
3. Ambiguous requirements
4. Improper design risk
5. Development system and risk with development system
6. Inadequate management process
7. Improper work environment

Unlike other generic project risks, technical risks are matter of concern for
software and IT projects and generally lead to failure of functionality and perfor-
mance [12]. SEI also identifies following technical risks associated with technology
related projects

• Lack of strategic framework or conflict over strategy
• Lack of adaptation to technological change
• Supplier/vendor problems
• Poor management of change
• Too much faith in ability of the technology to fix the problems

In the context of SDLC, the various causes or factors have been identified
(Tables 5, 6, 7, 8 and 9) as technical risks at different phases against some key
factors.

4 Mapping of Models for Different Stages

Different risk management models discussed so far were performed considering
overall scenario of the project. Whereas risks in software projects may occur in any
of the phases of SDLC and depends on separate strategies adopted for individual
phases of SDLC. Software risks have been broadly grouped in literature [6] as
nontechnical risk (project and business) or as technical risk. However, risks related
to software project development also depend on factors like product engineering,
development environment, and program constraint. Again, there are scheduling
risks and quality risks that come under planning phase. In addition to software

130 B. Roy et al.

Table 5 Technical risks at requirements analysis and planning phase

Key factors Overview of key factors Technical risks

Stability Risks due to instability in requirement Continuous changing requirements

Completeness Incomplete or unrealistic planning Inaccurate sizing of deliverables

Unrealistic time schedule for
individual module development

Clarity Improper requirement or inadequate
analysis

Improper definition of
requirements

Inadequate software project risk
analysis

Validity Less or no knowledge about validity of
existing tool, inaccurate estimation

Inaccurate cost estimation

Inaccurate quality estimating

Inadequate software policies and
standards

Less knowledge about the
availability of resources

Incorrect estimation of resources

Inability to estimate the scope for
reusability of existing modules

Feasibility Lack of documentation, reusable
resources

Nonavailability of documentation
of previous projects

Lack of reusable requirements

Lack of reusable documentation

Scalability Scalability of resource requirements Inaccurate metrics

Inadequate assessments

Table 6 Technical risks at design phase

Key factors Overview of key factor Technical risks

Functionality Incorrect function design Inexperienced software module
designer

Difficulty Inability to design or unavailability
reusable design

Inadequate tools and methods for
quality assurance

Inadequate tools and methods for
software engineer

Lack of reusable data

Lack of reusable design

Lack of reusable architecture

Interfaces Less knowledge of interface design Incorrect interface design

Performance Incomplete designed module Error-prone module designed

Testability Unrealistic design Inexperienced software module
designer

Hardware Little or no knowledge of hardware
constraints

Incorrect hardware simulation or
interface

A Study on Software Risk Management Strategies … 131

Table 7 Technical risks at coding phase

Key factors Overview of key factor Technical risks

Functionality Non-functioning of
development team

Inexperienced technical staffs

Inexperienced development team

Malpractices of technical staff

Feasibility Non-mapping between design
and coding

Unrealistic module designed to
develop using existing technology

Difficult project modules integration

Testing Inaccurate or unrealistic
development

Wrong integration of modules
developed

Availability Nonavailability of
technology, reusable
resources, and experience

Unavailability of advanced
technology

The existing technology is in initial
stages

Less reusable code available in the
organization

Inadequate technical training to the
staff

Lack of reusable human interfaces

Lack of any specialization

Poor technology investment

Slow technology transfer

Coding/implementation Excessive coding and
development

Product is complex to implement
using existing technology and
technical staffs

Excessive load to development team

Overschedule due to erroneous
coding

Excessive coding due to lack of
standard programming guidelines

Table 8 Technical risks at testing phase

Key factors Overview of key factor Technical risks

Environment Inadequate testing
environment

Unable to identify ambiguity in the developed
product
Lack of reusable test plans, test cases, and test
data

Validity Inexperienced testing team Inexperienced testing team
Inability to identify and to fix problems or errors

Product Incorrect testing on product Improper testing strategies

System Improper developed system Improper defined objectives to the testing team

132 B. Roy et al.

engineering phases, risks can further be categorized into performance risks, cost
risks, support risks, and schedule risks.

In general, there are many risks in the software engineering process and it is
quite difficult to identify all of these. There are still some correlations between
management risks versus financial risks, technical risks versus personal risks,
business risks versus commercial risks, business risks versus economical risks and
between financial risks versus commercial risks.

Since software engineering is a systematic development process, one must fol-
low a proper sequence of steps irrespective of process model in use. None of the
above-discussed classifications provides a clear and exhaustive categorization of
risks in software projects.

It is, therefore, necessary to propose a new software risk classification where
risks are classified based on the stage where they are identified. We propose a novel
software risk classification approach where each category of risks follows a single
stage of software development.

Table 9 Technical risks at application and maintenance phase

Key factors Overview of key factor Technical risks

Maintainability Non-flexible, platform-dependent
design, high cost

No or less scope for change in the system
Platform-dependent application
High maintenance costs

Reliability Non-reliable, non-satisfaction
developed system

Unsatisfied customer of the developed
product
Partially developed product
Low productivity

Low user satisfaction

Safety Inadequate documentation, tools
for maintenance

Overbudget due to corrective
maintenance

Lack of proper help or manuals to the
users

Inadequate tools and methods for
technical document

Security Less or no security on developed
system

Lack of sufficient security in the
developed product

Human factors No clarity on functionality of
different users

Complex user interface developed

Nonuser friendly product developed

Specifications Wrongly specified,
underdeveloped system

Inappropriate product developed

Obsolete product developed

False productivity claims

Realistic Unrealistic modification request
from customer

Frequent change request due to bugs in
the product developed

Unrealistic change requirements

Ambiguous improvement targets

A Study on Software Risk Management Strategies … 133

In this classification, risks identified in a single stage are grouped together. This
classification will surely help the project managers to deal with the risks on that
particular stage only where it was identified instead of delaying the mitigation till
last stage. Following this classification, an early detection and early mitigation
strategy can be adopted in order to minimize the loss in software project
development.

Risk management strategies considered in most of the risk management models
deal with handling generic risks related to the completion of the project and its
analysis performed during requirement analysis only. These models highly focus on
the requirement analysis and planning phase and try to identify the risks on generic
sense. Since software project development is a systematic approach and it has clear
distinct phases, a risk management strategy needs to be discussed at macro level
where different risk management strategies may be adopted for individual phases of
SDLC. Few of the above-discussed models also considered risks related to
scheduling and quality during this phase. However, discussions on the risks related
to design phase are yet to be considered by these risk models. There are few models
[6, 11, 27] that focus on risks related to coding phase, whereas risk considerations
related to testing and debugging are being discussed in [11, 25].

Along with generic risks, models as described by RISKIT, Hoodat_Rashidi,
Danny also considered risks related to application phase and the risks related to
maintenance phase are being discussed by SEI-SRE, RISKIT, PRORISK,
ARMOR, SOFTRISK, PRM.

The existing risk management models barely consider software risks according
to the phases of SDLC. SEI-SRE model focuses on the phases of SDLC where it
emphasizes on the individual factors that may affect individual phases of SDLC.

Though SEI-SRE model is partially capable to deal with the practical aspects of
IT projects, there is a limitation in modification of the template-based design. This
may lead to inconclusive results for inexperienced user. It deals with risk from
product, process, and constraints. It sets a risk baseline for a project. Unlike
Boehm’s work, SEI-SRE model did not clearly define the responsibilities of the
project team.

Consequently, risk status data are not properly communicated between them.
SEI-SRE has no method to analyze newly identified risks and it does not perform
periodical review of risk treatment. This method only involves project personnel in
its risk analysis and thus exclusion of stakeholders may create a possibility of
incorrect requirements to the development team that incorporate some more risks
which can lead to failure (Table 10).

Hence, a clear mapping is desired so as to understand which risk management
model is best suited to follow the phases of SDLC. In our discussions a mapping is
drawn in between the existing software risk management models and risks related
to phases of SDLC. This mapping indicates a requirement of risk management
model that deals risks at each phase individually rather than considering whole
project at a time. An early detection of such risks is also essential so as to prepare
the mitigation strategy well ahead of occurring of risks in reality.

134 B. Roy et al.

Table 10 Risk models mapping with phases of SDLC

SN Methods/models Purpose Risk element
considered

Risks of which
SDLC phases are
considered

1 BOEHM [10] Risk identification,
analysis, prioritization,
control

Generic risks and
project-specific risks

Requirement
analysis and
planning

2 SoftRisk [20] Risk identification,
assessment, monitoring

Requirement and
planning phase,
maintenance
phase

3 ARMOR [23] Risk identification,
analysis

All program module
risks

4 PRORISK [27],
PRM [6]

Risk assessment, risk
control

Software-related
Generic risks

Requirement
phase, coding
phase,
maintenance
phase

5 RMM [18] Risk assessment Organizational risks Not followed

6 ERM [42] Risk identification,
assessment

Generic risks and
project-specific risks

7 RAT [41] Risk assessment,
treatment and monitoring

Project risks of
small and medium
software

8 TRM [13] Risk analysis, mitigation Team risks

9 Agle et al. [14] Risk handling Risk related to team
structure

10 SEI-SRE [11] Risk evaluation:
Detection, specification,
assessment,
consolidation, mitigation

Product risks,
process risks

Requirement
phase, coding
phase, testing
phase,
maintenance
phase

11 SRAM [19] Risk assessment,
prioritization

Development risk Requirement
analysis

12 Armestrong [21] Risk identification Economic risk,
business risk

13 RISKIT [16] Risk identification,
analysis, monitoring,
prioritize as per
probability and impact

Generic risk, project
risk, technical risk,
schedule risk,
business risk

Requirement
phase, application
and maintenance
phase

14 H. Rashidi [25] Risk measurement Project risk, product
risk, schedule risk,
cost risk, quality
risk, business risk

Planning phase,
testing and
debugging phase,
application phase

(continued)

A Study on Software Risk Management Strategies … 135

5 Conclusions

The major contribution of this paper is the SDLC phasewise classification of risks
that we have summarized in Sect. 3 using five tables and the consequent mapping of
various risk models with different steps of SDLC described in Sect. 4. This sys-
tematic study followed by the proposed classification will open up a big horizon for
entire risk management process. Researchers will now be able to apply various such
models and analyze the occurrence and impact of risks at all steps of SDLC and can
mitigate the risk once found meaningful. Generic tools might need to be developed
for such purposes with option for tuning them for some specific business model.

References

1. Stern, R., Arias, J.C.: Review of risk management methods. Bus. Intell. J. 4(1), 59–78 (2011)
2. Silva, P.S., Trigo, A., Varajão, J.: Collaborative risk management in software projects. In:

Proceedings of the 8th International Conference on the Quality of Information and
Communications Technology, pp. 157–160 (2012)

3. Guiling, L., Xiaojuan, Z.: Research on the risk management of IT project. In: Proceedings of
International conference on E-Business and E -Government (ICEE), pp. 1–4, 6–8 May 2011

Table 10 (continued)

SN Methods/models Purpose Risk element
considered

Risks of which
SDLC phases are
considered

15 SERIM [29] Risk assessment, risk
ranking

Technical risk, cost
risk, schedule risk,
organizational risk,
application risk

Requirement
analysis and
planning phase

16 RIMAM [28] Risk identification,
management, avoidance

Schedule risk and
cost risk

17 SRAEM [22] Risk estimation Technical risk,
organization risk,
environmental risk

18 SRAEP [24] Risk assessment,
prioritization

19 SERUM [17] Implicit and explicit risk
management

Generic risk, risk
related to planning,
development risk

20 SPRMQ [7] Risk factor identification,
risk probability
computation, effects on
product quality, risk
mitigation and monitoring

Product risks

21 SITRAM [12] Risk assessment Technical risks

22 Danny [26] Risk mitigation Operational risk Application phase

136 B. Roy et al.

4. Tianyin, P.: Development of software project risk management model review. In: Proceedings
of International Conference on AI, Management Science and Electronic Commerce,
pp. 2979–2982 (2011)

5. Avdoshin, S.M., Pesotskaya, E.Y.: Software risk management. In: Proceedings of 7th Central
and Eastern European Software Engineering Conference, Russia, pp. 1–6 (2011)

6. Westfall, L.: Software risk management. In: International Conference on Software Quality,
San Diego, California, 8–10, February, 2011

7. Mofleh, H.M., Zahary, A.: A framework for software product risk management based on
quality attributes and operational life cycle (SPRMQ). http://www.nauss.edu.sa/En/
DigitalLibrary/Researches/Documents/2011/articles_2011_3102.pdf

8. Sarigiannidis, L., Chatzoglou, P.D.: Software development project risk management: a new
conceptual framework. J. Softw. Eng. Appl. (JSEA) 4, 293–305 (2011)

9. Sathish Kumar, N., Vinay Sagar, A., Sudheer, Y.: Software risk management—an integrated
approach. Global J. Comput. Sci. Technol. (GJCST) 10(15), 53–57 (2010)

10. Bohem, B.W.: Software risk management: principles and practices. IEEE Softw. 8, 32–41
(1991)

11. Carr, M.: Taxonomy-based risk identification. Software Engineering Institute,
CMU/SEI-93-TR-6 (1993)

12. Loutchkina, I., Jain, L.C., Nguyen, T., Nesterov, S.: Systems’ integration technical risks’
assessment model (SITRAM). IEEE Trans. Syst. Man Cybern. Syst. 44(3), 342–352 (2014)

13. Higuera, R.P., Gluch, D.P., Murphy, R.L.: An introduction to team risk management. Special
report CMU/SEI, SEI/CMU, Pittsburg, May 1994

14. Alge, B.J., Witheoff, C., Klein, H.J.: When does the medium matter? Knowledge building
experiences and opportunities in decision making teams. Organ 91(1), 26–27 (2003)

15. Mead, N.R.: Measuring the software security requirements engineering process. In:
Proceedings of 36th International Conference on Computer Software and Application
Workshops, pp. 583–588 (2012)

16. Kontio, J., Basili, V.R.: Empirical evaluation of a risk management method. In: SEI
Conference on Risk Management, Atlantic City (1997)

17. Greer, D.: SERUM: software engineering risk: understanding and management. J. Proj. Bus.
Risk Manag. 1(4), 373–388 (1997)

18. Hillson, D.A.: Towards risk maturity model. Int. J. Proj. Bus. Risk Manag. 1(1), 35–45 (1997).
ISSN:1366-2163 (Spring)

19. Foo, S.-W., Muruganatham, A., Software risk assessment model. ICMIT 2000, IEEE,
pp. 536–544

20. Keshlaf, A.A., Hashim, K.: A model and prototype tool to manage software risks. In:
Proceedings of the 1st Asia-Pacific Conference on Quality Software (APAQS’00),
Washington, DC, USA (2000)

21. Armestrong, R., Adens, G.: Managing Software Project Risks. TASSC Technical paper, USA
(2008). www.tassc-solutions.com. January 2008 Copyright 2001–2010, Tassc Limited

22. Gupta, D., Sadiq, M.: Software risk assessment and estimation model. In: International
Conference on Computer Science and International Technology, pp. 963–967. IEEE
Computer Society, Singapore (2008)

23. Rabbi, M., Mannan, K.: A review of software risk management for selection of best tools and
techniques. In: Proceedings of 9th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 773–778 (2008)

24. Sadiq, M., Rahmani, M.K.I., Ahmad, M.W., Jung, S.: Software risk assessment and evaluation
process (SRAEP) using model based approach. In: International Conference on Networking
and Information Technology (ICNIT), pp. 171−177 (2010)

25. Hoodat, H., Rashidi, H.: Classification and analysis of risks in software engineering. In:
WASET-2009, pp. 446–452

26. Danny, L.: Reducing operational risk by improving production software quality. Softw. Risk
Reduction Rev. 13, 1–15 (2013)

A Study on Software Risk Management Strategies … 137

http://www.nauss.edu.sa/En/DigitalLibrary/Researches/Documents/2011/articles_2011_3102.pdf
http://www.nauss.edu.sa/En/DigitalLibrary/Researches/Documents/2011/articles_2011_3102.pdf
http://www.tassc-solutions.com

27. Suebkuna, B., Ramingwong, S.: Towards a complete project oriented risk management model:
a refinement of PRORISK. In: Eighth International Joint Conference on Computer Science and
Software Engineering (JCSSE), pp. 349–354, 11–13 May 2011

28. Shahzad, B., Al-Ohali, Y., Abdullah, A.: Trivial model for mitigation of risks in software
development life cycle. Int. J. Phys. Sci. 6(8), 2072–2082 (2011)

29. Roy, G.G.: A risk management framework for software engineering practice. In: Proceedings
of the Australian Software Engineering Conference (AAWEC’04) (2014)

30. Amber, S., Shawoo, N., Begum, S.: Determination of risk during requirement engineering
process. Int. J. Emerg. Trends Comput. Inform. Sci. 3(3), 358–364 (2012)

31. Pandey, D., Suman, U., Ramani, A.K.: Security requirement engineering issues in risk
management. Int. J. Comput. Appl. 17(5), 11–14 (2011)

32. Islam, S., Houmb, S.H.: Integrating risk management activities into requirements engineering.
RCIS-2010, Nice, France, May 2010, pp. 299–310

33. Drs. Erik, P.W.M.: Practical risk-based testing—product risk management: the PRISMA
method, EuroSTAR-2011, Manchester, UK, pp. 1–24, 21–24 November 2011

34. Kwan, T.W., Leung, H.K.N.: A risk management methodology for project risk dependencies.
IEEE Trans. Softw. Eng. 37(5), 635–648 (2011)

35. Lobato, L.L., Neto, S., da Mota, P.A., do Carmo Machado, I.: A study on risk management for
software engineering. In: Proceedings of the EASE, pp. 47–51 (2012)

36. Lobato, L.L., da Mota, P.A., Neto, S., do Carmo Machado, I., de Almeida, E.S., de Lemos
Meira, S.R.: Evidence from risk management in software product lines development: a
cross-case analysis. In: Proceedings of 6th Brazilian Symposium on Software Components,
Architectures and Reuse (2012)

37. Nolan, A.J., Abrahão, S., Clements, P.C., Pickard, A.: Requirements uncertainty in a software
product line. In: Proceedings of 15th International Software Product Line Conference,
pp. 223–231 (2011)

38. Lobato, L.L. et al.: Risk management in software product lines: an industrial case study. In:
Proceedings of ICSSP, Switzerland, pp. 180–189 (2012)

39. Gonzalo, E., Gallardo, E.: Using configuration management and product line software
paradigms to support the experimentation process in software engineering. RCIS-2012,
Valencia, May 2012. pp. 1–6

40. Khoo, Y.B., Zhou, M., Kayis, B., Savci, S., Ahmed, A., Kusumo, R.: An agent-based risk
management tool for concurrent engineering projects. Complex. Int. 12, 1–11 (2008)

41. Sharif, A.M., Rozan, M.Z.A.: Design and implementation of project time management risk
assessment tool for SME projects using oracle application express. In: World Academy of
Science, Engineering, and Technology (WASET), vol. 65, pp. 1221–1226 (2010)

42. Snekir, W.G., Walker, P.L.: Enterprise risk management: tools and techniques for effective
implementation. Institute of management Accounts, pp. 1–31 (2007)

138 B. Roy et al.

A New Service Discovery Approach
for Community-Based Web

Adrija Bhattacharya, Smita Ghosh, Debarun Das
and Sankhayan Choudhury

Abstract In registry, services are identified by functionality but nonfunctional
specifications (NFPs) should play an important role. Multiple registries are aggre-
gated to offer a higher-level abstraction, called community. Community has its own
functional description. In this paper, we have proposed an upgraded organization of
registry as well as the community through the consideration of NFPs with the
functional one. The newly proposed organization can be used to provide an efficient
service discovery algorithm in term of execution time.

Keywords Web service � Service discovery � Nonfunctional parameters � Service
community � Service registry

1 Introduction

Service providers publish web services within a registry along with description.
Description of a service contains two parts; functional and nonfunctional. A service
registry contains services with miscellaneous functional specifications. The services
having analogous functionalities may be called “Similar services.” But each of
those similar services can have different nonfunctional specifications (npfs), as
offered by the corresponding service providers. Due to the massive development of

A. Bhattacharya (&) � S. Choudhury
University of Calcutta, Kolkata, India
e-mail: adrija.bhattacharya@gmail.com

S. Choudhury
e-mail: sankhayan@gmail.com

S. Ghosh � D. Das
Techno India Saltlake, Kolkata, India
e-mail: smita.ghosh.2710@gmail.com

D. Das
e-mail: idebarun@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_10

139

web services, the registries are expanding day by day and as a result service
discovery mechanism becomes complicated. The concept of community may be a
solution from that aspect. In web technology, a community is a collection of reg-
istries that have common functionality [2]. A community can be viewed as domain
specific functionality integration mediators representing the registry information
[5]. The role of a community is to gather web services with similar functionalities
(e.g., community hotel will contain services such as hotel reservation and hotel
searching.). Thus this higher-level abstraction in form of a community helps in
making the search of services in a more effective and organized way.

In general, in a registry the services are identified through the offered func-
tionality. There is a work [1] that only considers the functionality of services during
the community selection for a web registry. It first employs the idea of membership
degree. In [4, 3], the main goal is to achieve the reliability of web services com-
position. This led to the requirement of a framework for this kind of composition
that needed to satisfy handling errors and corresponding recovery actions. This
requirement demanded rethinking over the idea of the community framework. In
[6], discussion is made on an ontology-based infrastructure called METEOR-S. It
helps in accessing a group of registries that are divided based on functionalities of
various business domains and are clustered together into federations. Paper [2]
presented an approach to help the service user for discovering web services. At first,
the service discovery requirements are analyzed from the user’s perspective. Then
the description of a similarity measurement model for web services is proposed (by
accessing data information from WSDL) and used for service discovery algorithm.

None of the existing works considered the nonfunctional property at the time of
creating communities. Nonfunctional properties like location, cost, etc. are men-
tioned for a service but the existing discovery approaches are too focused on
functional specifications. As a result, at the time of discovery, if the NFPs of the
discovered service mismatches with the consumer’s requirement, the discovery
needs to be re-initiated and that in turn requires more execution time. Thus, we have
proposed an updated organization of registry; a higher-level abstraction from the
existing structure.

The service provider publishes the web services in the UDDI registries.
Publishing the web services in the registry makes them available to the client.
Providers have web registries at a specific standard called UDDI. A single provider
can have multiple UDDI registries depending on its business operation. At the time
of invoking, the service user can have to request directly to the provider. A user
initiates the discovery mechanism by giving a query and receiving web services
based on the preferences. Here, the consideration of nonfunctional parameters
becomes essential. A community classically contains collection of information on
the functional parameters of registries and registry contains a collection of service
information [7]. However, in the proposed approach, each registry is evaluated for
their memberships to community. Inclusion of nonfunctionality in the existing
approach of membership degree is done.

We also consider the combinations of nonfunctional parameter while classifying
the registry into communities. It is stored in such a way that the most occurring

140 A. Bhattacharya et al.

NFPs with respect to communities and registries are reflected directly. This helps
the discovery algorithm deliver the service efficiently in terms of accuracy and time.

The paper is organized in a following way. The proposed solution is discussed in
detail in Sect. 2. Section 3 illustrates our proposal with an example. The corre-
sponding discovery algorithm and its performance are mentioned in Sect. 4. The
paper ends with the conclusion in Sect. 5.

2 Proposed Solution

In this section, we have described an updated organization of registry and com-
munity that in turn leads to an efficient service discovery. First, the structure is
proposed for storing the services in a registry. Then an aggregation of registries into
communities is done based on the available functional and nonfunctional infor-
mation of services. Storing the service information in such a manner prevents
traditional linear exhaustive search of services and returns the required services to a
user quicker. The overall framework is depicted in Fig. 1 and the proposed solution
is discussed in detail in the following subsections.

2.1 Registry Organization

In this work, we propose an alternative structure to store web services within
registries. In the proposed structure, the web services are placed based on functional
and NFPs. Here the registry is conceptualized as a multidimensional table where
NFPs are considered as a dimension of the proposed table. For each nfp, the

Internet C1

R1

R2

R3
R5

R4

C3

C2

Service providers

1. Query 2. Ask

3.Results

Publish

4.Request

5. Bind

User

Fig. 1 Solution framework

A New Service Discovery Approach for Community-Based Web 141

services are stored as depicted in Fig. 2. Here each column indicates all possible
value or range of values for a given nfp (for which the dimension is created),
whereas a row implies a specific functionality. The intersection of a specific row
and column indicates a service or a set of services that satisfy the typical combi-
nation of (nfp, fp) pair of values.

Let us consider a registry where the total numbers of nonfunctional and func-
tional parameters are N and p, respectively and each nfp has a set of K values. Thus,
the proposed registry organization should have N dimensions and each dimension
will be conceptualized as table of (k × p) elements.

Thus as per the given proposal a registry is represented as a tuple of the form
{F, nF} where F is broader Functionality (such as “Hotel,” “Banking”) and nF is set
of all nonfunctional parameters. Here, nF = {nfi} and nfi is the ith nonfunctional
parameters of a particular service.

Calculation of membership degree
Each registry can be a part of a single community or more than one community.

To determine which registry would be a part of which community, a membership
degree (md) of each registry is calculated and is compared to a predetermined
threshold value (th) [1]. The threshold value of community is fixed initially;
gradually it can be increased or decreased. This md value helps in determining the
belongingness of a given registry in a community. It determines the addition or
deletion criteria of any registry from a community. The md value is calculated for
each of the broader functionalities (e.g., as mentioned through set F in registry
definition, for example, “Hotel”) and importance is given to the NFPs also. Here md
has two parts;

md ¼ ðmdf þmdnfÞ=2;

where, mdf is the membership degree with respect to only functionality and mdnf is
calculated considering the nfp’s in the registry. mdf is the same as calculated in [1]
i.e., the ratio of occurrence of that functionality with respect to the total number of
services in the registry.

nfp1 Values

functionalities

v11 ... v1k1

fn1 Serc, Serp,... ... ------

fn2 -------- …
fn3 Serm,... ... ------

........
Fnp Serj Seru,...

Fig. 2 A general view of proposed structure (with only one dimension)

142 A. Bhattacharya et al.

mdf ¼ number of occurrences of functionality ðnÞ
total number of services in the registry ðTÞ

Further in this approach, for a particular broader functionality, which nfp
combination is the most frequent that is also calculated. This information is
reflected within the membership calculation (in mdnf). For each of the registries, the
nfp combinations (such as location and cost.) of a broader functionality are counted
and ranked. The frequency of ith ranked combination is denoted by fri. The total
rank sum is denoted by Rn.

Here,

Rn ¼
Xk
i¼1

iþ
X
j

tiej � rank;

where k is total number of combinations present in that registry, tiej is jth tie and
rank is the position where tie occurred. The weight (wi) for ith nfp combination is
calculated as,

wi ¼ Rn� ði� 1Þ
Rn

:

Thus, mdnf is calculated for a particular broader functionality of a registry as,

mdnf ¼
X
i

ðwi � friÞ=n:

Among all md values, the highest value and corresponding functionality is taken
and checked if the community membership threshold is matched.

2.2 Defining the Community Schema

Communities are classified on the basis of a functionality paired with the occurring
combination of related nonfunctional parameters in a given order. Every commu-
nity is a collection of registries. Among these registries, one registry is chosen to be
the master and the remaining registries become the slave registries. This classifi-
cation is done in order to store the registries in the structure in a sorted manner of
available services such that the searching of service through these registries can take
place in descending order depending on the number of services in each unit in the
community. The master is chosen in such a way that it has the maximum number of
services available that has the functional description as well as most occurring nfp
combination of a community. Rest of the services available for a community are

A New Service Discovery Approach for Community-Based Web 143

present in the remaining slave registries. In a particular community, the registry
with the highest md is the Master registry and the remaining registries are the
slaves.

For a particular community with functionality F; Master Registry set (MR) = {F,
nFM}, ith Slave Registry set (SRi) = {F, nFsi}, where i = 1, 2, 3, 4, …, m. For each
of all m slave registries possible combinations of parameters of nonfunctional
parameter set nFsi are stored in another set called Comi = {all possible combinations
of x|xε nFsi}. fnfp is calculated by counting the frequency of every element in Comi.
The element in Comi for which fnfp is maximum is named as freq_combi for ith
registry. All sets are combined together to form a set of prior nonfunctional com-
binations from slaves. This set is called Sl_nfp and defined as,

Sl nfp ¼ Ki¼1 to mðfreq combiÞ:

The set of nonfunctional parameters for a particular community is finally
computed as,

Co nfp ¼ nFM U Sl nfp

The resultant set is then given by,

fF;Co nfpg:

It gives the appropriate description of the community which is described as the
pairing of functionality and the most occurring combination of nonfunctional
property. Hence, we find the most relevant nonfunctional parameters for a given
functional parameter that represents a given community.

From the master registry the most occurring combination of nonfunctional
parameters are determined. From the other slave registries, a set is constructed
containing the intersection of nfp combinations present in all of them. This set of
nfp combination, generated from the slave registries, is joined (union) with the nfp
combination set of the master and the resultant set determines the classified
description of a particular community.

It becomes difficult to determine the final number of combinations of NFPs to be
specified in the community schema definition. After classification of community,
each community is described as a service container where all the services have same
functionality along with the most occurring combination of nonfunctionalities. The
main community schema is the combination of all communities with the most
relevant combination of nonfunctionalities corresponding to each of the function-
alities. The conceptual schema structure is depicted in Fig. 3. This relevant com-
bination is gathered from each community description i.e., the super set of the
combinations is gathered to form each tuple of the community structure. Now the
set of all valid NFPs in community schema (Sc_nfp) is determined by

144 A. Bhattacharya et al.

Sc nfp ¼
[M
i¼1

Co nfpi:

Total number of columns for NFPs in the community schema is same as the
number of elements in Sc_nfp.

2.3 Organization of a Community

The community structure is redesigned according to the modified registry organiza-
tion. This subsection describes the method of constructing the proposed community.
The most important issue for building a community is to take the decision regarding
aggregation i.e., the selection of registries to be grouped within a community. The
next step is to define a suitable community description including nonfunctional
parameters. This helps in classifying and accessing community information by not
only its similar functionality but also a combination of fp and NFPs.

The proposed community organization is a three-dimensional structure with
community id (based on specific functionality), the list of combination of non-
functional parameters, and the array of registries as dimension. The first dimension
indicates the community id. Community id is derived as a particular higher
abstraction of common functionalities that registries hold. Let us consider that the
registries are populated with various services having functionalities such as
HotelBooking, HotelBrowsing, etc. Then a community may be identified as “hotel”
containing registries that have some significant number of hotel services. The
second dimension is the list of the occurring combination of nonfunctional prop-
erties for the services in that community in a specific order. For the hotel com-
munity, availability, cost, and locations are treated as some of the nonfunctional
parameters those are valid for hotel services. A set of occurring parameters from the
existing NFPs are identified from the registry entries and are included within
community organization. The third dimension is represented by a linear structure
that stores the information of registries specifying the corresponding nonfunctional
parameter combination in a sorted order (based on maximum satisfying requests to
fewer). These newly included information within community organization will be
helpful for getting a quick match for popular (fp, nfp) pairs in context of a domain
referred as a community. The above said description is represented in Fig. 4.

Community
name

Functionality Nfp
combination1

..... Nfp
Combinationt

C1 Hotel R3, R7,

C2 Banking R9 R4, R8

.... ----
CM Healthcare ----- R1

Fig. 3 Community schema

A New Service Discovery Approach for Community-Based Web 145

2.4 Membership Alteration and Threshold Adjustment

A community is associated with a threshold value. The membership degree value of
each functionality in the registry is compared with a threshold value (th) of the
community. If md is more than th then the registry gets qualified to be a part of that
community. One registry may be part of more than one community as long as its
md is greater than the threshold values of those communities. Any change in the md
value also leads to alteration of the membership of a particular registry in a com-
munity. Thus, a regular monitoring is required to keep the communities updated.

Whenever a new service is added to a registry or deleted from it, it leads to a
change in the total number of services in a given registry; the membership degree
(md) which determines the community to which a particular registry belongs to,
also change. As mentioned before, a registry may be a part of more than one
community. Thus, addition or deletion of new service may result in adding the
particular registry to a community, deleting the same from another community, both
or none. Thus, a regular monitoring is required to keep the membership parameter
value (md) updated in order to ensure efficient grouping of registries into respective
communities. As the membership degree (md) of a registry decides the community
to which a particular registry will belong, any changes in the md value may alter the
membership of a particular registry in a community and also affects the ranking of
that particular registry in the community. Addition of services or deletion of the
same or both may result in the change of the membership degree of the registry. The
corresponding algorithm is given as follows.

Membership alteration Algorithm
Any change is the md value of a registry may result in the following:

• addition or deletion of the registry from a community
• change in master–slave relation

To manage the stability through the process of services registry modification and
membership alteration issues identified above, an algorithm is defined here,

...
 Ci

R1 Rx RzNon-functional
combination 1

Non-functional
combination 2

Non-functional
combination p

...

Fig. 4 Proposed structure of
a web service community

146 A. Bhattacharya et al.

Check if (mdnew(Ri)>thci)
thenRi belongs to community Ci

else if (mdnew(Ri)<thci)
thenRi is removed from community Ci

if (Riis slave registry)
then continue

else if (Riis master registry)
then calculate the next highest md in community

declare new master registry.

where mdnew(Ri) is the new membership degree value of register Ri, after addition
or deletion of services in registry Ri. thci is the predefined threshold value of
community Ci; it is a fraction.

Initially the threshold for each community is fixed at 0.5. At the first revision,
each of the community is checked from community schema. If there is more than
one entry in most of the cells in a row; then that community threshold is increased
such that less than half of the cell in a row of community schema contains more
than one value at a time. Similarly, if there are too small number of registries in a
row of community schema; that corresponding community threshold is decreased,
such that at least half of the cells are filled by one or more registry names. This
procedure can be repeated depending on the frequency of updating the registries.

3 Illustration with an Example

In this section, we have illustrated our proposal regarding registry and community
and have tried to show the utility of the upgraded community definition for service
discovery. The registry structure is redefined based on the available service infor-
mation. Let us consider a registry named R1. Conventionally the registry contains
the information about the services in the form of functional description, nonfunc-
tional description, access information, etc. Each row of R1 contains services with
varying functionalities; such as HotelBooking, HotelSearch, CheckAvailability,
CreditcardPayment, AccountOpen, and BalanceEnquirey. There exist multiple
services with respect to single functionality. The nonfunctional parameters of those
services can vary widely. Here, we assume the nonfunctionalities with respect to
hotel-related services (HotelBooking, HotelSearch, and CheckAvailability) are cost,
reliability, and location. Similarly the nonfunctional parameters of bank-related
services (CreditcardPayment, AccountOpen, and BalanceEnquirey) can be relia-
bility, security, and providers. Thus, considering all service functionalities and
corresponding nonfunctionalities under registry R1 two community (broader func-
tionality, with three functionalities each) and five nonfunctional parameters are

A New Service Discovery Approach for Community-Based Web 147

identified. Two functionalities of communities are “hotel” and “banking” and cost,
location, reliability, security, and provider are nonfunctional parameters. Now
according to our proposed approach the registry R1 is reconstructed with dis-
tributing the services according to five nonfunctional parameters in five different
tables (as illustrated in Fig. 2). Each of the table contains six rows with respect to
six functionalities. These five tables as a whole represent a single registry R1. R1 can
be member of two communities at a time; provided the membership degree of two
broader functionalities hotel and banking exceeds the threshold value of the com-
munities “Hotel” and “Banking,” respectively.

Another rearrangement in community organization is proposed. The task is to
include the occurring combinations of nonfunctional parameters in a sorted order
with respect to a specific functionality in community organization. For example, the
hotel-related services may have the combination of cost and reliability as most
occurring. So, in community “hotel” the registry R1 occurs with respect to com-
bination of cost and reliability (such as in Fig. 4). Similarly most occurring non-
functional parameters for “banking” may be the providers. So, R1 occurs in
community “banking” with NFP “provider.” Many registries except R1 may be
placed within community “hotel” according to the occurring nfp combinations
within those registries. Among these, registries say a registry Rmaster has highest md
value and as a result this is considered as the master registry of “hotel.” Now say
this community name is Cp. Cp has a master Rmaster and other slave registries. The
occurring set of nfp combinations are identified for Cp. The most occurring nfp
combination set is constructed by rules as discussed in Sect. 2.2. Cp is defined
within the community schema with a set of nonfunctional combinations and cor-
responding registry names (as in Fig. 3).

When a particular query in the form Q(f, nf) occurs, the functional portion f and
nonfunctional part nf (combination of nonfunctional parameters) is matched with
community schema entries first. From that schema, the corresponding master and
slave registries are found readily. Then the search procedure starts from master
registry and continues as described in Sect. 4. Suppose a query is in the form Q
(“HotelBooking,” cost = “<Rs. 2000,” and location = “Delhi”). Then at first, the
community schema is searched with brokader functionality “hotel” and nfp com-
bination (cost and location). It will find out some registries like R5, R8, etc. It will
then search for the functionality “HotelBooking” within R5 with mentioned cost and
location; if found, then it will return the result. Otherwise it will search in the
subsequent slave registries (R8 and so on).

4 Service Discovery Algorithm and Analysis

Initially, the user gives a query of the form Q(f, nf), where f represents the func-
tionality of the service requested and nf is the set of nonfunctional parameter values
that are given as preferences by the user. Based on the functionality f, the corre-
sponding community is selected and based on nf, a particular group of registries is

148 A. Bhattacharya et al.

selected within that community. In the registries that are selected, the required
services are returned to the user, based on the services that satisfy both the func-
tionality and the combination of nonfunctional parameter required by the user. The
service discovery algorithm runs in two parts; first is overall discovery mechanism
and the other part is discovery within registries. The algorithms are described in
detail as follows

Algorithm for Overall Service Discovery

Input: User Query Q(fn, {nf}), Community Schema Structure, Core Community Struc-
ture CCSt, Registries R1, R2, R3,…,Rn

1. Ck Community matched on CSSt based on fn
2 If {nf} CSSt
3. do
4. array Services searchRegister(Ri, Q(fn,{nf})) from CSSt
refer algorithm for dioscovery within a registry

5. done
6. else
7. do

8. array Services searchRegister(Ri, Q(fn,{nf})) from CCSt of Community Ck
……refer Algorithm 5.2

9. done
10. return array Services

The search of web services in a particular registry does not follow the normal linear
search. The algorithm for service searchwithin a particular registry is given as follows.

Algorithm for Service discovery within a registry

1.functionsearchRegistry(Rk,Q(f,nf))
2.do
3. np Number of non-functional parameters in nf

4. kh Number of values of nfph

5. tn Total number of nfps in the registry
6. for i 1to np
7. do
8. For j 1to h=1tonp(kh)
9. do
10. ind required index in Registry Rk

11. array Services Set of matched services at index ind in Rk

12. done
13. done.
14. Return array Services
15. done.

A New Service Discovery Approach for Community-Based Web 149

The time complexity for the search of services is as follows:

Time Complexity ¼ O(comb nfp � cols)

¼ O tnCnp �
Y

h¼1 to np

ðkhÞ
 !

where, comb_nfp → Total number of combinations when we take np number of
registries out of a total of tn nonfunctional parameters in the registry.

cols → Total number of columns for the given combination in the proposed
structure. Thus, we can comment that due to the proposed structure of registry, the
running time does not increase significantly with the increase in the number of
services in contrast to linear search.

Here, we compare our method with a baseline approach that uses elaborate
search to check all services with required functionality (as mentioned in query) and
then matching nonfunctional parameters for best possible match. We measure the
efficiency of two methods by the search time.

As shown in the Table 1, we see that although the running time obtained using
our method for small number of services (500) is greater than the running time
obtained using linear search, yet we see that with the increase in the number of
services, our running time increases negligibly when compared to the increase in
running time using linear search. We represent the running time of the two ways of
web service discovery in a bar graph as shown in Fig. 5.

Table 1 Comparison between liner and nonlinear discovery algorithm

No. of
services

Running time using proposed method
(ms)

Running time using baseline search
(ms)

500 0.789 0.602

1000 1.305 1.570

2000 1.434 2.710

4000 1.587 4.797

8000 1.598 9.698

16000 1.779 42.600

0

10

20

30

40

50

R
u

n
n

in
g

 t
im

e
(i

n
 m

s)

Total Number of Services

Search Using
Proposed Structure

Linear Search

Fig. 5 Comparison between
the running time of proposed
method and by baseline
mechanism

150 A. Bhattacharya et al.

5 Conclusion

In this proposed work, our overall motivation is to include the nonfunctional
parameters within community schema that in turn offers a better service discovery
approach. Moreover, the inclusion principle of a registry within community is
modified, whereas the functionalities for the available combinations of NFPs are
considered as a whole for inclusion criterion. As a result the master registry of a
community will be able to specify the services those are needed to satisfy user
query in most of the cases. Here the registries are arranged in a sorted order within
community. The community schema includes the information of registries with the
most occurring nonfunctional parameter combinations. This actually reflects the
most common choice of NFPs by providers. If the query demands any of the most
common NFPs; then the name of the registry(s) containing that specification is
readily available from the community schema. In case of a query that demands less
common set of NFPs, the discovery method finds the registry name of corre-
sponding nfp combination from the community structure instead of searching lin-
early within community as baseline method. The claim is being established through
the experimental result also.

References

1. Bouchaala, O., Sellami, M., Gaaloul, W., Tata, S., Jmaiel, M.: Modeling and managing
communities of web service registries. In: WEBIST, pp. 88–102 (2011)

2. Liu, X., Huang, G., Mei, H.: Discovering homogeneous web service community in the
user-centric web environment. IEEE Trans. Serv. Comput. 2(2), 167–181 (2009)

3. Maamar, Z., Benslimane, D., Thiran, P., Ghedira, C., Dustdar, S., Sattanathan, S.: Towards a
context-based multi-type policy approach for Web services composition. Data Knowl. Eng. 62
(2), 327–351 (2007)

4. Maamar, Z., Subramanian, S., Thiran, P., Benslimane, D., Bentahar, J.: An approach to engineer
communities of web services: concepts, architecture, operation, and deployment. Int. J. E-Bus.
Res. (IJEBR) 5(4), 1–21 (2009)

5. Paik, H.Y., Benatallah, B., Toumani, F.: Toward self-organizing service communities. IEEE
Trans. Syst. Man Cybern. Part A Syst. Hum. 35(3), 408–419 (2005)

6. Sivashanmugam, K., Verma, K., Sheth, A.: Discovery of web services in a federated registry
environment. In: Proceedings of the IEEE International Conference on Web Services, pp. 270–
278. IEEE (2004)

7. Vijayakumar, D., Mahmoud, Q.H.: A framework for the service provisioning of
community-contributed web APIs. In: 27th Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 1–7. IEEE (2014)

A New Service Discovery Approach for Community-Based Web 151

Data-Flow Analysis-Based Approach
of Database Watermarking

Sapana Rani, Preeti Kachhap and Raju Halder

Abstract In this paper, we propose a persistent watermarking technique of
information systems supported by relational databases at the back-end. The per-
sistency is achieved by identifying an invariant part of the database which remains
unchanged w.r.t. the operations in the associated applications. To achieve this, we
apply static data-flow analysis technique to the applications. The watermark is then
embedded into the invariant part of the database, leading to a persistent watermark.
We also watermark the associated applications in the information system by using
opaque predicates which are obtained from the variant part of the database.

Keywords Persistent watermarking � Relational databases � Data-flow analysis �
Security

1 Introduction

Database watermarking of relational databases has received much attentions to the
research community over the last decade when various application scenarios, e.g.,
database-as-a-service, data-mining technologies, online B2B interactions, etc.,
demand an effective way to protect database information from various fraudulent
activities, like illegal redistribution, ownership claims, forgery, theft, etc. [15, 26].
Figure 1 depicts a pictorial view of database watermarking techniques, where a
watermark W is embedded into the original database using a private key K (known
only to the owner) and later the verification process is performed on any suspicious

S. Rani (&) � P. Kachhap � R. Halder
Indian Institute of Technology, Patna, India
e-mail: sapana.pcs13@iitp.ac.in

P. Kachhap
e-mail: preeti.cs10@iitp.ac.in

R. Halder
e-mail: halder@iitp.ac.in

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_11

153

database using the same private key K by extracting and comparing the embedded
watermark (if present) with the original watermark information.

1.1 Related Works

Existing watermarking techniques are categorized into two: distortion-based and
distortion-free. Distortion-based techniques [1, 10, 11, 25, 27, 28] introduce dis-
tortion to the underlying database data, and hence, usability is a prime concern
while watermarking. Distortion should always be introduced in such a way that it is
tolerable and does not destroy the usability of the data at all. Watermarking in [1] is
performed by flipping bits in numerical values at some predetermined positions
based on the secret parameters. Image as watermark is embedded at bit-level in
[28]. Approaches in [10, 27] are based on database content: The characteristics of
database data is extracted and embedded as watermark into itself. Authors in [11]
proposed a reversible-watermarking technique which allows to recover the original
data from the distorted watermarked data. Khanduja et al. [19] proposed a secure
embedding of blind and multi-bit watermarks using Bacterial Foraging Algorithm.
Later, they used voice as biometric identifier for watermarking [18]. Unlike
numerical values, categorical data type and nonnumeric multi-word attributes are
also considered as cover for watermarking in [2, 25]. Distortion-free watermarking
techniques [5, 6, 13, 20, 21], on the other hand, do not introduce any distortion.
Unlike distortion-based techniques, watermark is generated from the database rather
than embedding. In [4, 21], hash value of the database is extracted as watermark
information. Approaches in [5, 6, 20] are based on the conversion of database
relation into a binary form to be used as watermark. In [17], watermark is generated
based on digit frequency, length of data values, etc. in the database, whereas [7]
generates the watermark based on the grouping of data into square matrix and the
computation of determinant and diagonals’ minor for each group. Although the
approach [7] is not economically viable, but suitable to detect multifaceted attacks
and is resilient against tuples insertion-deletion attack and value modification
attack.

1.2 Motivations

This is to be observed that most of the distortion-based techniques in the literature
use a part of the database content as cover [10, 27, 28], and therefore, a number of
update or delete operations may distort the watermark or may make the watermark
undetectable. Also re-watermarking the database is very expensive process. Authors
in [12, 13] first address a key issue, called persistency, in the context of database
watermarking where database tuples are being updated or deleted frequently by the
associated legitimate applications. Their approaches aim at preserving persistency

154 S. Rani et al.

of the embedded watermark under usual database operations: watermark is
embedded in an invariant part of the database (w.r.t. database operations), while the
same is generated from the abstract variant part representing properties instead of
actual values. However, they did not specify any approach to identify the
variant/invariant part while watermarking a complete information system consisting
of a set of applications interacting with a database at the back-end.

1.3 Contributions

In this paper, we propose a data-flow analysis-based approach which serves as a
generic framework for persistent database watermarking. Unlike existing approa-
ches, we consider watermarking of a complete information system which includes
both the back-end database and the associated applications legitimately accessing or
manipulating the data in the database. In particular, our proposal is unfolded into
the following phases:

• Formulation of data-flow equations for the applications embedding query
languages.

• Analysis of the applications based on the data-flow equations which effectively
identifies an invariant part of the underlying database instances.

• Watermarking of the invariant part by distortion-based technique.
• Generation of Opaque Predicates from the variant part respecting the integrity

constraints of the database systems.
• Embedding opaque predicates as watermarks into the associated applications.

The structure of the paper is as follows: Sect. 2 provides a motivating example.
Section 3 recalls some basic notions about persistent watermarking, data-flow

Watermark
Embedding

Watermark
Verification

Original
Database

Key (K)

Watermark information (W)

Watermarked
Database

Key (K)

Watermark information (W)

Suspicious
Database

Claim as true
or false

Attacks

Innocent Database

Watermarked Database

Fig. 1 Basic watermarking technique

Data-Flow Analysis-Based Approach of Database Watermarking 155

analysis, etc. The proposed technique is discussed in Sect. 4. In Sects. 5 and 6, we
provide, respectively a brief discussion on the complexity and robustness of our
proposal. Experimental results are presented in Sect. 7. Finally, we draw our
conclusions in Sect. 8.

2 Running Example

Consider, three online trading companies, say x, y, z, who are maintaining their own
databases and the associated applications. Figure 1 depicts one such database which
stores the details of the customers, various products, and the purchase history.
Suppose, three companies have decided to collaborate, aiming at making the online
purchasing system more attractive to the customers in terms of product availability.

However, according to the policy, each company can perform, in addition, its
own business independently. A common interface after collaboration is developed
and is allowed to access any of the three databases. This makes the database
information vulnerable to various kinds of attacks, e.g., theft, illegal redistribution,
ownership claiming, etc. Therefore, it is mandatory to watermark individual data-
base in order to prevent above mentioned attacks.

Consider a code-fragment1 P depicted in Fig. 2 which accesses and manipulates
database of Table 1. The code either inserts order details (statement 7–11) or offers
gifts to the premium customers (statement 13–16). This is to be noted that the
database part corresponding to the attributes “TotalAmt” and “Offer” can possibly
be updated by the application—hence it is a variant part. The rest of the database
acts as invariant part. This is immediate that any watermark embedded into this
variant part may get destroyed or undetectable due to the legitimate update oper-
ations on the values.

In the subsequent sections, we propose an efficient way to identify invariant and
variant part of the underlying databases w.r.t. the associated applications in the
system. This will enhance the existing watermarking techniques w.r.t. the persis-
tency issue.

3 Basic Concepts

In this Section, we recall some basic notion about persistent watermarking from
[13].

Persistent watermark Given a database dB and a set of associate applications A,
we denote by 〈dB, A〉 an information system model. Let d0 be the initial state in
which the watermark W is embedded. When applications from A are processed on

1Observe that we do not follow any specific language syntax.

156 S. Rani et al.

Fig. 2 Program P

Table 1 Online trading
database

(a) Table “cust”

CustId CustName Address Age TotalAmt

1001CI01 Rachel London 22 2000

1001CI02 Albert New York 25 7000

1001CI03 John Japan 27 4500

(b) Table “Store”

ItemNo ItemName NoAvail UnitPrice

TN01 Notebook 23 200

TN02 Calculator 25 1000

(c) Table “Order”

OrderId CustomerId ItemNum Count Date Offer

111OI01 1001CI02 TN02 2 2-12-2012 NIL

111OI02 1001CI01 TN02 1 4-1-2013 NIL

Data-Flow Analysis-Based Approach of Database Watermarking 157

d0, the state changes and goes through a number of valid states d1, d2…, dn−1. The
watermark W is persistent if we can extract and verify it blindly from any of the
following n − 1 states successfully.

Definition 1 (Persistent Watermark)
Let 〈dB, A〉 be an information system model where A represents the set of

associated applications interacting with the database dB. Suppose the initial state of
dB is d0. The processing of applications from A over d0 yields to a set of valid states
d1, …, dn−1. A watermark W embedded in state d0 of dB is called persistent if

8i 2 ½1::ðn� 1Þ�; verifyðd0;WÞ ¼ verifyðdi;WÞ

where verify(d, W) is a boolean function such that the probability of “verify(d,
W) = true” is negligible when W is not the watermark embedded in d.

Variant versus Invariant Database Part Consider an information system 〈dB,
A1〉 where A is the set of applications interacting with database dB. For any state di,
i ∊ [0…(n − 1)], we can partition the data cells in di into two parts: Invariant and
Variant. Invariant part contains those data cells that are not updated or deleted by
the applications in A, whereas data cells in variant part of di may change under the
processing of applications in A.

Let CELLdi be the set of cells in the state di. The set of invariant cells of di w.r.t.
A is denoted by InvAdi �CELLdi . For each tuple t ∊ di, the invariant part of t is

InvtA � InvAdi . Thus, Inv
A
di ¼

S
tj2di Invt

A. The variant part w.r.t. A, on the other hand,

is defined as VarAdi ¼ CELLdi � InvAdi .
Data-flow Analysis Data-flow analysis is a technique for gathering information

about the dynamic behavior of programs by only examining the static code [24].
A program’s control-flow graph (CFG) is used to define data-flow equations for
each of the nodes in the graph. Data-flow analysis can be performed either in a
forward direction or in a backward direction, depending on the equations defined.
The least fix-point solution of the equations provides the required information about
the program. The information gathered is often used by compilers when optimizing
a program. A canonical example of a data-flow analysis is reaching definitions.

4 Proposed Technique

The intuition of our proposal is to make the embedded watermark persistent w.r.t.
all possible operations in the information system. As database states change fre-
quently under various legitimate operations in the associated applications, the
content dependent watermarks embedded into the database are highly susceptible to
benign updates. In particular, update and delete operations may remove or distort
any existing watermark of the database [10, 27, 28].

In order to make the watermark persistent, our proposal aims at identifying some
invariant parts of the database states which remain unchanged w.r.t. the

158 S. Rani et al.

applications. To this aim, we apply static data-flow analysis technique to the
associated applications which identifies various parts of the database, called variant
parts, targeted by update, or delete operations in the applications. The complement
of this variant part in the database acts as invariant part and is used for persistent
watermarking. For instance, any database part retrieved by SQL select statement
remains unchanged and is, of course, suitable for persistent watermarking. We also
watermark the associated applications in the information system by using opaque
predicates obtained from the variant part.

Summarizing, the proposed technique consists of the following phases:

• Identifying variant and invariant parts of the database, by performing data-flow
analysis to the associated applications.

• Watermarking of invariant database parts.
• Watermarking of associated applications by using opaque predicates obtained

from the variant part.

4.1 Data-Flow Analysis

In this phase, we analyze the associated applications based on the data-flow
equations in order to collect information about the part of the database information
updated or deleted at each point of the applications.

The data-flow equations for various commands in the applications embedding
query languages are defined in Fig. 3. The abstract syntax of update and delete

statements are denoted by h~vd ¼upd~e; /i and hdelð~vdÞ; /i respectively, where~vd ¼
ha1; a2; . . .; ari denotes a sequence of database attributes, ~e ¼ he1; e2; . . .; eri
denotes a sequence of arithmetic expressions, and ϕ denotes the WHERE-part of the
statements following first-order formula [14]. We denote by notations updð~vdÞj/
and delð~vdÞj/ the part of the database updated and deleted by h~vd ¼upd~e; /i and
hdelð~vdÞ; /i respectively. Observe that any database part is identified by a subset of
attributes~vd values corresponding to a subset of tuples satisfied by ϕ. The notation
(x, n) represents that x is defined at program point n, whereas ðx; ?Þ represents that
x is defined by any program point. In case of conditional node with boolean
expression b, we denote by notation JOINðnÞjb the information restricted by b.

The data-flow analysis is performed by using data-flow equations for each node
of the control-flow graph and solves them by repeatedly calculating the output from
the input locally at each node until the whole system stabilizes, i.e., it reaches a fix
point. The least fix-point solution of the equations provides the information about
the variant part of the database possibly updated or deleted by the program. Observe
that during solving the data-flow equations, the result in any iteration may contain

Data-Flow Analysis-Based Approach of Database Watermarking 159

multiple definitions of the same attributes corresponding to different conditions (for
example, say~vd j/1

and~vd j/2
).2 In such case, we use merge function defined below:

mergeððaj/1
; n1Þ; ðaj/2

; n2ÞÞ ¼ ðaj/1_/2
; fn1; n2gÞ

This yields a modified data-flow equations for UPDATE and DELETE as
follows:

Lattice Structure Defining Data-flow. Let Lab, Var, ψ be the set of program
points, the set of program variables and the set of well-formed formulas (in
first-order logic), respectively. Let R ¼ Var � w� }ðLabÞ. The Lattice is defined
as (℘(R), �,∅, R, [, \), where∅ is the bottom element and R is the top element of
the lattice. The lowest upper bound [is defined as:

Fig. 3 Data-flow equations
of applications embedding
query languages

2By notation~vd j/ we denote the part of the database corresponding to the attributes~vd and tuples
satisfying the condition /.

160 S. Rani et al.

fðxi;/i; fli;mgÞg[fðxj;/j; flj;ngÞg ¼ fðxi;/i _ /j; fli;mg[flj;ngÞg
fðxi;/i; fli;mgÞðxj;/j; flj;ngÞg

(

and the greatest lower bound \ is defined as:

fðxi;/i; fli;mgÞg\fðxj;/j; flj;ngÞg
fðxi;/i ^ /j; fli;mg\flj;ngÞg if xi ¼ xj

; otherwise

(

Example 1 Let us illustrate the data-flow analysis on the running example P of
Sect. 2. The control-flow graph of P and the data-flow equations for each node are
depicted in Figs. 4 and 53 respectively. If we solve the equations assuming the
initial value as empty set, we get the least fix-point solution depicted in Fig. 6. The
solution clearly indicates that the data corresponding to the attributes “TotalAmt”
and “Offer” may possibly be defined at program points 11 and 16. Therefore, this
part act as variant part of the database, while the remaining acts as an invariant part.

0

13

15

16

14

17

1412

12

6

11

8

10

9

8

7

6

5

4 3 2 1

16

15

14

17

1312

11

10

9

8

7

6

5 4 3 2 1

T

T
T

TF

F

F F

0

Fig. 4 Control-flow graph of P

3For the sake of simplicity, we omit set-curly-braces incase of singleton set.

Data-Flow Analysis-Based Approach of Database Watermarking 161

4.2 Watermarking of Invariant Parts

In this phase, we may use any of the existing watermarking techniques [15] to
watermark the invariant part of the database obtained in the previous phase. As
invariant parts are not prone to modification, of course the embedded watermark
will behave as persistent one.

However, the choice of existing watermarking technique is determined by (i) the
use of data in a particular application context, (ii) the size of invariant part which is
used as cover, (iii) the type of the cover, etc.

4.3 Watermarking of Applications Using Opaque Predicates

An opaque predicate is a predicate whose truth value is known a priori [8]. Moden
et al. [22] first used opaque predicates in softwares watermarking by inserting
dummy methods guarded by opaque predicates. The key challenge to design
opaque predicates is that they should be resilient to various forms of attack-analysis.
A variety of techniques such as using number theoretic results, pointer aliases, and
concurrency have been suggested for the construction of opaque predicates [8]. In
addition, Arboit also suggested a technique for constructing a family of opaque
predicates through the use of quadratic residues [3]. Arboit’s proposal is to encode

Fig. 5 Data-flow equations
of control-flow graph nodes
of P

162 S. Rani et al.

the watermark information in the form of opaque predicates and to embed it into the
software without affecting the control-flow structures.

The integrity constraints defined on a database ensure that the attributes under
the constraints will have right and proper values in the database. Moreover, data-
base designers also have opportunity to define their own assertions. These con-
straints which in fact define the properties of attribute-values, can be represented in
terms of predicate formulas of first-order logic.

In this phase, we identify integrity constraints or we define assertions as a way to
represent the properties of values in the variant part of the database obtained in the

Fig. 6 Least fix-point solution of equations in Fig. 5

Data-Flow Analysis-Based Approach of Database Watermarking 163

phase before. Observe that, although values in the variant part are prone to be
updated or deleted, their properties represented by the constraints (integrity con-
straints or assertions) remain unchanged. Importantly, these constraints act as
opaque predicate as their truth value w.r.t. the values in variant part is always true.
We follow existing software watermarking techniques [16, 23] to watermark the
applications in the information system by using these opaque predicates. As the
applications contain SQL statements, we may use the conditional-part (WHERE
clause) of SQL statements as cover.

Consider the running example. Consider an integrity constraint defined on the
attribute “Age” which says that the age must belong to the range 15–70. This is
expressed as:

15�Age� 70

Since the formula is always true, it acts as an opaque predicate. Following
Arboit’s proposal [3], we can watermark the code by embedding this opaque
predicate in the statement 13 as shown below:

$rs2 ¼ SELECT CustId FROM Cust WHERE TotalAmt[5000 AND 15�Age� 70;

5 Complexity Analysis

Let n be the program size. Let p be the number of variables (which include database
attributes and application variables) in the program. The number of data-flow
equations associated with control-flow nodes of the program is n. Since each
data-flow equation depends on the results of the predecessor nodes, the worst-case
time complexity of each data-flow equation is O(n). At each iteration the analysis
provides us the information about the data defined up to each program point.
Therefore, the height of the corresponding finite lattice is O(p). Thus, the overall
worst-case time complexity of data-flow analysis is O(n × n × p) = O(n2p).

6 Security Analysis

The proposed approach focuses on information systems scenario where databases
are associated with a predefined set of applications. Our basic assumption is that
only the database statements in the associated applications are authorized to per-
form computations on the database. Since attackers are not allowed to issue any
other database operations, this mitigates the possibility of random value modifi-
cation attacks on watermark in invariant part. This is to note that attacker can

164 S. Rani et al.

perform attacks in the variant part (see in Sect. 7). The integrity constraints, which
are treated as opaque predicates, also do not change over time. Therefore, water-
mark detection in our approach is deterministic in practice. However, attackers may
perform static analysis to detect opaque predicates [9] in order to remove water-
marks from the associated applications codes.

7 Experimental Results

We have performed experiment on the Forest Cover Type data set.4 The data set has
581012 tuples and 61 attributes. An extra attribute id is added in our experiment
that serves as primary key. The experiment is performed on server equipped with
Intel Xeon processor, 64 GB RAM, 3.07 GHz clock speed and Linux operating
system. The algorithms are implemented in java version 1.7 and MYSQL version
5.1.73.

In Table 2, we describe the notations used in the tables showing experimental
results. Table 3 depicts results of watermark detection after random update attacks
take place in AHK algorithm [1]. Observe that detection may fail when more tuples
are modified (updated) by attackers.

Experimental results obtained in our proposed scheme are depicted in Table 4.
We have taken results by changing the size of invariant part as 25, 50, 75 and 90 %
that include 145253, 290506, 435759 and 522910 tuples, respectively. Observed
that we follow AHK algorithm to embed and detect watermark in invariant
part. The experimental results depict that attackers may try to create a new
watermark in variant part by performing random modification attacks. The results
imply that probability of false-watermark detection in variant part increases if the
size of variant part decreases or the value of α (hence τ) decreases. For lower value

Table 2 Descriptions of the notations

Count No. of tuples used for particular experiment

ν No. of attributes used for marking and detection in the relation

γ Fraction of tuples used in the experiment

ξ No. of least significant bit available for marking in an attribute

TC Total count that is marked during embedding

α Significance level of the test for detecting watermark

τ Threshold parameter for detecting watermark

4Available in the University of California-Irvine KDD Archive kdd.ics.uci.
edu/databases/covertype/covertype.html.

Data-Flow Analysis-Based Approach of Database Watermarking 165

T
ab

le
3

D
et
ec
tio

n
re
su
lts

af
te
r
ra
nd

om
up

da
te

at
ta
ck
s
in

A
H
K

al
go

ri
th
m

[1
]

C
ou

nt
ν

γ
ξ

T
C

E
m
be
d

tim
e
(m

se
c)

ξ-
up

da
te
d

%
tu
pl
es

up
da
te
d

α
M
at
ch

co
un

t
τ

D
et
ec
tt
im

e
(m

se
c)

D
et
ec
t?

58
10

12
10

10
15

58
16

6
12

05
81

37
10

50
0.
9

48
43

2
52

34
9

11
87

46
26

×

0.
8

46
53

2
11

63
24

80
✓

70
0.
9

44
63

2
52

34
9

11
76

16
42

×

0.
75

43
62

4
11

49
40

00
✓

12
58

16
6

11
88

61
11

10
50

0.
9

53
28

4
52

34
9

11
85

73
04

✓

70
0.
9

51
37

6
52

34
9

11
21

90
01

×

0.
75

43
62

4
11

76
43

61
✓

8
50

0.
9

51
49

9
52

34
9

11
52

36
94

×

0.
8

46
53

2
11

36
10

32
✓

70
0.
9

49
77

2
52

34
9

11
24

01
22

×

0.
75

43
62

4
12

08
59

57
✓

58
10

12
10

20
15

28
94

2
12

04
04

04
8

50
0.
9

27
01

3
26

04
7

11
99

09
59

×

0.
8

23
15

3
12

05
88

16
✓

0.
7

20
25

9
12

32
11

03
✓

70
0.
9

26
43

3
26

04
7

12
39

45
87

×

0.
75

21
70

6
11

99
77

53
✓

12
28

94
2

11
35

03
39

10
50

0.
9

28
94

2
26

04
7

12
92

60
76

✓

70
0.
9

28
94

2
26

04
7

12
19

85
21

×

8
50

0.
9

24
17

6
26

04
7

12
30

58
39

×

0.
8

23
15

3
11

78
98

65
✓

70
0.
9

22
23

0
26

04
7

11
66

95
65

×

0.
75

21
70

6
11

60
54

15
✓

(c
on

tin
ue
d)

166 S. Rani et al.

T
ab

le
3

(c
on

tin
ue
d)

C
ou

nt
ν

γ
ξ

T
C

E
m
be
d

tim
e
(m

se
c)

ξ-
up

da
te
d

%
tu
pl
es

up
da
te
d

α
M
at
ch

co
un

t
τ

D
et
ec
tt
im

e
(m

se
c)

D
et
ec
t?

58
10

12
10

50
15

11
85

1
12

35
89

71
10

50
0.
9

98
67

10
66

5
11

51
98

75
×

0.
8

94
80

11
35

85
07

✓

70
0.
9

90
66

10
66

5
12

00
68

82
×

0.
75

88
88

11
79

41
82

✓

12
11

85
1

11
12

28
83

10
50

0.
9

10
86

2
10

66
5

11
64

15
33

✓

70
0.
9

10
45

5
10

66
5

11
95

18
27

×

0.
75

88
88

11
68

92
75

✓

8
50

0.
9

10
48

5
10

66
5

11
95

18
27

×

0.
8

94
80

11
98

37
00

✓

70
0.
9

10
17

0
10

66
5

12
29

58
57

×

Data-Flow Analysis-Based Approach of Database Watermarking 167

T
ab

le
4

D
et
ec
tio

n
af
te
r
ra
nd

om
up

da
te

at
ta
ck
s
on

va
ri
an
t
in

pr
op

os
ed

sc
he
m
e

In
va
ri
an
t
pa
rt

V
ar
ia
nt

pa
rt

C
ou

nt
ν

ξ
γ

T
C

E
m
be
d
tim

e
(m

se
c)

C
ou

nt
ξ-
up

da
te
d

%
tu
pl
es

up
da
te
d

α
M
at
ch

co
un

t
τ

D
et
ec
t
tim

e
(m

se
c)

D
et
ec
t?

14
52

53
10

12
5

29
02

0
78

15
81

43
57

59
10

50
0.
75

43
66

4
65

43
6

10
27

61
83

×

10
14

56
4

78
12

81
21

72
9

32
70

1
99

74
97

1
×

20
72

72
78

12
78

10
73

6
16

25
2

98
42

31
0

×

50
29

44
78

05
17

44
01

66
80

98
76

86
1

×

29
05

06
10

15
5

58
01

7
29

23
70

9
29

05
06

8
50

0.
75

29
24

7
43

68
8

72
26

45
6

×

0.
5

29
24

7
29

12
5

72
07

29
0

✓

90
0.
5

29
15

0
29

12
5

72
73

41
0

✓

10
29

04
6

31
28

45
5

50
0.
75

14
56

7
21

84
0

71
53

05
0

×

0.
5

14
56

7
14

56
0

70
37

20
0

✓

90
0.
5

14
51

2
14

56
0

71
03

89
0

×

20
14

43
6

31
81

58
7

50
0.
75

72
41

10
87

9
73

13
34

2
×

0.
5

72
41

72
53

71
00

85
8

×

90
0.
5

72
22

72
53

73
29

08
2

×

50
58

89
29

75
90

1
25

0.
9

29
43

53
65

72
25

90
8

×

50
0.
5

29
44

29
81

71
00

43
7

×

90
0.
5

29
22

29
81

73
53

55
4

×

43
57

59
10

15
5

87
20

2
66

53
58

7
14

52
53

8
50

0.
5

14
57

2
14

53
3

39
93

87
0

✓

90
14

55
3

40
69

21
7

✓

10
43

66
2

65
56

01
7

50
0.
5

72
69

72
52

40
17

68
0

✓

90
72

49
39

00
05

7
×

20
21

70
1

66
19

24
7

50
0.
5

36
29

36
20

41
15

24
0

✓

90
36

25
39

38
43

7
✓

50
88

66
67

10
78

5
50

0.
5

14
76

14
92

38
78

82
0

×

90
14

71
39

57
75

8
×

(c
on

tin
ue
d)

168 S. Rani et al.

T
ab

le
4

(c
on

tin
ue
d)

In
va
ri
an
t
pa
rt

V
ar
ia
nt

pa
rt

C
ou

nt
ν

ξ
γ

T
C

E
m
be
d
tim

e
(m

se
c)

C
ou

nt
ξ-
up

da
te
d

%
tu
pl
es

up
da
te
d

α
M
at
ch

co
un

t
τ

D
et
ec
t
tim

e
(m

se
c)

D
et
ec
t?

52
29

10
10

15
5

10
46

41
96

91
59

6
58

10
2

8
50

0.
5

59
01

58
13

16
12

82
0

✓

90
58

93
16

40
13

5
✓

10
52

38
9

98
62

12
9

50
0.
5

29
21

28
88

17
13

18
3

✓

90
29

26
17

49
59

4
✓

20
26

07
9

96
89

95
4

50
0.
5

14
53

14
31

17
00

68
4

✓

90
14

51
17

24
65

4
✓

50
10

63
0

95
11

04
0

50
0.
5

61
0

61
0

17
11

35
2

×

90
61

1
16

86
17

6
✓

Data-Flow Analysis-Based Approach of Database Watermarking 169

of α, attacker may successfully prove the existence of such false-watermark.
Parameters used by the attacker for detecting false-watermark are similar as those
used for marking by the owner. This situation may arise during proving the own-
ership in presence of all concerned people.

8 Conclusions

In this paper, we proposed a persistent watermarking of information systems
comprising of a set of applications supported by the database at the back-end. We
provided a unified framework by combining software watermarking and database
watermarking to watermark the complete system at a time. The proposal identifies
both variant and invariant part of the database by applying data-flow analysis to the
applications, aiming at making the embedded watermarks persistent. The proposed
technique serves as generalized framework which may enhance any of the existing
techniques in the literature in terms of persistency. We are now in process of
building a prototype tool based on the proposal.

References

1. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework, algorithms and
analysis. VLDB J. 12(2), 157–169 (2003)

2. Al-Haj, A., Odeh, A.: Robust and blind watermarking of relational database systems.
J. Comput. Sci. 4, 1024–1029 (2008)

3. Arboit, G.: A method for watermarking java programs via opaque predicates. In: Proceedings
of the 5th International Conference on Electronic Commerce Research (ICECR-5). pp. 184–
196. ACM Press, San Diego (2002)

4. Bhattacharya, S., Cortesi, A.: A distortion free watermark framework for relational databases.
In: Proceedings of the 4th International Conference on Software and Data Technologies, Sofia
(2009)

5. Bhattacharya, S., Cortesi, A.: A generic distortion free watermarking technique for relational
databases. In: Proceedings of the Fifth International Conference on Information Systems
Security (ICISS 2009). LNCS Springer Verlag, Kolkata (2009)

6. Bhattacharya, S., Cortesi, A.: Distortion-free authentication watermarking. In: Cordeiro, J.,
Virvou, M., Shishkov, B. (eds.) Software and Data Technologies, pp. 205–219.
Springer CCIS, Volume 170 (2013)

7. Camara, L., Li, J., Li, R., Xie, W.: Distortion-free watermarking approach for relational
database integrity checking. Mathematical Problems in Engineering (2014)

8. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and stealthy opaque
constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’98). pp. 184–196. ACM Press, San Diego (1998)

9. Dalla Preda, M., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates detection
by abstract interpretation. In: Johnson, M., Vene, V. (eds.) Algebraic Methodology and
Software Technology, pp. 8–95. Springer LNCS 4019 (2006)

10. Guo, H., Li, Y., Liua, A., Jajodia, S.: A fragile watermarking scheme for detecting malicious
modifications of database relations. Inf. Sci. 176, 1350–1378 (2006)

170 S. Rani et al.

11. Gupta, G., Pieprzyk, J.: Database relation watermarking resilient against secondary
watermarking attacks. In: Proceedings of the Fifth International Conference on Information
Systems Security (ICISS 2009). pp. 222–236. LNCS Springer Verlag, Kolkata (2009)

12. Halder, R., Cortesi, A.: Persistent watermarking of relational databases. In: Proceedings of the
IEEE International Conference on Advances in Communication, Network, and Computing
(CNC’10). IEEE CS, India (2010)

13. Halder, R., Cortesi, A.: A persistent public watermarking of relational databases. In:
Proceedings of the 6th International Conference on Information Systems Security (ICISS’10).
pp. 216–230. Springer LNCS 6503, India (2010)

14. Halder, R., Cortesi, A.: Abstract interpretation of database query languages. Comput. Lang.
Syst. Struct. 38, 123–157 (2012)

15. Halder, R., Pal, S., Cortesi, A.: Watermarking techniques for relational databases: survey,
classification and comparison. J. Univ. Comput. Sci. 16(21), 3164–3190 (2010)

16. Hamilton, J., Danicic, S.: A survey of static software watermarking. In: 2011 World Congress
on Internet Security (WorldCIS’11). pp. 100–107. IEEE (2011)

17. Khan, A., Husain, S.A.: A fragile zero watermarking scheme to detect and characterize
malicious modifications in database relations. Sci. World J. (2013)

18. Khanduja, V., Chakraverty, S., Verma, O.P., Singh, N.: A scheme for robust biometric
watermarking in web databases for ownership proof with identification. In: Active Media
Technology, pp. 212–225. Springer (2014)

19. Khanduja, V., Verma, O.P., Chakraverty, S.: Watermarking relational databases using
bacterial foraging algorithm. Multimed. Tools Appl. pp. 1–27 (2013)

20. Li, Y., Deng, R.H.: Publicly verifiable ownership protection for relational databases. In:
Proceedings of the 2006 ACM Symposium on Information, computer and communications
security (ASIACCS’06). pp. 78–89. ACM, Taipei (2006)

21. Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data using fragile
watermarks. In: Proceedings of the 4th ACM workshop on Digital rights management
(DRM’04). pp. 73–82. ACM Press, Washington DC (2004)

22. Monden, A., Iida, H., Matsumoto, K.i., Inoue, K., Torii, K.: A practical method for
watermarking java programs. In: Proceedings of the 24th Annual International Computer
Software and Applications Conference, (COMPSAC 2000). pp. 191–197. IEEE (2000)

23. Myles, G., Collberg, C.: Software watermarking via opaque predicates: implementation,
analysis, and attacks 6(2), 155–171 (2006)

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer, New York
(1999)

25. Sion, R., Atallah, M., Prabhakar, S.: Rights protection for categorical data. IEEE Trans.
Knowl. Data Eng. 17, 912–926 (2005)

26. Yingjiu, L.: Database watermarking: A systematic view. Springer, Berlin (2007)
27. Zhang, Y., Niu, X., Zhao, D., Li, J., Liu, S.: Relational databases watermark technique based

on content characteristic. In: First International Conference on Innovative Computing,
Information and Control (ICICIC 2006). IEEE CS, Beijing (2006)

28. Zhou, X., Huang, M., Peng, Z.: An additive-attack-proof watermarking mechanism for
databases’ copyrights protection using image. In: SAC’07: Proceedings of the 2007 ACM
Symposium on Applied Computing. pp. 254–258. Seoul, Korea (2007)

Data-Flow Analysis-Based Approach of Database Watermarking 171

A New Framework for Configuration
Management and Compliance Checking
for Component-Based Software
Development

Manali Chakraborty and Nabendu Chaki

Abstract Component-based software development (CBSD) decreases the time and
cost for developing high quality software. However, with CBSD, the maintenance
of the software is more difficult, as the whole system consists of several composite
components. In this paper, a three-layer framework is proposed toward designing an
efficiently configurable component-based system. We also developed an algorithm
to identify the primitive and composite components that are related in terms of
dependency. This helps managing multiple versions of a system. A smart meter
system is considered as a case study. Our algorithm is executed on this
component-based system using the semantic effect annotations of Business Process
Modeling Notation (BPMN) to validate the results of our algorithm. The success
reflects the effectiveness of the proposed algorithm toward identifying the com-
ponents affected by a change in a simple way.

Keywords CBSD � Configuration management � Compliance � Version
management

1 Introduction

Modern software systems become more large and complex, because of their
improved performance, efficiency, and better quality. Also, the production costs and
time for these systems should be minimized. Thus, the maintenance and modifi-
cations of those systems are also becoming more critical [1]. Traditional approaches
for software development cannot deliver software in short deadlines and with lower
costs. A new paradigm called CBSD is used to develop software with existing,

M. Chakraborty (&) � N. Chaki
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
e-mail: manali4mkolkata@gmail.com

N. Chaki
e-mail: nabendu@ieee.org

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_12

173

already built and used components. In CBSD, the software systems can be devel-
oped by selecting off-the-shelf components from some component repository and
then integrating them to build the intended software. The components can be
developed by different developers using different languages and technologies [2].
Instead of building every software from scratch, CBSD reuses the components,
modifies them to satisfy the requirements and then assembles them. This leads to
lower cost, smaller development time and better quality of the software, as the
components are already built and tested.

The differences between traditional software development (TSD) approaches and
CBSDs are listed in Table 1. In CBSD, the management of different components
and their versions is one of the most challenging tasks. To achieve this configu-
ration management is used. Configuration management is the task of managing the
configuration of different components in a system so that the system operates
seamlessly. For a large and complex system, a systematic use of configuration

Table 1 Difference between TSD and CBSD

Property TSD CBSD

Development
style

Each software is developed from
scratch

Already existing components are
assembled to build new software.
Reusing of software components are
the main theme of CBSD

Life cycle In TSDS the different activities are,
requirement analysis, feasibility
study, design, coding, testing,
maintenance etc.

Life cycle in CBSD consists of,
finding components, selecting those
that fit the requirements, adapting
them, and replacing them with
modified versions

Languages Programming languages are used to
implement the system

Primitive components are
implemented using programming
languages, and composite
components are built using
component description languages
and architecture description
languages

System
construction

The system is usually implemented
by a group of source code files
which can be compiled and linked
together to form the final system

System construction is a recursive
process, in which, primitive
components are used to construct
composite components. Both
primitive and composite
components are used to construct
larger composite components

Working
team

There are engineering teams, which
provide all the functionalities during
the life cycle of software and
end-users

There are component producer
teams developing components;
consumer teams developing
software reusing components and
hybrid teams that are both
consumer, producer, and end-users

174 M. Chakraborty and N. Chaki

management is used to maintain the correct operability of the components. The
different functions of configuration management are [3]: version management,
change management, build management, release management, and workspace
management.

Authors of paper [4–6] have discussed the various challenges of configuration
management in CBSD. They also suggested that run time configuration is needed
for CBSD and proposed a model for it. In [7], authors propose a component-based
configuration management model, where the components are the integral logical
constituents of the system. The model analyzes the relationship among the com-
ponents and the configuration management part is dependent on that analysis.
A model based on the component system and layered architecture is proposed in
[8]. Authors claimed that this layered architecture improves reusability and main-
tainability of configuration management in CBSD. Another distributive,
component-based layered model for configuration management in CBSD is pro-
posed in [9]. The layered architecture makes this model easily adaptive, dynamic to
changes and brings down the coupling of the system. In [10], dependency graphs
identify different types of dependencies among components and analyze them. The
graphs are used to facilitate maintenance by identifying differences, i.e., deviations
of a configuration from a functioning reference configuration. Based on the unique
features of CBSD, we summarize new requirements of CM for CBSD as follows:

(1) For component-based software development, the first step is to select a
component from the existing component database. The owners of the database
may update the components periodically. If there are more than one versions
of a component between two baselines, then there will be two aspects for
version management: either store the older versions in the repository, or
replace the older versions by the new version. For the first case, the user can
use older versions of a component if they want to. However, for the next
situation, users are forced to accept the new versions of the components. In
Fig. 1, two versions of component 1 exist between two baselines. If a user
wants to use version 3 of component 1, then, it will allow doing so, if the older
versions of the component are stored in the repository. Otherwise, it has no
choice, but to work with the new version of component 1.

(2) Suppose two composite components cc1 and cc2 are dependent on primitive
components pc1, pc3, pc5 and pc2, pc3, pc4, respectively, as in Fig. 2. Let us
update primitive components pc2, pc3, pc4, and form a new base line for
composite component cc2. Now, composite component cc1 is also dependent
on primitive component pc3. So, for cc1 there exist two scenarios:

(i) If older versions of primitive components are replaced by the new versions of
those components, then cc1 has to adopt itself with the new version of pc3.
And the other primitive components of cc1, such as pc1 and pc5, may also
need some up gradation to comply with the new version of pc3. Thus, the
modification of one component can lead to modification of several compo-
nents, which may or may not be directly linked with that component.

A New Framework for Configuration Management … 175

(ii) If older versions of primitive components are kept in a repository, then for a
given time instant (for a baseline), the two composite components of a system
will have two different versions of the same primitive components. This may
lead to a compliance error.

In order to overcome these problems, we propose a new framework for pro-
viding configuration and compliance management of components of a system. This
model consists of three layers: component management, configuration manage-
ment, and compliance management. There exists some research work on configu-
ration management in CBSD, but neither of them incorporates the idea of
compliance management with that. Compliance is a very important factor in CBSD
because the developer imports the components from outside. This makes them
vulnerable for violating the business terms and policies of an organization. Thus,
we propose a layered model which incorporates configuration management and
compliance checking with CBSD. The component management layer deals with the
selection of components and assembling them. It also modifies and replaces

Fig. 1 Version management
problem in CBSD

Fig. 2 Dependency between
components

176 M. Chakraborty and N. Chaki

components if necessary. The configuration management layer keeps tracks of the
dependencies and relationships between the components. It also analyzes them for
achieving maintainability. The compliance management layer is responsible for
compliance checking of each component, as well as the total system. We also
propose an algorithm to find the effect propagation within a system, when a
primitive component is modified. The algorithm is able to identify sets of primitive
and composite components, which may get affected with the modification of a
certain primitive component. Thus, it helps to configure a system properly.

The smart metering system of smart grid architecture is considered as an
application domain for this proposed framework. First, we identify some basic
functionalities of smart metering system and consider them as composite compo-
nents. To achieve each of these functionalities, several small and atomic processes
are needed to be executed. We consider all those atomic processes as primitive
components. All the composite components, with their respective primitive com-
ponents are stored in a tabular data structure. When a change request is placed for a
primitive component, then our algorithm is used to find how the effects of this
change propagate through the system. As an outcome of the algorithm, we can
identify the sets of primitive and composite components, which may get affected by
the proposed change.

In order to validate the proposed algorithm, Business Process Modeling Notation
(BPMN) has been used. BPMN is an agreement between multiple modeling tools’
vendors, who had their own notations. BPMN uses a single notation that is
understood by all the end-users. It can be used to analyze, simulate, or execute a
particular business model. A business process model describes the ordered
sequence of different tasks within a process and how the process achieves its
objectives [11].

BPMN is an internationally accepted, model-independent tool, which can create
a bridge to reduce the gap between business processes and their implementations by
providing a unified and standardized graphical representation of any business
model. Thus, as a basis of our proposed framework, we use BPMN, to graphically
describe smart metering systems, and analyze the effect of component changes on
the whole system. When a change request is placed, then the aftereffects of the
change for each individual component, as well as the cumulative effect on the
whole system is analyzed using semantic effect annotations [12]. This helps iden-
tifying the affected components through change propagation and how the system
can be reconfigured for a particular change request. The objective is to compare the
results produced by the proposed algorithm vis-à-vis finding from BPMN.

An obvious question may arise in this situation: if we can achieve the goal of our
algorithm using the semantic effect annotations in BPMN, then why a new algorithm
is required at all? Identifying the effects of a change by semantic effect annotation in
BPMN needs a certain amount of knowledge about both BPMN and propositional
logic. Besides developing the BPMN model for a process and maintaining the
semantic effect annotations is a complex task as changing any primitive component
results in changing its immediate effect. This change in immediate effect needs to be
propagated throughout the system so that the cumulative effects evaluated at

A New Framework for Configuration Management … 177

different points within the system remain consistent with this change. Also, using
BPMN requires maintenance of a graphical representation of the system. On the
other hand, our algorithm is inherently simple as it does not require any graphical
representations of the system or semantic effect annotations. A simple tabular data
structure is sufficient for the execution of the algorithm. As a result, it is a less
complex and more preferable solution compared to BPMN.

The rest of the paper is organized as follows: Sect. 2 describes the framework,
Sect. 3 explains the functionalities of smart metering system, and the effect of our
framework with the help of BPMN and Semantic effect annotation process. We
discuss on the future expansion of the work and draw conclusions in Sect. 4.

2 Working Principle of Proposed Framework

In this paper, we proposed a new framework for configuration of components of a
component-based software with run time compliance checking. The proposed
model has three different parts: (1) component management, (2) configuration
management, and (3) compliance management.

2.1 Component Management

The component management part basically deals with the selection of composite
and primitive components and maintains their relationships in the form of a list. The
functions of the component management are:

Select components Modify components Integrate components Replace components

Select Components The component manager first identifies the composite
components of the system. Then for each composite component, primitive com-
ponents are selected from the component repository.

Modify Components It is not always possible to find the exact component, which
meets the requirements of the system. So, then the component manager modifies the
components according to the requirements and adapts them to the system.

Integrate Component After collecting all the primitive components, the com-
ponent manager integrates those primitive components to develop a composite
component. The interconnections and dependencies between the composite com-
ponents are also maintained by the component manager.

Replace Component The component manager also replaces the older versions
of a component by the newer and upgraded versions of that component.

The component management layer maintains a data structure for storing the
composite components and the primitive components used for each composite

178 M. Chakraborty and N. Chaki

component. Let, there be n composite components, C1 to Cn. For every
Ci (1 ≤ i ≤ n), component manager maintains a list of all of its primitive
components.

Structure Component_Relation C
{

Primitive Component P1;
Primitive Component P2;
.
.
Primitive Component Pn;

}

2.2 Configuration Management

The configuration management part deals with the version management of each
primitive components and how it affects the whole system. Since primitive com-
ponents are interrelated, modification in one primitive component leads to the
modification of its dependent components. The functions of configuration man-
agement are:

Monitor Select a
component for
modification

Identify all the
related
components

Modify Report to
component
management

Store

Monitor the configuration manager monitors the whole system to assure that its
working properly and consistently.

Select a component for modification While monitoring the system, the con-
figuration manager also maintains a database for storing the versions of each
component. If a new version of a component arrives in the market, then the con-
figuration manager identifies that component for modification.

Identify all the related components Modifying one primitive component at run
time may affect all the other primitive components related with that component, and
the composite components which are associated with them. So to maintain con-
sistency it is necessary to modify all the other components. Configuration manager
uses an algorithm to identify the related components of an primitive component.

Modify After identifying the components, the configuration manager modifies
the components accordingly.

Report to Component management Then configuration manager reports to the
component manager about these modifications. The component manager then

A New Framework for Configuration Management … 179

checks the newly modified components and sends them to compliance manager to
make sure that they comply with the business rules of the company.

Store after the compliance checking of the modified components, the configu-
ration manager stores the new versions of those components in a database.

Suppose a primitive component Pj has been modified and a new version of Pj,
i.e., Pj.1 is introduced. The purpose of this algorithm is to identify the related
primitive as well as composite components.

Let us assume that a system has eight composite components. Figure 3 describes
the structure for eight composite components. Suppose primitive component P5 has
been modified due to some reasons. Therefore, a new version of P5 is introduced as
P5.1. In order to maintain the concurrency and compatibility, we must check the
other primitive components that are related to P5. In cascade, the composite
components which depends on those primitive components will also be checked.

First, we find P5 from the component table. It has been found in the list of C1.
Then C1 is added in the CArray, and all other primitive components of C1, i.e., P1
and P2 are added in the PArray. Next, P5 is also in the list of C3. So we put C3 in
CArray and P6 in PArray. P5 is not connected with any other composite component.
So we take the second element from the PArray, i.e., P1, and repeat the same
procedure. P1 is not connected with any other composite component, so we move
on to the next primitive component in PArray, P2. P2 is in the list of C4 and C7. So
we put both of them in CArray, and add their primitive components, i.e., P8 and P4
in PArray. The next primitive components in PArray are P6, P8, and P4. Since they are
not in the list of any other composite components, the procedure is terminated.
Figure 4 shows the content of PArray and CArray.

180 M. Chakraborty and N. Chaki

2.3 Compliance Management

The compliance management layer is responsible for checking the compliance of
each individual component and as well as the whole system. It also records new
compliance rules through the development process of the system. The functions of
the compliance management part are:

Check primitive components for
compliance

Record new
compliance rules

Monitor the integrated system for
compliance

Check primitive components for compliance When component manager
imports the primitive components from outside, then the compliance manager
checks every primitive component for compliance. If they do not comply, then
the compliance manager reports to the component management layer, and the
component management layer modifies that component accordingly, so that it can
comply with the system.

Record new rules While integrating the primitive components, it is sometimes
necessary that the components, both primitive and composite, should comply with

Fig. 3 Component relation structure

Fig. 4 Contents of PArray and CArray

A New Framework for Configuration Management … 181

some new rules for successful execution. Thus, another function of compliance
manager is to record new compliance rules at run time and keep the business rule
database up to date with each change in the system.

Monitor the integrated system for compliance Compliance of each primitive
and composite component does not always imply that the whole system is also
compliant with the business rules. Therefore, after checking the primitive and
composite components for compliance, the compliance manager monitors the
whole integrated system for compliance. A baseline is approved only when the
system is compliant with the business policies.

The workflow model of the proposed framework is depicted in Fig. 5.

3 Application of this Model in Smart Grid Architecture

In this paper, we consider the smart meter communication architecture of smart
grids as an application domain of our proposed model. A smart grid is an intelligent
electricity network that integrates the actions of all users connected to it and makes
use of advanced information, control, and communication technologies to save
energy, reduce cost and increase reliability, and transparency [13].

Fig. 5 Workflow diagram of proposed framework

182 M. Chakraborty and N. Chaki

Smart meter is an advanced energy meter that measures the energy consumption
of a consumer and provides added information to the utility company as compared to
a regular energy meter [14]. The smart meter communication architecture typically
consists of four different components: smart meter, smart energy utility network,
DCU (data collection unit), and MDMS (Meter data management System) [15].

The entire scenario is modeled using BPMN. When a change request is placed,
then the after effects of the change for each individual component, as well as the
cumulative effect on the whole system is analyzed using semantic effect annotations
of BPMN. This helps identifying the components affected by the change and how
the system can be reconfigured for a particular change request.

We assume that, there are five basic services provided by a smart meter. We
consider these five services as five composite components and each composite
component further decomposed into several primitive components.

Table 2 provides a detail list of the entire composite and their primitive com-
ponents for a smart metering system. Now we apply the proposed algorithm on this
system and analyze the effect of changing a primate component on the system.

If, primitive component P5 is modified, then the contents of PArray and CArray

will be,

PArray ¼ P6; P7; P8; P1; P9; P15; P16; P2; P3; P4; P10; P11; P12; P13; P14:

CArray ¼ C2;C3;C5;C1;C4:

Thus, if P5 is modified, then we have to check all the primitive and composite
components to check who also need modification. Figure 4 shows the BPMN
diagram of the smart meter system. BPMN provides a graphical diagram of how
different objectives can be achieved in a business process, with enough information,
so that the process can be analyzed, simulated and executed. There are different
elements in BPMN—activities, events, gateways, and connectors. A connector
links activities, events and gateways and shows the control flow relation. An event
can be a start event (start of the process), end event (end of the process), or an
intermediate event, that can either be some messages or a timer or error. An activity
or a task is an atomic activity and stands for work to be performed within a process.
Gateways determine the branching, forking, merging, and joining of paths [11, 16]
(Fig. 6).

Immediate effects can be described as the outcome of execution of an activity.
This model requires the designers to provide the immediate effects of each activity.
Then, the cumulative effect of each component can be calculated by accumulating
the immediate effects [12, 17].

In Fig. 4,

• e1 to e16 are the immediate effect of primitive components P1 to P16,
respectively.

• CEC1 to CEC5 are the cumulative effect of composite components C1 to C5,
respectively. The arrows toward CEC1 to CEC5 mark the points where the
cumulative effects have been calculated.

A New Framework for Configuration Management … 183

Cumulative effect of C1 CEC1ð Þ ¼ ðe1 ^ e2 ^ e3 ^ e4Þ
Cumulative effect of C2 CEC2ð Þ ¼ ðe5 ^ e6 ^ e8Þ _ ðe5 ^ e7 ^ e8Þ
Cumulative effect of C3 CEC3ð Þ ¼ ðe1 ^ e9 ^ e8Þ
Cumulative effect of C4 CEC4ð Þ ¼ ðe10 ^ e12Þ _ ðe10 ^ e11 ^ e13 ^ e14 ^ e4Þ

_ ðe10 ^ e11 ^ e13 ^ e12Þ
Cumulative effect of C5 CEC5ð Þ ¼ ðe1 ^ e15 ^ e16 ^ e8Þ _ ðe1 ^ e15 ^ e8 ^ e16Þ

Table 2 Component structure of smart metering system

Composite components Primitive components

C1: Generate the total electricity consumption of
a user

P1: Decode Receive message from DCU

P2: Collect the total unit of usage

P3: Generate the bill

P4: Send message to DCU

C2: Send SMS, if the consumption unit of a user
exceeds its previous bill

P5: check the current unit of usage, with
previous bill

P6: Generate an alert message for excess
bill amount

P7: Generate a intermediate bill

P8: Send message to the user

C3: Alert user before power cuts P1: Decode Receive message from DCU

P8: Send message to the user

P9: Generate an alert SMS for power cut

C4: Services provided for users, who generate
electricity in their own houses

P10: Check the electricity generation of a
home

P11: Draw current from home electricity
source

P12: Draw current from outside electricity
source

P13: Check if, generated electricity is
sufficient for the home

P14: calculate the amount of surplus
energy and generate a message

P4: Send message to DCU

C5: take necessary actions, if DCU reports a
power shortage

P1: Decode Receive message from DCU

P8: Send message to the user

P15: Generate an alert SMS for power
shortage

P16: cut off electricity to some appliances
after certain time period

184 M. Chakraborty and N. Chaki

Again, if a change request for P5 is made, then from the diagram and the
cumulative effects, we can conclude that,

• Cumulative effect of C2 may get affected, as well as the immediate effect of
other primitive components of C2, i.e., e6, e7, e8, and the immediate effects of
P6, P7, and P8, respectively.

• Now, P8 is further used in C3 and C5. Hence, if the immediate effect of P8
changes, due to P5, then it may also affect the immediate effects of P1, P9, P15,
and P16.

• Again P1 also had contributions in the cumulative effect of C1. Thus, P2, P3, P4
might be affected.

• P4 is also used in C4. So, P10, P11, P12, P13, P14 might also be affected.

Hence, we may conclude that, the BPMN with semantic effect annotation
confirms the result of our algorithm.

Fig. 6 BPMN diagram of a smart meter

A New Framework for Configuration Management … 185

4 Future Work and Conclusions

One of the most important criteria for a CBSD is to comply with the business
policies, rules and regulations of a company. Compliance often refers to the vali-
dation of a system against some legal policies, internal policies, or some basic
design facts [6]. Compliance checking can be of two types: compliance by detection
and compliance by design. In Compliance by detection method, the existing system
is checked thoroughly to detect whether it violates any rules or not. If it does not
comply, then corrective measures are taken to make it compliant. In compliance by
design method, the system is developed, by taking into account the business rules.
Thus, the system is designed in such a way, that it can comply with the rules [18].
In CBSD, the system is not developed from scratch. Thus, the compliance by
design method does not suit CBSD. Hence, in CBSD, compliance by detection
method is used. As an extension of this framework, we would like to work on the
detailed working principle of the compliance layer.

In this paper, a new framework for configuration of components with compli-
ance checking is proposed. This framework considers two main problems of CBSD:
maintenance and compliance, and solves them by incorporating both configuration
management and compliance management with CBSD. In this paper, we consider
two-level hierarchy between components, i.e., all the composite components are
developed using primitive components. However, the level of hierarchy can easily
increased in this model, so that we can consider a scenario where composite
components are again assembled together to develop another composite
component.

In Sect. 2, requirements for configuration management for CBSD is discussed.
Two main problems have been highlighted. One is due to version management, and
another is due to the complex and nested relationship between the primitive and
composite components. The model in this paper is able to overcome these prob-
lems. In this model, the component management layer replaces each component
with its latest version once it is accepted by the compliance layer, but the config-
uration management layer stores all the versions of a component to a database.
Thus, the active system is always executed with current versions of each compo-
nent, but the older versions are also stored in the database.

Also, the component management layer uses a tabular data structure and the
configuration management layer uses an efficient algorithm to search all the related
primitive and composite components for a particular primitive component. This
helps the model to perform efficiently and provides an easily maintainable and
compliant system.

Although it is not a theoretical proof for correctness of the proposed algorithm,
the validation using BPMN indeed shows the effectiveness of the new algorithm.
The proposed methodology builds the foundation for several meaningful extensions
in future. We want to apply this model to the entire smart grid architecture as a
future work.

186 M. Chakraborty and N. Chaki

5 Acknowledgment

This work is a part of the Ph.D. work of Manali Chakraborty, a Senior Research
Fellow of Council of Scientific and Industrial Research (CSIR), Government of
India. We would like to acknowledge CSIR, for providing the support required for
carrying out the research work.

References

1. Crnkovic, I.: Component-based software engineering—new challenges in software
development. J. Comput. Inf. Technol. CIT 11. 3, 151–161 (2003)

2. Pour, G.: Component-based software development approach: new opportunities and
challenges. In: Proceedings Technology of Object-Oriented Languages. TOOLS 26.
pp. 375–383 (1998)

3. Estublier, J.: Software configuration management: a roadmap. In: Proceedings of 22nd
International Conference on Software Engineering, the Future of Software Engineering. ACM
Press, New York (2000)

4. Larsson, M., Crnkovic, I.: Development experiences of a component-based system. In: 7th
IEEE International Conference and Workshop on the Engineering of Computer Based
Systems ECBS (2000)

5. Larsson, M., Crnkovic, I.: Component configuration management. In Proceedings of ECOOP
Conference, Workshop on Component Oriented Programming Nice, France (2000)

6. Lohmann, N.: Compliance by design for artifact-centric business processes. In: 9th
International Conference on Business Process Management, pp. 99–115 (2011)

7. Hong, M., Lu, Z., Fuqing, Y.: A component-based software configuration model and its
supporting system. J. Comput. Sci. Technol. 17(4), 432–441 (2002)

8. Mao., M, Jiang, Y.: A new component-based configuration management 3C model and its
realization. In: ISISE, International Symposium on Information Science and Engineering, vol. 1,
pp. 258–262 (2008)

9. Ruan, L., Yong, Z.: A new configuration management model for software based on distributed
components and layered architecture. Parallel Distrib. Comput. Appl. Technol. 665–669
(2003)

10. Larsson, M.: Applying configuration management techniques to component-based systems.
Licentiate Thesis Dissertation, Department of Information Technology Uppsala University,
vol. 7 (2000)

11. Object Management Group: Business Process Modeling Notation (BPMN) Version 1.0. OMG
Final Adopted Specification. Object Management Group (2006)

12. Hinge, K., Ghose, A., Koliadis, G.: Process SEER: a tool for semantic effect annotation of
business process models. In: Thirteenth IEEE International Enterprise Distributed Object
Computing Conference (EDOC) Los Alamitos, USA, pp. 54–63. IEEE (2009)

13. White Paper by United States Agency for International Development, USAID India: The smart
grid vision for India’s power sector (2010)

14. Kim, M.: A survey on guaranteeing availability in smart grid communications. Adv. Commun.
Technol. (ICACT) 314–317 (2012)

15. Jung, N.J., Yang, K., Park, S.W., Lee, S.Y.: A design of ami protocols for two way
communication in K-AMI. In: 11th International Conference on Control, Automation and
Systems, pp. 1011–1016 (2011)

16. Goel, N., Shyamasundar, R.K.: An executional framework for BPMN using Orc. APSCC,
pp. 29–36. IEEE (2011)

A New Framework for Configuration Management … 187

17. Koliadis, G., Vranesevic, A., Bhuiyan, M., Krishna, A., Ghose, A.: Combining i* and BPMN
for business process model lifecycle management. In: BPM’06 Proceedings of the 2006
international conference on Business Process Management Workshops, pp. 416–427 (2006)

18. Sackmann, S., Kahmer, M., Gilliot, M., Lowis, L.: A classification model for automating
compliance, pp. 79–86. CEC/EEE. IEEE (2008)

188 M. Chakraborty and N. Chaki

CAD-Based Analysis of Power
Distribution Network for SOC Design

Ayan Majumder, Moumita Chakraborty, Krishnendu Guha
and Amlan Chakrabarti

Abstract Incorporation of power distribution network (PDN) in computer-aided
design (CAD) of integrated circuits (ICs) is essential in the recent era. In order to
reduce the overall power requirement, the common practice is to reduce the supply
voltage. The lowering of supply voltage results in stiffening noise margin and hence
increasing the effects of supply voltage fluctuation due to power supply noise. From
recent research works, it is also evident that the fluctuation in supply voltage is
increasing with scaling down of technology node. A proper estimation of overall
power dissipation can only be performed through appropriate and exact parametric
extraction of the circuit along with the PDN. Typically there exist many models of
voltage fluctuation, which can be utilized to analyze the PDN. In this paper, we
propose a new CAD model, which at first estimates a resistance distribution profile
of the PDN based on geometric parameters of the chip and electrical parameter of
the interconnects (sheet resistance), and then it is mapped with the circuit grid to
perform the exact PDN analysis. To the best of our knowledge our proposed model
is the first of its kind in regard to PDN analysis. We have chosen one ISCAS 85
benchmark circuit and cryptocores (DES, AES) as SOC applications for our
analysis. We have used MATLAB and Mentor Graphics Pyxis tool for our simu-
lation and analysis.

Keywords Power distribution network (PDN) � Cryptocore � Resistance
distribution profile � Sheet resistance � Voltage fluctuations

A. Majumder (&)
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
e-mail: ayan.mdr@gmail.com

M. Chakraborty � K. Guha � A. Chakrabarti
A.K. Choudhury School of Information Technology, University of Calcutta, Kolkata, India
e-mail: moumitachakraborty_it@yahoo.co.in

K. Guha
e-mail: mail2krishnendu@gmail.com

A. Chakrabarti
e-mail: acakcs@caluniv.ac.in

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_13

189

1 Introduction

The PDN distributes stable power to the circuit components over the entire chip
area. PDN is actually a tree, which comprises of branches at each level, viz.,
motherboard, package, and chip (Fig. 1). Usually the power and ground networks
are symmetric. The goal of PDN is to deliver the required current across the chip
while maintaining the voltage levels necessary for proper operation of logic circuits.
Owing to presence of parasitic elements in PDN, there is a voltage drop in the
network. Inductance (L) of the off-chip cables, circuit boards, connectors, package
pins, and bond wires and resistance (R) of the on-chip wires cause noise in the
supply voltage. The voltage drop across the PDN is commonly referred to as IR
drop. In Fig. 1 [1, 2] a simplified PDN circuit is shown.

Different approaches have been investigated to estimate the IR drops (VIR) for
chip or package [3]. There are two ways to provide supply currents to the pads of
the power grid, either by package leads in wire-bond chips or through C4 (con-
trolled collapsed chip connection) bump-array in flip-chip technology [4, 5]. Both
the performance (in terms of speed) of digital circuits, which depends on the
parasitic impedance of the real packages, and the internal power supply delivery
network can cause fluctuations in the power supply voltages [2, 6]. The delay of
digital circuits inversely depends on the supply voltage [7]. As we are moving
towards the lower technology nodes with higher device density and faster switching
speed, the inductive component is not negligible and becomes comparable to the
resistive component [8]. The drop is referred as the LdI/dt drop. Therefore, the
effective voltage of the devices is simply described by the following equation:.

Vdevice ¼ Vdd � LdI=dt � VIR ð1Þ

Equation 1 shows the effective decrease in device voltage (Vdevice) because of the
combined effect of inductive component and IR drop (LdI/dt +VIR). Owing to this
voltage drop, noise margin is reduced and switching time of gate is increased. The

Fig. 1 Simplified model of power distribution network [1, 2]

190 A. Majumder et al.

voltage fluctuations in PDN network can also inject noise in the circuit, which leads
to functional failure of the design [1]. Insertion of decoupling capacitances at
different levels (on-die, package, motherboard) not only reduces the power supply
glitches but also minimizes the ground bounce [9]. But these explicit decoupling
capacitors (decap) result in area overhead. Both over estimation and under esti-
mation of decap can degrade the performance of the design. So, estimation of decap
is an important concern for in-circuit design [1]. Intrinsic and extrinsic on-die
decoupling capacitances may cause power supply resonance by interacting with the
package inductance, and that leads to an excessive supply voltage fluctuation in
power distribution network. The package and chip have to be viewed as a single
network for minimizing resonance.

Figure 1 illustrates the resistance, inductance, and capacitance for motherboard
(RMB, LMB and CMB), the resistance and capacitance (Rpkg, and Cpkg) for package.
Lpkg1 and Lpkg2 are the different package inductances. All the decoupling capacitors
of the die have been considered in a single capacitor Cdie and a single time-varying
current idie is considered to model all the switching devices and Rdie is the resistance
of the die. In PDN, power is distributed through parallel grids of multiple levels of
metals [3]. Estimation of total sheet resistance for a chip with multiple grids is
described in [3]. Considering this circuit parameter (sheet resistance) and defining
the boundary of the conductive foil model, the resistance distribution is illustrated.

The key contributions are summarized as follows:

(i) Practical implementation of an existing mathematical model for PDN
extraction.

(ii) A new CAD-based design flow for PDN analysis.
(iii) Incorporation of SOC-based design (benchmark circuits and cryptocores such

as DES and AES for SOC applications) for the proposed CAD flow.

In this work, first, a CAD-based design flow is proposed in Sect. 2. In Sect. 3, an
optimized resistance distribution profile is obtained using MATLAB. A brief
description about the benchmark circuits and cryptocores implemented in this work
as a SOC has been explained in Sect. 4. Section 5 observes the power dissipation of
the grid in ASIC platform (Mentor Graphics) by considering these benchmark
circuits and digital SOC for crypto application. Implementation and results are
discussed in Sect. 6. Finally, in Sect. 7, we conclude the paper.

2 Proposed CAD-Based Design

Implementation of the proposed CAD-based design flow (as explained in Fig. 2) is
described in the following three steps.

CAD-Based Analysis of Power Distribution Network for SOC Design 191

2.1 Resistance Distribution Profile Generation in MATLAB

To plot the square profile in MATLAB, the area parameter (xlen, ylen) and sheet
resistance (k = 1) are declared. Then the perimeter and the boundary of four edge
lines: {x = 0, y = 0….15}, {x = 0…15, y = 0}, {x = 15, y = 0….15}, {x = 0…15,
y = 15} are defined. After that, the integrand of the finite number of points on the
boundary is evaluated by using a function. Finally a mean is taken and it is mul-
tiplied with perimeter to obtain the desired resistance distribution profile.

2.2 Generation of Circuits and SOC

Gate level modules of circuits and systems are implemented and integrated in ASIC
platform. Soft IP modules or the RTL codes of the benchmark circuits and the
modules of the SOC are first described in Xilinx 14.4 ISE Platform. Next, RTL
simulation is performed in Xilinx ISim Simulator for logic verification. Leonardo
Spectrum Platform of Mentor Graphics is used to generate the associated netlist
files. Schematic model of the benchmark circuits and SOC is generated by
importing the obtained netlist files in the Pyxis Schematic Platform of Mentor
Graphics.

Fig. 2 Proposed CAD flow

192 A. Majumder et al.

2.3 Analysis in ASIC Platform

In the ASIC platform, we used Mentor Graphics Pyxis tool for simulation to verify
the correctness of our design. Here we integrate analog circuitry with the digital
design like benchmark circuits and cryptocores for our analysis. This helps us to
analyze the power with PDN and without PDN for a given technology node.

3 Resistance Distribution Profile

In [6], PDN is considered as a single conductive foil, resistance distribution is
obtained by sheet resistance and the dimensions of the chip can be obtained as well.

We assume that the power distribution grid as an isotropic and homogeneous
conductive foil with given sheet resistance value represented as k, k = 1 in our case
(Fig. 3). Using the analytical expression obtained from [6], we evaluate the resis-
tance distribution in the power grid network and then the power consumption at
different values of resistance is shown in Table 1. The resistance distribution of the
surface of the foil is obtained by considering all the contours that are connected to
GND, which requires a single analytical expression [6]. The assumption is followed
by the analytical equation:

Rðx; yÞ ¼ 1=S ðx; yÞ ¼ 1=
I

dl
k � rðx; yÞ

� �
ð2Þ

where R is the distributed resistive function, S the distribution conductive function,
k the sheet resistance and r(x, y) the distance between (x, y), and the perimeter dl,
the integration is made around all the perimeter of the chip.

After investigating the square foil, whose sides are arbitrary 15 units long and
unitary sheet resistance, the resistance distribution profile that we obtained through
MATLAB is shown in Fig. 4.

The maximum value of resistance is 0.4268 Ω.

Fig. 3 Power distribution
network as a homogeneous
conductive foil characterized
by a sheet resistance and a
dielectric constant [6]

CAD-Based Analysis of Power Distribution Network for SOC Design 193

4 Benchmark Circuits and Associated CryptoCores

Standard circuits and systems, which can be used for reference and testing, are
commonly known as benchmark circuits. To analyze the proposed PDN model we
use one ISCAS 85 benchmark circuit [10]. However, such circuitry is simple and
lacks the required complexity required in practical scenario. Hence, we take refuge
in common cryptographic application circuitry. Custom processing hardware design
of cryptographic algorithms is commonly known as cryptocores. Cryptocores
possess several modules such as key generation module, functionality modules and
S-box modules. Data transfer between such modules and a dedicated memory for
these cores qualify them as a system on chip (SOC). Such cryptocores [11] are
widely used and provide the required complexity for practical scenario. In this
work, we refer to hardware implementation of Data Encryption Standard (DES) and
Advanced Encryption Standard (AES) algorithms.

4.1 Data Encryption Standard (DES)

Data Encryption Standard (DES) [12, 13] is a 64-bit block cipher, which takes as
input a 64-bit plain text and a 56-bit key and generates a 64-bit cipher text as

Table 1 PDN power of ISCAS 85 C17 as benchmark circuit in 180-nm technology with
resistance distribution profile

Value of resistance
applied to grid (Ω)

Without PDN
power (pW)

With PDN
power (pW)

% increase in
power

0.08632 113.6588 113.8154 0.137

0.1064 113.8534 0.171

0.1268 113.8963 0.209

0.1411 113.9230 0.232

0.1624 113.9656 0.269

0.1802 114.0027 0.302

0.2018 114.0459 0.340

0.2283 114.0987 0.387

0.2412 114.1069 0.394

0.2688 114.1798 0.458

0.3015 114.2454 0.516

0.3228 114.2879 0.553

0.3408 114.3235 0.584

0.3626 114.3673 0.623

0.3820 114.4063 0.657

0.4036 114.4495 0.695

0.4268 114.4956 0.736

194 A. Majumder et al.

output. Its initial and final permutation rounds are predetermined and keyless. A full
DES cipher consists of 16 Feistel rounds. Feistel rounds of a practical DES cryp-
tocore are identical. As the number of Feistel rounds increases, the complexity of
the cipher increases and proportionally increases the amount of security provided.
However, DES of 8 and 12 Feistel rounds can also be used for small, low-security
related applications. The round key generator module produces a round key for
each Feistel round. Each Feistel round consists of a mixer and a swapper, both of
which are invertible functions. The DES function is enclosed inside the mixer,
which is the heart of the DES cipher. The DES function comprises of an expansion
D box, which increases the input from 32 bits to 48 bits. The XOR function
operates on this 48-bit output of the expansion D box with the 48-bit key for the
respective round obtained from the round key generator. Eight S boxes are present
which provide the real confusion of the cipher. Finally a straight D produces a
predetermined permutation. Round 16 is slightly different from the other rounds as
it comprises only the mixer but not the swapper.

Fig. 4 Resistance distribution profile

CAD-Based Analysis of Power Distribution Network for SOC Design 195

4.2 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) [12, 13] is a 128-bit block non-Feistel cipher
which takes as input a 128-bit plain text and a 128-bit key and generates a 128-bit
cipher text as output. AES implemented in this work comprises of a pre-round
transformation along with 10 identical rounds (round 10 is slightly different) and a
Key Expansion module, which produces 10 round keys for each round. AES
provides four types of transformations namely, Substitute Bytes, Shift Rows, Mix
Columns and Add Round Key. The pre-round module uses only Add Round Key
transformation, while round 10 does not utilize the Mix Columns transformation.
All other rounds use all the four transformations. To create a round key for each
round, AES uses a Key Expansion module which creates ten 128-bits round keys
for the ten rounds from the 128-bit input cipher key.

5 Analysis in ASIC Platform

The values of resistances, which are obtained from MATLAB implementation,
basically applied to the grid (chip) of the power distribution network. The grid
consists of resistance, a decap, and also a dc current source. The supply voltage
used for analysis is 1.8 V. For our analysis, we consider a benchmark circuit and
cryptocores, and connecting them with grid power extraction is done by simulation.
In our ASIC platform, 180-nm technology is considered. The value of decap is
taken as 39 nF [9]. The values of resistances are obtained from the resistance
distribution profile. The block diagram of the incorporation of circuits with PDN is
shown in Fig. 5. It describes that PDN exists in both VDD and ground line. For our
analysis in ASIC platform our ISCAS benchmark circuits or cryptocores as CUT
(circuit under test) are connected with PDN.

Fig. 5 Incorporation of proposed design model with CUT (circuit under test)

196 A. Majumder et al.

6 Implementation and Results

In this paper, along with the ISCAS benchmark circuit, we have analyzed a DES
cryptocore and an AES cryptocore. Varying the number of rounds of a DES
cryptocore, gives us the flexibility to analyze the power fluctuations for increasing
complexity in practical scenarios. Hence, 8, 12, and 16 Feistel rounds of a DES
crypto application are implemented in ASIC platform to give us the desired results.
Finally, PDN analysis of an AES cryptocore is performed. Resistance distribution
profile has been analyzed in MATLAB. The resistance values have been incor-
porated into the PDN model in Pyxis Schematic Platform of Mentor Graphics.
Design flow of benchmark circuits and cryptocores has been described in Sect. 2.2.
We incorporate the digital designs with the PDN circuitry in Pyxis Schematic
Platform of Mentor Graphics as described in Sect. 2.3. All simulations in the ASIC
Platform have been performed in 180 nm technology node.

In Table 1, we show the PDN power for ISCAS 85 C17 circuit for various
resistance values generated through the conductive foil model and mapped-to-grid
resistance of the PDN. The range of resistance values given in the first column of
Table 1 represents the maximum and minimum values with some intermediate
values. We can observe that the PDN power increases with the increase of a
resistance value which is expected, and this verifies our model. The incorporation of
the PDN in power analysis shows a small percentage increase in total power, which
also supports the theoretical PDN model.

In Tables 2 and 3 we show the PDN analysis of SOC circuits DES and AES,
respectively. In both the cases, we use the maximum surface resistance value
obtained from resistance distribution profile and we find a small percentage increase
in total power, i.e., 0.005 and 0.0018 % for DES and AES, respectively. This is not
a significant overhead for power.

Table 2 PDN power with the increasing complexity of Data Encryption Standard (DES) circuit in
180 nm technology with the maximum value of resistance

Value of resistance
applied to grid (Ω)

DES circuit Without PDN
power (mW)

With PDN
power (mW)

% increase
in power

0.4268 8 rounds 1.6898 1.6899 0.005

12 rounds 1.8870 1.8871 0.005

16 rounds 1.99815 1.99825 0.005

Table 3 PDN power with the increasing complexity of Advanced Encryption Standard
(AES) circuit in 180-nm technology with the maximum value of resistance

Value of resistance applied
to grid (Ω)

Without PDN
power (mW)

With PDN power
(mW)

% increase in
power

0.4268 5.31345 5.31355 0.0018

CAD-Based Analysis of Power Distribution Network for SOC Design 197

7 Conclusion

A PDN binds the voltage drop across the various components of a chip. PDN
considered in this scenario is a conducting foil whose mathematical model exists.
We implemented a CAD version of such a model by taking the parasitics into
consideration. For our analysis, we choose the C17 circuit of ISCAS 85 benchmark
series and for a more practical approach, we considered DES and AES cryptocores
as SOC applications. Maximum variation in power after inclusion of PDN circuitry
for ISCAS C17 benchmark circuit is 0.736 % for various grid resistance values.
Next we have considered practical crypto SOC applications. Considering various
Feistel rounds of a DES cipher, 0.005 % increment of power is obtained. The
maximum percentage increment in power is 0.0018 % when AES cryptocore is
considered. Our results confirm that our proposed PDN model is able to stabilize
the fluctuations in power with the increase in complexity in practical scenarios. Low
power overhead establishes the efficacy of our proposed CAD model of PDN as a
conducting foil.

References

1. Pant, S.: Design and Analysis of Power Distribution networks in VLSI Circuits. Thesis report,
The University of Michigan (2008)

2. Chakraborty, M., Guha, K., Chakrabarti, A., Saha, D.: Analysis of power distribution network
for some cryptocores. In: Proceedings of International Conference on Advances in Computing,
Communications and Informatics (ICACCI, 2014), pp 2618–2622 (2014)

3. Shakeri, K., Meindl, J.D.: Compact physical IR-drop models for chip/package co-design of
gigascale integration. IEEE Trans. Electron. Dev. 52(6), 1087–1096 (2005)

4. DeHaven, K., Dietz, J.: Controlled collapse chip connection (C4)-an enabling technology. In:
Proceedings of Electronic Components and Technology Conference, pp. 1–6 (1994)

5. Turnmula, R.R., Rymwzewski, E.J.: Microelectronics Packaging Handbook, pp. 366–391.
Van Nostrand Reinhold, NewYork ch. 6 (1989)

6. Andrade, D., Martorell, F., Moll, F., Rubio. A.: Voltage fluctuations. In: IC Power Supply
Distribution Networks: Impact On Digital Processing Systems

7. Rabaey, J.M., Chandrakasan, A., Nikolic. B.: Digital Integrated Circuits a Design Perspective,
2nd edn. ISBN: 0130909963

8. Chen, H.H., Neely, J.S.: Interconnect and circuit modeling techniques for full-chip power
supply noise analysis. In: IEEE Trans. Compon. Packag. Manuf. 21(3), 209–215 (1998)

9. Ajami, A., Banerjee, K., Pedram, M.: Scaling analysis of on-chip power grid voltage
variations in nanometerscale ULSI. Analog Integr. Circ. Sig. Process 42, 277–290 (2005)

10. https://filebox.ece.vt.edu/*mhsiao/iscas85.html
11. Guha, K., Sahani, R.R., Chakraborty, M., Chakrabarti, A.: Analysis of secret key revealing

trojan using path delay analysis for some cryptocores. In: Proceedings of the 3rd International
Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014,
Advances in Intelligent Systems and Computing, vol. 328, pp 13–20 (2015)

12. Stallings, W.: Cryptography and Network Security, 3rd edn. Prentice Hall (2003). ISBN:
0-13-11 1502-2

13. Forouzan, B., Mukhopadhyay, D.: Cryptography and Network Security, 2nd edn. Mc Graw
Hill. ISBN: 978-0-07-070208-0

198 A. Majumder et al.

https://filebox.ece.vt.edu/%7emhsiao/iscas85.html

Part III
Algorithms

A New Hybrid Mutual Exclusion
Algorithm in the Absence of Majority
Consensus

Sukhendu Kanrar, Samiran Chattopadhyay and Nabendu Chaki

Abstract All the voting-based mutual exclusion (ME) algorithms that work on
majority consensus inherently confirm safety criterion. However, such algorithms
may violate progress condition when no single process gets majority of votes. In
this paper, a new two-phase, hybrid ME algorithm is proposed that works even
when majority consensus cannot be reached. Simulation results establish that the
proposed algorithm offers lower message and time complexity as compared to
established as well as recent algorithms. The second phase of the algorithm, in spite
of being symmetric, executes in constant time.

Keywords Distributed operating systems � Mutual exclusion � Network
partitioning � Majority consensus � Voting � Critical section

1 Motivation and Problem Definition

Mutual exclusion (ME) is crucial for the design of lock-based process synchro-
nization. Depending on the technique used, mutual exclusion algorithms have been
classified as token-based [1], time quantum-based [2–4] and permission-based [2, 3,
5–8] algorithms. A classification of different variants of permission-based ME
algorithms is presented in Fig. 1.

S. Kanrar (&) � N. Chaki
University of Calcutta, Block JD, Sector III, Salt Lake, Kolkata 700098, India
e-mail: sukhen2003@gmail.com

N. Chaki
e-mail: nabendu@ieee.org

S. Chattopadhyay
Jadavpur University, Salt Lake, Kolkata 700098, India
e-mail: samiranc@it.jusl.ac.in

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_14

201

As this paper primarily deals with hybrid ME that uses a voting mechanism in its
first phase, a brief state-of-the-art review on voting-based ME algorithms is pre-
sented in Sect. 2.

In voting-based algorithms [9–11], a decision is taken based on voting. Each and
every process in a system of n processes need not wait for permission in terms of
votes from each of the remaining n − 1 processes in the system. Hence, the message
complexity of voting-based ME algorithms is lower than the symmetric ME
algorithms [8]. There are two types of voting-based algorithms: Static [5] and
Dynamic, [12–15] depending on whether the votes assigned remain fixed or not.

The voting schemes [5, 6] are often far from being correct as it may suffer from
lack of liveness. Suppose, a network is partitioned and only 85 % of the n − 1
processes are connected. If there are two requesting processes, it may lead to a
scenario where both the requesting processes get more than 40 % of the votes.
However, none of these would achieve majority consensus. A similar situation may
occur when there are more than two requesting nodes even if the network is not
partitioned and all 100 % of the votes are cast.

Study of the existing literatures has hardly addressed the case where none of the
candidate processes achieves majority consensus. In this paper, we have proposed a
new hybrid algorithm for ME that finds a candidate for CS when majority con-
sensus is not achieved by any process.

In the event that no single process earns majority of the votes, the classical
majority consensus approach [8] suffers from lack of progress. The progress con-
dition demands that at least one of the competing processes must be selected for
Critical Section (CS) execution even when majority consensus is not achieved by
any process. On the other hand, the liveness property demands that all competing
processes must eventually be allowed to enter the CS. This paper aims to address
these conflicting requirements while proposing a two-phase hybrid algorithm that
ensures both progress condition and liveness even when no single process wins
majority vote. The proposed solution also ensures safety conditions so that no two
processes enter respective critical sections simultaneously.

Permission-based Algorithm

Voting-based Algorithm Symmetric Algorithms

Static Dynamic

Fig. 1 Permission-based ME algorithms for distributed systems

202 S. Kanrar et al.

2 Review on Voting-Based ME Algorithms

As defined above, voting in a ME algorithm can be static or dynamic. Some of the
earliest voting-based distributed mutual exclusion algorithms were given by
Thomas [5] and Gifford [16]. This was static in nature in which the votes were fixed
a priori and the distributed system is assumed to be fully connected by message
passing. A node requesting to enter the CS must obtain permission from majority of
processes in distributed system. Otherwise, it must not enter the CS and wait until it
is allowed to enter the CS.

In Dynamic voting-based approach, a distinguished partition may still have the
majority of votes. Dynamic vote reassignment is only possible inside a distin-
guished partition and the votes of other partitions remain unchanged. This is to
avoid data inconsistency as the partitions are unaware of each other. Group con-
sensus and autonomous reassignment are two dynamic vote assignment techniques
presented in [17].

Table 1 shows the categorization of different algorithms studied in this paper by
putting those in one of the four categories mentioned above.

Timed-Buffer Distributed Voting Algorithm (TB-DVA) [8] is a secure
distributed voting protocol. It is unique for fault-tolerance and security as compared
to several other distributed voting schemes. TB-DVA is a radical approach to
distributed voting because it reversed the two-phase commit protocol: a commit
phase (to a timed buffer) is followed by a voting phase. This conceptually simple
change has greatly enhanced security by forcing an attacker to compromise a
majority of the voters in order to corrupt the system. It may be recalled that in the
two-phase commit protocol only one voter must be compromised to corrupt a
system. In weighted average algorithm, the weight value is assigned to each process
voter input [18], highly available system like distributed database and ad hoc
network [12].

3 The Proposed Hybrid Algorithm

The proposed algorithm works in two phases as detailed later in this section.
A flow-diagram for the proposed mechanism is presented in Fig. 2.

Table 1 Classification of permission-based ME algorithms and cited works

Types of permission-based ME algorithms Reference number

Quorum based or coterie based [7, 11, 13, 14]

Static voting based [1, 4, 5, 11, 12, 16, 18, 19]

Dynamic voting based [6–10, 13, 15–17]

Symmetric or timestamp based [2, 3]

A New Hybrid Mutual Exclusion Algorithm … 203

Let us state the assumptions required for the proposed algorithm. We consider a
distributed system with n processes labeled as Ni for i 2 1. . .n½ � :
• Initially, all processes and links are nonfaulty. There is a singular distinguished

partition, i.e., a set of processes which elects one candidate.
• A site cannot arbitrary connect to other processes once it has been repaired.

Addition is only permitted to a distinguished partition.
• Processes or links may fail before processing the update request in a given site.
• On receiving a request message in phase 1, a process would vote in favor of

exactly one process.

No

Each process in Phase II
sends fresh rqmsg to

others

Is TS of
incoming rsmsg
less than TS for

own rsmsg?

Send go_ahead
to the

requesting
process

Enters CS

Phase II

Yes

No

Store requesting process Id
in local queue and send
go_ahead only after the

current requested process
comes out of CSIs Process that

receives
go_ahead from

all ?

Yes

Sends
fresh

rqmsg to
that

process

Process requesting CS
sends rqmsg to

remaining P1, P2, ..., Pn-1

rsmsg
Above

threshold?

Enter CS Processes above
threshold move

to Phase II

Yes

No

Got rsmsg
from

majority?

Yes

No

Phase I

Reduce threshold by 1 if no
process gets more than threshold

number of votes

Fig. 2 Flow diagram for the proposed algorithm

204 S. Kanrar et al.

• On the contrary, in phase 2, a process may vote in favor of zero or more number
of processes.

The proposed algorithm works in two phases. In the event that in the first phase
any candidate process receives majority of votes, the algorithm terminates there.
This is no different from conventional majority voting algorithm.

However, if no clear winner is identified in phase 1, the second phase is initiated.
There is a predefined non-negative integer threshold τ assumed for the proposed
algorithm. All the processes that have obtained votes greater than this threshold
build a set S and elect the winner in themselves in a second phase of voting. In
phase 2, processes that have already earned votes over the threshold τ sends request
for a phase 2 vote (P2V). This time with a request for P2V vote, the timestamp
(TS) of the original request for CS by the respective process is also sent. Any node
PY 2 S that has received a request for P2V from another node PZ sends P2V to Z iff
TS(PY) > TS(PZ).

It is to be noted here that phase 2 follows a symmetric algorithm to choose the
winner. However, as the maximum cardinality of set S cannot exceed n=s for a total
of n competing processes, the overall complexity of the proposed algorithm would
be quite low as long as s � 0. It is important toward ensuring both safety and
progress condition of the proposed algorithm so that neither two different processes
can enter the CS simultaneously nor it leads to a situation where the algorithm
comes to a halt without electing a winner.

Procedure Elect-Candidate

Begin

Step 1: All processes wishing to enter CS requests for vote from remaining n − 1
processes and waits for the responses.

Step 2: If any process Pi gets majority voting, then go to step 7 else go to step3.
Step 3: If there exists a process that gets vote above a pre-set threshold τ then

step 4 else reduce threshold τ by 1 and return to Step 1 to allow all
processes to put fresh vote requests.

Step 4: All processes PX voted above threshold τ are collected in a set S. These
processes send request for a phase 2 vote (P2V) along with the times-
tamp (TS) of the original request from PX for CS. PX is to wait for certain
predefined time for the responses from all the processes PY 2 S: When
time expires, the process Px sends a fresh request for vote and waits for
some more time. If no reply is found even after the second attempt, then
PY treats itself as disconnected process.

Step 5: Any process PY 2 S that has received a request for P2V from another
process PZ sends P2V to PZ iff TS(PY) > TS(PZ).

Step 6: Identify processes Pi that receives (|S| − 1 − n) P2V from peers, where
n is the number of disconnected processes.

Step 7: Select Pi for entry into its CS.

End.

A New Hybrid Mutual Exclusion Algorithm … 205

4 Performance Analysis

In this section, the proposed algorithm is evaluated from multiple perspectives.
Issues considered for performance evaluation include correctness of the algorithm
in terms of both progress condition and safety, message complexity, fairness, and
other important factors of distributed algorithms.

4.1 Safety

A mutual exclusion algorithm satisfies the safety specification of the mutual
exclusion problem if it provides mutually exclusive access to the critical section.

Lemma 1 For the proposed mutual exclusion algorithm, only one process in
Phase 2 will get (|S| − 1 − n) votes where the set of processes shortlisted for Phase
2 are denoted by S, and n is the total number of processes.

Proof Without any loss of generalization, one may assume that a standard clock
model like Lamport’s logical clock model or vector clock would be deployed that
puts a unique timestamp for each and every voting request. In Phase 2 of the
proposed algorithm, the process Pi 2 S which has the smallest timestamp (TS) of its
original request for CS would be the winner.

According to the algorithm, the winner is identified when it receives P2V from
all other |S| − 1 − n processes short listed for phase 2. Any other process Pk 2 S for
k ≠ i cannot get more than |S − 2| phase 2 votes. This is because (i) Pk will not send
itself a vote and (ii) Pi will not send P2V to Pk as TS(Pi) < TS(Pk).

Lemma 2 (Safety) The proposed voting-based algorithm provides safe mutual
exclusion.

Proof A mutual exclusion algorithm is safe if it ensures that no two processes
would enter the respective critical sections simultaneously. In the proposed algo-
rithm, the winner is selected either from phase 1, or from phase 2. The safety is to
be considered separately for the two cases.

Case 1: The winner is selected from Phase 1.
This implies that there is a process that gains a majority of votes at the end of

phase 1 and hence no other processes can get majority vote. So, only one process is
allowed to enter the CS satisfying safety criterion.

Case 2: The winner is selected from Phase 2.
From Lemma 1, only one process would get (|S| − 1) number of votes and will

be allowed entry to CS and the property of safety is ensured.

Lemma 3 The value for the threshold integer variable τ as defined in the proposed
algorithm would never be negative if it is initialized with some positive integer.

206 S. Kanrar et al.

Proof Let τ be initialized with X, for some X > 0. In the event that no process could
cross this threshold τ for some iteration of the proposed algorithm, the value of τ is
reduced by 1 in Step 3 without checking its present value. We shall show that τ
cannot be negative by the method of refutation.

Let us assume that at some point the value of τ becomes −1. This implies (i) in the
previous iteration τ was equal to 0 and (ii) no process has obtained any vote greater
than τ = 0 in that iteration. But, this is in contradiction with the basic assumption that
each process would get at least 1 vote and that from itself. In other words, each
process would cross the threshold τ when its value is 0. Therefore, τ would not be
reduced further in Step 3. Thus the assumption of τ = −1 is found to be absurd.

4.2 Progress Condition

Progress condition for a mutual exclusion algorithm demands that one of the
contending processes for critical section will eventually be allowed to enter the CS,
even when no single process gets majority votes.

Lemma 4: (Progress Condition) Progress Condition is maintained for the pro-
posed mutual exclusion algorithm.

Proof The proposed algorithm selects a process that has earned majority voting in
Phase 1, in case such a process exists. The case where no process gets majority voting
is discussed next. From Lemma 3, we conclude that τ cannot be negative and so there
are some processes shortlisted for Phase 2. The proposed algorithm always elects at
least one process in Phase 2 from the shortlisted one as has been shown in Lemma 1.

Lemma 5 In spite of being symmetric in nature, the proposed algorithm runs for
constant time in phase 2.

Proof For a threshold of τ, the number of processes that can earn τ votes and get
into phase 2 cannot exceed η = n/τ. In other words, the cardinality for the set
S mentioned in step 4 of the proposed algorithm cannot exceed n/τ. Each of these
nodes would send a request for P2V and receives η − 1 to 0 votes depending up on
the timestamp of the request for CS. If threshold is set to as low as 15 % of the total
voting processes, then η cannot exceed 6 following the equation η = n/τ. This
effectively implies a constant time complexity for phase 2 of the execution.

4.3 Correctness

The correctness of control algorithms is typically defined as a collection of safety
and liveness. In Sect. 4.1, the safety property has been proved. In Sect. 4.2, progress
condition of the algorithm has been proved. Any existing mutual exclusion algo-
rithm [19] that ensures liveness may also be used for this purpose. In this

A New Hybrid Mutual Exclusion Algorithm … 207

consideration, the proposed two-phase solution provides a framework that is com-
patible to many different existing voting algorithms that maintain both safety and
liveness. The proposed two-phase algorithm therefore holds correctness in tandem
with a voting mechanism that is used in phase 1 that ensures liveness in execution.

4.4 Storage Requirement

The proposed solution requires storing very little data at the participating processes.
In fact, a process needs to know the total number of processes in the system, and
timestamp of its own request for CS.

4.5 Message Complexity

The number of messages per critical section access can be deterministically
expressed as a measure of concurrency of requests. Let us assume that a total of
m out of n processes want to enter respective critical sections. Each of these
m process would request the remaining n − 1 processes for vote and a total of
m × (n − 1) requests would be sent. In phase 1, one process is allowed to cast only
one vote. Therefore, the number of voting messages would be (n − 1). Thus, in
phase 1, the average number of messages exchanged per CS request would be:

K ¼ m � n� 1ð Þþ ðn� 1Þ
m

� OðnÞ ð1Þ

For a threshold of τ, the number of processes that can earn τ votes and get into
phase 2 cannot exceed η = n/τ. In other words, the cardinality for the set Smentioned
in step 4 of the proposed algorithm cannot exceed n/τ. The symmetric approach
followed in phase 2 involves exchange of messages between only these η numbers of
processes. Each of these nodes would send a request for P2V and receives η − 1 to 0
votes depending up on the timestamp of the request for CS. Hence, the average
number of messages exchanged in phase 2 for each request to CS would be:

� ¼ gþðg� 1Þþ ðg� 2Þþ ðg� 3Þþ � � � þ 1

¼ gþ 1
2

i:e:; � � n =s

ð2Þ

Therefore, adding the cost from Eqs. 1 and 2, the total number of control
messages exchanged is O(n), for a total of n competing processes. Besides, in the
proposed algorithm, even when threshold is close to 30 % of the total processes, the
number of such processes η entering to phase 2 of the algorithm cannot exceed 3.

208 S. Kanrar et al.

If threshold is set to 15 % of the total processes, then η cannot exceed 6 following
the equation g ¼ ½n=s�. This effectively implies a constant time complexity for
phase 2 of the execution. Thus, the algorithm terminates faster and with much lower
message complexity compared to what may appear to be the average or even worst
case performances from Eqs. 1 and 2.

5 Simulation Result

Similar to our proposed algorithm, the Timed-Buffer Distributed Voting Algorithm
(TB-DVA) [8] also uses two-phase commit protocol and Lamport’s logical
timestamping. Hence, TB-DVA is considered to benchmark the performance of the
proposed algorithm in terms of turnaround time for a batch of concurrent processes.

On the other hand, the proposed algorithm, if it has to enter in its phase 2, uses
symmetric approach. It is a well-known fact that symmetric algorithms, in spite of
being simple to implement, typically involve very high message complexity.
Hence, in order to assess message complexity, the proposed algorithm is compared
with Ricart–Agrawal’s well established symmetric algorithm (RA) [2]. The com-
parative results of simulation for the proposed method as against RA and TB-DVA
is shown in Sect. 5.1.

5.1 Simulation Performance of the Proposed Algorithm
with TB-DVA and RA

A connected network topology is considered. The size of the network is gradually
increased from 6 to 12 with different connections between the nodes. In order to
make a comparative analysis with TB-DVA [8], the value of request time and
release time are selected on the same basis as followed for TB-DVA [8]. The
difference between the release and the request timestamps is taken as the turnaround
time for a particular job. In every case, we compute the average of all results. We
also consider the number of request as follows (Table 2):

Network size 6 8 10 12

Number of requests 4 5 6 8

We have considered the length of CS for different jobs as follows:

Site S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

CS length in time (ms) 3 7 10 2 12 8 11 3 4 7 11 5

A New Hybrid Mutual Exclusion Algorithm … 209

5.1.1 Time Complexity of the Proposed Algorithm as Compared
to TB-DVA

In the proposed algorithm, only the request message is sent to each of the remaining
n − 1 nodes in the partition. However, for phase 1, the grant messages are con-
sidered from only majority of the nodes. Thus, the total number of messages
exchanged per token request granted for phase 1 will be nþ ½n=2�; where n is the
total number of nodes in the network. As in [8], the request time is selected
according to the network communication delay and release time is considered as
twice of the network communication delay. In order to plot the results in graphs, we
assume that network communication delay equals to total number of nodes in ms
(Fig. 3).

In the proposed algorithm, we have considered 50 % of candidates are granted
token in phase 1 algorithm and have calculated the average turnaround time on that
basis for every network. Thus, the total turnaround time equals to request time for
phase 1 and for phase 2 added with length of CS. The relative performance of the
proposed algorithm is better than the TB-DVA algorithm for turnaround time.

In Fig. 4, we consider a fixed size network with 32 nodes and the number of
nodes requesting to enter the CS is chosen to be 8(=25 %), 16(=50 %) and 24

Table 2 Simulation parameters

Parameters Value

Connection topology Connected graph topology

Number of processes in the graph Gradually increased from 6–12

Edge length Static

Request time Network communication delay

Release time Twice of network communication delay

Length of CS in terms of execution time Predefined

Maximum degree of a node 4

Minimum degree of a node 2

Priority of process in the tree Increases with version number

Maximum number of requests Gradually increased (4, 6, 8, 10, 16) 95

0

10

20

30

40

50

6 8 10 12

T
ur

na
ro

un
d

T
im

e

Network size

TB-DVA Proposed

Fig. 3 Turnaround time for TB-DVA and the proposed algorithm

210 S. Kanrar et al.

(=75 %). In cases, the proposed algorithm works while TB-DVA fails to elect any
candidate as no single process gets majority vote. Figure 4 also establishes that the
turnaround time of the proposed algorithm is less than TB-DVA in all cases.

Another set of simulation results are generated for networks by gradually
increasing its size from 4 to 16. In Fig. 5, we see that proposed algorithm selects a
process irrespective of whether majority votes are obtained or not for networks of
all sizes. The turnaround time for the proposed algorithm is observed to be less than
that of TB-DVA algorithm for all the cases.

5.1.2 Message Complexity of Proposed Algorithm as Compared to RA
Algorithm

The simulations setting for comparative performance of the proposed algorithm
with analysis with Raymond’s algorithm is very similar to that for TB-DVA.
However, some variations of these settings such as different number of nodes, etc.
have been used in these experiments. These variations are described while
explaining respective results.

-0.2

0.3

0.8

1.3

1.8

25% 50% 75%

T
u

rn
ar

o
u

n
d

 T
im

e

Request Rate where size=32

TB-DVA PA

Fig. 4 Comparison between TB-DVA and proposed algorithm for turnaround time

0

0.1

0.2

0.3

0.4

25% 50% 75%

T
u

rn
ar

o
u

n
d

 T
im

e

Request Rate

Size = 4 TB-DVA Size = 4 PA Size = 8 TB-DVA

Size = 8 PA Size = 16 TB-DVA Size = 16 PA

Fig. 5 Execution time of TB-DVA versus PA for increasing network size

A New Hybrid Mutual Exclusion Algorithm … 211

In Fig. 6, plots are generated for different network sizes from 4 nodes to 16
nodes. In each of the cases, we consider that 25, 50, and 75 % of nodes have
requested to enter the CS. The point to be noted here is that although Ricart–
Agrawala’s algorithm assumes that the candidate node with lowest timestamp
receives consent from all of the remaining nodes, this often does not happen in
reality. This is due to message loss or partitioning of the network. In Fig. 6, we
observe that the message complexity of the proposed algorithm is less than that of
Ricart–Agrawala for all the cases.

The point to be noted here is that although Ricart–Agrawala’s algorithm assumes
that the candidate node with lowest timestamp receives consent from all of the
remaining nodes, this often does not happen in reality. This is due to message loss
or partitioning of the network. In Fig. 6, we observe that the message complexity of
the proposed algorithm is less than that of Ricart–Agrawala for all the cases.

Algorithm Evaluation measures Description

Message complexity Synch.
delay

Decision
theoryHeavy

load
Light load

Lamport 3 (N − 1) 3 (N − 1) T Static Prioritize with
timestamp

Ricart–
Agrawala [2]

2 (N − 1) 2 (N − 1) T Dynamic Get n − 1 permissions

Quorum
dynamic

O(Q) O(Q) 3T Dynamic Generate dynamic
quorum

TB-DVA [8] 5 (N − 1) 3 (N − 1) 2T two-phase
voting

Fault-tolerance and
security

Proposed
algorithm

O(N) O(N) 2T two-phase
voting

No majority consensus
needed

(continued)

0

50

100

150

200

250

300

25% 50% 75%N
um

be
r

of
 C

on
tr

ol
 M

es
sa

ge
s

Request Rate

Size = 4 RA Size = 4 PA Size = 8 RA

Size = 8 PA Size = 16 RA Size = 16 PA

Fig. 6 Control messages for RA algorithm versus proposed algorithm (PA)

212 S. Kanrar et al.

(continued)

Algorithm Evaluation measures Description

Message complexity Synch.
delay

Decision
theoryHeavy

load
Light load

Billiard
Quorum [20]

√2√N √2√N T Coterie
based

Multidimensional
voting

Thomas [5] [(N + 1)/2] [(N + 1)/2] 2T Majority
voting

Introduce the concept
of voting

*Q is the number of quorum members

6 Conclusions

Voting-based algorithms for mutual exclusion looking for majority consensus often
fails to choose among the candidate processes as none of these may earn majority of
votes. In this paper, a new dynamic, hybrid algorithm has been proposed that would
work where majority consensus cannot be reached to elect the next process to enter
critical section. It is proved that the proposed algorithm maintains progress con-
dition and also ensures safeness and liveness. The solution is compatible to any
majority voting-based approach that may be used in phase 1 of the proposed
algorithm. The phase 2 essentially selects the candidate process from a group of
processes that get votes above a system-defined threshold τ based on timestamp of
the original request for entering into the critical section. The solution maintains
correctness in tandem with appropriately selected algorithm for voting in phase 1.
Simulation results and the theoretical analysis presented in Sect. 5, establish that the
message complexity and execution time for the proposed solution is better than the
existing solutions that are compared.

References

1. Byeon, B.: NucVoter: a voting algorithm for reliable nucleosome prediction using
next-generation sequencing data. ISRN Bioinform. (2013)

2. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer networks.
Commun. ACM 24(1), 9–17 (1981)

3. Ekbal, A., Saha, S.: Weighted vote based classifier ensemble selection using genetic algorithm
for named entity recognition. NLCS 2010, 256–267 (2010)

4. Zarafshan, F., Latif-Shabgahi, G.R., Karimi, A.: A novel weighted voting algorithm based on
neural networks for fault-tolerant systems. In: Proceedings of the 3rd IEEE International
Conference on Computer Science and Information Technology (ICCSIT’10), pp. 135–139
(2010)

5. Thomas, T.H.: A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst. 4(2), 180–209 (1979)

A New Hybrid Mutual Exclusion Algorithm … 213

6. Yu, G.X., Glass, E.M., Karonis, N.T., Maltsev, N.: “Knowledge-based voting algorithm for
automated protein functional annotation. Proteins Struct Funct Bioinform 61(4), 907–917
(2005)

7. Saxena, P.C., Rai, J.: A survey of permission-based distributed mutual exclusion algorithms.
Comput. Stand Interf 25(2), 159–181 (2003)

8. Hardekopf, B., Kwiat, K., Upadhyaya, S.: A decentralized voting algorithm for increasing
dependability in distributed systems. In: Proceedings of the 7th International Conference on
Information System Analysis and Synthesis (ISAS 2001) (2001)

9. Qin, M., Zimmermann, R.: An energy-efficient voting-based clustering algorithm for sensor
networks. In: ACIS International Workshop on Self-Assembling Wireless Networks.
SNPD/SAWN 2005, pp. 444–451 (2005)

10. Latif-Shabgahi G., Tokhi M.O., Taghvaei M.: Voting with dynamic threshold values for
real-time fault-tolerant control systems. In: Proceedings of 16th International Federation of
Automatic Control World Congress (IFAC‘05) (2005)

11. Hardekopf, B., Kwiat, K., Upadhyaya, S.: Secure and fault-tolerant voting in distributed
systems. In: IEEE Aerospace Conference (2001)

12. Zarafshan, F., Karimi, A., Al-Haddad, S.A.R. Saripan, M.I., Subramaniam, S.: A preliminary
study on ancestral voting algorithm for availability improvement of mutual exclusion in
partitioned distributed systems. In: Proceedings of International Conference on Computers and
Computing (ICCC’11), pp. 61–69 (2011)

13. Karimi, A., Zarafshan, F., Al-Haddad, S.A.R., Ramli, A.R.: A novel-input voting algorithm
for -by-wire fault-tolerant systems. Sci. World J. 9 (2014). Article ID 672832

14. Latif-Shabgahi, G.R.: A novel algorithm for weighted average voting used in fault tolerant
computing systems. Microprocess. Microsyst. 28(7), 357–361 (2004)

15. Ingols, K., Keidar, I.: Availability study of dynamic voting algorithms. In: Proceedings of the
21st IEEE International Conference on Distributed Computing Systems, pp. 247–254 (2001)

16. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the Seventh ACM
Symposium on Operating Systems Principles, pp. 150–162. ACM, Pacific Grove (1979)

17. Barbara, D., Garcia-Molina, H., Spauster, A.: Increasing avail-ability under mutual exclusion
constraints with dynamic vote reassignment. ACM Trans. Comput. Syst. 7(4), 394–428 (1989)

18. Azadmanesh, A., Farahani, A., Najjar, L.: Fault tolerant weighted voting algorithms. Int.
J. Netw. Security 2, 240–248 (2008)

19. Osrael, J., Froihofer, L., Chlaupek, N., Goeschka, K.M.: Availability and performance of the
adaptive voting replication protocol. In: Proceedings of the 2nd International Conference on
Availability, Reliability and Security (ARES’07), pp. 53–60 (2007)

20. Agrawal, D., Egecioglu, O., Abbadi, A.El: Billiard quorums on the grid. Inf. Process. Lett. 64,
9–16 (1997)

214 S. Kanrar et al.

A Comprehensive Sudoku Instance
Generator

Arnab Kumar Maji, Sunanda Jana and Rajat Kumar Pal

Abstract Sudoku puzzles have become popular worldwide among many players of
different intellectual levels. In this paper, we develop algorithms for creating
numerous Sudoku instances of varying levels of difficulty. There are several ways
to generate a Sudoku instance. The most popular one is to consider one solved
Sudoku puzzle and remove some of the numbers from the cells based on the
required difficulty level. Although all Sudoku puzzle creators assume that there is a
single solution for a generated puzzle, we notice that a Sudoku puzzle may have
multiple solutions. None of the instance generation techniques are able to find how
many different solutions are present for a generated Sudoku instance. Here in this
paper, we have devised one novel approach that can generate a Sudoku instance and
check for its number of possible solutions, and then based on the number of
solutions we further categorize the instance that has been generated. This approach
is entirely novel and comprehensive for generating Sudoku instances.

Keywords Sudoku � Puzzle � Instance � Difficulty level � Minigrid � Graph
theory � Band � Stack

A.K. Maji (&)
Department of Information Technology, North Eastern Hill University,
Shillong 793022, India
e-mail: arnab.maji@gmail.com

S. Jana
Department of Computer Science and Engineering, Haldia Institute of Technology,
Haldia 721657, India
e-mail: sunanda_jana@yahoo.com

R.K. Pal
Department of Computer Science and Engineering, University of Calcutta,
Kolkata 700098, India
e-mail: pal.rajatk@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_15

215

1 Introduction

A Sudoku puzzle can be defined as a partially completed N × N grid where the
initially defined values are known as givens or clues [1]. A general Sudoku puzzle
has 9 rows, columns, and minigrids having 9 cells each. So the full grid has 81
cells. Rows, columns, and minigrids are collectively referred to as units or scopes.
One rule that can be applied to this puzzle is “Each digit appears once in each unit.”
For defining the size of the puzzle, often a composite of number of rows × number
of columns designation is used, i.e., size 9 × 9. In Fig. 1, a sample Sudoku puzzle is
shown along with its possible solution. We can see in this figure that a 9 × 9 Sudoku
puzzle is divided into 3 × 3 minigrids. The minigrid is highlighted in bold. For
creating an instance of the puzzle as per different levels of difficulty, a proper
understanding of the difficulty level is important. So in the next section, we discuss
the different difficulty levels of the Sudoku puzzle.

1.1 Metrics of Difficulty Level

In this section, we develop the metrics to determine the difficulty level of a Sudoku
puzzle from both computing and human logic deducing perspectives. The following
two factors [2] asmetrics are taken into consideration, which affect the difficulty level:

• The total amount (or number) of given cells (or clues) and
• the lower bound of given cells in each row, column, and minigrid.

Based on the above two factors with scores, we grade a Sudoku puzzle into five
different levels as follows: Level 1: Extremely Easy, Level 2: Easy, Level 3:
Medium, Level 4: Difficult, and Level 5: Evil.

Fig. 1 a An instance of the Sudoku problem. b A solution of the Sudoku instance shown in (a),
where a digit/symbol occurs exactly once in each row, column, and minigrid

216 A.K. Maji et al.

1.1.1 The Total Amount of Given Cells

As the first factor that affects the level estimation is the total amount of given cells
in an initial Sudoku puzzle, this factor can significantly eliminate potential choices
of digits in each cell by three constraints in the game rule such that each row,
column, and minigrid would contain 1 through 9 exactly once. In general, it is
reasonable to argue that the more empty cells (and fewer clues) provided at the
beginning of a Sudoku game, the higher the level of the puzzle graded in. Different
researchers have moderately scaled the amount of ranges of givens for each level of
difficulty; in brief such an accumulated data is shown in Table 1 [2].

1.1.2 The Lower Bound on the Number of Clues in Each Row,
Column, and Minigrid

The arrangement of empty cells significantly affects the difficulty level if two puzzles
provide the same amount of givens (or with slight difference) at the beginning of a
Sudoku game. The puzzle with the givens in clusters is graded at a higher level than
that with the givens in scattered form. Based on the row, column, and minigrid
constraints, we normalize the lower bound on the number of given cells in each row,
column, and minigrid for each level of difficulty as shown in Table 2.

1.2 Uniqueness of Sudoku Instances

There is debate among researchers that, if a Sudoku instance has more than one
solution, whether this could be considered as a valid Sudoku instance [4]. The

Table 1 The amount ranges
of givens in each difficulty
level

Level Number of clues Score

1 (Extremely easy) More than 46 1

2 (Easy) 36–46 2

3 (Medium) 32–35 3

4 (Difficult) 28–31 4

5 (Evil) 17–27 5

Table 2 The lower bound on
the number of clues in each
row and column for each
difficulty level

Level Lower bound on the number of
givens in each row, column, and
minigrid

Score

1 (Extremely easy) 5 1

2 (Easy) 4 2

3 (Medium) 3 3

4 (Difficult) 2 4

5 (Evil) 0 5

A Comprehensive Sudoku Instance Generator 217

definition of Sudoku states that every puzzle must have a unique set of numbers in
each row, column, and minigrid.

There is nothing in the rule that states that every puzzle must have a unique
solution [3]. Rather, it is the puzzle creators who put an additional constraint that
says that a Sudoku instance is valid only if it produces a unique/single solution [4].
However, nobody has effectively explored whether a ‘well-built’ Sudoku instance
(of more than 17 clues) has really one and only one solution [5]. Some mathe-
maticians also debate that Sudoku instances can all be solved by certain standard
tricks, many of which may result in a unique rational solution to the integer
programming problem [5]. We can find rational solutions with linear programming,
and if the rational solution is unique, such type of integer programming problem is
not NP-hard; it is in P [5]. However, Sudoku is known to be an NP-complete
problem [6]. So, it cannot be said that every Sudoku instance must have a unique
solution, or otherwise the Sudoku instance is not valid.

We have found several Sudoku instances with more than one solution in the
literature [7, 8]. Hence, we can say that a subset of Sudoku instances may have one
and only one valid solution, but in general, a Sudoku instance might have two or
more solutions as well. This situation has its own merits and applications. Solving
Sudoku puzzles has an application in steganography. If a given Sudoku instance has
only one valid solution, then that instance may fail to conceal some information
while transmitting the instance that an intruder may attack. On the other hand, if
there are two or more solutions for a given Sudoku puzzle, then such attackers may
be confused in extracting the hidden information.

The most common method for creating a Sudoku instance is the Digging Hole
strategy. Here, a solved Sudoku grid is taken as input. Then based on the required
difficulty levels the values from the different cells are removed on the basis of the
constraints provided in Tables 1 and 2. Then it is checked for uniqueness, i.e.,
whether there exists a unique solution for this puzzle game. There is no method-
ology that can create Sudoku instances with multiple solutions. We have designed
an effective methodology that can check for multiple solutions. Based on the
number of solutions, it can categorize the generated instance.

2 Generating a Sudoku Instance from
a Solved Sudoku Puzzle

In this method an already solved Sudoku puzzle has been taken as input. Then using
Digging Hole strategy [9] some of the values (or digits) are removed from the
filled-in solved Sudoku grid and then in the end it is checked for conflicts, if any. If
there is no more conflict and the instance generated is solvable, then it is taken as a
valid Sudoku instance. For example, consider the solved Sudoku puzzle shown in
Fig. 2.

218 A.K. Maji et al.

Now we can remove the values from any of the cells and check for conflicts, if
they arise. Conflict checking means to judge whether the generated Sudoku instance
provides only one solution after removal of a number of values from the cells (from
a solved Sudoku solution in the desired fashion) [9], though before our research we
found no existing work that could compute two or more solutions of a Sudoku
instance, if it really has. The number of values that are supposed to be there as given
clues depend entirely on the difficulty level under consideration, according to the
guidelines shown in Tables 1 and 2.

Now we summarize the processes that could be adopted in removing the values
from the cells while generating instances from a solved Sudoku puzzle as
(1) Randomized and (2) Sequential.

2.1 Randomized Selection of Cell Location

In case of randomized site selection, we can remove the values from any of the
locations from a solved Sudoku puzzle. For example, we have removed values
from 34 random cell locations from the solved Sudoku puzzle shown in Fig. 2
and obtained a generated Sudoku instance as shown in Fig. 3. Here we have taken
away the values from cells [1, 2], [1, 3], [1, 6], [1, 7], [1, 2], [2, 4], [2, 7], [2, 8],
[3, 3], [3, 5], [3, 6], [3, 9], [1, 4], [3, 4], [4, 5], [4, 8], [3, 5], [5, 5], [5, 8], [2, 6],
[4, 6], [6, 7], [6, 8], [2, 7], [5, 7], [7, 9], [1, 8], [4, 8], [6, 8], [7, 8], [1, 9], [4, 9],
[6, 9], and [9, 9].

In Fig. 3, we can say that the generated Sudoku instance is extremely easy as
there are 47 givens/clues now and each row, column, and minigrid has at least five
givens/clues. Similarly, we can create puzzles with different other levels of diffi-
culty satisfying the constraints mentioned in Tables 1 and 2.

Fig. 2 A solved Sudoku
puzzle

A Comprehensive Sudoku Instance Generator 219

2.2 Sequential Selection of Cell Location

In this method of generating Sudoku instances, the removal of values from cells can
follow a certain sequence along rows or columns. In case of row-wise direction, the
selection path could be zigzag or like the English letter (capital) ‘S’ or the reverse
and only row-wise or column-wise or the reverse, as discussed in brief as follows:

2.2.1 Wandering Along S (or Zigzag) Path

In this process, the cells to be dug out are chosen from the left to right directions for
the first row. Then for the next row it starts moving from right to left. Then for the
successive rows, the direction of selection of cells changes alternatively. The
process is shown in Fig. 4a. In a similar way, the direction can also be adopted from
right to left for the first row, from left to right for the second row, and so on, i.e., the
opposite (or reverse) direction of the above.

Fig. 3 An extremely easy
Sudoku instance created after
randomly digging holes in the
solved Sudoku puzzle shown
in Fig. 2

(a) (b)

Fig. 4 Cells are dug in row-wise direction while a wandering along ‘S’ path and b moving from
the left to right direction

220 A.K. Maji et al.

2.2.2 Wandering from Left to Right or the Reverse

In this process, cells to be dug out are chosen from the left to right direction for each
of the rows. It starts choosing the cell from the top left corner, then moves to the
right, again starts moving from left to right for the next row, and so on. The process
is depicted in Fig. 4b. It can also follow the reverse sequence.

Likewise, the cells to be dug can also be chosen in the following fashion when
we follow column-wise direction.

(A) Top to Bottom or the Reverse
In this case, the direction of considering the path could be from the top to bottom

always for each of the columns, either from left to right or from right to left, or the
reverse fashion in all respects.

(B) Wandering along S in Top to Bottom Direction and Vice Versa
In this case, for a solved Sudoku solution, the instance generator may follow a

path alternatively from top to bottom and from bottom to top like a sideways ‘S’ (or
zigzag), or the reverse.

Instead of removing the values from the cells randomly or in any well-defined
fashion, they can also be removed in a symmetrical way for matching pairs of rows,
columns, and minigrids. These are also briefly discussed and exemplified as
follows.

2.2.3 Symmetrical Removal of Values from Rows

In this method, values are removed in a symmetrical fashion. For example, if the
top row is considered from left to right, then the bottom row is considered from
right to left. Then the locations are removed simultaneously and either the corre-
sponding values are both kept at their own locations or both of them are removed.
The same manner of considering rows (from the top and the bottom) and keeping or
removing values in a symmetrical manner is executed till the middle of the Sudoku
instance is reached. The same process can also be executed column-wise in
achieving a new Sudoku instance.

For example, a generated instance is shown in Fig. 5, which is created from the
solved Sudoku puzzle shown in Fig. 2. This is by definition is a puzzle of medium
level difficulty as there remain only 35 clues (or givens) and each row, column, or
minigrid contains at least three among the clues. Here we may observe that in the
first row (from left to right) the status of clues is ×2××5×78× (including blank cells
being represented by ‘×’) and the status of clues in the last row (from right to left) is
×5××3×89× (that are symmetric). Such similarity could be observed for each pair of
equidistant rows from the top as well as from the bottom, and also for each pair of
equidistant columns from the left as well as from the right in the generated Sudoku
instance.

A Comprehensive Sudoku Instance Generator 221

2.2.4 Symmetrical Removal of Values from Columns

If we keenly observe the way of creating symmetrical Sudoku instances, as
described in the previous section when we removed (or kept) values row-wise for a
solved Sudoku puzzle, it automatically generates instances where it is symmetric
column-wise as well. Rather, we may execute the tasks that we followed in gen-
erating Sudoku instances by removing (or keeping) values in symmetrical fashion
by rows, which can also be obtained by executing this method. For example, we
may observe the third column from left (from bottom to top) and the third column
from right (from top to bottom); the status of the said columns is 81×2×97×× and
73×4×81××, which are absolutely symmetric.

2.2.5 Symmetrical Removal of Values from Minigrids

In a similar fashion, a new instance of the Sudoku puzzle can also be generated by
symmetric removal of values from the minigrids. Based on the symmetry of a
Sudoku puzzle, we may observe that if either of the techniques discussed in the
above two sections is executed, a Sudoku instance is generated wherein a sym-
metric fashion could be obtained between pairs of minigrids (1, 9), (2, 8), (3, 7), and
(4, 6) in some fashion. We may observe that the created Sudoku instance in Fig. 5
follows these minigrid pairs (in reverse direction). Another minigrid pair could be
formed where either column-wise (1, 3), (4, 6), and (7, 9) are symmetric where the
values from top to bottom along columns 4 and 6 are also symmetric, or row-wise
(1, 7), (2, 8), and (3, 9) are symmetric where the values from left to right along rows
4 and 6 are also symmetric.

Fig. 5 A Sudoku puzzle instance is created by symmetric removal of values from the solved
puzzle shown in Fig. 2. Row numbers and column numbers are shown on the left and top side of
the puzzle

222 A.K. Maji et al.

2.3 Flowchart at a Glance for the Digging Hole Strategy

The steps for the said algorithm are depicted in the flowchart shown in Fig. 6. From
the flowchart, it is clear that first we need to input one solved Sudoku puzzle. Then
we have to provide the level of difficulty for which an instance is supposed to be
created. From the difficulty level, the algorithm finds out the “can-be-dug” cells (in
some fashion, well-defined or arbitrary) based on the constraints and criteria shown
in Tables 1 and 2. Then from the “can-be-dug” cells, cells are chosen in some

Set all the cells to “can-be-dug”

Begin

Enter a desirable difficulty level

Determine the sequence of digging holes

Whether there exists a “can-be-dug” cell?

Select the next “can-be-dug” cell in sequence

Yes

Is there a violation from the criteria
shown in Tables 1 and 2?

No

Dig the cell

YesForbidden from

digging the cell

No

Propagating

Output

End

Fig. 6 Flowchart for the Digging Hole strategy

A Comprehensive Sudoku Instance Generator 223

fashion and follow a sequence of cells based on the techniques discussed in the
previous sections. Next, the chosen cells are made blank by removing values from
each of them and checked for if a unique valid solution for the created Sudoku
instance is achieved.

Using this method, we can eventually create a Sudoku instance, though this
algorithm has not stated clearly from which location(s) the values should be
removed. We can remove them from any place we like to, either randomly or by
following a definite sequence. Then after removing a value each time, it is checked
for whether there exists a unique solution of the generated instance. Again,
checking for the solution is a time-consuming task. Incidentally, there is no suitable
technique in the literature that can successfully check whether the generated
Sudoku instance truly has more than one solution. Another prime limitation is that
this strategy needs a solved Sudoku puzzle for generating a Sudoku instance or
more.

To remove these limitations, we proposed a new Sudoku instance generation
technique, which generates a new Sudoku instance after transformation of the
existing instance and then checks for the number of valid solutions based on a graph
theoretic formulation.

3 A New Scheme for Creating an Instance Based
on Transformations of a Sudoku Puzzle

In this section, we propose a new methodology that creates a Sudoku instance based
on the transformation of the existing Sudoku puzzle instance. Then it checks the
number of solutions of each of the generated instances based on a graph theoretic
formulation [10]. Rather, we may verify the number of solutions possible for a
given Sudoku instance from which we would like to compute a large number of
such instances using different techniques of transformation.

For transformation, we use methodologies such as (i) Digit exchanging,
(ii) Rotation, (iii) Rows-in-a-Band exchanging, (iv) Columns-in-a-Stack exchang-
ing, (v) Band exchanging, (vi) Stack exchanging, and (vii) The combination of all
six methods. We consider each of these methods and briefly discuss them as
follows.

3.1 Digit Exchanging

It is simple to accomplish the method of digit exchanging, because what is nec-
essary here is to exchange all the digits in the cells of one existing Sudoku instance
in some well-defined fashion. Interestingly, this exchange does not influence the

224 A.K. Maji et al.

uniqueness of a Sudoku instance. Thus, a new instance of the Sudoku puzzle is
produced.

Figure 7 shows an instance of Sudoku puzzle. Let us replace all 1’s belonging to
this puzzle by 9 and the reverse. Then the modified Sudoku instance can be as
shown in Fig. 8. We can see in this figure, all 9’s present in cells [1, 6], [2, 6], and
[7, 9] are now replaced by 1’s, whereas all 1’s present in cells [1], [2, 7], [6, 8], and
[9] are now replaced by 9’s. All these replacements are highlighted in the figure.
This process of exchanging digits is valid throughout the puzzle as a new Sudoku
instance is generated, and it is valid for exchanging any number of values among
themselves in the puzzle.

Now, the same method can be carried out for multiple pairs of numbers (to be
exchanged) as well. A new Sudoku instance can also be produced by replacing
values of all clues of a Sudoku instance among themselves. Consider the same
Sudoku instance shown in Fig. 7. Here, we may exchange the following values pair
wise: (1, 9), (2, 8), (3, 7), (4, 6), (5, 4), (6, 5), (7, 3), (8, 2), and (9, 1). Then, we can
get a new instance as shown in Fig. 9. Here we may observe that the 1’s present in
cells [1], [2, 7], [6, 8], and [9] are now replaced by 9’s, the 2’s present in cells [1, 9]
and [5, 6] are replaced by 8’s, and so on that have been depicted in this figure.

Fig. 7 An instance of
Sudoku puzzle

Fig. 8 A new instance is
generated from the Sudoku
instance shown in Fig. 7 after
interchanging of 1 and 9

A Comprehensive Sudoku Instance Generator 225

3.2 Rotation

In this method, an existing Sudoku instance is rotated by a certain angle (with
multiple of unit value 90°) to produce a new instance. By the application of angle of
rotation the newly Generated instance can be characterized as follows:

(i) Rotation by 90°, (ii) Rotation by 180°, (iii) Flipping vertical rotation, and
(iv) Flipping horizontal rotation.

3.2.1 Rotation by 90 Degree

The Sudoku instance can be rotated by an angle of 90°. The direction of rotation
can be of two types: (a) Left Rotation (or in anticlockwise direction) and (b) Right
Rotation (or in clockwise direction).

In Fig. 10, a newly generated Sudoku instance is shown, which is produced after
left rotation of 90° of the Sudoku instance shown in Fig. 7. We can observe that the
clues present in minigrids 3, 6, 9, 2, 5, 8, 1, 4, and 7 in Fig. 7 become the clues of

Fig. 10 a A new Sudoku instance generated after left rotation of 90° of the Sudoku instance
shown in Fig. 7. b A new Sudoku instance is generated after right rotation of 90° of the Sudoku
instance of Fig. 7. c A new Sudoku instance is generated after rotation of 180° of the Sudoku
instance shown in Fig. 7

Fig. 9 A new Sudoku
instance is generated after
replacement of all the digits
for the Sudoku instance
shown in Fig. 7

226 A.K. Maji et al.

minigrids 1 through 9, respectively, as shown in Fig. 10a. The row numbers of the
clues now become the corresponding column numbers of the same.

After a right rotation of 90° of the same Sudoku instance in Fig. 7, the newly
transformed instance is depicted in Fig. 10b. We can observe that clues present in
minigrids 7, 4, 1, 8, 5, 2, 9, 6, and 3 become the clues of minigrids 1 through 9,
respectively. Here the column numbers of the clues now become the corresponding
row numbers of the same.

3.2.2 Rotation by 180 Degree

In the similar way, after 180° rotation of the Sudoku instance shown in Fig. 7, the
transformed instance obtained is shown in Fig. 10c. We can observe that the clues
present in minigrids 9, 8, 7, 6, 5, 4, 3, 2, and 1 have become the clues of minigrids 1
through 9, respectively, and the initial instance has been toggled that means the top
rows (from the left to right) have now been converted to as the bottom rows (from
the right to left), and the reverse.

3.2.3 Flipping Vertical Rotation

The Sudoku instance can be flipped vertically (keeping the clues of the fifth row
unchanged) to produce a new instance of the puzzle. The Sudoku instance shown in
Fig. 11a is produced after flipping vertically the Sudoku instance shown in Fig. 7.
We can observe that the clues present in minigrids 7, 8, 9, 4, 5, 6, 1, 2, and 3 have
become the clues of minigrids 1 through 9, respectively, as well as the top row of
the instance now becomes the bottom one, and vice versa, keeping the row infor-
mation from the left to right as it was.

Fig. 11 a A new Sudoku instance is generated after flipping vertically f the Sudoku instance
shown in Fig. 7. b A new Sudoku instance is generated after flipping horizontally of the Sudoku
instance shown in Fig. 7

A Comprehensive Sudoku Instance Generator 227

3.2.4 Flipping Horizontal Rotation

An existing Sudoku instance can be flipped horizontally (keeping the clues of the
fifth column unchanged) to generate a new instance. In case of flipping horizontal
rotation, the clues present in minigrids 3, 2, 1, 6, 5, 4, 9, 8, and 7 now become the
clues of minigrids 1 through 9, respectively, as well as the left column of the
instance now becomes the right column, and vice versa, keeping the column
information from the top to bottom as it was. In other words, each minigrid is now
the mirror of the given (or original) one. The transformed minigrid of the Sudoku
instance shown in Fig. 7 is depicted in Fig. 11b.

3.3 Rows-in-a-Band Exchanging

Rows-in-a-band exchanging means interchanging two or three rows in the same
band in any fashion we like to (or randomly). Three consecutive minigrids in a row
form a band as shown in Fig. 12a. We can observe from the figure that minigrids 1,
2, and 3 form band 1, whereas minigrids 4, 5, and 6 form band 2, and minigrids 7,
8, and 9 form band 3. Now we may examine that all the rows in each band are
interchangeable among themselves in order to generate newer Sudoku instances.

After the exchange of the rows in the same band, the newly made puzzle
obtained is still a valid one. Figure 12b shows a new Sudoku instance, which is
created by exchanging the first row with the second row in band 1 for the Sudoku
instance shown in Fig. 7. This idea can be generalized in exchanging rows in
respective bands, in isolation or in combination, in order to produce more and more
Sudoku instances.

Fig. 12 a Concept of band in Sudoku puzzle, b A new Sudoku instance is created after
exchanging the values present in rows 1 and 2 in band 1 for the Sudoku instance shown in Fig. 7

228 A.K. Maji et al.

3.4 Columns-in-a-Stack Exchanging

Here, we adopt the same concept that has been discussed in the previous section.
Columns-in-a-stack exchanging means interchanging of two or three columns in the
same stack randomly (or in some well-defined fashion). Let us first understand the
concept of stack. The entire minigrids present in the same column form a stack. The
concept of stack is shown in Fig. 13a.

From the figure, we can observe that minigrids 1, 4, and 7 form stack 1, min-
igrids 2, 5, and 8 form stack 2, and minigrids 3, 6, and 9 form stack 3. The columns
of each stack are interchangeable among themselves. A newly generated Sudoku
instance is depicted in Fig. 13b after exchanging the first two columns of stack 1 of
the instance shown in Fig. 7.

3.5 Band Exchanging

Now it is intuitively obvious that we can also interchange the position of an
entire band with another one to acquire a new Sudoku instance. Thus, as shown
in Fig. 13c, bands 1 and 3 of the Sudoku instance in Fig. 7 have been inter-
changed to realize this instance. Here we can observe that minigrids 7, 8, and 9
in Fig. 7 have been exchanged with minigrids 1, 2, and 3 to get this new Sudoku
instance.

Fig. 13 a Concept of stack in Sudoku puzzle, b A new Sudoku instance is created after
exchanging the values of column 1 and column 2 of the Sudoku instance shown in Fig. 7, c A new
Sudoku instance is created after exchanging the values in band 1 with that of band 3 for the
Sudoku instance shown in Fig. 7

A Comprehensive Sudoku Instance Generator 229

3.6 Stack Exchanging

We can also exchange the position of a whole stack with another stack to get a new
Sudoku instance. Hence, if stacks 1 and 3 of the Sudoku puzzle shown in Fig. 7 are
swapped, and then a new Sudoku instance is obtained as shown in Fig. 14a. We
may observe that the clues present in minigrids 1, 4, and 7 are now the clues in
minigrids 3, 6, and 9, respectively, and the clues present in minigrids 3, 6, and 9 are
now the clues in minigrids 1, 4, and 7, respectively, in the newly generated
instance.

3.7 A Combination of All Six Methods

If all the six methods or any two or more of them among digit exchanging, rotation,
rows-in-a-band exchanging, columns-in-a-stack exchanging, band exchanging,
stack exchanging are combined and acted upon on an existing puzzle instance, a
new instance can be produced (with no influence on its correctness). This fact is
implicit as all these methods in isolation starts from a complete Sudoku solution,
and thus, any instance that is created from a complete Sudoku solution must have at
least that solution as the outcome of the newly generated instance.

Now here we briefly elucidate a case to show how a new Sudoku instance could
be obtained from a given Sudoku instance where several such methods are taking
their role in a sequence. Say, first of all, we replace digits 1, 2, 3, 4, 5, 6, 7, 8, and 9
by 7, 3, 6, 5, 4, 8, 2, 9, and 1, respectively, of the Sudoku puzzle shown in Fig. 14b
and then rotate the obtained puzzle at an angle of 90° in anticlockwise direction.
Then we pair wise exchange rows 4 and 6, rows 7 and 8, columns 1 and 2, and also
columns 8 and 9 one after another. In the end, we swap the first band with the
second band, and the second stack with the third stack in sequence. After execution

Fig. 14 a A new Sudoku instance is created after exchanging the values in stack 1 and stack 3
present in the Sudoku instance shown in Fig. 7. b A given Sudoku instance. c A newly generated
Sudoku instance after application of several methods of transformation

230 A.K. Maji et al.

of all these stages, a new solution grid as an instance of a Sudoku puzzle is created,
which is shown in Fig. 14c.

After generating the Sudoku instance it is checked for solutions. We need to
check the total number of solutions that exist for the instance. For this we have
adapted a graph theoretic technique. In the next section, we are going discuss about
the technique.

3.8 A Graph Theoretic Technique to Compute the Number
of Solutions for a Produced Sudoku Instance

A Sudoku puzzle can be represented in a simple, symmetrical graph G = (V, E),
where the graph structure consists of nine sets of vertices, and each such set
comprises and represents a set of valid permutations for a minigrid (of size 3 × 3
each) of a given Sudoku puzzle P. The graph structure is shown below.

In Fig. 15, each node is represented by a valid permutation of a minigrid. The
valid permutation is generated for each and every minigrid and connectivity is
given if two valid permutations (of two row and column minigrids) are compatible
with each other. The algorithm is as follows.

The Algorithm at a Glance:

Step 1 Compute the number of digits given as clue and the missing digits in each
minigrid.

Step 2 Compute all valid permutations of the missing digits for the blank loca-
tions (in ascending order) for each minigrid based on the existing clues in
P, and store them.

Step 3 Construct a graphG= (V,E),whereV is the set of vertices such that a vertex vix
2 V represents a valid permutation pix of minigrid Mi and x ≥ 1 is an integer.
Thus, altogether for p valid permutations of all nine minigrids in P, p = |V|.

Step 4 Two vertices vix and vjy corresponding to two valid permutations pix and
pjy of a pair of row or column minigrids Mi and Mj are connected by an
edge {vix, vjy} = e 2 E, only if the permutations are compatible to each
other, where 1 ≤ i, j ≤ 3 and x, y ≥ 1 are integers.

V1
V2 V3

V4

V5

V6

V7 V8
V9

Fig. 15 A Symmetrical
graph structure used for
representing a Sudoku puzzle

A Comprehensive Sudoku Instance Generator 231

Step 5 Delete vertices with degree three or less in G along with their adjacent
edges, and repeat this step until a vertex in G is found with degree less than
four; thus, a modified (graph) G is obtained with degree of each vertex four
or more.

Step 6 Extract the subgraphs each of which is isomorphic to that as shown in
Fig. 15. The number of such distinct subgraphs is the number of solutions
for the Sudoku puzzle P.

Using this algorithm we can eventually compute the number of solutions of a
created Sudoku instance. Based on total number of solutions of a created Sudoku
instance we may categorize the Sudoku puzzles generated having only one solution
instance or multiple solution instance that finds applications in different domains of
research [11, 12]. In this categorization, we may divide the instances created by the
following three: (1) Instances each having a single (or unique) solution,
(2) Instances with number of solutions varying from two to four, and (3) Instances
with number of solutions of five or more. Still it is a part of future research where
computation of the number of solutions for a given Sudoku instance might get
immense importance.

4 Conclusion

In this paper, we have developed a new technique that is comprehensive in gen-
erating a Sudoku instance based on the difficulty level and the (total) number of
solutions possible for a Sudoku puzzle. Our Sudoku instance generator use either
the Digging Hole strategy or any method of transformation, or a combination of
some (or all) of them. From a solved Sudoku puzzle digits are dug in some fashion,
either arbitrary or following some desired well-defined sequence. In the method of
transformation, we have created a new Sudoku instance by taking as input an
existing Sudoku puzzle, and then transformations are applied on it in creating a new
one of probably some other level of difficulty. In this paper, we have also intro-
duced a graph theoretic formulation for computing all solutions for a generated
instance, which is unique in many a sense.

References

1. Lee, W.-M.: Programming Sudoku. Apress, USA (2006)
2. Jussien, N.: A-Z of Sudoku. ISTE Limited, USA (2007)
3. http://sudopedia.enjoySudoku.com/
4. http://www.sandwalk.blogspot.in/2007/06/i-knew-it-there-can-be-more-than-one.html
5. http://www.mathoverflow.net/questions/27361/do-actual-Sudoku-puzzles-have-a-unique-

rational-solution

232 A.K. Maji et al.

http://sudopedia.enjoySudoku.com/
http://www.sandwalk.blogspot.in/2007/06/i-knew-it-there-can-be-more-than-one.html
http://www.mathoverflow.net/questions/27361/do-actual-Sudoku-puzzles-have-a-unique-rational-solution
http://www.mathoverflow.net/questions/27361/do-actual-Sudoku-puzzles-have-a-unique-rational-solution

6. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application
to puzzles. IEICE Trans. Fundam. Electron., Commun., Comput. Sci. 86(5), 1052–1060
(2003)

7. Herzberg, A.M., Ram Murty, M.: Sudoku squares and chromatic polynomials. Not. AMS 54,
708–717

8. http://www.math.cornell.edu/*mec/Summer2009/Mahmood/More.html
9. Stuart, A.C.: Sudoku creation and grading. Mathematica 39(6), 126–142 (2007)
10. Maji, A.K., Pal, R.K.: An exclusive graph theoretic technique to develop a minigrid based

guessed free Sudoku solver. Manuscript (2015)
11. Maji, A.K., Roy, S., Pal, R.K.: A novel steganographic scheme using Sudoku. In: Proceedings

of IEEE International Conference on Electrical Information and Communication Technology
(ICEICT 2013), pp. 116–121. Bangladesh (2014)

12. Maji, A.K., Pal, R.K.: A novel biometric template encryption scheme using Sudoku. Appl.
Comput. Secur. Syst. 2, 109–128 (2014) (Springer)

A Comprehensive Sudoku Instance Generator 233

http://www.math.cornell.edu/%7emec/Summer2009/Mahmood/More.html

Implementing Software Transactional
Memory Using STM Haskell

Ammlan Ghosh and Rituparna Chaki

Abstract Software transaction memory (STM) is a promising programming
abstract for shared variable concurrency. This paper presents a brief description of
one of the recently proposed STM and addresses the need of STM implementation.
The paper also describes the implementation technique of STM in STM Haskell. In
the STM implementation process, three different approaches have been presented
which employ different execution policies. In the evaluation process, transactions
with varying execution length are being considered which are executed in
multi-threaded environment. The experimental results show an interesting outcome
which focuses on the future direction of research for STM implementation.

Keywords Software transactional memory (STM) � Haskell � Concurrency

1 Introduction

Software Transactional memory (STM) [1] is a promising approach for concurrency
control in multi-core processors environment. A transaction in STM executes a
series of reads and writes to shared memory, which is grouped into an atomic
action. STM guarantees that every action will appear to be executed atomically to
the rest of the system.

There are several STM approaches those have worked on basic concurrency
implementation for avoiding deadlock. These approaches use blocking [2–4] or
non-blocking [5–8] process synchronization technique. In non-blocking process
synchronization, the major challenge is reducing abort of concurrently executing
transactions. A limited of works have been done in this area [7, 8]. In [7], aborting of

A. Ghosh (&) � R. Chaki
University of Calcutta, Kolkata, India
e-mail: ammlan.ghosh@gmail.com

R. Chaki
e-mail: rchaki@ieee.org

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_16

235

transaction has been identified as a major limitation for STM solutions. The work in
[7] is on abort- free execution for a cascade of transactions. Although, theoretical
estimation shows a good performance improvement; however, the actual STM
implementation was not being done to explore the actual performance improvement.

Some STM solutions explore software engineering aspects either by using
realistic concurrent data [9, 10, 11] or by a theoretical study [12]. One of the major
breakthroughs is the implementation of composable software transactional memory
[10, 11] in Haskell.

STM Haskell [10] provides composable memory transaction, i.e., transactional
actions that are defined can be combined to generate a new transaction. STM
Haskell takes an action as its argument and performs it atomically by maintaining
two guarantees: Atomicity and Isolation. Atomicity ensures that execution of a
transaction is visible to other threads all at once. Isolation property guarantees that
execution of a transaction cannot be affected by other transactions. Since its
introduction, several extensions to the basic primitives have been proposed in STM
Haskell. This makes STM Haskell more flexible and easy customizable
implementation.

This paper describes an implementation of software transactional memory using
STM Haskell, using three different concurrency control mechanisms and compares
their performance.

The paper is organized as follows: Section 2 presents a brief description of one
of the recently proposed STM solution [7] that has claimed to improve throughput
in all possible scenarios. This section follows a critical observation on the said work
[7] and its analysis to establish the importance of implementing STM solutions on a
suitable platform towards appropriate performance analysis. Section 3 describes the
implementation technique of software transactional memory using STM Haskell.
Section 4 explores the performance and presents the result set. We have presented a
set of observations on the advantages of STM Haskell towards implementing STM
solutions. The paper concludes in Sect. 5 with a note on future direction of research
for STM implementation.

2 Retrospection of an OFTM Solution Towards Abort
Freedom

In [7], an interesting obstruction free implementation of STM was proposed that
allows contentious transactions to execute without causing any abort to other
transactions. The basic idea of this algorithm is that, a transaction, say Tk, may be in
active state even after the completion of update process of a transactional variable.
Now if another transaction, say Tm, wants to access the same transactional variable,
it faces contention with Tk. Thus, in conventional method, either Tm will be blocked
or Tm will abort Tk to get access of that transactional variable. In contrast, this
algorithm [7] allows Tm to access the transactional variable optimistically, with an

236 A. Ghosh and R. Chaki

expectation that Tk will not update that transactional variable further, thus Tm will
find a consistent data value at commit time. At commit time Tm will check the data
consistency, i.e., transactional value at the start time is same as at the time of its
commit. If data is consistent and Tk is committed, then Tm commits; otherwise, Tm
re-executes its operation after reading the last updated value of the transactional
variable.

The paper elaborately explains how to execute read and write operations for two
transactions in presence of contention. This procedure is also extensible for a
cascade of transactions. The efficiency and performance improvement is compared
with DSTM (STM for Dynamic-sized Data Structures) [5] in terms of the average
execution time (AET) of the transactions. Three different cases are being consid-
ered: Where AET of two transactions are equivalent; AET of first transaction less
than the second transaction, and lastly, AET of first transaction is greater than the
second transaction. The result set shows the throughput of the algorithm is better or
at least equivalent to the DSTM [5]. In spite of having several potentials, the
algorithm in [7] suffers from some serious drawbacks.

• the solution [7] does not ensure isolation property as transactions communicate
between themselves and share the non-committed transactional data;

• the paper [7] proposes abort-free execution, which is tailored only for two
concurrent transactions. It has given only an idea on how cascade of transaction
may run without any abort;

• the algorithm [7] claims to execute in abort-free manner. However, in some
specific cases, transaction either aborts its enemy transaction or backs-off for
some arbitrary time;

• authors of [7] claimed that the approach yields higher throughput in comparison
to DSTM [5]. However, the actual STM implementation is not done.

These drawbacks can be actually verified and analyzed by implementation or at
least by some proper simulation of STM. The GHC STM Haskell could be one of
the suitable platforms for STM implementation due to the following reasons:

• GHC Haskell implements some major extensions to support both concurrent and
parallel programming, which is highly desirable in multi-core processor
environment;

• No new language construct has been introduced in concurrent Haskell, rather it
appears as libraries. The functions are exported by these libraries;

• In Haskell, the STM library includes various features like Atomic blocks,
Transactional Variables and more importantly the composability of transactions.

All these features make STM Haskell a promising language construct for STM
implementation. The algorithm presented in [7] has encouraged the authors of the
current paper to discuss on implementing STM in Haskell. In next section, the
implementation technique of STM using STM Haskell has been described with
different concurrency control mechanism available in GHC Haskell.

Implementing Software Transactional Memory … 237

3 Implementing STM Using STM Haskell

3.1 Important System Variables

The STM Haskell uses a monad to encapsulate all access operation to shared
transactional variables (TVars). The operations in TVars are as follows:

data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM()

Both readTvar and writeTVar operations return STM actions, which can
be composed by do {} syntax. STM actions are executed by a function atomically,
with type atomically :: STM a -> IO a.

This function takes memory transaction and delivers I/O action. It runs the
transaction atomically with respect to all other transactions. An STM expression
can also retry to deal with blocking, when a transaction has to wait for some
conditions to be true.

retry :: STM a

The semantics of retry is to abort the current transaction and run it again. But,
instead of blindly rerunning the transaction again and again, transaction reruns only
when the TVar that has been read by the current transaction has changed.

Finally, the orElse function allows two transactions to be combined, where only
one transaction is performed but not both.

orElse :: STM a -> STM a -> STM a

The operation orElse T1 T2 has the following behavior:

• First T1 is executed, if it returns result then orElse function returns.
• If T1 retry instead then T1 is discarded and T2 is executed.

3.2 Implementation

To implement STM in Haskell, we have chosen three different implementation
approaches to execute a specific task. The task is to read a sharable data object,
calculate the Fibonacci value, and finally write that Fibonacci value to the sharable
data object. The whole job will be executed with the protection of atomically.

The first approach uses TVars of STM Haskell. The atomically function of STM
Haskell maintains a per-thread log that records the tentative access made to TVars.
Whenever atomically is invoked, it checks whether log is valid, i.e., no concurrent

238 A. Ghosh and R. Chaki

transactions has committed conflicting updates. If the log is valid then transaction
commits; otherwise, transaction re-executes with a fresh log.

The next two approaches use TMVars. In Haskell; MVars, Mutable Variables,
can be either empty or full. When a value is tired to remove from an empty MVar or
to put a value into a full MVar, the operation is being blocked. TVar is modeled
with MVar that contains Maybe a, i.e. newtype TMVar a = TMVar (TVar
(Maybe a)). ‘Maybe a’ is very common data type used in Haskell, where a
function may or may not succeed. This data type is as follows:

Data Maybe a = Nothing
| Just a

The TMVar implementation is included in the Control.Concurrent.
STM.TMVar module of STM package in Haskell.

The second approach uses TMVar to execute as per the shortest job first process
implementation. The third approach also uses TMVar to execute transactions
sequentially in a first-in-first-out basis.

The first approach uses non-blocking synchronization, where as other two use
blocking methodology of STM. All these three implementations guarantee
atomicity and isolation properties of STM.

Finding Fibonacci Value
Haskell’s Control.Parallel module provides a mechanism to allow users to

control the granularity of parallelism. The interface is shown below:

par :: a -> b -> b
pseq :: a -> b -> b

The function par evaluates the first argument in parallel with the second
argument by returning its result to the second argument. The function pseq
specifies which work of the main thread is to be executed first. The expression a
pseq b evaluates a and then returns b. An elaborated explanation on Haskell
parallelism is discussed in [13, 14].

While calculating Fibonacci value, the par and pseq monad is used to gain
parallelism. The code is as follows:

nFib :: Int -> Int
nFib n | n <= 2 = 1

| otherwise = par n1 (pseq n2 (n1 + n2))
where n1 = nFib (n-1)

n2 = nFib (n-2)

Achieving Concurrency in Haskell
Haskell provides explicit concurrency features via a collection of library func-

tions. The module Control.Concurrent provides an abstract type ThreadId
to identify the Haskell thread. A new thread is created in the IO monad by calling
the forkIO function, which returns IO unit.

Implementing Software Transactional Memory … 239

forkIO :: IO () −> IO ThreadId

At the time of execution, while using TVars, the main thread in Haskell does not
wait for its children threads to complete. The mapConcurrently function has
been used to overcome this problem. This function is provided by Haskell’s
Control.Concurrent.Async module. The function mapConcurrently
ensures that main thread does not quit till all its children threads complete their
operations. The detailed explanation about this module is available in [14].

STM implementation using TVar
Function transTest is created to define the task of the transaction. The block of

code is as follows:
transTest :: TInt -> Int -> IO ()
transTest n t = do
atomically $ do

let x = nFib t
writeTVar n x

TInt is an integer type Transactional Variable. The type is defined as

type TInt = TVar Int

The function transTest has two parameters, a TVar and an integer. It calculates
Fibonacci value of the given integer and writes that value to the TVar. Calculation
of Fibonacci value determines the execution time of the transaction. As nFib 40
takes much more time than nFib 20, thus execution time in the prior case will be
higher.

The code for function main (), is as follows:

main :: IO ()
main = do
n <- newTVarIO 0
_ <- mapConcurrently (transTest n) [40, 20]

This code executes two transactions concurrently, where first one will write
Fibonacci value of 40 to the TVar n and the second one will write Fibonacci value
of 20. Now question is that how the Haskell STM will execute these two trans-
actions. As the execution time of the second transaction is less, it completes its
execution earlier than first one and finds a valid log value, thus commits. As a
result, first transaction will get invalid value in its per-thread log and thus it will
re-execute its operation with a fresh log value.

Now suppose we want to track the commit pattern of the transactions. To do so,
a list of MVar data type is to be created, where the threadIds will be stored
when transactions successfully commit. The modified code is as follows:

240 A. Ghosh and R. Chaki

type TInt = TVar Int

transTest::MVar[(ThreadId, Int)] -> TInt -> Int -> IO ()
transTest mvar n t = do
tid <- myThreadId
atomically $ do

let x = nFib t
writeTVar n x

list <- takeMVar mvar
t2 <- atomically $ readTVar n
putMVar mvar $ list ++ [(tid, t2)]

main :: IO () -- Asynchronous Thread
main = do
n <- newTVarIO 0
ms <- newEmptyMVar
putMVar ms []

_ <- mapConcurrently (transTest ms n) [40, 20]
mms <- takeMVar ms
putStrLn (show mms)

Steps for program compilation
The command to compile the program [13] in multi-threaded environment is as

follows:

$ ghc –o testTVar -–make testTVar.hs –threaded –rtsopts

To execute the program, we need to specify how many real threads are available
to execute the logical threads in the Haskell program. The command to execute the
program with two real threads is:

$./testTVar +RTS –N2 –s

The flag –s, if included, shows the actual evaluation thread executions. The
portion of the actual output, while executing with two threads, is as follows:

[(ThreadId 6,6765),(ThreadId 4,102334155)]

 INIT time 0.00s (0.00s elapsed)

 MUT time 7.25s (3.63s elapsed)

 GC time 1.00s (0.50s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 8.25s (4.13s elapsed)

Alloc rate 3,611,846,709 bytes per MUT second

Productivity 87.9% of total user, 175.6% of total elapsed

Implementing Software Transactional Memory … 241

The output shows that commit pattern of the transactions. The execution time is
4.13 s against actual 8.25 s. It also shows the 175.6 % productivity.

STM Implementation using TMVar (Shortest Job First)
In our attempt to implement this, we have used TMVar and threads together. We

have created an empty TMVar and forked the job to run in the background. The
main thread has been blocked until each results return. While calling Fibonacci,
BangPatterns [15] is used to evaluate the Fibonacci value, so that at the time of
execution, first thread to finish will have its result first.

We have taken the advantage of TMVar’s empty/full semantics to block the
main thread for each of the children threads. The program code is given below. The
function nFib is same as above. In this implementation also, transactions run
atomically and obey the basic principles of STM.

{-# LANGUAGE BangPatterns #-}
main :: IO ()
main = do

result <- newEmptyTMVarIO
forkIO $ do
atomically $ do
let !x = nFib 40
putTMVar result x

forkIO $ do
atomically $ do
let !x = nFib 20
putTMVar result x

t <- atomically $ takeTMVar result
putStrLn ("Fastest job is: " ++ (show t))

t <- atomically $ takeTMVar result
putStrLn ("Slowest job is: " ++ (show t))

STM Implementation using TMVar (First-In-First-Out)
The implementation is same as the previous one, but in this case transactions

execute in first-in-first-out basis. Here, the second transaction waits till the first one
completes its execution. In this approach, transaction variables are also accessed
atomically.

242 A. Ghosh and R. Chaki

main :: IO ()
main = do

result <- newEmptyTMVarIO
forkIO $ do
atomically $ do
let x = nFib 40
putTMVar result x

t <- atomically $ takeTMVar result
putStrLn ("First value: " ++ (show t))

forkIO $ do
atomically $ do
let x = nFib 20
putTMVar result x

t <- atomically $ takeTMVar result
putStrLn ("Second value: " ++ (show t))

In the next section, these three approaches are being implemented in
multi-threaded environment to analyze result set.

4 Simulation Results

In this experiment, parallelism and concurrency both are taken care of while
implementing Software Transactional Memory in STM Haskell. This case study
considers that transactions perform ‘some task’, which can be executed in parallel
and update the transactional variables. The whole task is to be executed atomically,
i.e., either all at once or none. The execution length of transaction depends on the
execution time of the task. Thus, throughput of the concurrent execution of
transaction also depends on the efficiency of the parallel and concurrent execution
of the task.

In this case study three different approaches, as stated in Sect. 3.2, are being
considered. The first one is STM Haskell by using TVar, second one (SJF) uses
TMVar while execution shortest job first, and third one (FIFO) also uses TMVar
but execution pattern is in first-in-first-out basis. The performance of these imple-
mentations varies due to these execution policies although all of them ensures STM
properties.

The experimental results are summarized by varying execution length of the
transaction. To do so, a set of transactions with different execution length are being
considered while they are executing concurrently and sharing a common resource.
Each set of transaction is formed up with five write transactions. Depending on the
AET, transactions are segregated into three groups. In the first group, the AET of

Implementing Software Transactional Memory … 243

transactions is comparatively lower. In the second group, AET is comparatively
medium and in third group the AET of transactions is comparatively higher.

In order to investigate scalability, the said three approaches are being executed
on these three different groups of transactions. While executing the program, the
number of threads is varied from 1 to 5 to observe the efficiency of each method in
terms of parallel and concurrent execution.

This implementation is performed on Intel Core i7, 64 bit processor with 8 GB
memory, and 2 MB L2 cache, running on Linux and GHC 7.8.3.

4.1 Case-I: Lower Average Execution Time

When transactions have lower execution time, SJF performs best up to three
threads. Although, with a higher number of threads, STM Haskell has the slightly
better throughput. Table 1 and Fig. 1 show these scenarios.

4.2 Case-II: Medium Average Execution Time

In the case of medium length transactions, performance varies with number of
threads, same way as stated in previous case, i.e., with higher number of threads

Table 1 Performance of the said approaches with lower average execution time

#Thread 1 #Thread 2 #Thread 3 #Thread 4 #Thread 5

STM Haskell 3.92 2.14 1.52 1.31 1.16

TMVar SJF 3.78 2.05 1.45 1.34 1.14

TMVar FIFO 4.01 2.15 1.60 1.42 1.33

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Thread 1 # Thread 2 # Thread 3 # Thread 4 # Thread 5
STM Haskell TMVar SJF TMVar FIFO

Fig. 1 Performance graph of
the said approaches with
lower average execution time

244 A. Ghosh and R. Chaki

STM Haskell performs better. Table 2 shows the result and Fig. 2 depicts the
performance graph.

4.3 Case-III: Higher Average Execution Time

When transactions are too lengthy, STM Haskell outperforms others, except in
single-threaded execution. The result set and corresponding graph are shown in
Table 3 and Fig. 3 respectively.

4.4 Productivity Improvement with Parallel Execution

Figure 4 shows the average productivity improvement in elapsed time while exe-
cuting transaction with a varying number of threads. Higher number of threads
shows higher productivity.

Table 2 Performance of the said approaches with medium average execution time

#Thread 1 #Thread 2 #Thread 3 #Thread 4 #Thread 5

STM Haskell 8.57 4.66 3.30 2.96 2.62

TMVar SJF 8.36 4.55 3.23 3.19 2.72

TMVar FIFO 9.13 5.00 3.57 3.27 3.12

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Thread 1 # Thread 2 # Thread 3 # Thread 4 # Thread 5

STM Haskell TMVar SJF TMVar FIFO

Fig. 2 Performance graph of
the said approaches with
medium average execution
time

Table 3 Performance of the said approaches with higher average execution time

#Thread 1 #Thread 2 #Thread 3 #Thread 4 #Thread 5

STM Haskell 29.46 9.30 11.06 9.69 8.70

TMVar SJF 29.04 15.88 11.13 10.94 9.03

TMVar FIFO 31.35 17.64 13.05 11.19 9.67

Implementing Software Transactional Memory … 245

4.5 Summary of Results

The shortest job execution policy has minimum waiting time, which implies low
turnaround time for processes. For this reason, in single-threaded environment, our
implementation performs better with shortest job first execution policy. In
multi-threaded environment, the parallel activities, i.e., scheduling the job for
multi-cores, switching between threads etc. are managed by Haskell compiler and
OS. Under this scenario, our STM implementation with TVar performs better than
other two approaches. When transactions’ execution length is higher, this approach
performs best while executing in multi-threaded environment. In our third imple-
mentation, where transactions execute in first-in-first-out basis, transactions’ aver-
age waiting time becomes higher, which results in high turnaround time and a lower
throughput.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Thread 1 # Thread 2 # Thread 3 # Thread 4 # Thread 5

STM Haskell TMVar SJF TMVar FIFO

Fig. 3 Performance graph of
the said approaches with
higher average execution time

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

450.00%

500.00%

Thread 1 # Thread 2 # Thread 3 # Thread 4 # Thread 5

Average Productivity Improvement (Elapse Time)

STM Haskell TMVar SJF TMVar FIFO

Fig. 4 Productivity
improvement on elapse time
with increasing number of
threads

246 A. Ghosh and R. Chaki

5 Conclusions

In this paper, we have critically described one of the recently proposed STM
solutions to establish the importance of STM implementation for appropriate per-
formance analysis. We have also implemented STM in Haskell using three different
approaches. The first implementation uses TVars (STM Haskell) to access trans-
actional variables concurrently. Each transaction maintains a log and depending on
its validity transaction re-executes with a fresh log. In second implementation, we
have combined TMVar and bang-pattern for strict evaluation, which enables
transactions to execute any job in the background. Using this technique, we
implemented shortest job first execution policy. The third implementation executes
transactions as per their initiation order in first-in-first-out basis.

In all these implementations, we have executed task of the transactions in par-
allel and observed the performance impact of different execution policies. The
experimental results show variations in performance depending on number of
threads and transactions’ execution length. Transactions with smaller execution
length perform better in shortest job first implementation when number of threads is
less. When number of threads is increased, the STM Haskell performs better. On the
other hand, when transaction execution length is high, STM Haskell performs
better, irrespective of number of threads available.

References

1. Shavit, N., Touitou, D.: Software transactional memory. In: ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pp. 204–213. ACM (1995)

2. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA ’03:
Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications, pp. 388–402. ACM Press (2003)

3. Gidenstam, A., Papatriantafilou, M.: LFthreads: a lock-free thread library. In: Principles of
Distributed System, pp. 217–231. Springer, Berlin (2007)

4. Fernandes, S.M., Cachopo, J.: Lock-free and scalable multi-version software transactional
memory. In: ACM SIGPLAN Notices, vol. 46, no. 8, pp. 179–188. ACM (2011)

5. Herlihy, M.P., Luchangco, V., Moir, M., Scherer, W.M.: Software transactional memory for
dynamic-sized data structures. In: Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing (2003)

6. Tabba, F., Wang, C., Goodman, J.R., Moir, M.: NZTM: non-blocking zero-indirection
transactional memory. In: Proceedings of the 21st ACM Annual Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 204–213. ACS (2009)

7. Ghosh, A., Chaki, N.: The new OFTM algorithm toward abort-free execution. In: Proceedings
of the 9th International Conference on Distributed Computing and Information Technology,
pp. 255–266. Springer, Berlin (2013)

8. Dolev, S., Fatourou, P., Kosmas, E.: Abort Free SemanticTM by Dependency Aware
Scheduling of Transactional Instructions, Preprint, TRANSACT’13 (2013)

9. Discolo, A., Harris, T., Marlow, S., Jones, S.P., Singh, S.: Lock free data structures using STM
in Haskell. In: Functional and Logic Programming, pp. 65–80. Springer, Berlin (2006)

Implementing Software Transactional Memory … 247

10. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory transactions. In:
PPoPP 2005. ACM Press, New York (2005)

11. Du Bois, A.R.: An implementation of composable memory transactions in Haskell. In:
Software Composition, pp. 34–50. Springer, Berlin (2011)

12. Borgström, J., Bhargavan, K., Gordon, A.D.: A compositional theory for STM Haskell. In:
Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, pp. 69–80. ACM (2009)

13. Jones, S.P., Singh, S.: A tutorial on parallel and concurrent programming in Haskell. In:
Advanced Functional Programming, pp. 267–305. Springer, Berlin (2009)

14. Marlow, S.: Parallel and Concurrent Programming in Haskell, 1st, edn. O’Reilly Media, Inc.
(2013)

15. O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell, 1st edn. O’Reilly Media, Inc.
(2008)

248 A. Ghosh and R. Chaki

Comparative Analysis of Genetic
Algorithm and Classical Algorithms
in Fractional Programming

Debasish Roy, Surjya Sikha Das and Swarup Ghosh

Abstract This paper compares the performances of genetic algorithm with various
classical algorithms in solving fractional programming. Genetic algorithm is one of
the new forms of algorithms for solving optimization problems, which may not be
efficient but a generic way to solve nonlinear optimization problems. The traditional
optimization algorithms have difficulty in computing the derivatives and second
order partial derivatives, i.e., Hessian for the fractional function. The issues of
discontinuity seriously affects traditional algorithm. There are large numbers of
classical methods for searching the optimum point of nonlinear functions. The
classical search algorithms may be largely classified as gradient based methods and
nongradient methods. Here, a comparative performance analysis of different algo-
rithms is made through a newly defined function called algorithmic index. An
algorithm based on heuristics for computation of gewicht vector required to derive
algorithmic index has also been proposed here.

Keyword Fractional programming � Genetic algorithm � Optimization � DEA

1 Introduction

Rechenberg, a German scientist, introduced evolutionary strategies for airfoil shape
point optimization, in the 1960s. Fogel, Owen, and Walsh formulated evolutionary
programming for finite state machines. Evolutionary computation is a broad field

D. Roy (&) � S.S. Das
Department of Management Studies, Techno India University, Kolkata, India
e-mail: debasishroy7@gmail.com

S.S. Das
e-mail: surjyasikha.tiu@gmail.com

S. Ghosh
Department of Humanities and Social Sciences, Techno India University, Kolkata, India
e-mail: swarupghosh55.tiu@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_17

249

and remains a serious interest for research with sub areas as evolutionary pro-
gramming, evolutionary strategies, and genetic algorithm. Large number of
researchers worked on evolution-based algorithms, notable among them are
Box (1957); Friedman (1959); Bledsoe (1961); Bremermann (1962); Reed, Tombs,
and Baricelli (1967).

Genetic algorithm, developed by John Holland who published a book titled
‘Adaptation in Natural and Artificial Systems’ in 1960 in the University of
Michigan, mimic adaptation and traverses from one set of population to a new set of
population by crossover, mutation and selection to achieve and find fitter, and more
suitable population. Later schemas formed basis for all subsequent developments.
This paper compares performances of traditional methods like Random Search,
Box Evaluation, Gradient Descent method, and Hookes’ Jeeves method with
Genetic Algorithm on the Fractional Programming. In order to have an even
comparison, same fractional function is taken for experimentation and optimized
values have been derived using Matlab scripts. This paper also proposes algorith-
mic index for comparison of performances of these algorithms. The computation of
algorithmic index depends on gewicht vector; estimation of this vector can be done
by newly proposed heuristics dependent algorithm.

2 Literature Review

The optimization of the ratio of linear functions has attracted researchers for many
years. In many practical applications, multiple such fractions need to be optimized.
Von Neumann was the earliest to have started using fractional programming in
Equilibrium problems, in 1937.The linear fractional programming started with B.
Mortars and his associates. Charnes and Cooper [1] had proposed transformation LFP
to Linear Programming format and thereby solving the problem. Bitranes and Novaes
solved the problem by gradient descent method [2]. Bitranes and Magnant [3] made
analysis in the same score as Linear Programming for duality and sensitivity. Swarup
[4] extended simplexmethod to LFP, which is an extension of work of Danjtzig [5, 6],
for solving LFP. Bounded variable linear fractional programming was explored by
Bazalinov [7]. He also worked on scaling problems in LFP [8]. Interval Valued
Fractional Programming was studied by Shohrab Effati [9]. Fractional Programming
has often been addressed in the domain of generalized fractional programming [10].

Until 1980s, the single ratio problem has dominated the field. Various methods
have evolved; important among them are use of the LPP methods for solving
fractional functions. Gogia [11] suggested revised simplex method for solving
fractional programming. Horvath [12] gave a criteria for determining optimum for
linear fractional programming using duality considerations. A finite method for
solution to a simpler form of the fractional programming was developed by Stahl
[13]. A special class of linear fractional programming is fractional interval pro-
gramming, which has been studied by a number of authors [14]. Buhler solved
fractional interval programming using generalized inverses [15].

250 D. Roy et al.

2.1 Random Search Method

Random search method uses a population created either in random manner or by
performing unidirectional search along the random search direction. If the feasible
space is narrow, the system of random search may fail. Random Search method has
various algorithms starting from Pure Random Search and Random Walk to
Metaheuristic. Pure Random Search [16] is a stochastic search method of selecting
random population based on normal or Gaussian distribution. Convergence can be
proved in number of ways [17–19]. The procedure may guarantee convergence, but
is not efficient as it may require large number of iterations depending on nature of the
objective function, feasible zone, and dimension of variables. It may be enormously
large. One such Random Search algorithm is presented in supplementary material.

2.2 Box’s Evolutionary Method

Introduced by G.E.P Box in 1957, this evolutionary algorithm, centering on a point,
selects best point among 2 N points evaluated along N dimensions. The next iteration
starts from this point. The size of the hypercube is successively reduced with change
of the position of the center. Here, required number of function evaluation increases
exponentially with N. This is one of the strong drawbacks of the Box’sMethod. There
are other versions of Box’s Evolutionary Method like Random Evolutionary
Operation (REVOP), Simplex EVOP, etc. The convergence of the algorithm depends
on initial hypercube size, position, and reduction rate, ∂i. This is basically a multi-
dimensional systemic search on dimensions [20]. The algorithm is useful since it is a
derivative free optimization method (DFO) [21–23]. Subsequently, further
improvement was made by Wilson [24] and it was renamed as Response Surface
Methodology (RSM). Whereas RSM is based on least square, DFO is based on direct
function values or its interpolation. The hypercube is the focal point for searching
optimum point. The Box’s method was also opted in finding optimum solutions in
industrial applications [25]. The algorithm, however, does not guarantee convergence
to local or global optima. The algorithm is presented in supplementary material.

2.3 Hooke Jeeves’ Method

In 1961, Hooke and Jeeves [26] conceived that direct search method is effective
when the objective function is nondifferentiable or does not have derivative at all
points in feasible region. In this method, each trial is compared with the previous
best [27]. Therefore, direct search methods for unconstrained optimization works on
relative rank of countable set function values whereas, Armijo-Goldstein-Wolfe
condition for quasi-Newton line search algorithm requires a sufficient decrease in
objective function. The algorithm is presented in supplementary material.

Comparative Analysis of Genetic Algorithm … 251

2.4 Gradient Descent Method

Here, one of the two popular gradient descent methods is presented. The direct
search method eventually requires large number of steps or iterations to converge,
whereas gradient-based methods are faster. However, convex optimization methods
define subdifferentials for functions having discontinuity, which is defined as
follows:

@f x
¼� �

¼ v 2 Rn : f yð Þ � f x
¼� �

� v; y� x
¼D E

; 8y 2 Rn
n o

: ð1Þ

In cases where the objective function is differentiable, the gradient methods [28]
or derivative-based methods are useful and efficient, compared to direct search
method. One of the oldest systems of finding multivariable optimum points is
Newton’s Method [29]. This method is extremely important as it is the simplest
method and assures convergence [30]. Large numbers of improved algorithms have
emerged from this algorithm with slight or minimum modification. One of the most
accepted methods based on the Newton Method and that has been widely accepted
is the Conjugate Direction Method [31]. A generalized powerful extension of this is
the Spacer Step Theorem [32]. The algorithm for Gradient Descent Method is given
in supplementary material.

2.5 Genetic Algorithm

The schema based on genetic algorithm was developed in 1968, with famous
disposition of Schema Theorem [33]. Goldberg [34] developed building block
hypothesis from Schema Theorem. The criticism of Schema Theorem developed in
1990 that the effect of noise and other stochastic effects distort proportionate
selection [35, 36, 37].

The algorithmic flow is given in the supplementary material. The parameters of
genetic algorithm are

• Cross Over Probability—It is 0 %, if the offspring population is an exact copy of
the parent. It is 100 %, if all of the parent population is allowed to crossover.

• Mutation Probability—Mutation probability is zero, if no population is changed
after cross over. It is 100 %, if the whole chromosome is changed. Mutation is
necessary to prevent falling of the population in local optimum.

• Population Size: If population size is small, the search space will not be covered
well. If search space is large, the algorithm becomes slow. Population size also
determines the precision of the solution, i.e., the quality of the solution.

Besides choosing appropriate population size, the balance between selection
operator and exploration operator introduced by crossover and mutation operator is
also important. If selection operator uses too much selection pressure, then the

252 D. Roy et al.

population loses diversity. Genetic algorithm is used for NP-hard problems. It is
more robust than conventional algorithm, i.e., the algorithm does not collapse in the
presence of noise or change of inputs. Also, genetic algorithm is useful in searching
n-dimensional surface or multimodal search space.

3 Linear Fractional Programming

Linear Fractional Programming has various forms. Let p, q, and s denote real
valued functions which are defined over C ϵ Rn. Let us take

s xð Þ ¼ p xð Þ
q xð Þ : ð2Þ

The function s is defined over D ¼ x 2 Cf : s xð Þ� 1g assuming q(x) ≠ 0 for
x ϵ C.

Single Ratio Fractional Programming may be defined as

Max s xð Þ : x�Df g: ð3Þ

In many practical applications, multiple ratios appear for evaluation. This is also
referred to as max−min problem. The Generalized Fractional Programming may be
defined as

Max min si xð Þ : x � Df g; where si xð Þ ¼ pi
qi
;where i ¼ 1; 2. . .m and si [0: ð4Þ

We call it as concave fractional programming, if numerator pi is concave on D.
The denominator qi is convex function on D. It is further assumed that pi is non-
negative on D, if qi is not affine. The objective function in general is not assumed to
be concave. The objective function is assumed to be a ratio of convex and concave
function. The fractional programs are, in general, assumed to be nonconcave pro-
grams. The central point of fractional programming is objective function and point
of attraction is the ratio structure with a feasible region being a convex polyhedron.

Sometimes, functions in both numerator and denominator are affine functions.
If D is a convex polyhedron, the problem is called Linear Fractional Program. The
form of the function is as follows:

Max
aTxþ;
bTxþ h

: Ax� c; x� 0
� �

;Where a; b 2 Rn; ;; h R;A 2 Rmxn; c 2 Rm: ð5Þ

Comparative Analysis of Genetic Algorithm … 253

4 The Experiment

In this experiment, a standard two variable (0–1) fractional function is taken as
follows:

Maximize f x; yð Þ ¼ 3xþ 4yþ 1
5xþ 7yþ 5

8 x; yð Þ 2 R2 : 5xþ 7yþ 5 6¼ 0
� �

: ð6Þ

During the experiment, the optimum value that is the maximum value of this
sample fractional function is obtained. The goal is to maximize the fraction. This is
treated as unconstrained optimization problem. There are large numbers of method-
ologies available for finding the optimum value of this NP-hard problem. Here, three
nonderivative-based methods and one derivative-based method is chosen. Genetic
algorithm is also used to find the optimum value. The comparison of the computation
time, number of iterations, and optimum values of all the algorithms is found. The
parameter sensitivity and other studies can also be conducted. These algorithms are
primarily numerical methods; as a result, comparison of efficiency of algorithms
analytically is difficult. The efficiency of the algorithms depend not only on parameters
but also on type of function. The experiment has been conducted largely on same
setting, which is the same function and same computer. The precision of output is also
chosen same in all cases. The basic nature of the algorithms prevents complete
identical context generation. As a result, some intrinsic differentiation remains.

4.1 Random Search

Here, 1000 random values are chosen between 0 and 1, and function value is
evaluated at all these points. The maximum of the function value is chosen. The
random numbers are chosen based on normal distribution. The random numbers are
2-dimensional. The Matlab code is given below (Fig. 1)

Fig. 1 The plots of iteration points and f(x,y) versus iteration

254 D. Roy et al.

function
[foptxopttimespent]=rando
mOptim(iter)
tic;
xran=ones(iter,2);
f=ones(1,iter);
fori=1:iter
xran(i,:)=rand(1,2);

X=xran(i,:);
f(i)=fx1(X);
holdon;
subplot(2,1,1);

plot(X(1),X(2),'*');
holdoff;
title('RANDOM SEARCH
METHOD');
end
[fopt p]=max(f);
xopt=xran(p,:);
subplot(2,1,2);
plot(f);
timespent=toc;
end

The plot of output is:

The output is as follows:

fopt ¼ 0:4698; xopt ¼ 0:99950:9810; timespent ¼ 30:7039

4.2 Box Evolutionary Method

In the case of Box’s Evolutionary method, initial point is chosen as (x,y) = (2,3).
The precision or delta value is chosen as 0.01. The Matlab code is given below
(Fig. 2)

Fig. 2 The plot of (x,y) and f(x,y) with iterations

Comparative Analysis of Genetic Algorithm … 255

function
[fmaxXmaxiteriterTime]=bo
xEval(xinit,d)
clc;
tic;
iter=0;
x=xinit;
delta=5;
Xset=ones(100,2);
E=ones(100);
while(delta > .0001)
iter=iter+1;

[EmaxEmin
y]=maxbox2(x,d);
delta=Emax-Emin;

x=y;
Xset(iter,:)=y;
E(iter)=Emax;
end
disp(Xset);
plot(Xset);
fori=1:iter
subplot(1,2,1);
holdon;
plot(Xset(i,1),Xset(i,2),
'*');
holdoff;

end
subplot(1,2,2);
plot(E(1:iter));
Xmax=y;
fmax=Emax;
iterTime=toc;
end
function [EmaxEmin y]=
maxbox2(x,d)
Val=Eff2(x);
if Val < 1.0
x1=[x(1)+d x(2)];

E1=Eff2(x1);
x2=[x(1)+2*d x(2)];

E2=Eff2(x2);
x3=[x(1) x(2)+d];

E3=Eff2(x3);
x4=[x(1) x(2)+2*d];

E4=Eff2(x4);
E=[E1;E2;E3;E4];
[Emax,I]=max(E);

Emin=min(E);

y=eval(strcat('x',num2str
(I)));
end
end

The output is as follows:

fmax ¼ 0:5345;Xmax ¼ 2:74003:0000; iter ¼ 37; iterTime ¼ 0:2862

4.3 Hooke’s Jeeves Pattern Search

In this optimization method, the combination of exploratory and heuristic move is
used to find the optimum value. The initial starting point is chosen as (x,y) = (2,3).
The delta and alpha values are chosen as 0.1 and 2. The Matlab code is given below
(Fig. 3)

256 D. Roy et al.

function
[funcmaxXmaxitertimespent
]=hj(X,delta,alpha)
tic;
clc;
cleardata;
delta1=delta;
f=ones(100);
fnext=0;
iter=0;
fmax=.1;
funcmax=0;
while (abs(funcmax-
fmax)>.0001)
iter=iter+1;
funcmax=fmax;

[fmaxXmax
t]=expl(X,delta1);
if t==1

X1=X;
X2=Xmax;[fnextXnext]=patt
ern(X1,X2,alpha);
else
delta1=delta/2;
end
X=Xmax;
holdon;
subplot(2,1,1);
plot(X(1),X(2),'*');
title('Hookes Jeeves Plot
of X(1), X(2)');
holdoff;
f(iter)=funcmax;
timespent=toc;
end
subplot(2,1,2);
plot(f(1:iter));
end
function
[fnextXnext]=pattern(X1,X
2,alpha)
test=1;

count=0;
while (test==1)
count=count+1;
Xnext=X2+alpha*(X2-X1);
if ((fx1(X2)>fx1(Xnext))
|| count==2)
Xnext=X2;
test=0;
else test=1;
end
X2=Xnext;
end
fnext=fx1(Xnext);
end
function [fmaxXmax t] =
expl(X, StepSize)
D=StepSize;
X1=[X(1)+D X(2)];
X2=[X(1) X(2)+D];
X3=[X(1)-D X(2)];
X4=[X(1) X(2)-D];
if (X3(1)<0)

X3(1)=0;
end
if (X4(1) < 0)

X4=0;
end
f=fx1(X);
f1=fx1(X1);
f2=fx1(X2);
f3=fx1(X3);
f4=fx1(X4);
[fmax I]=max([f f1 f2 f3
f4]);
if I==1

t=0;Xmax=X;
else
t=1;Xmax=eval(strcat('X',
num2str(I-1)));
end
end

Comparative Analysis of Genetic Algorithm … 257

The output is as follows:

funcmax ¼ 0:5772;Xmax ¼ 17:70003:0000; iter ¼ 157; timespent ¼ 1:4124:

4.4 Gradient Ascent Method (Cauchy’s Method)

Here, the search direction is the direction of gradient of the function at the point of
evaluation in contrast to the negative of gradient in Gradient Descent Method. The
Matlab Code is given below

Fig. 3 The plot of (x,y) and f(x,y)

258 D. Roy et al.

function
[fgradmaxxoptitergradtime
]=gradDescent(xinit)
clc;
tic;
iter=0;
[dfx]=gradf(xinit);
f=ones(100);
xiter=ones(100,2);
[alpha]=gS(xinit,dfx);
x1=xinit-alpha*dfx;
Nfx=fx1(x1);
Ofx=fx1(xinit);
if (Nfx>Ofx)
xinit=x1;
end
while((Nfx-Ofx) > .00001)
iter=iter+1;

[dfx]=gradf(xinit);
[al-

pha]=gS(xinit,dfx);
x1=xinit-alpha*dfx;
Nfx=fx1(x1);
Ofx=fx1(xinit);
if (Nfx>Ofx)
xinit=x1;
end
f(iter)=Nfx;
xiter(iter,:)=x1;
disp(Nfx);
disp(Ofx);
end
xopt=x1;
fgradmax=Nfx;
gradtime=toc;
subplot(1,2,1);
plot(f(1:iter));
subplot(1,2,2);
plot(xiter((1:iter/100),1
),xiter((1:iter/100),2),'
*');

end
function [dfx]=gradf(x)
d=.001;
x1=[x(1)+d x(2)];
x2=[x(1)-d x(2)];
x3=[x(1) x(2)+d];
x4=[x(1) x(2)-d];
dfx(1)=(fx1(x2)-
fx1(x1))/(2*d);
dfx(2)=(fx1(x3)-
fx1(x4))/(2+d);
dfx=[dfx(1) dfx(2)];
end
function y=fx1(X)
y=(3*X(1)+4*X(2)+1)/(5*X(
1)+7*X(2)+5);
end
function [al-
pha]=gS(x,dfx)
a1=1;
a0=0;
ah=a1/2;
x1=x+a1*dfx;
xh=x+ah*dfx;
x0=x+a0*dfx;
while ((x1-x0)>.001)
if(fx1(x1)<fx1(xh))

a1=ah;
end
if(fx1(x0)<fx1(xh))

a0=ah;
end
ah=a1/2;
x1=x+a1*dfx;
xh=x+ah*dfx;
x0=x+a0*dfx;
end
alpha=a1;
end

The plots of number of iterations and the function value with respect to the
iterations are given below (Fig. 4).

Comparative Analysis of Genetic Algorithm … 259

The output is as follows:

gradmax ¼ 0:5595;Xopt ¼ 7:63152:9965½ �; iterations ¼ 1113; gradtime ¼ 0:3190

4.5 Genetic Algorithm

In case of genetic algorithm, a sample population in feasible region is selected at
random. The crossover and mutation within the sample population is performed to
get a new population based on the fitness level of sample population. The fitness
function is the criteria for survival in subsequent generation. Here, the value of the
objective function or Q(x) is the criteria for fitness. The sample population size
depends on the accuracy of result expected, i.e., number of bits required for
encoding the variable. We assume two decimal place accuracy of the variable. With
the increase in number of variables, the cross over and mutation operations become
complicated. The termination criterion has been chosen as difference of two suc-
cessive iterations less than 10�4: The population size has been chosen as 10. The
Matlab code is given below (Fig. 5)

Fig. 4 The plots of (x,y) and f(x,y) against iterations

Fig. 5 Plot of output of genetic algorithm

260 D. Roy et al.

function
[ZmaxiterXmaxYmaxtimespen
t]=callgeneFrac(x,y,tol,m
ax_iter)
clc;

tic;

r=randi([8,10]);

k=5;

output=ones(2,10,200);

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,5);

out=ones(1,10);

mut=ones(1,10);

zmean=mean(z);

emean=mean(e);

p=0;

while(abs(zmean-emean)>tol)

r=randi([9,10]);

p=p+1;

if (p>max_iter/2)

k=k+1;

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,k);

end

if(p>2*max_iter/3)

k=k+1;

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,k);

end

if (p>max_iter)

break;

end

x=x1;

y=y1;

[x1,y1,z,e,scat]=geneFrac3(x,y,r

,5);

output(:,:,p)=[x1;y1];

zmean=mean(z);emean=mean(e);

out(p)=zmean;

[Zmax m]=max(z);

Xmax=x1(m);

Ymax=y1(m);

end

for k=p+1:10

out(k)=zmean;

end

iter=p;

timespent=toc;

figure;

subplot(2,1,1);

plot(out,'--

rs','LineWidth',2,'MarkerEdgeCol

or','k','MarkerFaceColor','g','M

arkerSize',10);

xlabel('Iteration

Number','FontSize',12);

ylabel('Z=(3x+4y+1)/(5x+7y+5)','

FontSize',12);

title(strcat('Mean Z Versus It-

eration, Saturation

after',blanks(4),

iter),'FontSize',12);

for k=1:p

for l=1:10

holdon;

subplot(2,1,2);

plot(output(1,l,k),output(2,l,k)

,'*');

title('PLOT OF X AND Y IN

GENETIC');

holdoff;

end

end

end

The output is as follows:

Zmax ¼ 0:5765; iter ¼ 4;Xmax ¼ 16;Ymax ¼ 0; timespent ¼ 0:5549

Comparative Analysis of Genetic Algorithm … 261

5 Result

This paper is intended to compare five algorithms. The five algorithms were run
with the following Matlab code:

tol=.001;max_iter=100;
clc;
disp('Genetic
Algorithm');
[ZmaxiterXmaxYmaxtimespen
t]=callgeneFrac(x,y,tol,m
ax_iter);
tgene=timespent;
itergene=iter;
disp('Hookes Jeeves');
[funcmaxXmaxitertimespent
]=hj([1 1],.1,2);
thj=timespent;
iterhj=iter;
disp('Random Search');
[foptxopttimespent]=rando
mOptim(1000);
trs=timespent;
maxpts=1000;
disp(' Box Evaluation Method');

[fmaxXmaxiteriterTime]=bo
xEval([1 1],0.01);
tbox=iterTime;

iterbox=iter;
disp('Gradient Ascent
Method');
[fgradmaxgraditergradtime
]=gradDescent([1 1]);
fprintf('Computation Time
Genetic=%f, Hookes=%f,
Random Search=%f,
BoxEval=%f Grad=%f\n',
tgene,thj,trs,tbox,gradti
me);
fprintf(' Optimum values Genetic=%f,

Hookes=%f, Random Search=%f, BoxEval=%f

Grad=%f\n',

Zmax,funcmax,fopt,fmax,fg
radmax);
fprintf('Iterations Ge-
netic=%d, Hookes=%d, Ran-
dom
Search=%d,BoxEval=%d,Grad
=%d\n',itergene,iterhj,ma
xpts,iterbox,graditer);

The comparative result of running five algorithms individually on the same
fractional function with almost same termination criteria and same initial starting
point is given below in tabular form (Table 1 and Fig. 6).

Table 1 Comparative figures for various algorithms

Algorithms Computation
time

Iterations Optimum
values

Computation
time/iteration

Random search 0.013811 1000 0.47016 0.138113

Box’s
evolution

0.154882 231 0.536978 6.704833

Hooke’s Jeeves 0.14433 191 0.5779115 7.7556552

Gradient ascent 0.186542 1213 0.562720 1.537856

Genetic 1.4901413 52 0.55645161 286.565718

262 D. Roy et al.

6 Conclusion

From the table of comparative performances, it is clear that computation time for
genetic algorithm is highest, while random search takes lowest time. Strangely,
Hooke’s Jeeves Pattern Search takes lesser time to execute than Box’s Evolution
and others except Random Search. There is no doubt that the performance of
genetic algorithm is the best. Though Gradient Descent is known to be a better
algorithm than non gradient algorithms, Hooke’s Jeeves algorithm performs better
than Gradient Search in terms of computation time. In regard to number of itera-
tions to reach termination, again genetic algorithm performs better than all other
algorithms. The worst is the Random Search Algorithm. The performance of
Hooke’s Jeeves Method is better than Box’s Evolutionary algorithm. This com-
pelled the derivation of computation time per iteration. From the computation time
per iteration, it is found that Gradient Descent Algorithm is having the best result,
whereas genetic algorithm is the worst. This may be due to the fact that more
complex is the algorithm, the computation time per iteration is higher.

The most interesting feature in Hooke’s Jeeves algorithm is that it is giving the
highest value in comparison to other algorithms. Gradient Descent Algorithm is
giving the next highest. The performance of Random Search in terms optimum
value is worst and highest in case of Hooke’s Jeeves Algorithm.

The fractional programming is NP-hard problem. As a result, computation of
algorithmic complexity is difficult. This paper does not intend to find the com-
plexity. However, in order to make comparative assessment, Algorithmic Index is
defined as follows:

g ¼D1ðCTÞþD2ðItÞþD3ðOptÞþD4ðCT/ItÞ: ð7Þ

CT Computation Time
It Iterations
Opt Optimum Values
CT/It Computation Time per Iteration
D ¼ ðD1D2D3D4Þ Relative gewicht vector

Fig. 6 Plot of (computation time/iteration)/optimum value/time per iteration for different types of
algorithms

Comparative Analysis of Genetic Algorithm … 263

Computation of Gewicht Vector: In order to estimate the gewicht vector, the
following algorithm has been formulated:

Step 1 Choose random set of initial starting points.
Step 2 Find optimum parameters.
Step 3 Set a heuristics for derivation of Algorithmic Index.
Step 4 Performance Matrix is computed as follows:

Performance Matrix = [CTAlgo ItAlgo OptAlgo (CT/It)Algo],
, where Algo = Gentic Algorithm, Gradient Ascent Algorithm,
Hooke’s Jeeves, Box, and Random.

Step5 Normalize Performance Matrix.
Step6 Derive Algorithmic Index as follows:

AlgoIndex = GewichtVector * Normalized Performance Matrix
Step7 Find the set of gewicht for which the heuristics satisfies.
Step8 The average gewicht over the set is computed.
Step9 If the average gewicht does not satisfy heuristics, readjust heuristics

by going to step2, and recompute till gewicht satisfies heuristics.
Step10 Estimated gewicht vector is derived.

Step11—Apply estimated gewicht vector to the Normalized
Performance Matrix on a new random initial starting point. Check
whether heuristics is satisfied.

The MATLAB code for estimation of gewicht vector is given in supplementary
material. The estimated gewicht turns out to be ðD1D2D3D4Þ ¼ ð0:237586 0:
292759 0:358276 0:111379Þ

With the random starting point figures, the performance matrix turns out to be
Table 2
After normalizing the performance index and using estimated gewicht vector,

algorithmic index turns to be:
Table 3
In a nutshell, it may be concluded that genetic algorithm performs far better than

other algorithms. The algorithmic index is highest for genetic algorithm. The ratio ofȠ

Table 2 Performance matrix

Performance matrix

Genetic Gradient Hookes Box Random

Computation time 1.49014173 0.186542 0.14433 0.154882 0.013811

Max value 0.55645161 0.56272 0.577915 0.536978 0.47016

No of iterations 52 1213 191 231 1000

CompTime/iteration 286.565718 1.537856 7.556552 6.704833 0.138113

264 D. Roy et al.

values of genetic and gradient, the nearest competitor is approximately 19.658. That
means, performance of genetic algorithm is nearly 20 times better than the remaining.
TheGradientAscent performs better thanHooke’s Jeeves andBox’sAlgorithm.Here,
two variable fractional functions have been studied. The research may be extended to
cases of higher dimensions.

Acknowledgements Special thanks go to my guides Dr. Sujyasikha Das and Dr. Swarup Prasad
Ghosh for inspiring me to write the paper and implementing the scenario in Matlab. The paper
would remain unfinished if I don’t convey my regards and heartfelt thanks to Dr. Nabendu Chaki
for relentless support to my academics. He has been the driving force for all the activities.

Appendix

Algorithm for Random Search

Step 1: Choose initial x0, z0, ϵ such that the minimum lies in (x0 − 1/2z0, x0 +
1/2z0). For each Q block, set q = 1 and p = 1.

Step 2: For i = 1,2…N, create points using uniform distribution of m in the
range (–0.5,0.5). Set xi

(p) = xi
q−1 + mzi

q−1.
Step 3: If x(p) is infeasible and p < P, repeat Step 2. If x(p) is feasible, save x(p)

and f(x(p)). Increment p and repeat step 2;
Else if p = P, set xq to be the point that has lowest f(x(p)) over all feasible
x(p) including xq−1

And reset p = 1.
Step 4: Reduce the range via zi

q = ϵ zi
q−1.

Step 5: If q > Q. Stop.
Else increment q and continue to Step 2.

Box’s Evolutionary Algorithm

Step 1: Choose initial point. Choose size reduction step δi and termination cri-
teria ϵ..

Step 2: If δi < ϵ. STOP.
Step 3: Else create 2N points by adding and subtracting δi from each variable at

the initial point.

Table 3 Normalised performance matrix

Normalized performance matrix

Genetic Gradient Hookes Box Random

Computation time 107.892569 13.50643 10.45011 11.21409 1

Max value 0.96286003 0.973707 1 0.929164 0.813544

No of iterations 1 23.32692 3.673077 4.442308 19.23077

CompTime/iteration 2074.85709 11.13473 54.71263 48.54583 1

Algorithmic index 257.37 13.092 10.185 9.935 7.477

Comparative Analysis of Genetic Algorithm … 265

Step 4: Compute function values at all 2N points. Find the optimum among these
points. Set it as initial point for next iteration.

Step 5: Reduce size of the step to δi/2 and go to Step 2.

Hooke’s Jeeves’ Algorithm

Step 1: Initial point is selected and objective function is evaluated.
Step 2: Search is made in the direction of each dimension by a step size Si to find

lowest of functional value.
Step 3: In case the function value does not decrease in any direction, the step

size is reduced and fresh search is made.
Step 4: If the value of objective function reduces, a new initial point is found as

follows:
Xi,o
(k+1) = Xi

k+1+θ(Xi
k+1 − Xi

k), θ > 1.
Step 5: This search continues till the termination criteria is met, i.e., θ < ϵ.

Gradient Descent Method

Step 1: Choose initial point x(0) and termination parameters ϵ1 and ϵ2.
Step 2: Compute first derivative rf xk

� 	
:

Step 3: If rf xk
� 	

� ϵ1 STOP.

Else go to next step
Step 4: By unidirectional search, find α k such that f(x(k+1)) = f(xk − α k rf xk

� 	
)

is minimum. One criteria for termination is | rf xkþ 1
� 	

:rf xk
� 	

| ≤ ϵ2.

Step 5: If jjxkþ 1�xk jj
xkj jj j � ϵ1, then STOP.

Else set k = k + 1, go to step 2.

Genetic Algorithm

Start and generate a random population of size n.
Fitness: Evaluate fitness of each chromosome.
New Population: Create new population by repeating the steps below
Select two parent chromosomes from the population according to best fitness.
Cross over the parents, with a crossover probability to form new population.
With a mutation probability, mutate the new offspring.
Add the new offspring in the population.
Replace: Use the new generation for next iteration.
Test: Check termination criteria.
Loop: Go to step 2.

MATLAB Code for Estimating Gewicht Vector

266 D. Roy et al.

ExtFiveMethods.m
function []=ExtFiveMethods()

 % for computing Parameters

 x=rand(1,10);

 y=rand(1,10);

 [avS avAlgoIndex]=pmComp(x,y);

 x=rand(1,10);

 y=rand(1,10);

 fn='fiveMethod.mat';

 [NPM1 PM]=FiveMethods(x,y);

 save(fn,'NPM1','PM');

 AlgoIndex=avS*NPM1;

 fn1='fiveMethod1.mat';

 save(fn1,'avS','AlgoIndex');

 disp('Estimated Algorithimic Index');

 fprintf('%1.3f %1.3f %1.3f %1.3f %1.3f\n',AlgoIndex);

 fprintf('\n');

end

pmComp.m

function [avS avAlgoIndex]=pmComp(x,y)

x1=x;

y1=y;

[NPM perfMatrix]=FiveMethods(x1,y1);

paramSt=ones(50,4);

t=1;

 for k=0.01:.1:1

 for j=0.01:.1:1

 for i=0.01:.1:1

 l=1-i-j-k;

 param=[i j k l];

 if ((l<=0)||(k==1)||(j==1)||(i==1)||(i==1))

 break;

 end

 AlgoIndex=param*NPM;

 if ((i<1) || (j<1) || (k<1) || (l<1))

 if((AlgoIndex(1,1)>AlgoIndex(1,2)) &&

...(AlgoIndex(1,2)>AlgoIndex(1,3)) &&

(AlgoIndex(1,3)>AlgoIndex(1,4))...

 && (AlgoIndex(1,4)>AlgoIndex(1,5)))

 paramSt(t,:)=param;

 t=t+1;

 end

 end

Comparative Analysis of Genetic Algorithm … 267

 end

 end

 end

 comps=sum(paramSt(1:t-1,:));

 avS=(1/(t-1))*comps;

 avAlgoIndex=avS*NPM;

 pause;

 end

FiveMethods.m

function [NPM perfMatrix]=FiveMethods(x,y)

tol=.001;max_iter=100;

[Zmax iter Xmax Ymax timespent]=callgeneFrac(x,y,tol,max_iter);

tgene=timespent;

itergene=iter;

 [funcmax Xmax iter timespent]=hj([x(1) y(1)],.1,2);

thj=timespent;

iterhj=iter;

[fopt xopt timespent]=randomOptim(1000);

trs=timespent;

maxpts=1000;

[fmax Xmax iter iterTime]=boxEval([x(1) y(1)],0.01);

tbox=iterTime;

iterbox=iter;

[fgradmax xopt graditer gradtime]=gradDescent([1 1]);

format;

perfMatrix=ones(4,5);

perfMatrix(1,:)=[tgene gradtime thj tbox trs];

perfMatrix(2,:)=[Zmax fgradmax funcmax fmax fopt];

perfMatrix(3,:)=[itergene graditer iterhj iterbox maxpts];

perfMatrix(4,:)=10000*[tgene/itergene gradtime/graditer

thj/iterhj tbox/iterbox trs/maxpts];

tmin=min(perfMatrix(1,:));

OutMax=max(perfMatrix(2,:));

iterMin=min(perfMatrix(3,:));

perIterMin=min(perfMatrix(4,:));

NPM=ones(4,5);

NPM(1,:)=(1/tmin)*perfMatrix(1,:);

NPM(2,:)=(1/OutMax)*perfMatrix(2,:);

NPM(3,:)=(1/iterMin)*perfMatrix(3,:);

NPM(4,:)=(1/perIterMin)*perfMatrix(4,:);

End

268 D. Roy et al.

References

1. Charnes, A.C.W.: An explicit general solution in linear fractional programming. Naval Res.
Logist. Quart. 20, 449–467 (1973)

2. Bitran, G.R., Novaes, A.G.: Linear programming with fractional objective function. Oper. Res.
21, 22–29 (1973)

3. Birtan, G.R., Magnanti, T.L.: Duality and sensitivity analysis of fractional objective function.
Oper. Res. 24, 675–699 (1976)

4. Swarup, K.: Linear fractional programming. Oper. Res. 13(6), 1029–1036 (1965)
5. Dantzig, G.B.: Linear Programming under uncertainty. Manage. Sci. 1(3 and 4), 197–206

(1955)
6. Dantzig, G.B., Mandansky, A.: on solution of two stage linear programming under

uncertainty. Barkley Symp. Maths Stat. 1(3 and 4), 165–176 (1961)
7. Bazalinov, E.B.: Linear Fractional Programming. Kluwer Academic Publishers, Dordrecht

(2003)
8. Bajalinov, E.: Scaling problems in linear fractional programming. In: proceeding of 10th

international conference on operation research, vol. 3, no. 1, pp. 22–24 (2004)
9. Shohrab, E., Morteza, P.: Solving the Interval Valued Fractional Programming. Am.

J. Comput. Math. 2(1), 51–55 (2012)
10. Barros, A.I., Frenk, J.B., Schaible, S., Zhang, S.: A new algorithm for generalised fractional

programming. Math. Program. 72(2), 147–175 (1996)
11. Gogia, N.: Revised simplex algorithm for linear fractional programming problem. Math.

Student 36(1), 55–57 (1969)
12. Horvath, I.: AsupraprogramliriifracJionare lineare cu restricJii suplimentare. Informatica

pentru Conducere, pp. 101–102 (1981)
13. Stahl, J.: Two new methods for solution of hyperbolic programming. In: Publications of the

Mathematical Institute of Hungarian Science, vol. 9, no. B, pp. 743–754 (1964)
14. Stancu-Minasian, I.M.: Stochastic Programming with MultiObjective Function. D. Reidel

Publishing Company, Dordrecht (1984)
15. Buhler, W.: A note on fractional interval programming. Oper. Res. A-B 19, 1, 29–36 (1975);

Z(19), 29–35 (1975)
16. Robins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407

(1951)
17. Costa, A., Jones, O., Kroese, D.: Convergence properties of the cross entropy method for

discrete optimization. Oper. Res. Lett. 35, 573–580 (2007)
18. Zhang, Q., Muhlenbein, H.: On the convergence of a class of estimation of distribution

algorithm. IEEE Trans. Evol. Comput. 8, 127–134 (2004)
19. Binglsley, P.: Convergence of probability measures. John Wiley and Sons, New York (1999)
20. Box, G.E.: Evolutionary operation: a method for increasing industrial productivity. Appl Stat

6, 81–101 (1957)
21. Brent, R.P.: Algorithms for Minimization without derivatives. Printice Hall, EngleWoods

Cliffs (2002)
22. Mifflin, R., Strodiot, J.J.: A Bracketing technique to ensure desirable convergence in univariate

minimisation. Math. Prog. 17, 100–117 (1975)
23. Mifflin, R., Strodiot, J.J.: A rapidly convergent five-point algorithm for univariate

minimisation. Math. Prog. 62, 299–319 (1993)
24. Box, G.P., Wilson, K.B.: On the experimental attainment of optimal conditions. Stat. Soc. 13,

1–13 (1951)
25. Box, G.E.P., Draper, N.R.: Evolutionary Operation: A Statistical Method For Process

Improvement. Wiley, New York (1998)
26. Hooke, R., Jeeves, T.A.: Direct search solution for numerical and statistical problem. ACM 8,

212–219 (1961)

Comparative Analysis of Genetic Algorithm … 269

27. Nelder, J.A., Mead, R.: A simplex method for function minimisation. Comput. J. 7, 308–313
(1965)

28. Fletcher, R.: Practical Methods for Optimisation. John Wiley and Sons, Chichester (1987)
29. Murray, W., Wright, M.H., Gill, P.E.: Practical Optimization. Academic Press, London (1981)
30. Gabay, D.: Reduced Quasi Newton method with feasibilty improvement for nonlinear

constrained optimisation. Math. Prog. Stud. 16, 18–44 (1982)
31. Fletcher, R.: Conjugate Gradient Methods for Indefinite Systems. Numer. Anal. Rep. 5, 11

(1975)
32. Zangwill, W.: Nonlinear Programming: A Unified Approach. Printice Hall, Englewood Cliffs

(1969)
33. Holland, J.H.: Hierarchical description of universal spaces and adaptive systems. Tech.

Rep ORA Project 01252 (1968)
34. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading (1989)
35. Grefenstette, J.J.: Deception considered harmful. In: Whitley, L.D. (ed.) Foundations of

genetic algorithms (1993)
36. Fogel, D.G.: Schema processing under proportional selection in the presence of random

effects. IEEE Trans. Evol. Comput. 1(4), 290–293 (1997)
37. Radcliffe, N.J.: Schema Processing. In: Handbook of evolutionary computation, pp. B2.5–

1.10. Oxford University Press (1997)

270 D. Roy et al.

An Algorithm to Solve 3D Guard Zone
Computation Problem

Ranjan Mehera, Piyali Datta, Arpan Chakraborty
and Rajat Kumar Pal

Abstract The guard zone computation problem finds vast applications in the field
of VLSI physical design automation and design of embedded systems, where one of
the major purposes is to find an optimized way to place a set of 2D blocks on a chip
floor. Each (group of) circuit component(s) Ci is associated with a parameter δi,
such that a minimum clearance zone of width δi is to be maintained around Ci. In
this paper, we introduce the problem in its 3D version. Considering 3D simple solid
objects makes the guard zone computation problem more complex and helps to
solve many real life problems like VLSI physical design, Geographical Information
System, motion control in robotics, and embedded systems. In this paper, we
develop an algorithm to compute guard zone of a 3D solid object detecting and
excluding overlapped regions among the guard zonal regions, if any.

Keywords Simple polygon � Safety zone � Notch � Convex hull � False hull
edge � Convolution � Minkowski sum � Extreme points of a curve � 3D simple
solid object � Computational geometry � 3D coordinate geometry

R. Mehera (&) � P. Datta � A. Chakraborty � R.K. Pal
Department of Computer Science and Engineering, University of Calcutta, Acharya Prafulla
Chandra Roy Siksha Prangan, JD – 2, Sector – III, Saltlake City, Kolkata 700098,
West Bengal, India
e-mail: ranjan.mehera@gmail.com

P. Datta
e-mail: piyalidatta150888@gmail.com

A. Chakraborty
e-mail: arpanc250506@gmail.com

R.K. Pal
e-mail: pal.rajatk@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_18

271

1 Introduction

Guard zone computation problem is well defined in literature as an application of
Computational geometry. Often, this problem is known as safety zone problem [1].
In case of 2D guard zone computation problem, given a simple polygon P, its guard
zone G (of width r) is a closed region consisting of straight line segments and
circular arcs (of radius r) bounding the polygon P such that there exists no pair of
points p (on the boundary of P) and q (on the boundary of G) having their Euclidean
distance d(p,q) less than r. In case of VLSI layout design as well as in embedded
system, a chip may contain several million transistors. The goal of placement is to
find a minimum area arrangement for the blocks that helps to complete intercon-
nections among them. A good routing and circuit performance heavily depend on a
good placement algorithm. Placement of modules is an NP-complete problem.

Each circuit component Pi is associated with a parameter p such that a minimum
clearance zone of width p must be maintained around that circuit component. The
location of the safety zone of specified width for a simple polygon is an important
problem for resizing the circuit components. If more than one polygonal region is
close enough, their safety zones overlap, violating the minimum separation con-
straint among them. Thus, with respect to resizing problems in VLSI, this is the
motivation of defining the safety zone of a polygon [2].

We have developed a number of algorithms to solve the guard zone computation
problem for only 2D simple polygons or objects. Now, the question arises whether
the problem can be visualized and solved for its 3D version. A 3D simple solid
object is surrounded by a number of planes such that no two planes cut each other
except at their edges. The pair of planes meeting at an edge is the neighboring
planes. In this paper, we develop an algorithm to compute guard zone of a 3D solid
object detecting and excluding overlapped regions among the computed guard
zonal regions, if any.

If two or more objects are close enough so that their guard zones overlap,
indicating the violation of the minimum separation constraint among them, the
intersecting regions are to be detected such that the guard zone can be computed
eliminating those intersecting regions. As our inclination in doing the task is in the
domain of computational geometry for a given 3D simple object, we like to detect
the part(s) of G that overlap(s) using the concept of analytical and coordinate
geometry.

In this paper, we have solved the problem of computation of the guard zone for a
simple solid object as well as detection of the overlapped regions (if any). While
computing the initial guard zone G, we enclose the solid object P by G, which is
essentially a collection of O(n) planar segments, cylindrical segments, and spherical
components corresponding to the planar surfaces, convex edges, and convex solid
vertices of the input simple solid object; we explain it in the subsequent sections.
After computing the guard zone trivially, we detect the overlapped regions of the
guard zone to find the union of all individual guard zonal regions of the object.
Again, the 3D guard zone computation algorithm proposed in this paper is output

272 R. Mehera et al.

sensitive in nature, i.e., the computational complexity varies with the number of
overlapped regions in the guard zone of the solid object. Hence, the complexity
depends on the shape of the simple solid object provided.

2 Literature Survey

If P is a simple polygon and G is its guard zone of width r, then the boundary of
G is composed of straight line segments and circular arcs of radius r, where each
straight line segment is parallel to an edge of the polygon at a distance r apart from
that edge, and each circular arc of radius r is centered at a (convex) vertex of the
polygon. The boundary of the guard zone describes a simple region in the sense that
no two edges (straight line segment(s) and/or circular arc(s)) on its boundary
intersect in (or pass through) their interior. The problem originates in the context of
resizing the VLSI layout design [3].

In the context of guard zone computation, several different algorithms have been
proposed so far. The most discussed tool for guard zone computation is the
Minkowski sum. Essentially, Minkowski sum between a line (as polygonal seg-
ment) and a point (perpendicularly at a distance r apart) with same x- and
y-coordinates gives a line parallel to the given one. But a question arises whether
the parallel line is inside or outside the polygon. Here, the definition of Minkowski
sum [4] can be extended as follow: if A and B are subsets of Rn, and λ 2 R, then
A + B = {x + y | x 2 A, y 2 B}, A–B = {x–y | x 2 A, y 2 B}, and λA {λx | x 2 A}. Note
that A + A does not equal to 2A, and A–A does not equal to ‘zero’ in any sense.
Apart from Minkowski sum, convolution can also be used as a tool for guard zone
computation.

A linear time algorithm is developed for finding the boundary of the minimum
area guard zone of an arbitrarily shaped simple polygon in [3]. This method uses the
idea of Chazelle’s linear time triangulation algorithm [5]. After having the trian-
gulation step, this algorithm uses only dynamic linear and binary tree data
structures.

Again, the problem of locating guard zone of a simple polygon has been solved
and a time-optimal sequential algorithm for computing a boundary of guard zone
that uses simple analytical and coordinate geometric concepts have been presented
in [6, 7]. It uses three different procedures to compute guard zone at convex,
concave, and linear regions of the polygon. The algorithm can easily be modified to
compute the regions of width r outside the polygon (as guard zone), and also inside
the polygon.

In paper [8], the authors have developed algorithm for detection of guard zonal
overlapping in case of a 2D simple polygon and the algorithm uses the concept of
line sweep algorithm for a set of parallel line segments. Most interestingly, the
algorithm is output sensitive, i.e., its behavior changes with the input. Thus, the
guard zone computation is easier for a polygon without notches than that of a
polygon with notches as well as overlapped guard zonal regions.

An Algorithm to Solve 3D … 273

3 Formulation of the Problem and the Algorithm

In case of 2D guard zone computation problem [8], our objective is to derive a 2D
imaginary region outside the polygon such that each point p on the polygon
maintains at least a distance r, which is predefined from each point q on that region.
Similarly, for the 3D version of the guard zone computation problem, we derive a
3D imaginary region bounding the solid object such that it maintains at least
distance r between them. For the sake of simplicity, we consider only that kind of
solid objects, which consist of only planes, i.e., no curved surfaces are there. Hence,
two neighboring planes meet at their edges, i.e., at a straight line where the cor-
responding planes make an angle that may either be convex or concave as it is
formed outside the object. If the planes meet at a convex angle outside the object,
such an edge is considered to be a convex edge; otherwise, it is considered as a
concave edge if the planes meet at a concave angle outside the object.

On the other hand, a simple solid object may contain both convex and concave
vertices in it; at such a vertex, we call a solid vertex, several planes of the solid
object intersect. It is important to observe that at each such vertex of a simple solid
object, the number of planes intersects is at least three. The vertices of a simple
solid object are defined as follows. A (solid) vertex v of a solid object S is defined as
concave, if for each pair of intersectional lines (for the associated planes) incident at
v form an angle outside the object (i.e., an external angle at vertex v) less than 180º;
otherwise, it is defined as convex.

As in Fig. 1a, which is a portion of solid object S where two adjacent planes
A and B intersect, the normal vector for plane B is n1 and that of A is n2. Now, the
angle between planes A and B is same as the angle between the normal vectors to
planes A and B. Hence, θ = cos−1(|n1·n2|/(|n1||n2|)). This is how all external angles
of the solid object S can be computed (as concave or convex) in time O(‘), where ‘
is the number of intersection lines between adjacent planes of S. Now, it can be said
that, if at a solid vertex the number of convex edges meeting at the vertex is greater
than the number of concave edges, the vertex is a convex solid vertex; whereas, it is

A

B

(a) (b) (c)

Inside the
3D object

Inside the 3D
solid object

n2

n1

Fig. 1 a Part of a solid object with planes A and B, and a concave (external) angle θ between
them. The dotted lines indicate the imaginary portion of the planes A and B (inside the solid
object); n1 and n2 indicate the normal vector to the planes B and A, respectively. b Deep or concave
solid vertex in a 3D solid object. c Peak or convex solid vertex in a 3D solid object

274 R. Mehera et al.

said to be a concave solid vertex if the number of concave edges meeting at the
vertex is greater than that of convex edges meeting at the vertex. A concave and a
convex solid vertex have been depicted in Fig. 1b, c, respectively.

A guard zone G of a 3D simple solid object S with n solid vertices can eventually
be obtained as follows. Let intersection lines created due to the intersection of
adjacent planes of the object be labeled as l1, l2, …, l‘ in some order. For each
intersection line li, 1 ≤ i ≤ ‘, where two adjacent planes of S intersect, we bisect the
external angle. Then we draw a plane parallel to the plane (li, li+1), 1 ≤ i < ‘, at a
distance r outside the solid object that may be a portion of the desired guard zone
G that is being computed, assuming that li and li+1 are forming the plane under
consideration. To be precise, successive guard zonal planes must meet (or intersect)
each other only at an angle bisector of line li, formed due to the intersection of allied
planes of the given 3D simple solid object. At the edges of the simple object, the
guard zonal region is cylindrical in shape. Furthermore, the parallel planes that are
guard zone of the neighboring planes are tangent to the cylindrical surface whose
axis is the line of intersection of the two assumed planes. At the peak, where more
than two planes coincide, the guard zonal regions result a spherical shape and the
guard zonal planes of the given object’s planes that meet at the peak are tangent to
the spherical surface.

As the input 3D simple solid object is made of a set of planes (by assumption),
for computing the guard zone of individual plane, we first need to compute planes
parallel to the ones specified in the form of 3D simple solid object, at a distance
r outside the object. For example, we have considered two planes for which we
would like to compute parallel planes at distance r outside the two believed planes.
Let ABCD and BEFC are two planes adjacent through the edge BC as shown in
Fig. 2a. Since we always consider a simple solid object as input, in reality these two
planes are also adjacent to some other planes of the input solid object through
different edges.

For ABCD, we draw four perpendicular line segments at A, B, C, and D of
length r. Thus, we get Aa, Bb, Cc, and Dd, respectively, and obtain the plane abcd

H

G

A

D

B

C

E

F

a

d

e

f

b b1

c c1

(a)

B

A

C

D

E

I

F

(b)

Fig. 2 a Two plane segments (ABCD and BEFC) meet at a line segment (BC) and their guard
zones (abcd and b1efc1) meet at a cylindrical segment (bb1c1c). b Planar surface ABC bounded by
the 3D box AGCDFHIE

An Algorithm to Solve 3D … 275

which is parallel to the plane ABCD at distance r. Similarly, for the plane BEFC we
get plane b1efc1 as its parallel one.

Now, the guard zonal planes of two neighboring object planes meet at a
cylindrical surface which is considered to be the intermediate curved surface
between the two planes said above. To compute this surface, we have drawn a
cylindrical surface considering BC as its axis and making an angle, ∠bBb1 at the
axis. Now, the guard zonal planes of the object planes, i.e., abcd and b1efc1, are
tangent to this cylindrical surface.

Now, there is a set of guard zonal components in the search space from which
we have to find out the pair of intersecting components. In case of 2D, i.e., the
sample space contains only a set of line segments, we could use plane sweep
algorithm to find out the interesting pairs of line segments. However, in 3D, space
sweep algorithm is only applied for a set of orthogonal planes though the guard
zonal plane segments are not necessarily orthogonal [9]. Furthermore, the search
space also contains cylindrical and spherical regions. Hence, space sweep algorithm
cannot be applied directly.

Let us take a different view toward the problem. If we could bind each guard
zonal component within its minimum possible orthogonal 3D box, then the problem
reduces to find the overlapping pairs of those boxes only. Again, a 3D orthogonal
box consists of six bounding surfaces parallel to one of the three coordinate planes
and the problem is reduced in finding overlaps among these boxes which are regular
in shape.

Now, we can imagine that in the search space there are only O(n) 3D orthogonal
boxes, where n is the total number of planes in a given 3D simple solid object.
Exhaustively, O(n2) checking needs to be performed to find all the intersections
among the set of boxes. Instead of the exhaustive method just described, we like to
use the space sweep method [9], which solves the problem in O(n log n) time. This
three-phase sequential algorithm computes O(n) number of 3D bounded boxes in its
first phase and in the second phase it checks for overlapping among the boxes,
whereas in the third phase it deals only with the corresponding guard zonal regions
for which overlapping has been detected in the second phase. Thus, if there is no
overlapping between any two boxes, the third phase of the algorithm is skipped and
the results we obtain are reported accordingly.

Phase I: Construction of Bounded Boxes for Individual Guard Zonal Surfaces
As the guard zone of a 3D simple solid object may consist of a set of planar,
cylindrical, and spherical surfaces, we compute bounded boxes for each such
surface individually. To bind a planar or a curved surface, we take orthogonal
projection of each surface on xy, yz, and zx planes of the coordinate system. Hence,
in each plane we obtain either a line segment or a curved segment or a bounded
region which are not necessarily identical. Thus, we get three 2D counterparts of
each surface of the 3D guard zone. For each of the 2D segments, we compute its 2D
bounded box as described in [8]. Now, we obtain three mutually perpendicular
planes, i.e., three surfaces of the 3D bounded box. The three other surfaces also
need to be constructed to complete the 3D bounded box of the guard zonal portion

276 R. Mehera et al.

taken into consideration. We like to illustrate this concept with the help of an
example discussed below.

Let us consider a guard zonal planar surface ABC as shown in Fig. 2b, of which
we would like to construct the bounded box. At first, we take orthogonal projection
of ABC on xz, xy, and yz planes. This creates three 2D regions on the three planes
for which we find three 2D bounded rectangles. Here, AGHF, ADCG, and ADEF
are three bounded rectangles on the three coordinate axis planes, respectively.
Hence, the three adjacent planes are computed of the 3D box and other three planes
are yet to be constructed. The width of the 2D box on yz plane indicates the width
of the 3D box along y axis and z axis; similarly, we get the width along x axis from
the 3D box formed on planes xz and xy.

Now, to construct the remaining surfaces of the 3D box, we have to draw three
planes parallel to xz, xy, and yz planes. For an example, the plane DCIE is drawn
parallel to the plane AGBF maintaining a distance AD which is the width of the 2D
box on yz (or xy) plane as well as the width of the 3D box along y axis. Similarly,
the face GCIH and HIEF of the 3D box are drawn parallel to ADEF and ADCG,
respectively. Thus, we get the 3D box AGCDEFHI, which bounds the guard zonal
plane ABC. We perform similar task to get 3D bounded boxes for each of the guard
zonal (planar or curved) surfaces. The 3D bounded boxes computed in this fashion
are not necessarily disjoint to each other, i.e., they may have overlaps. Figure 3a, b
shows the projection of a spherical surface on three orthogonal coordinate planes.

Phase II: Detection of Overlapping among the Bounded Boxes
At the end of the first phase, there are O(‘) number of 3D boxes in the search space,
in which there may be overlap among the boxes, where ‘ denotes the number of
intersection lines at which the consecutive plane segments of the object meet. In the
second phase, we use the space sweep algorithm [4] that checks for intersection
among the boxes and report it accordingly.

In the search space, an infinite plane parallel to each of the xz, xy, and yz planes
is moved along its perpendicular direction (i.e., along y-, z-, and x-axis) consecu-
tively. For each sweep, we get information regarding overlapping of the boxes
along the corresponding direction. Suppose two boxes overlap while sweeping

Y

SXY

Z
(b)

SYZ SXZ

X

SXZ

X

Y

SXY

Z
(a)

S

Fig. 3 a Projections are taken on the orthogonal coordinate planes X. b Projection of the spherical
surface S on xy plane (SXY), yz plane (SYZ), and xz plane (SXZ)

An Algorithm to Solve 3D … 277

through y axis; however, it does not necessitate having overlapping along other two
axes. It means that there was no overlapping between them; rather, they share their
y-interval. By Lemma 1, we can conclude that two boxes overlap if and only if
overlapping has been detected along all the three directions.

Lemma 1 Two boxes overlap if and only if they share x-, y- and z-interval.

Proof Let B1 and B2 be any two boxes in the search space. The x-, y-, and z-span
of B1 and B2 are {(x11 − x12), (y11 − y12), (z11 − z12)} and {(x21 − x22), (y21 − y22),
(z21 − z22)}, respectively. In Fig. 4, we observe that x11 < x21, y11 < y21, and
z11 < z21. Now in a case, if any two boxes overlap, then the point(s) belonging to the
overlapped region is (are) also belonging to the individual boxes, and hence, if we
that consider boxes B1 and B2 have overlapped and an arbitrary point A(x, y, z) is a
point within the overlapped region, then the following inequalities hold.

xi1 \ x\ xi2; yi1 \ y\ yi1; and zi1 \ z\ zi1; where i ¼ 1; 2: ð1Þ

Considering the fact stated in the inequation (1), we can conclude that x21 < x12,
y21 < y12, and z21 < z12, i.e., there are overlaps along all x-, y-, and z-direction. On
the flip side, if there is no overlapping between boxes B1 and B2, the inequation (1)
stated above would not be satisfied and must deny the existence of any such point
A, which in turn ensures that there is no overlapping between the mentioned boxes.

Now, in our algorithm for overlapping detection among the 3D bounded boxes,
we store the information of overlapping for three different directions and boxes by
maintaining three different Binary Search Tree (BST) data structures. Again, we
extract the final information regarding overlapping by combining the results of
these three BSTs.

We illustrate the process through an example. Let us consider that there are three
3D boxes, namely 1, 2, and 3 on which we perform space sweep operations along
three coordinate axes. The surfaces of the boxes which are parallel to the sweep
plane are considered to be the event points during sweeping. For an example, when
we move the xz plane, the surfaces of the boxes parallel to xz plane are considered
to be the event points and the surface with lower y value is the starting point of the
allied box while the surface with higher y value is considered to be the end point. At
the beginning of the sweeping process, the event points are sorted depending on the
values of that coordinate along which the sweeping is being performed. Through

B1

B2

A(x, y, z)

Fig. 4 Two boxes B1 and B2 are overlapped and A(x, y, z) is a point at the overlapped region

278 R. Mehera et al.

the sweeping process whenever the sweep plane is at a starting point, the corre-
sponding box is inserted in the query tree and the overlapping list is updated by
inserting overlapping information of the newly inserted box and the existing boxes
in the query tree. On the other hand, at an end point the corresponding box is
deleted from the tree. Overlapping information for two boxes is stored in the form
of a dipole {box1, box2}.

Let us consider the example depicted in Fig. 5a–c. In Fig. 5a, xz plane is moving
along y axis and the event points have been denoted as 1s, 1e, 2s, 2e, 3s, and 3e.
Now, the event points are sorted according to their y-coordinate values and we
obtain 2s, 3s, 1s, 2e, 1e, and 3e. At each event point, the query tree is updated
through insertion or deletion and the event point is deleted from the event point list.
Hence, the sweeping ends when the event point list is empty and we obtain a list of
overlapping 3D boxes.

In Fig. 5a, when the sweep plane is at the starting plane 2s, the corresponding
box2 is inserted in query tree. Next event point is 3s and it is also a starting point;
hence, box3 is inserted as the right child of box2, as its y-coordinate value is greater
than that of box2. The overlapping list which was initially empty is now updated by
inserting the pair of boxes {2, 3} or {3, 2}. To remove ambiguity, we prefer to store
the lower numbered box first, i.e., {2, 3} is inserted into the overlapping list. The
next event point is 1s and box1 is inserted into the query tree as the right child of
box3.

After the insertion, as the tree becomes height imbalanced, AVL rotation is
performed to balance the tree. Now the overlapping list is updated by inserting
event points {1, 3} and {1, 2}. At the next three event points, as these are the end
points, the allied boxes are deleted from the query tree. Finally, the query tree as
well as the event point list becomes empty and we obtain a set of overlapping pairs
along y axis, say A. Here, A = {{1, 2}, {2, 3}, {1, 3}}. The query tree after each
update has been shown in Fig. 6a.

Next, the sweep plane is moved through z axis and the surfaces of the boxes that
are parallel to xy plane are considered to be the event points. Now, the starting and
ending event points are shown in Fig. 5b; after sorting we obtain the sequence of
the event points as 3s, 2s, 3e, 1s, 2e, and 1e and the query trees are updated at each
event point. After completion of the sweeping, the set of overlapping pairs of boxes,
say set B, becomes {{2, 3}, {1, 2}}. The series of query trees formed after each
operation performed for each event point has been shown in Fig. 6b. At the last step
of the space sweep phase, yz plane is swept along x axis where the sorted list
contains 1s, 2s, 1e, 2e, 3s, and 3e, the event points based on Fig. 5c.

At the end of sweeping, it provides the overlapping information through a set of
overlapping pairs. If the set is named as C, C = {{1, 2}}. The series of query trees
formed after each operation performed for each event point has been shown in
Fig. 6c.

We have already proved the phenomenon that if two 3D boxes have overlapped
with each other, they must overlap along all the three axes. Now, to detect the boxes
which overlap indeed, we have to find the common pair(s) in these three sets A, B,
and C. In our example, if we perform A\B\C, we obtain only one pair {1, 2},

An Algorithm to Solve 3D … 279

(c)

X

Z

X

Y

1s

1e

3s

3e

2e

2s

(b)

Z

Y

1s

1e

3e

3s

2e

2s

(a) Z

X

Y

1s

1e

2e2s

3e
3s

Fig. 5 Sweep of the plane along a y axis, b z axis, and c x axis

280 R. Mehera et al.

though there are three entries in set A and two entries in set B. Hence, box1 and
box2 have intersection and we deal with only these boxes in the third phase, as only
these boxes contain the probable intersecting guard zonal surfaces.

Phase III: Detection of Intersection among the Guard Zonal Components
Contained in the Overlapped Boxes
The third phase of our algorithm deals with those guard zonal surfaces whose
bounded boxes are found overlapped in the second phase. As there are only three
types of guard zonal surfaces, any pair of them may intersect with the other, and
there are only six types of possible intersections, that are planar–planar,
planar-spherical, planar-cylindrical, spherical-spherical, spherical-cylindrical, and
cylindrical-cylindrical.

Planar–Planar Intersection If we like to check intersection between two plane
segments, we notice that two plane segments always cut at a line segment satisfying
the equation of both the planes [10]. Two plane segments intersect in two ways;
either one of them fully passes through the other or they intersect partially. If A and
B are two plane segments, the possible intersections are depicted in Fig. 7.

Empty

(a)

(b)

(c)

Empty

Empty

Empty

2 2

3

2

3

1

2

3

1

3

1

3

3

2

3 2 2

1

1

1

2

1 2 3

Fig. 6 Query trees during the sweep of the plane along a y axis, b z axis, and c x axis

(c)

A

B
i2 i1

A

(a)

B
i1 i2

(b)

A

B
i1 i2

Fig. 7 a B passes through the plane segment A. b A passes through the plane segment B. c The
planes partially cut each other

An Algorithm to Solve 3D … 281

In Fig. 7a, B passes through A resulting in two intersection points within the
boundary of A, whereas in Fig. 7b, A passes through B and results two intersection
points within the boundary of B. In Fig. 7c, they cut partially; hence, one of the
intersection points is within the boundary of B and the other one is within the
boundary of A.

As a planar surface is always adjacent to either a spherical or a cylindrical
surface, a partial cut refers to the fact that there may be intersection between the
plane segments that partially cut and the adjacent surface of the other plane, i.e., one
plane segment may cut the other in such a way that it cuts its neighboring cylin-
drical or spherical segment as well. In each of the cases, the planar–planar inter-
section is a line segment. But there is a difference in the above three cases; the first
one has the intersection line segment starting from one point on the plane segment
and ending at another point on the same plane segment having the intersection line
segment fully on the plane segment, the second one has the intersection line seg-
ment beyond the plane segment, and in the third case the intersection line segment
starts at a point on the plane segment while ending at a point beyond the plane
segment. We discuss all the three cases below.

We define each plane segment by the equation of the plane and its boundary line
segments, and therefore, the equations of lines. Now, we consider a plane and check
for intersection between the line segments of the other planes. If we consider plane
A, i.e., its equation and take the line segments of plane B, it results in i1 and i2. The
points may either reside on or within the boundary of A. For each point, we traverse
the boundary of A clockwise (or anti-clockwise) if the point is always on the right
(or left) side, the point is within the boundary; otherwise, if the point satisfies one of
the boundary line segments of A, the intersection point is on the boundary of the
plane.

Planar—Spherical Intersection Whenever a plane cuts a spherical region once,
the shape of the intersection is of a circular curve [10, 11]. Now, if the plane
intersects a spherical region it results a circle, as the intersection curve has been
depicted in Fig. 8a. As a spherical surface is adjacent to a set of cylindrical and
planar surfaces, we may conclude that the planar surfaces that cut the spherical

(c)

P

Q

M N

X Y

A BC

(a) (b)

A

B

S

Q

BA
S

O

P Q
C

Fig. 8 The surface Q intersects the spherical surface S. a It results a circle C as the intersection
curve. b When the surface (Q) partially intersects the spherical surface (S) that results a circular
curve which is extended through the junction of the spherical and cylindrical or planar surfaces.
c When a plane P intersects a cylinder Q resulting in two intersection line segments MX and NY

282 R. Mehera et al.

surface once, cut one or more adjacent surfaces as well, as shown in Fig. 8b, and
has been discussed previously in case of planar–planar intersection.

Let S and Q be the spherical and planar surfaces. In Fig. 8a, a circle (C) is
produced after the plane cuts the spherical surface. We draw a perpendicular OP on
the plane. As we obtain the point P and the length of OP, we find the length of AP.
Thus, the center (P) and the radius (AP) are known to us, and hence, we get the
equation of the circle. Now, it may so happen that the plane does not cut the
spherical surface at all. In that case, we check OP with the radius of the sphere. If
OP is greater than the radius, there is no intersection.

Planar—Cylindrical Intersection When a plane segment cuts a cylinder, the
intersection is a line segment satisfying both the equations of the cylinder and the
plane [10, 11]. If the plane cuts the cylinder twice, we obtain two such line seg-
ments which are parallel to the axis of the cylinder. When the plane cuts the
cylinder once, it means that there may be intersection with the adjacent surfaces of
the cylindrical surface.

Let the plane P cut the cylinder Q twice, as shown in Fig. 8c. Then, we have to
find two line segments MX and NY. We have the equation of cylinder as
(ny-mz)2 + (lz-nx)2 + (mx-ly)2 = r2(l2 + m2 + n2) and its axis as (x/l) = (y/m) = (z/n).
Also the equation of the plane is ax + by + cz = d. We draw a perpendicular CO
from C, a point on the axis, on the plane. As we know, the radius of the cylinder
(CA or CB), AO (BO) can be directly found. Hence, we find the coordinate of point
A. As the intersecting line segment passes through A and is parallel to the axis, we
can derive its equation.

After knowing the equation, we check for intersection between the boundary line
segments of planar surface, and obtain two intersection points on the boundary of
the plane, here M and X. The line joining the two gives the line segment MX.
Similarly, for point B, we get the line segment NY.

Spherical—Spherical Intersection If two spherical surfaces intersect, we obtain a
circle as the intersecting curve and the equation of the circle satisfies equations of
both the spheres [10, 11]. Let two spheres S and S′ with their centers A and B,
respectively, intersect with each other as depicted in Fig. 9a. If their equations are

(a)

A B
P

C

(c)

C1

C2

R

Q

S

P

O

A

B

C

D
P

(b)
C

Q M
X

Y

Fig. 9 a Two spheres with A and B as their centers intersect each other resulting in a circle as the
intersection curve with P as the center and PC as the radius of the circle. b A sphere intersects the
cylinder C resulting inM as the intersection curve in 3D, to find plane P that is drawn and the sphere
cuts it along a circle Q. X and Y be the common points onM and Q. c Two cylinders C1 and C2 cut
each other keeping their axesAB andCD parallel, results in two intersection line segmentsPQ andRS

An Algorithm to Solve 3D … 283

S ≡ x2 + y2 + z2 + 2gx + 2fy + 2hz + c = 0 and S′ ≡ x2 + y2 + z2 + 2g′x + 2f′y + 2h′
z + c′ = 0, the coordinate of the points of their intersection satisfying the equation
S–S′ ≡ 2(g–g′)x + 2(f–f′)y +2(h–h′)z + (c–c′) = 0, which is the equation of the plane
of intersection of the two spheres. This plane cuts either of the spheres in a circle.
Our objective is to find out the circle thus obtained.

We draw a perpendicular from the center of one of the spheres on the plane.
Here in the figure, the perpendicular AP is drawn on the plane. From the length of
AP (as we can find the length of a perpendicular from a point outside a plane) and
AC (the radius of the sphere), PC is calculated which is the radius of the intersecting
circle. Again, as we know the coordinate of the center (P) and the radius (PC), the
equation of the circle is immediately derived.

Spherical—Cylindrical Intersection When a spherical surface intersects a
cylindrical surface, the intersecting curve does not lie in 2D plane [11]. It can be
visualized by drawing a circle on a plane and then the plane is wrapped over the
cylinder. The circle is not on the 2D plane now; rather, it is on the surface of the
cylinder.

Here, in Fig. 9b, a sphere intersects a cylinder C resulting in the intersecting
curve M. We have to derive the equation for M. At first, we draw a plane tangent to
the cylinder, on which the line segment normal to the axis of the cylinder from the
center of the sphere, is perpendicular. Now the sphere cuts the plane and results a
circle Q as their intersecting curve. We derive the equation for this circle as we did
in the planar-spherical intersection. Now, as we know the circle Q, we have its
center and radius.

At this moment, to findM we need to know a point on it and then the locus of the
point on the cylindrical surface. So, we draw a line passing through the center of the
circle Q and parallel to the axis of the cylinder. This line cuts the circle at two points
X and Y. The locus of either of the points satisfying the equation of the cylinder and
maintaining the distance from the center of the circle as a constant provides the
equation for M.

Cylindrical—Cylindrical Intersection If two cylinders intersect each other as in
Fig. 9c, we obtain two intersecting line segments satisfying equations of both the
cylinders. From the equations of the cylinders, we obtain the equation of the plane
satisfying both the equations of the cylinders.

Let C1 and C2 be two cylinders. We draw AO, perpendicular on the intersecting
plane from A. From AO and AP, we derive OP and hence obtain P. Also we find in
the same way the point Q. Then PQ is attained as one of the intersecting line
segments. Similarly, the other intersecting line segment RS is derived.

4 Computational Complexity

It is easy to observe that the guard zone of an n-vertex, ‘-intersection line and p-
plane convex solid object is a convex (3D) region with p planes, ‘ cylindrical arcs,
and n spherical arcs only, when there is no intersection, and with intersection there

284 R. Mehera et al.

might be p planes only, where n = O(‘) as well as p = O(‘). The planes of the guard
zone are parallel to the planes of the solid object at a distance r apart, outside the
solid object, and two adjacent planes of the guard zone are joined by a cylindrical
arc of radius r centered at the associated intersection line of the solid object.
Spherical arcs of radius r each are introduced as parts of the computed guard zone at
the vertices of the solid object, where the associated planes of the guard zone are
tangent to the cylindrical as well as spherical arcs and the cylindrical portions of the
guard zone are also ending with spherical arcs of the guard zone near the vertices of
the solid object. As a result, the time required for computing a 3D guard zone of a
convex solid object is O(n+‘+p) = O(‘).

Now, as per the next step, we need to draw the orthogonal projections of the
individual guard zonal components, including planar, spherical, and cylindrical
surfaces onto xy, yz, and zx planes. The projections can be drawn in linear time
with respect to the number of guard zonal components, which is O(‘), where ‘ is the
number of intersection lines present in the given 3D simple solid object. Therefore,
for each guard zonal component, we obtain three different 2D objects at each of the
xy, yz, and zx plane. Now, we need to merge the individual 2D components
belonging to a specific 3D guard zonal component in such a way that the 2D
components collectively form a 3D orthogonal box that encloses the corresponding
3D guard zonal component to its entirety. This step can be achieved in constant
time and hence, the complexity of this step is O(1).

Once the orthogonal boxes are ready, we feed these boxes into our customized
space sweep algorithm for further processing. During the execution of the space
sweep algorithm, the faces of each orthogonal boxes parallel to the xy, yz, and zx
plane have been considered as event points. The event points are maintained in a
dynamic list data structure, whereas the 3D boxes corresponding to the event points
are maintained in a separate BST data structure for subsequent processing. The
algorithm terminates when the event list becomes empty. Hence, the operations like
creation, insertion, and deletion from the BST take O(‘ log ‘) time, whereas the
similar operations for the dynamic list data structure consumes O(‘) time, for each
of the axis planes. Therefore, the overall time complexity to perform this particular
step requires O(‘ log ‘).

Now, let us assume that the execution of the previous step yields the following
result, where the sweep plane xy has produced a set I containing all the overlapped
box pairs while sweeping; afterward the yz plane operates on the pair of boxes
contained in set I and produces a reduced set named J. Similarly, zx plane operates
on the pair of boxes contained in set J and yields the final set K containing all the
possible boxes that needs further investigation. Thus, xy→ I, yz→ J, and zx→ K.

All the operations explained above can be executed in O(‘ log ‘) + O(I log I) + O
(J log J) ≡ O(‘ log ‘ + I log I) time, since I dominates J.

As per the final step, we are left with the detection of intersection among the
guard zonal components contained within the 3D boxes registered in set K. This
operation can be executed in constant time for each pair of such guard zonal
component, and hence, the time complexity for the intersection detection among the
guard zonal components is O(K).

An Algorithm to Solve 3D … 285

The overall time complexity for the 3D guard zone computation for a given
simple object is O(‘) + O(‘ log ‘) + O(K) ≡ O(‘ log ‘ + I log I).

5 Application

The guard zone computation problem occupies vast place of interest in the field of
VLSI physical design automation and design of embedded systems, robotic motion
control, geographic information system, etc. In VLSI physical design for optimized
placement on the chip, we have to consider 3D subcircuits and their 3D guard zone
for avoiding any parasitic effect. In this context, we deal each 3D subcircuit as a 3D
simple solid object and accordingly we compute its guard zone. As cited for its 2D
variation, we may achieve the goal in 3D counterpart.

In Robotics, it is important to have the motion planning feature built within the
robot itself. This motion planning feature ensures that the robot does not collide
with any obstacles while it is in motion unless it is programmed to do so. As we
have noticed that Minkowski sum finds a tremendous application in motion plan-
ning of an object among obstacles [3], the guard zone computation can also be used
to solve similar problems. Once a robot identifies the obstacles that it needed to
bypass and transforms them into 2D simple polygons, then it can use the computed
guard zone to avoid any possible collision. As the robot moves along its way, it
keeps checking whether it encounters the already computed guard zone of any of
the obstacles and if it finds one, then immediately it changes its direction unless it
reaches to its destination. This process can further be enhanced by incorporating a
learning mechanism within the robot where the robot records the objects found as
an obstacle so far along with the computed guard zone and later when the robot
encounters the similar objects, then it applies the already computed guard zone to
avoid any possible collisions.

3D guard zone computation plays a significant role in robot motion planning, as
the real life scenario conveys that the robots and obstacles faced are 3D in nature.
Considering this fact it is obvious to take into account the 3D guard zone computing
for efficient motion planning for 3D robots. Now, the problem of motion planning
for robots can further be simplified if the robot somehow acquires the information
of all the obstacles it is going to encounter from its start to final destination. Then
the robot can compute its own simplified guard zone along with the guard zone for
all the obstacles that it is going to encounter and then determines the path it is
supposed to take to reach its destination. Another important application of the 3D
guard zone computation problem is in the medical field. Consider the treatment of
cancer cells in human body; now the biggest unsolved mystery till date is finding a
targeted treatment for the cancer affected cells. There can be two different
approaches of applying the guard zone computation in this regard: (1) A guard zone
defining the growth of cancer affected cells in human body, definitely the medicine
that should target these cells should have a faster healing power compared to the
growth of the cancerous cells and also the medicines should have a predefined

286 R. Mehera et al.

minimum guard zone which completely encompasses the affected cancerous cells.
(2) A comparative study (with respect to the guard zonal effects) of various
medicines that target the cancerous cells to determine which medicine needs to be
applied on human body to reduce the effect of medicine on the healthy cells.

It also finds application in computing the buffer zone in geographical informa-
tion systems [1], to name only a few.

6 Conclusion

As discussed earlier, resizing of electrical circuits is an important problem in VLSI
layout design as well as in embedded system design, while accommodating the
(groups of) circuit components on a chip floor. This problem motivates us to
compute a guard zone of a simple polygon. In robot motion planning, geographic
information system, embedded system 3D guard zone computation takes an
important role. In this paper, we have considered the problem of computing a guard
zone of a (3D) simple polygon, and developed a sequential algorithm for computing
the same that uses the concepts of analytical and coordinate geometry to detect
overlapped region(s) within the guard zone (if any) and accordingly exclude that
region to report the resulting outer guard zone. Our algorithm can easily be mod-
ified to compute the regions of width r (as guard zonal distance) outside the
polygon, and also inside the polygon (if necessary), which may find several
applications in practice. This work can also be extended for computing a guard zone
of a three-dimensional solid object that may not be a simple one, as a problem of
probable future work.

References

1. Heywood, I., Cornelius, S., Carver, S.: An Introduction to Geographical Information Systems.
Addison Wesley Longman, New York (1998)

2. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (1997)
3. Lee, I.-K., Kimand, M.-S., Elber, G.: Polynomial/rational approximation of minkowski sum

boundary curves (Article No.: IP970464). Graph. Models Image Process. 60(2), 136–165
(1998)

4. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-Dimensional Searching and
Computational Geometry. Springer (1984); Bajaj, C., Kim, M.-S.: Generation of
configuration space obstacles: the case of a moving algebraic curves. Algorithmica 4(2),
157–172 (1989)

5. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6,
485–524 (1991)

6. Mehera, R., Chatterjee, S., Pal, R.K., A time-optimal algorithm for guard zone problem. In:
Proceedings of 22nd IEEE Region 10 International Conference on Intelligent Information
Communication Technologies for Better Human Life (IEEE TENCON 2007), CD: Session:
ThCP-P.2 (Computing) (Four pages). Taipei (2007)

An Algorithm to Solve 3D … 287

7. Mehera, R., Chatterjee, S., Pal, R.K.: Yet another linear time algorithm for guard zone
problem. Icfai J. Comput. Sci. II(3), 14–23 (2008)

8. Mehera, R., Chakraborty, A., Datta, P., Pal, R.K.: An innovative approach towards detection
and exclusion of overlapped regions in guard zone computation. In: Proceedings of 3rd
International Conference on Computer, Communication, Control and Information Technology
(C3IT 2015), pp. 1–6. Academy of Technology, West Bengal (2015)

9. Hwang, K., Briggs, F.A.: Computer Architecture and Parallel Processing. McGraw-Hill, New
York (1984)

10. Grewal, B.S.: Higher Engineering Mathematics, 39th edn. Khanna Publishers, Delhi India
(2005). ISBN 81-7409-195-5

11. Chakravorty, J.G., Ghosh, P.R.: Analytical Geometry and Vector Analysis. U.N. Dhur and
Sons Private Ltd., Kolkata (2009)

288 R. Mehera et al.

Multistep Ahead Groundwater Level
Time-Series Forecasting Using Gaussian
Process Regression and ANFIS

N. Sujay Raghavendra and Paresh Chandra Deka

Abstract Groundwater level is regarded as an environmental indicator to quantify
groundwater resources and their exploitation. In general, groundwater systems are
characterized by complex and nonlinear features. Gaussian Process Regression
(GPR) approach is employed in the present study to investigate its applicability in
probabilistic forecasting of monthly groundwater level fluctuations at two shallow
unconfined aquifers located in the Kumaradhara river basin near Sullia Taluk, India.
A series of monthly groundwater level observations monitored during the period
2000–2013 is utilized for the simulation. Univariate time-series GPR and Adaptive
Neuro Fuzzy Inference System (ANFIS) models are simulated and applied for
multistep lead time forecasting of groundwater levels. Individual performance of
the GPR and ANFIS models are comparatively evaluated using various statistical
indices. In overall, simulation results reveal that GPR model provided reasonably
accurate predictions than that of ANFIS during both training and testing phases.
Thus, an effective GPR model is found to generate more precise probabilistic
forecasts of groundwater levels.

Keywords ANFIS � Groundwater system � Gaussian process regression �
Time-series forecasting

1 Introduction

Over the past decade, groundwater depletion is one of the major issues worldwide,
which is posing direct or indirect impacts on human livelihoods, flora and fauna,
natural habitat, and ecosystems. Depletion of groundwater storage, land subsidence,

N.S. Raghavendra (&) � P.C. Deka
Department of Applied Mechanics and Hydraulics, National Institute
of Technology Karnataka, Surathkal, Mangalore 575025, India
e-mail: sujayraghavendran@ymail.com

P.C. Deka
e-mail: pareshdeka@yahoo.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_19

289

reductions in stream flow and lake water levels, saltwater intrusion, loss of wetland
and riparian ecosystems, and variations in groundwater quality are some of the vital
factors influencing the sustainability of groundwater resources [1]. Sustainable
groundwater resources development is the key issue to be addressed by policy
makers or water managers by implementing various alternative management
strategies. Groundwater restoration or recycle is not equally fast as that of surface
water; it may take place after many years. Thus, constant monitoring of ground-
water levels is extremely important for reliable assessment of temporal availability
of groundwater at any required location [2]. The benefits of groundwater level
forecasting include assessment of annual and long-term changes in groundwater
storage, estimation of recharge rates, manage drinking water demand, and to ensure
the sustainable use of groundwater resources [3].

Till date, several deterministic, stochastic and time-series based models have
been developed for the forecasting of groundwater levels [4–7]. In the recent past,
soft computing tools like Artificial Neural Network (ANN), ANFIS, Support Vector
Regression (SVR), and so on have also been widely utilized for groundwater level
prediction studies [8–14]. Quite a few hybrid artificial intelligence models devel-
oped by incorporating wavelet analysis efficiently forecast groundwater levels at
different time scales [15–18]. Determining a model which is capable to efficiently
capture the nonlinearities of the data without overfitting is the crucial job while
modeling using time-series data. The ability to select the hyper parameters of the
kernel automatically is one of the prominent benefits of Gaussian processes over
conventional kernel interpretations of regression. The Bayesian learning
algorithm-based Gaussian Process Regression is successfully applied for prediction
of nonstationary time-series [19], monthly stream flow forecasting [20], and stream
water temperature prediction [21], and so on. Compared to the conventional
time-series forecasting methods, GPR model is said to possess strong nonlinear
mapping ability, estimation of uncertainty, and is greatly fault-tolerant [22, 23].
Hence, in this paper, we demonstrate the state-of-the-art capability of Gaussian
process regression for multistep lead time probabilistic forecast of groundwater
level fluctuations. The ANFIS model is also employed for comparative study with
GPR forecasts.

2 Study Area and Data Analysis

The study area (Fig. 1) is located near to southwest coast in the state of Karnataka,
India. The observation wells selected for the current study are located inside the
Kumaradhara river basin which covers a geographical area of 1776 sq km and is
located in between 12º 29′ 04″ and 12º 58′ 33″ north latitude and from 75º 09′ 58″
to 75º 47′ 48″ east longitudes. The observation well located at Bellare lies at
12° 39′ 53″ north latitude and 75° 17′ 18″ east longitude, while the other well at
Guttigaru lies at 12° 37′ 53″ north latitude and 75° 31′ 44″ east longitude as shown
in Fig. 1.

290 N.S. Raghavendra and P.C. Deka

The study area has a tropical monsoon climate dominated by the southwest
monsoon (June–October). The mean annual rainfall over the basin is around
3,500 mm. The geology of the area is predominantly characterized by Lateritic soil
with highly porous and permeable nature. Due to this lateritic soil property, shallow
groundwater levels in the selected unconfined aquifers follow a regular cyclic
pattern of seasonal fluctuation, typically rising during the monsoon due to greater
precipitation and recharge, then declining during the summer.

The groundwater level data of the observation wells located at Bellare and
Guttigaru for the years 2000–2013 were retrieved from Department of Mines

Fig. 1 Study area (location of observation wells)

Multistep Ahead Groundwater Level Time-Series Forecasting … 291

and Geology, Dakshina Kannada Dist., Govt. of Karnataka, India. The topographic
elevation of these wells is about 100–130 m above mean sea level. This data
comprises of 166 monthly observations, in which 10 years of data during Jan 2000–
Dec 2009 is used for model training and remaining 4 years of data during Jan 2010–
Oct 2013 is used as out-of-sample set or testing set to measure the predictability of
the developed models.

The descriptive statistics of the observed groundwater levels in the two obser-
vation wells are presented in Table 1. The Xmax, Xmin, Xmean, Xmode, Sd, and Cv

denotes the maximum, minimum, mean, mode, standard deviation and coefficient of
variation respectively. Since the mean and coefficient of variation of the observed
groundwater level dataset don’t vary ominously during training and testing periods,
it could be inferred as a reasonable stationary time-series. In the present scenario,
GPR and ANFIS models are explored to forecast 1, 3 and 6 months ahead
groundwater level fluctuations. Monthly groundwater level time-series up to pre-
vious four time steps are taken as input variables. In order to test the hypothesis that
GWL(t–2),...GWL(t–p) further help in forecasting GWL(t), beyond GWL(t–1), one can
use an F-test. The lag order p = 4 was determined from the F-test statistic. F-test is
the test statistic to examine the significance of the components in the model [24].
The expected output from the developed models is the groundwater level at time
step t, t + 3, and t + 6. The input-output combinations are as presented below.

I. GWLðt�4Þ þGWLðt�3Þ þGWLðt�2Þ þGWLðt�1Þ ¼ GWLðtÞ
II. GWLðt�4Þ þGWLðt�3Þ þGWLðt�2Þ þGWLðt�1Þ ¼ GWLðtþ 3Þ
III. GWLðt�4Þ þGWLðt�3Þ þGWLðt�2Þ þGWLðt�1Þ ¼ GWLðtþ 6Þ

3 Methodology

In the present study, Gaussian Process Regression (GPR) and Adaptive Neuro
Fuzzy Inference System (ANFIS) approaches are proposed for model development
of groundwater level time-series forecasting. GPR and ANFIS is used for 1, 3, and
6 month lead groundwater level time-series forecasting using lagged input data up
to 4 months in the past.

Table 1 Statistical
parameters of groundwater
level dataset

Groundwater table below ground level (m)

Well location Bellare Guttigaru

Dataset Train Test Train Test

Xmax 13.05 12.13 11.24 12.38

Xmin 4.28 5.21 1.33 3.2

Xmean 9.25 8.53 7.11 7.37

Xmode 10.18 5.58 4.27 3.29

Sd 2.25 2.26 2.98 3.15

Cv 0.24 0.27 0.42 0.43

292 N.S. Raghavendra and P.C. Deka

3.1 Gaussian Process Regression

Gaussian process regression is a standard method in probability theory wherein the
interpolated values are modeled by a Gaussian process governed by prior covari-
ance. Incorporating appropriate assumptions on the priors, GPR renders the best
linear unbiased prediction of the values [25]. GPs constitute one of the most
important Bayesian discriminative kernel learning approach due to its practical and
theoretical simplicity and outstanding generalization ability. A sequence of random
variables {Xn} defining a stationary process can have any probability distribution.
A stationary process {Xn} is called a Gaussian process, if the joint distribution of
(Xn+1, Xn+2,…, Xn+k) is a k-variate normal for every positive integer k.

Consider an observation space χ. A GP f(x), where x ∊ χ, is defined by a set of
random variables, any finite number of which possess a joint Gaussian distribu-
tion function which is fully specified by its mean function m(x) and covariance
k(x, x′) [26].

So let,

mðxÞ ¼ E f xð Þ½ �
k x; x0ð Þ ¼ E f xð Þ � m xð Þð Þ � f x0ð Þ � m xð Þð Þ½ � ð1Þ

Now we can write GP as

f xð Þ�N m xð Þ; k x; x0ð Þð Þ ð2Þ

Consider a training set D ¼ xi; yið Þji ¼ 1; 2; . . .;Nf g, with m-dimensional input
variables, xi being the observed data related to the phenomenon that is to be
modeled and scalars yi being the associated target values given by yi ¼ f xið Þþ �i,
where ϵi is Gaussian noise with zero mean and variance σn

2.
The joint normality of the training target values y = [yi]i=1

N and some unknown
target value y*, are estimated by the value f* of the hypothesized GP assessed at the
observation point x*, yields

y
f�

� �
�N 0;

K X;Xð Þþ r2NIN k x�ð Þ
k x�ð ÞT k x�; x�ð Þ

� �� �
ð3Þ

where,

k x�ð Þ, k x1; x�ð Þ; . . .; k xN ; x�ð Þ½ �T ð4Þ

X = [xi]i=1
N , IN, is the N × N identity matrix, k(x*) is the vector of covariance

between f* and the training latent function values, and K is the matrix of the
covariance between the N training data points (design matrix)

Multistep Ahead Groundwater Level Time-Series Forecasting … 293

K X;X½ �,

k x1; x1ð Þ k x1; x2ð Þ k x1; xNð Þ
k x2; x1ð Þ k x2; x2ð Þ k x2; xNð Þ

:
:

k xN ; x1ð Þ

:
:

k xN ; x2ð Þ

:
:

. k xN ; xNð Þ

2
666664

3
777775

ð5Þ

Then, from (Eq. 3) and conditioning on the available training samples, we can
derive the expression for the model predictive distribution, yielding

p f�jx�;Dð Þ ¼ N f�jl�; r2�
� �

; ð6Þ

where

l� ¼ k x�ð ÞT K X;Xð Þþ r2NIN
� ��1�y

r2� ¼ r2N � k x�ð ÞT K X;Xð Þþ r2NIN
� ��1

k x�ð Þþ k x�; x�ð Þ

(
ð7Þ

The covariance function is parameterized by optimal value of hyper parameters.
The predictive variance of the GP model is as given in Eq. (7), and it does not
depend on the training target values, but depends only on the training input values
[27]. The optimal value of hyper parameters of a Gaussian process with any kernel
θ, for any distinct data set can be derived by maximizing the log marginal likeli-
hood by means of general optimization procedures. The log marginal likelihood
function under the GPR model is presented in Eq. 8 given below.

log p yjX; h; r2� � ¼ �N
2
log 2p� 1

2
log K X;Xð Þþ r2NIN

�� ��
� 1
2
yT K X;Xð Þþ r2NIN
� ��1

y

8><
>:

9>=
>; ð8Þ

3.2 Adaptive Neuro Fuzzy Inference System (ANFIS)

ANFIS is the fuzzy-logic based paradigm integrated with the learning power of
Artificial Neural Network (ANN) to improve the intelligent system’s performance
utilizing knowledge acquired after learning. For a given input-−output data set,
ANFIS constructs a hybrid learning algorithm that associates the backpropagation
gradient descent and least squares methods to frame a fuzzy inference system
whose membership function (MF) parameters are iteratively tuned or adjusted.
Adaptive Neuro Fuzzy inference systems comprise of mainly five layers–rule base,
database, fuzzification interface, defuzzification interface and decision-making unit.
The generalized ANFIS architecture proposed by Jang [28] is summarized below
(Fig. 2).

294 N.S. Raghavendra and P.C. Deka

ANFIS architecture comprises of five layers. Every single node in layer 1 is an
adaptive node with a node function which may be anyone among the membership
functions. Every node of layer 2 is a fixed node labeled ‘M’ which signposts the
firing strength of each rule. All nodes of layer 3 are fixed nodes labeled as ‘N’
which demonstrates the normalized firing strength of each rule. The Layer 4 is as
similar to layer 1 wherein every node is an adaptive node governed by a node
function. The layer 5 being a single fixed node labeled ‘S’, representing the overall
output (z), defined as the summation of all incoming signals [29].

In the present study, we examine three types of membership functions
(MFs) namely trapezoidal, gaussian, and generalized bell. Among all the three types
of the MFs, we impart two MFs on each of our four inputs, in which eight alto-
gether. With this, the FIS structure consists of 16 fuzzy rules with 104 parameters.
A hybrid algorithm integrating the least squares method and the backpropagation
gradient descent method is applied to optimize and adjust the generalized bell
membership function parameters and coefficients of the output linear equations. The
number of epochs and error tolerance is set to 1000 and 0, respectively. From the
result as presented in Table 3, it is determined that the ANFIS structure with
Generalized bell MF to be better performing than Trapezoidal and Gaussian shaped
MFs based on the performance evaluation using correlation coefficient statistic as
mentioned below in Sect. 4. Hence, generalized bell MF-based ANFIS models are
developed for all the 1, 3 and 6 month lead time forecasting scenarios.

Fig. 2 General ANFIS architecture with two membership functions on each of the two inputs

Multistep Ahead Groundwater Level Time-Series Forecasting … 295

4 Performance Evaluation

The following statistical indices are used to evaluate the performance of both the
GPR and ANFIS models in forecasting groundwater level time-series.

CC ¼
PN
i¼1

Xi � X
� � � Yi � Y

� �	

ffiPN
i�1

Xi � X
� �2� Yi � Y

� �2n os ð9Þ

RMSE ¼

ffiPN
i¼1

Xi � Yið Þ
N

vuuut
ð10Þ

NSE ¼ 1�
PN
i¼1

Xi � Yið Þ2

PN
i¼1

Xi � X
� �2 ð11Þ

where,
CC Correlation Coefficient;
RMSE Root Mean Squared Error;
NSE Nash-Sutcliffe Efficiency;
X Observed/Actual values;
Y Modeled/Computed values;
X Mean of Actual data.

5 Results and Discussion

An appealing characteristic of time-series modeling is that it is based on relatively
few assumptions which usually lead to yield good fits. The GPR package in the
WEKA 3.6 software [30] is employed to develop the GPR models. The GPR
employing Pearson VII function-based universal kernel (PuK) is used for model
development. The GPR model developed in the present study is propelled to pro-
vide better groundwater level forecasting results. Table 2 presents the developed GP
regression model equations. The statistical adequacies of the GPR and ANFIS
models for 1, 3 and 6 month ahead forecasts are summarized in Tables 4, 5, and 6,
respectively. For both study sites (Bellare and Guttigaru), the GPR models are
found to provide more accurate groundwater level forecasts than that of ANFIS

296 N.S. Raghavendra and P.C. Deka

models for 1, 3 and 6 month lead time forecasting. The GPR models for the Bellare
and Guttigaru well sites have a testing RMSE of 0.632 and 1.05 m, respectively
(Table 4), and are superior to the ANFIS model forecast, which has a testing RMSE
of 0.742 m for the Bellare well site and 1.39 m for the Guttigaru well site during
1 month lead time forecasting (Table 3).

It can be observed (from Tables 4, 5 and 6) that the correlation coefficients of both
the GPR and ANFIS models are high during training (calibration). However, during
the testing phase, the GPR model is better when compared to ANFIS model. It is
noteworthy that the GPR model shows enhanced performance in contrast to ANFIS
model, in case of both the wells. The RMSE statistic ofmultistep lead time forecasting
is presented in Fig. 3 wherein it can be inferred that the GPR and ANFIS models are
more capable in the shorter lead time forecast. It can be seen that the forecasting
efficiency declines during longer lead time forecast. The ANFIS model performs
marginally similar to GPR model for 1 month ahead groundwater level forecasting,
but for the higher lead times, such as 3 and 6 month lead time, GPR performance is
observed better than ANFIS model results as presented in Tables 4, 5 and 6.

Table 2 Values of Gaussian process regression equations

GPR
forecast

Average target
value

Inverted covariance matrix Inverted covariance
matrix × target-value
vector

Lowest
value

Highest
value

Lowest
value

Highest
value

Groundwater monitoring well near Bellare

1 Month
lead

9.1686 −0.2107 0.9420 −4.2888 2.1221

3 Month
lead

9.1978 −0.2107 0.9420 −4.6319 3.5733

6 Month
lead

9.2933 −0.2107 0.9420 −5.0088 3.6627

Groundwater monitoring well near Guttigaru

1 Month
lead

7.0066 −0.1949 0.9179 −4.4780 3.4013

3 Month
lead

7.0806 −0.1949 0.9179 −3.6057 5.1893

6 Month
lead

7.2328 −0.1949 0.9179 −4.3094 4.5839

Table 3 Performance of
ANFIS models at 1 month
lead time forecasting

Correlation coefficient (CC)

ANFIS model with Bellare Guttigaru

Train Test Train Test

Trapezoidal MF 0.6 0.54 0.58 0.55

Gaussian MF 0.81 0.74 0.79 0.71

Generalized Bell MF 0.95 0.85 0.89 0.83

Multistep Ahead Groundwater Level Time-Series Forecasting … 297

Figures 4 and 5 illustrate observed versus forecasted groundwater level
time-series using GPR and ANFIS models. It can be seen from Figs. 4 and 5 that the
GPR model can efficiently mimic observed groundwater level time-series better
than ANFIS model during 1 month lead forecasting. Figures 6 and 7 are scatter

Table 4 Performance of GPR and ANFIS models during 1 month lead time forecasting

Well location Bellare Guttigaru

Statistical indices RMSE (m) NSE CC RMSE (m) NSE CC

GPR TRAIN 0.577 0.93 0.97 0.97 0.89 0.94

TEST 0.632 0.92 0.94 1.05 0.87 0.92

ANFIS TRAIN 0.66 0.91 0.95 1.32 0.84 0.89

TEST 0.742 0.82 0.85 1.39 0.8 0.83

Table 5 Performance of GPR and ANFIS models during 3 month lead time forecasting

Well location Bellare Guttigaru

Statistical indices RMSE (m) NSE CC RMSE (m) NSE CC

GPR TRAIN 0.74 0.89 0.91 1.105 0.86 0.91

TEST 0.82 0.86 0.89 1.211 0.83 0.88

ANFIS TRAIN 0.89 0.84 0.88 1.69 0.81 0.86

TEST 1.09 0.79 0.84 1.847 0.76 0.82

Table 6 Performance of GPR and ANFIS models during 6 month lead time forecasting

Well location Bellare Guttigaru

Statistical indices RMSE (m) NSE CC RMSE (m) NSE CC

GPR TRAIN 0.96 0.83 0.87 1.225 0.83 0.85

TEST 1.167 0.78 0.81 1.37 0.80 0.82

ANFIS TRAIN 1.281 0.79 0.82 1.82 0.76 0.8

TEST 1.41 0.74 0.78 1.97 0.71 0.75

Fig. 3 RMSE of GPR and
ANFIS models at multistep
lead time forecasting

298 N.S. Raghavendra and P.C. Deka

Fig. 4 Plot of observed versus forecasted groundwater level time-series with respect to the well
location at Bellare of 1 month lead time forecasting models

Fig. 5 Plot of observed versus forecasted groundwater level time-series with respect to well
location at Guttigaru of 1 month lead time forecasting models

y = 0.9546x + 0.524

4

7

10

13

4 7 10 13

G
P

R
 F

O
R

E
C

A
S

T

OBSERVED GWL

y = 0.8x + 1.8014

3

6

9

12

3 6 9 12

A
N

F
IS

 F
O

R
E

C
A

S
T

OBSERVED GWL

Fig. 6 Scatter plot of observed versus forecasted groundwater level with respect to well the
location at Bellare of 1 month lead time forecasting models during test phase

Multistep Ahead Groundwater Level Time-Series Forecasting … 299

plots comparing the observed and forecasted groundwater levels using the GPR and
ANFIS models for 1 month lead time forecasting during the testing period at the
Bellare and Guttigaru sites. It can be observed that the band of scatter plot is very
narrow and close to the line of perfect fit in case of GPR forecast, On the other hand
ANFIS shows marginally lesser performance as compared to the GPR model in test
phase. On a whole, it can be concluded that the GPR model provided more accurate
forecasting results at both the study sites than the best ANFIS model at all the 1, 3
and 6 month lead times considered.

6 Conclusions

The application of the Gaussian Process Regression to forecast monthly ground-
water level fluctuations at multistep lead times is investigated in the present study.
ANFIS modeling is also adopted for comparative performance evaluation of the
developed models. It is observed that the performance of the GPR is quite satis-
factory providing relatively close agreement predictions when compared to that of
ANFIS model in terms of the performance measures utilized in this study. It is
envisaged that GPR model could serve as a better alternate for forecasting
groundwater level fluctuation at multistep lead time. The GPR model has advan-
tages over other models in terms of model accuracy, feature scaling, and proba-
bilistic variance. In future one can test the applicability of GPR model with
multivariate input data to forecast groundwater levels by including rainfall, tem-
perature, and evaporation data.

Acknowledgements The authors would like to thank the Department of Mines and Geology,
Government of Karnataka for providing the necessary data required for research and the
Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka for
the necessary infrastructural support. The authors would like to thank four anonymous reviewers
for their valuable suggestions and comments.

Fig. 7 Scatter plot of observed versus forecasted groundwater level with respect to well location
at Guttigaru of 1 month lead time forecasting models during test phase

300 N.S. Raghavendra and P.C. Deka

References

1. Alley, W.M., Reilly, T.E., Franke, O.L.: Sustainability of Ground-Water Resources, p. 79. U.
S. Geological Survey Circular 1186, Denver (1999)

2. Raghavendra, N.S., Deka, P.C.: Sustainable development and management of groundwater
resources in mining affected areas. Procedia Earth Planet. Sci. 11, 598–604 (2015). doi:10.
1016/j.proeps.2015.06.061

3. Taylor, C.J., Alley, W.M.: Ground-Water-Level Monitoring and the Importance of Long-Term
Water-Level Data, p. 67. U.S. Geological Survey Circular 1217, Denver (2001)

4. Gupta, A.D., Onta, P.R.: Sustainable groundwater resources development. Hydrol. Sci. J. 42,
565–582 (1997)

5. Adamowski, K., Hamory, T.: A stochastic systems model of groundwater level fluctuations.
J. Hydrol. 62, 129–141 (1983)

6. Ahn, H.: Modeling of groundwater heads based on second-order difference time series models.
J. Hydrol. 234, 82–94 (2000)

7. Bidwell, V.J.: Realistic forecasting of groundwater level, based on the eigenstructure of
aquifer dynamics. Math. Comput. Simul. 12–20 (2005)

8. Sudheer, Ch., Mathur, S.: Groundwater level forecasting using SVM-PSO. Int. J. Hydrol. Sci.
Technol. 2, 202 (2012)

9. Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K.: Ground water level forecasting using artificial
neural networks. J. Hydrol. 309, 229–240 (2005)

10. Shirmohammadi, B., Vafakhah, M., Moosavi, V., Moghaddamnia, A.: Application of several
data-driven techniques for predicting groundwater level. Water Resour. Manag. 27, 419–432
(2013)

11. Nourani, V., Ejlali, R.G., Alami, M.T.: Spatiotemporal Groundwater Level Forecasting in
Coastal Aquifers by Hybrid Artificial Neural Network-Geostatistics Model: A Case Study
(2011)

12. Raghavendra, N.S., Deka, P.C.: Forecasting monthly groundwater table fluctuations in coastal
aquifers using Support vector regression. In: Anadinni, S. (ed.) International Multi Conference
on Innovations in Engineering and Technology (IMCIET-2014), pp. 61–69. Elsevier Science
and Technology, Bangalore (2014)

13. Shiri, J., Kisi, O., Yoon, H., Lee, K.-K., Nazemi, A.H.: Predicting groundwater level
fluctuations with meteorological effect implications-{A} comparative study among soft
computing techniques. Comput. Geosci. 56, 32–44 (2013)

14. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., Lee, K.-K.: A comparative study of artificial
neural networks and support vector machines for predicting groundwater levels in a coastal
aquifer. J. Hydrol. 396, 128–138 (2011)

15. Suryanarayana, C., Sudheer, C., Mahammood, V., Panigrahi, B.K.: An integrated
wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India.
Neurocomputing 145, 324–335 (2014)

16. Adamowski, J., Chan, H.F.: A wavelet neural network conjunction model for groundwater
level forecasting. J. Hydrol. 407, 28–40 (2011)

17. Maheswaran, R., Khosa, R.: Long term forecasting of groundwater levels with evidence of
non-stationary and nonlinear characteristics. Comput. Geosci. 52, 422–436 (2013)

18. Raghavendra, N.S., Deka, P.C.: Forecasting monthly groundwater level fluctuations in coastal
aquifers using hybrid Wavelet packet—Support vector regression. Cogent Eng. 2, 999414
(2015)

19. Brahim-Belhouari, S., Bermak, A.: Gaussian process for nonstationary time series prediction
(2004)

20. Sun, A.Y., Wang, D., Xu, X.: Monthly streamflow forecasting using Gaussian process
regression. J. Hydrol. 511, 72–81 (2014)

21. Grbić, R., Kurtagić, D., Slišković, D.: Stream water temperature prediction based on Gaussian
process regression. Expert Syst. Appl. 40, 7407–7414 (2013)

Multistep Ahead Groundwater Level Time-Series Forecasting … 301

http://dx.doi.org/10.1016/j.proeps.2015.06.061
http://dx.doi.org/10.1016/j.proeps.2015.06.061

22. Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., Aigrain, S.: Gaussian processes
for time-series modelling. Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20110550 (2013)

23. Yan, W., Qiu, H., Xue, Y.: Gaussian process for long-term time-series forecasting. In:
Proceedings of the International Joint Conference on Neural Networks, pp. 3420–3427 (2009)

24. Box, G.E.P.: Non-Normality and tests on variances. Biometrika 40, 318–335 (1953)
25. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced Lectures on Machine

Learning. Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence, pp. 63–
71. Springer, Germany (2004)

26. Mackay, D.J.C.: Introduction to Gaussian processes. Neural Netw. Mach. Learn. 168, 133–
165 (1998)

27. Rasmussen, C.E., Williams, C.: Gaussian processes for machine learning. Adaptive
Computation and Machine Learning, p. 272. The MIT Press, Cambridge (2006)

28. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man
Cybern. 23, 665–685 (1993)

29. Keskin, M.E., Taylan, D., Terzi, Ö.: Adaptive neural-based fuzzy inference system (ANFIS)
approach for modelling hydrological time series. Hydrol. Sci. J. 51, 588–598 (2006)

30. Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

302 N.S. Raghavendra and P.C. Deka

Anomaly Detection and Three Anomalous
Coins Problem

Arpan Chakraborty, Joydeb Ghosh, Piyali Datta, Ankita Nandy
and Rajat Kumar Pal

Abstract Counterfeit coin problem has been considered for a very long time and is
a topic of great significance in Mathematics as well as in Computer Science. In this
problem, out of n given coins, one or more false coins (the coins are classified as
false because of their different weight from a standard coin) are present which have
the same appearance as the other coins. The word counterfeit or anomalous means
something deviated from the standard one. In this respect, finding out these
anomalous objects from a given set of data items is of utmost importance in data
learning problem. Thus, representing coins as any data items, we have introduced
an algorithm to determine three false coins out of n given coins. In addition, our
objective is to solve the problem in minimum number of comparisons with the help
of an equal arm balance.

Keywords Counterfeit coin � Anomaly detection � Weighing � Arm balance �
Decision tree � Algorithm � Complexity

A. Chakraborty (&) � P. Datta � A. Nandy � R.K. Pal
Department of Computer Science and Engineering, University of Calcutta,
Acharya Prafulla Chandra Roy Siksha Prangan, JD – 2, Sector – III, Saltlake City,
Kolkata 700098, West Bengal, India
e-mail: arpanc250506@gmail.com

P. Datta
e-mail: piyalidatta150888@gmail.com

R.K. Pal
e-mail: pal.rajatk@gmail.com

J. Ghosh
Department of Mathematics, Surendra Institute of Engineering and Management,
New Chamta, Siliguri, Darjeeling 734009, West Bengal, India
e-mail: joydeb009@gmail.com

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6_20

303

1 Introduction

Counterfeit or anomaly detection problem is a very well-known domain that holds
immense importance in the field of Mathematics, Computer Science as well as in
security issue. Most frequently, we have to deal with a huge collection of data that
are defined by some parameters. The parameters hold specific values depending on
the problem instance and there may exist some data that deviate from these specific
values; accordingly, we consider these data items to be anomalous. Now, the
problem is to detect the counterfeited data by means of some testing mechanism of
the items where we even do not know the actual value of the parameter of the
standard item and the anomalous items. As this problem considers a number of
times the testing method is used as its required cost, our objective is to minimize
that number in order to minimize the overall cost.

Here n coins problem plays an important role. By representing the coins as the
data item, its weight as the defining parameter and weighing of the coins using a
single arm balance essentially formulate the anomaly detection problem as a whole.
In this respect, our objective is to minimize the number of weighings for which it is
sufficient to determine the defective coin(s) in a set of n coins using only an equal
arm balance, when the number of odd coins is precisely known and they are
identical in appearance but different in weight (either heavier or lighter) than a true
coin. Beyond the theoretical realm, computing a solution of the counterfeit coin(s)
problem has huge significance in commercial sphere as well as to prevent forgery in
different fields.

Finding one counterfeit coin out of n coins is a complex problem. However, the
complexity of the problem increases manifold when more than one counterfeit coin
is present in a set of n coins. When only one counterfeit coin is there in a set of n
coins and if it is given whether it is heavier or lighter than the true coins, using an
equal arm balance our problem becomes a binary search problem. If the nature of
the false coin is not mentioned, the false coin can either be heavier or lighter than
the standard coins, and hence, it is necessary to proceed accordingly with the subset
of coins to find out the false coin.

Unlike in the one counterfeit coin problem, the two counterfeit coins problem
comprises several variations with respect to the relationship between the two false
coins. The two false coins can be equally heavier (or equally lighter), unequally
heavier (or unequally lighter) or the two false coins may be present in a combi-
nation of heavier and lighter (than the standard coin) coins. Hence, for the two
counterfeit coins problem, a large sample space has to be taken care of. Here
optimizing the number of comparisons to find out the false coin is the challenge as
the complexity of the algorithm depends on the number of comparisons required.
Now we take our attention to another level where we find three counterfeit coins in
a set of n number of coins. As is evident, this problem becomes more complex than
the two coins problem. However, we can use the results obtained from the two

304 A. Chakraborty et al.

counterfeit coins problem while we construct algorithms for a variety of versions
dealing with the presence of three false coins in a set of coins. As we will shortly
see, there are a number of adaptations of the three coins problem.

2 Literature Survey

In articles [1, 2], one solution to the single counterfeit coin problem has been
developed in the form of a decision tree that represents a set of all feasible decisions
by which we can attain the desired solution(s) of the problem. In this solution, each
internal vertex (that is not a leaf vertex) symbolizes an assessment between a pair of
equal sets of coins using an equal arm balance. Here the problem under concern is
more generalized; the forged coin can either be heavier or lighter than a true coin.
So, for n given coins, there are 2n leaf vertices in the tree as plausible solutions.

In paper [3], the problem of finding the minimum number of weighings that
suffices to determine the counterfeit (heavier) coins in a set of n coins of identical
appearance, given a balance scale and the information that there are precisely two
heavier coins at hand, has been considered. Both the heavier coins are of the same
weight and they are not heavier than 1.5 times than a true coin. If P is the maximum
number of comparisons mandatory to find out two false coins (equally heavier), the
paper devises an algorithm that has the lower bound log3 nC2ð Þd e. In this paper, a
set of n, has been considered, for which this lower bound is achieved, and the upper
bound that is only one unit more than the lower bound.

In paper [4], the problem has been introduced as a relevance of dynamic pro-
gramming and the allied analysis has been performed through optimal and subop-
timal testing policy. Here, the algorithm is developed considering the single false
coin problem. This procedure takes an assumption that, k < n coins are there in each
pan for each weighing, where the value of k effectively depends on the value of n. If
the two groups weigh equal, the defective coin must be in the left over n − 2k coins;
otherwise, the false coin is in one of the k groups. Whenever each weighing is over,
the number of coins to be examined diminishes; however, the problem remains the
same. This allows the authors to pertain dynamic programming to this problem.

In paper [5], the problem has been introduced in two ways. In the first case, it is
not convinced whether there is a counterfeited coin in the given set (or not). The
algorithm checks it first, and if any, then recognizes the fake coin by means of a
minimum number of weighings. In the second case, it is known that there is a
counterfeit coin and the intention is to find the coin through a minimum number of
weighings. If required, a standard coin may also be provided. In the first case, if a
lighter coin is there in the given set S of coins, then it is proved that the least
number of weighings to find out the fake coin satisfies 3n−1 < |S| ≤ 3n for some
distinctive value of n, where |S| is the cardinality of set S. In the second case, we are
given a set S of coins plus a standard coin, where only one coin in S is of dissimilar
weight. Then it is proved that (3n−1−1)/2 < |S| ≤ (3n–1)/2.

Anomaly Detection and Three Anomalous Coins Problem 305

Let S be a set of more than two coins, out of which only one is a counterfeit coin.
In this case, the least number of weighings to find out the forged coin satisfies
(3n−1−3)/2 < |S| ≤ (3n−3)/2, for some sole value of n. The paper asserts that a lighter
coin can be found in log3kd e weighings, if there are k coins in the set. According to
the paper, log3 2kþ 1ð Þd e is the complexity of the algorithm for solving the prob-
lem, if an additional standard coin is given; otherwise, the complexity is
log3 2kþ 3ð Þd e.
In articles [6–9], there are four algorithms to solve two counterfeit coins prob-

lem. For two coins problem, difficulty of the problem increases than that of single
coin problem as all the false coin combinations have to be considered. Again, in
paper [6], the authors have considered the case of finding two equally heavier
(lighter) coins. Here decision tree has been used as the data structure and the main
issue of the algorithm is to subdivide the coins into three nearly equal sets and
through some comparisons of the specified sets the algorithm ultimately finds the
false coins pair. In this paper, the main objective is to reduce the sample space by a
factor of three after each comparison; hence, the time complexity of the algorithm
becomes O(log n). The leaves of the decision tree show all possible false coin
combinations.

3 Formulation of the Problem

We imagine that in the search space, there are n coins all of which are identical in
appearance. By a standard or true coin we mean that its weight is specified to a
value, say x unit, and a fake (or false or counterfeit) coin is a specified coin which
only differs from a standard one with respect to weight. If the weight of a fake coin
is y unit, then following situations arise: x > y; x < y, i.e., the fake coin is either
lighter or heavier than a true coin. Now, it is mentioned that we do not have the
weights of the coins. We are only provided with a single arm balance. By using the
arm balance, i.e., by comparing the weights of the coins among themselves, we
have to find out the fake coin(s) from the search space. Now depending on the
number of fake coins in the search space, the problem becomes complex. Imagine a
coin is false among 10 coins. We put 5 coins in the left pan and 5 coins in the right
pan, and say, the left pan goes upside and right pan downside. From this weighing,
we may assume two things: either the fake coin is heavier residing on the right pan
and the coins on the left are all true, or the fake coin is lighter residing on the left
pan and all the coins on the right are true. Thus, from this single weighing we
cannot conclude anything else.

Let T, H, and L denote a true coin, a heavier false coin, and a lighter false coin,
respectively. Their weights are denoted as w(T), w(H), and w(L), respectively. For
one counterfeit coin problem as only single coin is fake, there are two versions:

306 A. Chakraborty et al.

w(T) > w(L) and w(T) < w (H). Now, if two coins are false, then there will be six
possibilities:

1. w(H1) = w(H2), i.e., both the false coins are equally heavier, where H1 and H2

are two heavier false coins.
2. w(L1) = w(L2), i.e., both the false coins are equally lighter, where L1 and L2 are

two lighter false coins.
3. Both the counterfeit coins are unequally heavier, i.e., w(H1) < > w(H2).
4. w(L1) < > w(L2), i.e., both the counterfeit coins are unequally lighter.
5. One of the false coins is heavier whereas another is lighter than a true coin. In

this case, one of the variations takes place when the false coins are equally
heavier and lighter, i.e., the difference in weight of the heavier coin and a
standard coin is equal to the difference in weight of a standard coin and the
lighter coin, i.e., w(H) − w(T) = w(T) − w(L).

6. Another variation of containing one heavier and one lighter coin occurs if the
counterfeit coins are unequally heavier and lighter, i.e., w(H) − w(T) < > w(T) −
w(L).

Thus, in solving two counterfeit coins problem an algorithm or a minimal set of
algorithms have to be there that should cover all of these six above-mentioned cases
separately or as a whole and thereby solving the problem in general. Previously, we
have developed four such algorithms which solve the two counterfeit coins problem
considering all of the six factors. We may also visualize it in the following way.
Suppose we consider the weight of a standard or true coin as a positive real number
(may be any value) and also the weight of a fake coin (there are two false coins) as
any value other than the weight of the true coin but within a range of proportionate
weight, i.e., another positive real number. The weights or real numbers of these two
false coins must fall into one of the six categories, and thus, generalize it.

In moving to three counterfeit coins problem, i.e., there are now three fake coins
in the search space, we at first discuss all the possible cases that may occur toward
generalization and then develop an algorithm in its natural flow. Let Ci denotes the
ith false coin. As there are three false coins, either heavier or lighter, C is H or L and
i = 1, 2, 3. Again w(Ci) is the weight of the ith false coin. Depending on the
combination of weight of these false coins different situations may occur.

1. The three false coins present in a set of coins are equally heavier, i.e., w
(H1) = w(H2) = w(H3).

2. All the three false coins are heavier than a true coin but they have different
weights, i.e., they are unequally heavier. Thus, w(H1) < > w(H2) < > w(H3).

3. Two false coins out of the three are heavier and they are of the same weight and
the remaining one false coin has a different weight than the other two (the
weight of which is undoubtedly more than the true coin but it is either greater or
less than the other two false coins). Thus, w(H1) = w(H2) but either w(H3) > w
(H1) or w(H3) < w(H1).

4. The three false coins present in a set of coins are equally lighter, i.e., w(L1) = w
(L2) = w(L3).

Anomaly Detection and Three Anomalous Coins Problem 307

5. All the three false coins are lighter than a true coin but they have different
weights, i.e., they are unequally heavier. Thus, w(L1) < > w(L2) < > w(L3).

6. Two false coins out of the three are of the same weight and the remaining one
false coin has a different weight than the other two (the weight of which is
certainly less than a true coin but it is either greater or less than the other two
false coins). Thus, w(L1) = w(L2) but either w(L3) > w(L1) or w(L3) < w(L1).

7. Two false coins are equally heavier and other one is lighter such that if Δw
(Hi) ≡ w(Hi) − w(T) and Δw(L1) ≡ w(T) − w(L), then Δw(Hi) = Δw(L1).

8. Two false coins are equally heavier and other one is lighter such that Δw
(Hi) < > Δw(L1).

9. Two false coins are unequally heavier and the third one is a lighter such that w
(H1) < > w(H2) and Δw(H1) = Δw(L1) or Δw(H2) = Δw(L1).

10. Two false coins are unequally heavier and the third one is a lighter such that w
(H1) < > w(H2) and Δw(Hi) < > Δw(L1).

11. Two false coins are equally lighter and the other one is heavier such that if Δw
(H1) ≡ w(H) − w(T) and Δw(Li) ≡ w(T) − w(L), then Δw(H1) = Δw(Li).

12. Two false coins are equally lighter and the other one is heavier such that Δw
(H1) < > Δw(Li).

13. Two false coins are unequally lighter and the third one is heavier such that w
(L1) < > w(L2) and Δw(H1) = Δw(L1) or Δw(H1) = Δw(L2).

14. Two false coins are unequally lighter and the third one is heavier such that w
(L1) < > w(L2) and Δw(H1) < > Δw(Li).

Thus, we may conclude that a true coin as well as a fake coin may take any real
number as its weight and the instance must satisfy one of the above-mentioned
cases.

We can also visualize the counterfeit coin problem in a graphical point of view.
A coin represents a node (vi, i = 1, 2, …, n) and there is an edge between any two
nodes, say vi and vj, if the coins representing these nodes are of equal weight and
each edge weight represents that value. Hence, in the sample space all the true coins
always form a complete graph whereas the false coins are disconnected from the
true coins forming either isolated vertices or connected among themselves
depending on their weights. Thus, this problem now reduces to graph construction
problem or finding hidden graph problem. As all the coins are identical in their
appearance and we do not have their weights, we may assume that all the n nodes
form a complete graph, i.e., we do not have the information whether a node is true
or false. At this point, the graph reconstruction problem is to find out the false edges
and accordingly remove these to obtain the preferred graph (Fig. 1).

In developing an algorithm for three counterfeit coins problem, in this paper we
consider two cases, i.e., there are three equally heavier or three equally lighter false
coins in a set of n coins.

308 A. Chakraborty et al.

4 Algorithm Development

Through the problem specification we know that the number of false coins is three
and this leads to the difficulty of checking all the possible pairs of locations among
the set of n locations (for n coins). As we are considering the case where three false
coins are equally heavier (or lighter), we start with four coins in the search space.
Thus, among four coins three false coins may be found out as the lighter most (or
heavier most) coin is the true coin according to the specification. In this case, we
weigh four coins keeping two coins at each pan of the equal arm balance. The
heavier pan certainly contains two of the false coins (if we consider the false coins
to be heavier than the true coin) while the lighter pan contains the third heavier
coin. A further weighing between the two coins on the lighter pan identifies the
third heavier coin.

We may also find three false coins of this specified type among five coins. If
n = 5, we put two coins on either pan at the beginning leaving one coin outside of
the weighing. If two pans are equal in weight, both of them contain one false coin
each and the third false coin must be the coin outside. Thus, depending on the
results of subsequent weighing we derive the possible false coins for a set of small
number of coins. But, as n increases, if the subsequent comparisons are not logi-
cally bounded, we cannot choose a specific set of coins for the next comparison.
Our goal is to reduce the sample space at each level of comparison and we must
take a smaller set of coins than the previous. Here, we observe an important fact
about the divisibility of any integer by division of 3.

We recall the fact that any positive integer n can be classified into any of the
following three cases: (i) n is divisible by 3, that we can denote as n|3, (ii) n + 1 is
divisible by 3, i.e., (n + 1)|3, and (iii) n−1 is divisible by 3. Therefore, it can be easily
checked to which class the given set of coins belongs to and specifically which
variation of the algorithm can be applied to the provided set of coins. We take an
assumption that the coins are indexed by natural numbers, i.e., 1 through n. The
algorithm starts by dividing the coins into three sets K1, K2, and K3 such that the sets
K1 and K2 contain equal number of coins. At first K1 and K2 are placed on the arms

1

2

1

2

(b) (c)(a)

Fig. 1 a 6 coins or nodes with identical appearance form a complete graph. b Nodes 1 and 2 are
false nodes with mutually different weight other than the standard (or correct) weight. c Nodes 1
and 2 are false having mutually equal weight

Anomaly Detection and Three Anomalous Coins Problem 309

for weighing. Depending on the outcome of this weighing and the specification of
the false coins, we make a conclusion to select the set that contains the false coin(s).

For the first case, each of K1, K2, and K3 contains n/3 coins. For the second case, |
K1| = |K2| = (n+ 1)/3, i.e., each of these sets have (n+ 1)/3 coins, and |K3| = n−2(n + 1)/
3 = (n−2)/3. So, there is a disparity of one coin betweenK1 orK2 andK3. For the third
case, we calculate the number of coins in the three sets as |K1| = |K2| = (n−1)/
3 + 1 = (n + 2)/3 and |K3| = n–2(n + 2)/3 = (n-4)/3. Thus, K1 or K2 contains two coins
more than that ofK3.After creating setsK1,K2, andK3,K1, andK2 are placed into the
pans of the arm balance. Depending on the conclusion, three adaptations of the
algorithm go on toward the next weighing taking different sets. At each internal node
someweighing is executed considering the result of its ancestor node (whether the left
pan is heavier, lighter, or of equal in weight than the right pan). Now, we like to reveal
here that in the development of the algorithm, we use two functions: 1CPH(K) (1CPL
(K)) and 2CPH(K) (2CPL(K)), where K stands for a set of coins.

The function 1CPH(K) (1CPL(K)) is used to find one counterfeit coin which is
heavier (lighter) than a true coin in the set of K coins. We call this function only
when it is sure that only one false coin is present in a set of K coins. This is
essentially a binary search in context of finding the heavier (lighter) coin in the
specified set and finds the false coin in O(log n) comparisons. If the cardinality of
the set is even, it is divided into two subsets of equal size and these are weighed. It
cannot result in equality as there is certainly one false coin. In the next iteration, we
proceed with that set to which we are interested, i.e., whenever we are searching for
the heavier (lighter) coin, we take only the coins of the heavier (lighter) pan. On the
other hand, if the cardinality of the set is odd, we keep one coin aside and proceed
in the same way as stated above with the remaining even number of coins. In this
case, equality in weight between the pans may arise leading to the conclusion that
the coin out of weighing is the false one. At this point, if we are sure that one
particular set contains one false coin, but we are not confident of the type of the
false coin, it is not a kind of binary search; hence, it does not reduce the search
space into half of the previous after each weighing.

The function 2CPH(K) (2CPL(K)) finds two counterfeit coins in a set of K coins
[10]. It is applied on a set of (K) coins while the subsequent results of weighing
identify that set of coins to contain two equally heavier coins. This algorithm finds
two false coins in O(log n) time. Here we denote the method of finding three
counterfeit coins in set Ki as 3CP(Ki). Whenever this method is applied on a
specific set, the cardinality of the set is checked whether n|3, (n + 1)|3, or (n−1)|3,
where n is the cardinality of the set. Accordingly, the algorithm takes appropriate
step.

In case of n|3, we first subdivide the coins into three sets having same number of
coins as has been already discussed. After the weighing of K1 against K2, we
proceed toward the next step depending on the result achieved in the first weighing.
If the weight of K1 is greater than that of K2, certainly at least one false coin resides
in set K1. But, we cannot immediately conclude the exact number of false coins in

310 A. Chakraborty et al.

that set as we have to consider all possible cases that may occur at this circum-
stance. Four possible cases are there that satisfy w(K1) > w(K2).

• All the three false coins (heavier) in set K1.
• Two of the false coins are in set K1, whereas the third one is in set K2.
• Two of the false coins are in set K1, whereas the third one is in set K3.
• One of the false coins resides in K1 while other heavier coins are in K3.

However, here is one important thing to observe that irrespective of the case at
least one false coin is there in set K1. Now, we weigh K1 against K3 to check
whether it satisfies case four or not. If w(K1) < w(K3), we conclude that case four is
true and accordingly we apply 1CP(K1) and 2CP(K3) [7]. On the other hand, if w
(K1) < w(K3), we have to proceed further to identify which of the remaining cases
is true. For this we compare between w(K2) and w(K3) and according to the result
of this comparison, we reach to some conclusion for applying 2CP() and/or 1CP()
on particular set of coins as depicted in Fig. 2. On the other hand, at the first level of
weighing, if w(K1) < w(K2), we may take the same assumption for set K2, as we
have considered for K1 in case of w(K1) > w(K2). The decision tree of Fig. 2 shows
the subsequent comparisons. Now, we come to the third possibility that may occur
at the first level of weighing, i.e., w(K1) = w(K2). Two possible cases are there to
satisfy this condition,

• There are equal number of heavier coins in both the sets K1 and K2. In that case,
as the total number of false coins is three which is an odd number, we may
conclude that K1 and K2 contain one false coin each while the third one is in K3.

• Two sets K1 and K2 contain only true coins having all the false coins in K3.

Accordingly, we weigh K1 against K3 and we apply 1CPH() on each of the sets
K1, K2, and K3, or 3CPH(K3), if w(K1) = w(K3), or w(K1) < w(K3), respectively.
Thus, at the leaf nodes what we have is a specified subset having either one or two
or three false coins according to which 1CPH() or 2CPH() or a further recursion of
the same algorithm has to be executed on that specified set of coins. As has been

K1 : K2

K1: K3 K1 : K3 K2: K3

K2 : K3

2CP(K1)

1CP(K2)

2CP(K1)

1CP(K3)

3CP(K1)

2CP(K3)

1CP(K1)

1CP(K1)

1CP(K2)

1CP(K3)

3CP(K3) K1 : K3

2CP(K2)

1CP(K1)

2CP(K2)

1CP(K3)

3CP(K2)

2CP(K3)

1CP(K2)

> = <

> <

> < = >

= <
< >

= <

Fig. 2 Decision tree for the case n|3

Anomaly Detection and Three Anomalous Coins Problem 311

already discussed, each of the algorithms 1CPH() and 2CPH() is O(log n) time
computable and we reach the leaves of the tree through a number of constant time
comparison that reduces the time complexity of the algorithm 3CPH() into O(log n).
The recursive application of 3CPH(Ki), where Ki is a reduced set from the initial set
of coins, at first the cardinality is checked to find in which category it belongs to,
i.e., n|3, or (n + 1)|3, or (n−1)|3, and accordingly the algorithm progresses.

Now, we discuss the scenario that comes when (n + 1)|3. In this case the initial
subdivision does not result into three subsets having equal cardinality, i.e., K1 and
K2 contain equal number of coins whereas K3 has one less coin than each of the
remaining two. There is an observation that the algorithm is logically same for all
the three categories of divisibility by three, i.e., it divides a set, compares between
two specified sets, draws some assumptions, and upon which it reduces sample
space by choosing some specific sets to be compared in the next level. The only
difference between the three categories is in the cardinalities of the sets to be
compared. For an example, from the decision tree of Fig. 3, after the first level of
weighing we have to compare between K1−1 and K3, where K1−1 is the set
excluding the last coin from K1. Again, after the second level of comparison, if w
(K1−1) > w(K3), set K1−1 certainly contains a false coin, but confusion arises
when two other coins as those may reside either in K2 or in K3 or it is the remaining
coin of K1. Thus, to verify the two sets K2 and K3 we compare K2−1 with K3. If w
(K2−1) > w(K3), we may conclude that at least one false coin resides in K2−1.
Again, K2 cannot contain more than one false coin as K1 must contain one more
false coin than that of K2 to satisfy the condition w(K1) > w(K2) at the first level of
weighing. So, one false coin is in K2−1 and the remaining two false coins are in K1.
On the other hand, if w(K2−1) < w(K3), two false coins are in K1 and the third
heavier coin is in K3. If w(K2−1) = w(K3), both of them cannot contain one false
coin each as K1 contains one more false coin than K2. Hence, there are two
possibilities.

K1 : K2

K1−1 : K3 K1−1 : K3 K2−1 : K3

K2−1 : K3

2CP(K1)
1CP(K2−1)

RK2 : one
from K3

2CP(K1)
1CP(K3)

2CP(K3)
1CP(K1)

1CP(K1)
1CP(K2)
1CP(K3)

> = <

> <

> = <

= <

1CP(K1−1)
1CP(K3)
RK1(H)

=

2CP(K1)
RK2(H)

>

3CP(K1)

=

RK1 : one from
 K1−1

>

1CP(K2)
1CP(K3)
RK1(H)

3CP(K3)
=

K1−1 : K3

2CP(K2)
1CP(K1−1)

RK1 : one from K3 2CP(K2)
1CP(K3)

2CP(K3)
1CP(K2)

>

> = <

<

2CP(K2)
RK1(H)

>

3CP(K2)

=

1CP(K2−1)
1CP(K3)
RK2(H)

=

Fig. 3 Decision tree for the case (n + 1)|3

312 A. Chakraborty et al.

• Both of them contain only true coins while all the false coins are in K1.
• Two false coins are in K1 whereas the remaining coin in set K2 is the third

heavier coin (Fig. 3).

However, here we can conclude that K3 contains only true coins. Hence, we may
believe that any coin belongs to set K3 as a standard coin, and we compare between
the remaining coin of K2 and one coin from K3, and depending on the result we
apply either 1CP(), or 2CP(), or 3CP() on the specific sets.

For the right branch of the tree of Fig. 3, the assumptions and the corresponding
steps are identical taking the set K2 instead of set K1. For the equality condition, we
compare w(K1−1) with w(K3). If K1−1 and K3 are of equal weight, we conclude
that both of them contain one false coin each while the remaining coin of K1 is the
third heavier coin. On the other hand, if K1−1 weighs less than K3, two possibilities
are there; either K3 contains all the false coins while K1 and K2 are the true coins’
sets or K3 contains one false coin and the remaining coin of K1 is one another false
coin and the third one is in K2. In both the cases, it is convenient that K1−1 does
not contain any false coin; hence, any of the coins belonging to this set can be
considered as a standard coin. To verify which of the possibility is true, we weigh
the remaining coin of K1 against one coin of K1−1 that identifies the fact.

In case of (n−1)|3, the algorithm flows in the same way as that of the case
(n + 1)|3 despite of the fact that K1 or K2 contains two more coins than K3 (Fig. 4).
After the first level of weighing, assumptions are also same as that of the previous
two cases. In the second level, we compare K1−2 or K2−2 with K3 to have equal
number of coins on both pans of the arm balance. The difference of this version
from that of the previous one comes into account after the second level of weighing,
following the left and right branches from the root of the tree. If the weight of K1−2
is less than that of K3, we cannot immediately conclude that K1 contains one false

2CP(K3)
1CP(K1)

K1 : K2

K1−2 : K3
K1−2 : K3

K2−2 : K3

K2−2 : K3

2CP(K1)
1CP(K2−2)

RK2 : two
from K3

2CP(K1−2)
1CP(K3)

1CP(K1)
1CP(K2)
1CP(K3)

> = <

> <

> = <

= <
1CP(K1−1)
1CP(K3)
RK1(H)

=

2CP(K1)
RK2(H)

>

3CP(K1)

=

RK1 : two from
K1−2

>

1CP(K2)
1CP(K3)
RK1(H)

3CP(K3)

=

K1−2 : K3

2CP(K2)
1CP(K1−2)

RK1 : two
from K3

2CP(K2−2)
1CP(K3)

2CP(K3)
1CP(K2)

>

> = <

<

2CP(K2)
RK1(H)

>

3CP(K2)

=

1CP(K2−1)
1CP(K3)
RK2(H)

=RK1 : two from
K2

= >

2CP(RK2)
1CP(K3)

RK2 : two from
K1

>
=

2CP(RK2)
1CP(K3)

Fig. 4 Decision tree for the case (n-1)|3

Anomaly Detection and Three Anomalous Coins Problem 313

Read n

If n|3=0?If (n+1)|3=0?

Start

α

β

γ

If K1= K2?

K1={1,…,n/3},

K2={n/3+1,…,2n/3},

K3={2n/3+1,…,n }

If K1> K2?

YN

Y

N

YN
If K1= K3? N

Y

n = |K3|

Y

N

If K1> K3? Y If K2= K3?

N
n = |K1|

Y

N

If K2> K3?

Y

N

If K2 > K3?

Y

If K1= K3?n = |K2|

N

Y

If K1> K3?

Y

N

N
1CP(K1)

1CP(K2)

1CP(K3)

1CP(K1)

2CP(K3)

1CP(K2)

2CP(K1)

1CP(K3)

2CP(K1)

1CP(K1)

2CP(K2)

1CP(K3)

2CP(K2)

1CP(K2)

2CP(K3)

χ

End

Fig. 5 Flowchart of the algorithm to find three anomalous coins among n coins

314 A. Chakraborty et al.

Y
If K2−1= K3? N N

Y

N

Y1CP(K2−1)
1CP(K3)
RK2(H)

If K2−1> K3?

1CP(K3)
2CP(K2)

If K1−1= K3? If RK1 > one from K3? n = |K2|
N

RK1(H)
2CP(K2)

Y

If K1−1> K3?

RK1(H)
2CP(K2−1)

N

2CP(K2)
1CP(K1−1)

Y

χ

1CP(K3)
2CP(K1)

If K2−1= K3? If RK2 > one from K3? n = |K1|
N

RK2(H)
2CP(K1)

Y

If K2−1> K3?

RK2(H)
2CP(K1−1)

N

2CP(K1)
1CP(K2−1)

Y

χ

α

K1={1,…, (n+1)/3},
K2={(n+4)/3,…, (2n+2)/3},

K3={(2n+5)/3,…, n }

If K1= K2?If K1> K2? YN
If K1−1< K3?

Y

NY

Y
If K1−1= K3? N N

Y

N

Y

1CP(K1)
1CP(K2)
1CP(K3)

If RK1< one from K1−1?

1CP(K2)
1CP(K3)
RK1(H)

n = |K3|

γ

Y

N

1CP(K1−1)
1CP(K3)
RK1(H)

If K1−1> K3?

Fig. 5 (continued)

Anomaly Detection and Three Anomalous Coins Problem 315

Y
If K2−2= K3? N N

Y

N

Y1CP(K2−2)
1CP(K3)

1CP(RK2)

If K2−2> K3?

1CP(K3)
2CP(K2)

If K1−2= K3? If RK2 > two from K3? n = |K2|
N

1CP(RK1)
2CP(K2)

Y

If K1−2> K3?

1CP(RK1)
2CP(K2−2)

N

2CP(K2)
1CP(K1−2)

Y

χ

1CP(K3)
2CP(K1)

If K2−2= K3? If RK2 > two from K3? n = |K1|
N

1CP(RK2)
2CP(K1)

Y

If K2−2> K3?

1CP(RK2)
2CP(K1−2)

N

2CP(K1)
1CP(K2−2)

Y

χ

β

K1={1,…, (n+2)/3},
K2={(n+5)/3,…, (2n+4)/3},

K3={(2n+7)/3,…, n }

If K1= K2?If K1> K2? YN
If K1−2< K3?

Y

NY

Y
If K1−2= K3? N N

Y

N

Y

1CP(K1)
1CP(K2)
1CP(K3)

If RK1< one from K1−2?

1CP(K2)
1CP(K3)

1CP(RK2)

n = |K3|

γ

Y

N

1CP(K1−2)
1CP(K3)

1CP(RK2)

If K1−2> K3?

Fig. 5 (continued)

316 A. Chakraborty et al.

coin while K3 contains two false coins, as there are two remaining coins belonging
to K1 outside the comparison. Two possibilities satisfy this condition.

• K1 contains one false coin while K3 contains two false coins.
• Remaining two coins of K1 are heavier and one of the coins in K3 is the third

heavier coin.

Hence, we have to check the remaining coins with two true coins. As the coins in
K2 have been proved as true coins, we use two of them as standard coins to perform
the verification operation. Accordingly, the decision is taken to apply 1CPH() or
2CPH() on appropriate set(s) of coins (Fig. 5). In the right branch for the first level
of weighing, the same process is followed depending on the result of subsequent
weighing and the important thing is that the remaining coins of K2 are considered
there instead of K1.

Thus, these three decision trees cover all possible sets of coins using the
divisibility of three criteria. The novelty of the algorithm is not only in its gener-
alization for all possible number of coins, but it is applicable to find out three
equally lighter coins. In that case, at each node the sets of coins to be weighed are
changed depending on the assumption that a pan lighter than the other certainly
contains at least one of the false lighter coins.

5 Experimental Results

In this section, we discuss our algorithm in the analysis of 3CP(), 2CP(), and 1CP()
with the purpose of showing the computational complexity as O(log n). In our
algorithm, at the leaf nodes as we have applied 1CP(), 2CP(), or 3CP() on some
precise set of coins and to attain the leaves the number of comparisons required is
constant; hence, the computational complexity of the algorithm depends on the
complexity of these functions. Referring the algorithm in paper [6], we choose
some values of n so that it covers all the three categories for the subdivision of
n and calculate the average number of comparisons requisite in the case of 2CP().
Table 1 shows the variation of required number of weighings with the number of
coins under consideration. In Fig. 6, the horizontal axis denotes the total number of
coins while the vertical axis refers to the average number of comparisons required
to find three counterfeit coins among a set of identical looking coins. Again, 1CP()
performs accurately like binary search problem, which takes O(log n) time to find
one false coin among a set of n coins. To compute the average case complexity, we
have to think about all the possible false coin pairs. Hence, for a given value of n,
there are nC3 possible combinations.

Anomaly Detection and Three Anomalous Coins Problem 317

6 Computational Complexity

The total number of coins, i.e., n is divided into nearly three equal parts at each
iteration, and the cardinality of the set on which the operations are performed, always
shrinks by a factor of 3. Let us first consider the case n|3. As we observe at the ith
level, each set contains n/3i number of coins. Now, if we achieve the set with four
coins, we can solve it through two comparisons only, as we have shown earlier. So,
let at the ith level of comparison the cardinality of the set decreases to four. Thus, n/
3i = 4, i.e., 3i = n/4. Therefore, i = log 3 (n/4). Moreover, if 3CPH(Ki) is applied at
each iteration before getting the set with four coins, we can observe in all the
decision trees in Figs. 1, 2, and 3, that to reach a leaf where 3CPH() is applied we
have to traverse at most three internal nodes, i.e., at most three comparisons are
required at each iteration. Hence, a total of 3 × i comparisons are required resulting in
3 × i+2 comparisons in total, which is O(log n). As we have already explained, that
to find a known type of false coin (either heavier or lighter) always takes O(log
n) time. On the other hand, if 2CPH(Ki) is applied at a leaf node, it also takes time O
(log n) [11]. If 1CPH(Ki) or 2CPH(Ki) is performed at j-th level of comparison it is
sure that before that iteration 3CPH() is executed for (j−1) times. We know that
1CPH() requires at most log2nd e comparisons and at the j-th level it is to be applied

Table 1 Average number of comparisons for some values of n

Number of
coins (n)

Total number of
comparisons (S)

Possible number of false
coin combination C (nC2)

Average number of
comparison AVG = S/C

9 171 36 4

20 1254 190 6

36 5508 630 8

54 13,365 1431 9

82 34,267 3321 10

100 54,926 4950 11

108 65,232 5778 11

144 130,842 10,296 12

198 251,883 19,503 12

30 90 1500

5

10

15

X

Y

60 120 180

X axis ≡ Total number of coins
Y axis ≡ Average number of comparisons required

Fig. 6 Plot of average number of comparisons required against the number of coins

318 A. Chakraborty et al.

on n/3j number of coins. Thus, it would take a total number of 2|j| + 2log3(n/3
j)

comparisons. Hence, in the worst case it would take O(2|j| + 2log3(n/3
j)) + O

(2 × log3(n/5) + 4), i.e., O(log n) comparisons altogether as j is O(log n).

7 Application

Counterfeit coin(s) problem has vast applications in different fields; some of which
are discussed here. In hidden graph learning problem, where we have the infor-
mation of the number of vertices as well as the number of edges but we do not
know the actual edges (i.e., the vertex pairs) and we are to construct the graph
through minimum number of query [10]. Again, graph finding or construction
problem is the key issue in the domain of Bioinformatics and DNA sequencing.

Furthermore, coin weighing problem is exhaustively studied in anomaly detec-
tion problems in quantum information processing [11], compressed sensing, and
multi-access adder channel [12]. As counterfeit coin(s) problem belongs to combi-
natorial group testing problem, it can be mapped into utilization in medical field like
finding of any odd spike in MRI scan, or in technical field to find any set of damaged
pixels in a digital image, locating electrical shorts in electrical circuits [12], etc.

8 Conclusion

The issue of counterfeits violates rational property right and also causing harm to
both producer and purchaser. In this paper, we have developed an algorithm to
recognize three anomalous coins among a set of n coins which are identical in
exterior. In this case, we have assumed that all the false coins are equally heavier (or
lighter) than a true coin. Two versions of the problem, i.e., all the counterfeit coins
are equally heavier or equally lighter, can be solved using this algorithm with the
time complexity O(log n). The most significant fact is that the decision tree structure
can be used to solve such problems of large size, by eliminating a part of the solution
domain after each step of decision making. Especially, as our algorithm works for
any value of n, it does not make an issue if the value of n is not known a priori.

References

1. Ghosh, J., Senmajumdar, P., Maitra, S., Dhal, D., Pal, R.K.: A generalized algorithm for solving
n coins problem. In: Proceedings of the 2011 IEEE International Conference on Computer
Science and Automation Engineering (CSAE 2011), vol. 2, pp. 411–415. Shanghai (2011)

2. Ghosh, J., Senmajumdar, P., Maitra, S., Dhal, D., Pal, R.K.: Yet another algorithm for solving
n coins problem. Assam Univ. J. Sci. Technol.: Phys. Sci. Technol. 8(II), 118–125 (2011).
ISSN: 0975-2773

Anomaly Detection and Three Anomalous Coins Problem 319

3. Tošić, R.: Two counterfeit coins. Discrete Math. 46, 295–298 (1983) (North-Holland)
4. Manvel, B.: Counterfeit coin problems, mathematics magazine, mathematical association of

America 50(2), 90–92 (1977)
5. Bellman, R., Gluss, B.: On various versions of the defective coin problem. Inf. Control 4(2–3),

118–131 (1961)
6. Ghosh, J., Dey, L., Nandy, A., Chakraborty, A., Datta, P., Pal, R.K., Samanta, R.K.: An

advanced approach to solve two counterfeit coins problem. Proc. Ann. Pure Appl. Math. 7(1),
77–82 (2014). ISSN:2279-087X (P), 2279-0888 (online)

7. Ghosh, J., Datta, P., Chakraborty, A., Nandy, A., Dey, L., Pal, R.K., Samanta, R.K.: An
endeavour to find two unequal false coins. In: Proceedings of the 8th International Conference
on Electrical and Computer Engineering (ICECE 2014), pp. 333–336. Dhaka (2014)

8. Ghosh, J., Chakraborty, A., Datta, P., Dey, L., Nandy, A., Pal, R.K., Samanta, R.K.: The first
algorithm for solving two coins counterfeiting with ω(ΔH) = ω(ΔL). In: Proceedings of the 8th
International Conference on Electrical and Computer Engineering (ICECE 2014), pp. 337–
340. Dhaka (2014)

9. Ghosh, J., Nandy, A., Dey, L., Datta, P., Chakraborty, A., Pal, R.K., Samanta, R.K.: An
algorithm for identifying two unequal heavier / lighter coins out of n given coins. In:
Proceedings of the 3rd International Conference on Computer, Communication, Control and
Information Technology (C3IT2015), pp. 1–6. Academy of Technology, West Bengal (2015)

10. Kim, J.H.: Finding Weighted Graphs by Combinatorial Search (2012). arXiv:1201.3793v1
[math.CO]

11. Lim, E.W.C.: On Anomaly Identification and the Counterfeit Coin Problem (2009)
arXiv:0905.0085

12. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications Series on Applied
Mathematics, vol. 3. World Scientific Publishing Co. Pvt. Ltd., Singapore (1993)

320 A. Chakraborty et al.

Author Index

B
Bagchi, Parama, 81
Bhattacharjee, Debotosh, 81
Bhattacharya, Adrija, 139
Buczkowski, Mateusz, 21

C
Chaki, Nabendu, 121, 173, 201
Chaki, Rituparna, 235
Chakrabarti, Amlan, 189
Chakraborty, Arpan, 271, 303
Chakraborty, Manali, 173
Chakraborty, Moumita, 189
Chatterjee, Nachiketa, 107
Chattopadhyay, Samiran, 201
Choudhury, Sankhayan, 139

D
Das, Debarun, 139
Dasgupta, Ranjan, 121
Das, Nibaran, 37
Das, Partha Pratim, 107
Das, Surjya Sikha, 249
Datta, Piyali, 271, 303
Deka, Paresh Chandra, 289

G
Gaikwad, Santosh, 3
Gawali, Bharti, 3
Ghosh, Ammlan, 235
Ghosh, Joydeb, 303
Ghosh, Smita, 139

Ghosh, Swarup, 249
Guha, Krishnendu, 189

H
Halder, Chayan, 37, 53
Halder, Raju, 153

J
Jana, Sunanda, 215

K
Kachhap, Preeti, 153
Kanrar, Sukhendu, 201
Kumar, Ranajith, 69

M
Maji, Arnab Kumar, 215
Majumder, Ayan, 189
Mall, Rajib, 93
Mehera, Ranjan, 271
Mehrotra, Suresh, 3
Mohanraj, V., 69
Mukherjee, Debashis, 93

N
Nakkeeran, R., 69
Nandy, Ankita, 303
Nasipuri, Mita, 81

O
Obaidullah, Sk. Md., 37, 53

© Springer India 2016
R. Chaki et al. (eds.), Advanced Computing and Systems for Security,
Advances in Intelligent Systems and Computing 396,
DOI 10.1007/978-81-322-2653-6

321

P
Pal, Rajat Kumar, 215, 271, 303
Paul, Jaya, 53

R
Rani, Sapana, 153
Roy, Bibhash, 121
Roy, Debasish, 249
Roy, Kaushik, 37, 53

S
Saeed, Khalid, 21
Sujay Raghavendra, N., 289

T
Thakur, Saurabh Singh, 107

V
Vaidehi, V., 69

322 Author Index

	Preface
	Contents
	About the Editors
	Part I Signal Processing
	1 Design and Development of Marathi Speech Interface System
	Abstract
	1 Introduction
	2 Related Work
	3 Speech Recognition and Feature Extraction Techniques
	3.1 Feature Extraction Techniques
	3.1.1 Fusion-Based Feature Extraction Techniques
	3.1.2 WDCC: Proposed Approach

	4 Design of Marathi Speech Interface System
	4.1 Database Design
	4.2 Marathi Speech Activated Calculator (MSAC)

	5 Experimental Analysis
	5.1 Performance of the Marathi Speech Activated Calculator (MSAC) System
	5.2 Training of MSAC System
	5.3 Testing of MSAC System
	5.4 Significance of MSAC

	6 Conclusion
	References

	2 Fusion-Based Noisy Image Segmentation Method
	Abstract
	1 Introduction
	2 Used Methods
	2.1 Bilateral Filter
	2.2 Canny--Deriche Edge Detector
	2.3 Active Contours (Snakes) and Gradient Vector Flow (GVF)
	2.4 Statistical Region Merging (SRM) and Multilevel Thresholding

	3 The Proposed Methodology
	4 Experimental Results and Interpretation
	5 Evaluation and Comparison of Results
	Acknowledgements
	References

	3 An Approach for Automatic Indic Script Identification from Handwritten Document Images
	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 Preprocessing
	2.2 Feature Extraction

	3 Experimental Details
	3.1 Dataset Development
	3.2 Experimental Protocol
	3.3 Evaluation Using Multiple Classifiers
	3.4 Result and Analysis
	3.5 Comparative Study

	4 Conclusion and Future Scope
	References

	4 Writer Verification on Bangla Handwritten Characters
	Abstract
	1 Introduction
	2 Brief Survey on Writer Verification/Identification
	3 Method
	4 Database and Preprocessing
	5 Feature Extraction
	5.1 MFFT (Modified Fast Fourier Transform)
	5.2 MGLCM (Modified Gray Level Co-occurrence Matrix)
	5.3 MDCT (Modified Discrete Cosine Transform)

	6 Verification
	7 Results
	7.1 Result of Writer Verification
	7.2 Comparative Study

	8 Conclusion
	Acknowledgments
	References

	5 Face Recognition in Video Using Deformable Parts Model with Scale Invariant Feature Transform (DPSIFT)
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed System
	3.1 Face Detection
	3.2 Interest Point Detection
	3.3 Feature Descriptors
	3.4 Descriptors Matching

	4 Implementation and Results
	5 Conclusion
	Acknowledgment
	References

	6 Registration of Range Images Using a Novel Technique of Centroid Alignment
	Abstract
	1 Introduction
	2 Literature Survey on 3D Face Registration
	3 Present Method
	3.1 3D Face Registration

	4 Comparative Analysis of the Present Approach with Other Methods Existing in the Literature
	5 Conclusion and Future Scope of the Work
	Acknowledgement
	References

	Part II Software Engineering
	7 An Investigation into Effective Test Coverage
	Abstract
	1 Introduction
	1.1 Definition-Use (Du-Paths) Path Coverage
	1.2 Enhancement in Coverage on Path-Based Metric
	1.3 Dependence Paths Coverages

	2 Basic Concepts
	2.1 Control Flow Graph
	2.2 Definition-Use Graph
	2.3 Concept Learning
	2.4 Abstract Interpretation
	2.5 Reliability of Networks
	2.6 Acceptance Tests
	2.7 Program Slicing
	2.8 Complexity Metric

	3 Desirables of the Test Metric
	3.1 Set of Test Paths Included
	3.2 Definition of Underlying Hypothesis and Structure
	3.3 Extendability, Subsumption, Relation on Established Metric
	3.4 Hypothesis Induced Per Path in the Tests Run, and/or Paths Induced Per Hypothesis
	3.5 Compatibility with Specific Applications

	4 Weyuker's Properties and Dependence Path Coverage Metric
	5 Conclusion
	References

	8 Resource Management in Native Languages Using Dynamic Binary Instrumentation (PIN)
	Abstract
	1 Introduction
	1.1 Memory Leak
	1.2 Dangling Pointer

	2 Resource Management Techniques
	2.1 Classical Resource Management
	2.2 Resource Management for Native Language

	3 Resource Management Using Dynamic Instrumentation
	4 Implementation
	5 Functional and Performance Testing
	5.1 Correctness of GC Pintool
	5.2 Performance of GC Pintool

	6 Conclusion
	References

	9 A Study on Software Risk Management Strategies and Mapping with SDLC
	Abstract
	1 Introduction
	2 Risk Management Models
	3 Risks at Each Level of SDLC
	4 Mapping of Models for Different Stages
	5 Conclusions
	References

	10 A New Service Discovery Approach for Community-Based Web
	Abstract
	1 Introduction
	2 Proposed Solution
	2.1 Registry Organization
	2.2 Defining the Community Schema
	2.3 Organization of a Community
	2.4 Membership Alteration and Threshold Adjustment

	3 Illustration with an Example
	4 Service Discovery Algorithm and Analysis
	5 Conclusion
	References

	11 Data-Flow Analysis-Based Approach of Database Watermarking
	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Motivations
	1.3 Contributions

	2 Running Example
	3 Basic Concepts
	4 Proposed Technique
	4.1 Data-Flow Analysis
	4.2 Watermarking of Invariant Parts
	4.3 Watermarking of Applications Using Opaque Predicates

	5 Complexity Analysis
	6 Security Analysis
	7 Experimental Results
	8 Conclusions
	References

	12 A New Framework for Configuration Management and Compliance Checking for Component-Based Software Development
	Abstract
	1 Introduction
	2 Working Principle of Proposed Framework
	2.1 Component Management
	2.2 Configuration Management
	2.3 Compliance Management

	3 Application of this Model in Smart Grid Architecture
	4 Future Work and Conclusions
	5 Acknowledgment
	References

	13 CAD-Based Analysis of Power Distribution Network for SOC Design
	Abstract
	1 Introduction
	2 Proposed CAD-Based Design
	2.1 Resistance Distribution Profile Generation in MATLAB
	2.2 Generation of Circuits and SOC
	2.3 Analysis in ASIC Platform

	3 Resistance Distribution Profile
	4 Benchmark Circuits and Associated CryptoCores
	4.1 Data Encryption Standard (DES)
	4.2 Advanced Encryption Standard (AES)

	5 Analysis in ASIC Platform
	6 Implementation and Results
	7 Conclusion
	References

	Part III Algorithms
	14 A New Hybrid Mutual Exclusion Algorithm in the Absence of Majority Consensus
	Abstract
	1 Motivation and Problem Definition
	2 Review on Voting-Based ME Algorithms
	3 The Proposed Hybrid Algorithm
	4 Performance Analysis
	4.1 Safety
	4.2 Progress Condition
	4.3 Correctness
	4.4 Storage Requirement
	4.5 Message Complexity

	5 Simulation Result
	5.1 Simulation Performance of the Proposed Algorithm with TB-DVA and RA
	5.1.1 Time Complexity of the Proposed Algorithm as Compared to TB-DVA
	5.1.2 Message Complexity of Proposed Algorithm as Compared to RA Algorithm

	6 Conclusions
	References

	15 A Comprehensive Sudoku Instance Generator
	Abstract
	1 Introduction
	1.1 Metrics of Difficulty Level
	1.1.1 The Total Amount of Given Cells
	1.1.2 The Lower Bound on the Number of Clues in Each Row, Column, and Minigrid

	1.2 Uniqueness of Sudoku Instances

	2 Generating a Sudoku Instance from a Solved Sudoku Puzzle
	2.1 Randomized Selection of Cell Location
	2.2 Sequential Selection of Cell Location
	2.2.1 Wandering Along S (or Zigzag) Path
	2.2.2 Wandering from Left to Right or the Reverse
	2.2.3 Symmetrical Removal of Values from Rows
	2.2.4 Symmetrical Removal of Values from Columns
	2.2.5 Symmetrical Removal of Values from Minigrids

	2.3 Flowchart at a Glance for the Digging Hole Strategy

	3 A New Scheme for Creating an Instance Based on Transformations of a Sudoku Puzzle
	3.1 Digit Exchanging
	3.2 Rotation
	3.2.1 Rotation by 90 Degree
	3.2.2 Rotation by 180 Degree
	3.2.3 Flipping Vertical Rotation
	3.2.4 Flipping Horizontal Rotation

	3.3 Rows-in-a-Band Exchanging
	3.4 Columns-in-a-Stack Exchanging
	3.5 Band Exchanging
	3.6 Stack Exchanging
	3.7 A Combination of All Six Methods
	3.8 A Graph Theoretic Technique to Compute the Number of Solutions for a Produced Sudoku Instance

	4 Conclusion
	References

	16 Implementing Software Transactional Memory Using STM Haskell
	Abstract
	1 Introduction
	2 Retrospection of an OFTM Solution Towards Abort Freedom
	3 Implementing STM Using STM Haskell
	3.1 Important System Variables
	3.2 Implementation

	4 Simulation Results
	4.1 Case-I: Lower Average Execution Time
	4.2 Case-II: Medium Average Execution Time
	4.3 Case-III: Higher Average Execution Time
	4.4 Productivity Improvement with Parallel Execution
	4.5 Summary of Results

	5 Conclusions
	References

	17 Comparative Analysis of Genetic Algorithm and Classical Algorithms in Fractional Programming
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Random Search Method
	2.2 Box's Evolutionary Method
	2.3 Hooke Jeeves' Method
	2.4 Gradient Descent Method
	2.5 Genetic Algorithm

	3 Linear Fractional Programming
	4 The Experiment
	4.1 Random Search
	4.2 Box Evolutionary Method
	4.3 Hooke's Jeeves Pattern Search
	4.4 Gradient Ascent Method (Cauchy's Method)
	4.5 Genetic Algorithm

	5 Result
	6 Conclusion
	Acknowledgements
	Appendix
	References

	18 An Algorithm to Solve 3D Guard Zone Computation Problem
	Abstract
	1 Introduction
	2 Literature Survey
	3 Formulation of the Problem and the Algorithm
	4 Computational Complexity
	5 Application
	6 Conclusion
	References

	19 Multistep Ahead Groundwater Level Time-Series Forecasting Using Gaussian Process Regression and ANFIS
	Abstract
	1 Introduction
	2 Study Area and Data Analysis
	3 Methodology
	3.1 Gaussian Process Regression
	3.2 Adaptive Neuro Fuzzy Inference System (ANFIS)

	4 Performance Evaluation
	5 Results and Discussion
	6 Conclusions
	Acknowledgements
	References

	20 Anomaly Detection and Three Anomalous Coins Problem
	Abstract
	1 Introduction
	2 Literature Survey
	3 Formulation of the Problem
	4 Algorithm Development
	5 Experimental Results
	6 Computational Complexity
	7 Application
	8 Conclusion
	References

	Author Index

