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    Abstract  

  Increasing application of chemical fertilizers in agriculture make country 
self dependent in food production but it depreciate environment and cause 
harmful impacts on living beings. The excess uses of these fertilizers in 
agriculture are costly and have various adverse effects on soil fertility. 
Further, soil microorganisms play an important role in the plant growth 
and development by various means  viz . nitrogen fi xation, phosphate solu-
bilisation, phytohormone production etc. Therefore, bio-inoculants for 
agriculture purpose i.e. bio-fertilizers could be a better alternative to 
chemical fertilizers for agricultural as well as environmental 
sustainability.  
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18.1       Introduction 

 Soil microorganisms are important component 
of integrated nutrient management and soil 
biodiversity system. They play a crucial role in 
the plant growth and development. In recent 
years, it is being noticed that excessive exposure 
to chemical fertilizers and pesticides which not 
only deteriorate soil health but also create several 
environmental impacts as global threat. Benefi cial 
microorganisms offer the potential to meet our 
agricultural needs and thus, are better alternatives 
for sustainable agriculture practices. As com-
pared to the chemical fertilizer, biofertilizers are 
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safer with reduced environmental damage, has 
more targeted activity and effective in smaller 
quantities. Furthermore, they are able to multiply 
but simultaneously controlled by the plant and 
indigenous microbes. Moreover, microbial inoc-
ulants have quicker decomposition procedures 
and are less likely to induce resistance by the 
pathogens and pests. 

 Bio-inoculants for agriculture purpose are 
also known as bio-fertilizers. They can broadly 
defi ned as formulations of active or latent 
strains of microorganisms mainly bacteria 
either alone or in combination with algae or 
fungi components which, directly or indirectly, 
stimulate microbial activity and thereby 
increase mobilization of nutrients from soil. 
They are customized formulations employing 
functional attributes of the microorganisms to a 
range of soil systems and cropping patterns for 
attaining agricultural sustainability. PGPR 
includes many well known genera  Rhizobia , 
 Azospirillum, Klebsiella ,  Bacillus ,  Burkholderia, 
Azotobacter, Enterobacter,  and  Pseudomonas  
etc, but some of these genera include endophytic 
species as well. The best-characterized 
endophytic bacteria include  Azoarcus  spp, 
 Gluconacetobacter diazotrophicus , and 
 Herbaspirillum seropedicae  etc. The practical 
use of biological fertilizers is well below its full 
potential, mainly due to non- availability of 
suitable inoculants. Therefore, further studies 
on bioinoculant formulations and their explora-
tion will defi nitely help to understand the com-
plexity and dynamism of microbial functioning 
and interactions in soils.  

18.2     Plant Growth Promoting 
Rhizobacteria 

 The rhizosphere, the zone surrounding and infl u-
enced by plant roots, is a hot spot for several 
organisms and one of the most composite ecosys-
tems on Earth (Mendes et al.  2013 ). The rhizo-
sphere is the habitat for several bacteria, archaea, 
fungi, algae, viruses, oomycetes, nematodes, 
arthropods and protozoa. Mendes et al. ( 2013 ) 

described the rhizosphere microbiome in terms 
of “the good” (benefi cial microorganisms), “the 
bad” (plant pathogens) and “the ugly” (human 
pathogens). Plant benefi cial microorganisms not 
only promote their growth but also protect them 
from pathogen attack by a range of mechanisms. 

 PGPRs can induce plant’s growth either 
directly or indirectly. Direct mechanisms comprise 
the production of substances like phytohormones, 
liberation of nutrients and stimulation of induced 
systemic resistance. For example, diazotrophs, 
Phosphate (P) solubilizing bacteria (PSB)  viz . 
Rhizobia group,  Azospirillum ,  Agrobacterium , 
 Pseodomonas & Dyadobacter , etc (Singh et al. 
 2012 ; Rani et al.  2013 ; Kumar et al.  2014 ; Suyal 
et al.  2014 ). Furthermore, indirect mechanisms 
include stimulation of symbiotic relationships, 
stimulation for root growth and biocontrol  ability. 
For example, bacterial genera like Azospirillum, 
Bacillus, and Pseudomonas can enhance plant 
growth by legume symbioses (Podile and Kishore 
 2006 ). Moreover, it is also important to know that 
in some cases, numerous mechanisms are 
involved when it comes to benefi cial plant micro-
bial interactions (Nihorimbere et al.  2011 ). Thus, 
the identifi cation of the mechanisms accountable 
of plant growth represents a big challenge in 
present scenario. 

18.2.1     Diazotrophs 

 Diazotrophs are able to reduce N 2  to NH 3 , whereas 
others, including plants and animals must rely on a 
fi xed form of nitrogen for survival  viz . rhizobia, 
 Frankia ,  Azospirillum Pseudomonas, Dyadobacter  
(Kumar et al.  2014 ; Suyal et al.  2014 ) etc. Though 
biologically fi xed nitrogen has been found in a 
small number of non-legumes, this activity could 
have a great impact on the ecology of wild and 
cultivated ecosystems. Some of the well known 
diazotrophic genera are described below. 

18.2.1.1     Rhizobia 
 Soil rhizobia are bacteria best known for their 
symbiosis with leguminous plants. Rhizobia 
include a range of genera, including  Rhizobium, 

D.C. Suyal et al.



313

Bradyrhizobium, Sinorhizobium, Mesorhizobium, 
Allorhizobium,  and  Azorhizobium . Symbiotic 
nitrogen fi xation is a major source of nitrogen, 
and the various legumes crops and pasture spe-
cies have ability to fi x as much as 200–300 kg 
nitrogen per hectare (Peoples et al.  1995 ). 
Inoculation of these rhizobial strains selected for 
high N 2 -fi xing capacity with legumes can 
improve N fi xation in agriculture, mainly when 
local rhizobia are absent from soils or less 
effective.  

18.2.1.2     Azotobacter 
 The genus  Azotobacter  belongs to the gama -sub-
class of the Proteobacteria. These are gram–neg-
ative, nitrogen–fi xing soil bacteria that have 
extremely high respiration rates. The fi rst species 
of the genus  Azotobacter , named  Azotobacter 
chroococcum , was isolated from the soil in 
Holland in 1901 and thereafter, six other  species: , 
A. vinelandii, A. beijerinckii, A. paspali, A. arme-
niacus, A. nigricans  and  A. salinestri  has been 
reported. 

 They benefi ts plants in multiple ways such as 
by producing ammonia, vitamins, growth sub-
stances, indole acetic acid, gibberllins, cytoki-
nins etc. (DeLuca et al.  1996 ). The genus 
 Azotobacter  has a high respiratory rate, and its 
ability to fi x atmospheric N 2  in O 2  stress at and 
above air saturation levels has intrigued research-
ers for many years (Verma et al.  2001 ).  

18.2.1.3     Azospirillum 
  Azospirillum  belong to the facultative endo-
phytic diazotrophic group and has been reported 
to colonize the surface and/or the interior of 
roots of many grasses and cereals. It shows vari-
ous plant growth promoting activities  viz . N 2  
fi xation, production of plant growth-promoting 
substances etc.  

18.2.1.4     Acetobacter 
 Presently, Acetobacteraceae family includes ten 
genera:  Acetobacter, Gluconacetobacter, 
Gluconobacter, Acidomonas, Asaia, Kozakia, 
Saccharibacter, Swaminathania, Neoasaia, and 
Granulibacter.  Among them, only three are N 2 - 

fi xing genera:  Gluconacetobacter, Swaminathania 
and Acetobacter. A. diazotrophicus -sugarcane 
relationship, fi rst observed in Brazil, was the fi rst 
report of a benefi cial symbiotic relationship 
between grasses and bacteria through nitrogen 
fi xation (Cavalcante and Döbereiner  1988 ).  

18.2.1.5     Pseudomonas 
 Several pseudomonas species have been studied 
for their plant growth promotion activities. 
Recently, plant growth promoting of Himalayan 
cold adapted diazotrophs  P. jesenii  MP1 (Kumar 
et al.  2014 ) and  P. migulae  S10724 (Suyal et al. 
 2014 ) has been revealed. These indigenous 
 diazotrophs are particularly well adapted to the 
fl uctuating temperatures of the hills and could be 
used effectively as a bioinoculant in high altitude 
agricultural lands.   

18.2.2     Phosphate Solubilising 
Bacteria 

 Phosphorus is a plant macronutrient that has a 
vital role in plant metabolism, ultimately affects 
on crop yields. It is also important for the func-
tioning of key enzymes that control the metabolic 
pathways. It is expected that about 98 % of Indian 
soils contain insuffi cient amounts of available 
phosphorus, which is essential to support plant 
growth (Vassilev and Vassileva  2003 ). P fertil-
izers are required for crop production, but only a 
small part of P is utilized by plants, rest is 
 converted into insoluble fi xed forms (Rodriguez 
and Fraga  1999 ). Solubilization of insoluble P 
by microorganisms was fi rstly reported by 
Pikovskaya ( 1948 ). Now days, many bacterial 
and fungal species are reported to have the poten-
tials to solubilize inorganic phosphates and 
commonly known as phosphate solubilizing 
microorganisms (PSM). Among microbial popu-
lations present in soils, phosphate solubilizing 
bacteria (PSB) constitute P solubilization poten-
tial of between 1–50 %, while phosphorus 
solubilizing fungi (PSF) exhibit only 0.1–0.5 % 
solubilization (Chen et al.  2006 ). The commonly 
known P-solubilizers include  Pseudomonas, 
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Bacillus ,  Arthrobacter, Rhodococcus, Serratia, 
Gordonia, Phyllobacterium, Delftia  sp. (Wani 
et al.  2005 ),  Azotobacter  (Kumar et al.  2001 ), 
 Xanthomonas ,  Chryseobacterium  (Singh et al. 
 2012 ),  Enterobacter, Pantoea , Klebsiella (Chung 
et al.  2005 ),  Xanthobacter agilis, Vibrio proteo-
lyticus  (Vazquez et al.  2000 ),  Rhizobium legumi-
nosarum  bv.  Trifolii  (Abril et al.  2007 ), 
 Pseodomonas  sp. (Rani et al.  2013 ).  

18.2.3     Mycorrhiza 

 Arbuscular mycorrhizal fungi (AMF), are the 
member of phylum Glomeromycota and can 
establish mutualistic symbiosis with several land 
plants. AMF are categorised into seven main 
groups: arbuscular (AM), ecto- (EcM), ectendo-, 
arbutoid, ericoid, monotropoid, and orchid 
mycorrhiza. AM and EcM are the most wide-
spread and ecologically important mycorrhiza 
and the only ones commercially exploited in 
agriculture/forestry. The main benefi t to use 
mycorrhiza is its greater soil exploration and 
increasing uptake and supply of N, P, K, Zn, Cu, 
S, Fe, Ca, Mg and Mn to the host roots (Mallik 
 2000 ).   

18.3     PGPR Supporting Plant 
Growth under Abiotic Stress 

 It has been assumed that the rhizosphere micro-
bial communities contributes to the ability of 
some plant species to survive under extreme 
environment (Jorquera et al.  2012 ; Mendes et al. 
 2013 ). For example, halotolerant bacteria thrive 
under salt-stress conditions and in association 
with the host plant are able to express qualities 
that promote plant growth (Jorquera et al.  2012 ). 
Upadhyay et al. ( 2009 ) isolated 24 halotrolerant 
bacteria from the rhizosphere of wheat plants 
grown in a saline zone, which showed the capa-
bility of producing indole-3-acetic acid, P solubi-
lization, siderophores production and N 2  fi xation. 
Similarly, regardless of the impact of low 

temperatures on nodule formation and nitrogen 
fi xation, local legumes in the high arctic can nod-
ulate and fi x N at rates comparable to those 
reported for temperate climate legumes. There is 
great interest in agriculture and horticulture for 
bacterial and fungal inoculants that enhance 
growth of plants under low temperature (Mendes 
et al.  2013 ). For example,  Burkholderia phytofi r-
mans  PsJN increased grapevine root growth and 
physiological activity at 4 °C (Barka et al.  2006 ; 
Mendes et al.  2013 ). When co-inoculated with 
 Bradyrhizobium japonicum ,  Serratia proteamac-
ulans  stimulated soybean growth at 15 °C, the 
temperature at which soybean nodule infection 
and nitrogen fi xation are normally repressed 
(Zhang et al.  1995 ,  1996 ). To identify mecha-
nisms involved in plant growth promotion in cold 
environment, Katiyar and Goel ( 2003 ) selected 
cold-tolerant mutants of different  P. fl uorescens  
strains to solubilize phosphorus and to promote 
plant growth. They also identifi ed two cold- 
tolerant mutants that were more effi cient in P 
solubilization at 10 °C than their respective wild 
types (Katiyar and Goel  2003 ). Trivedi and Sa 
( 2008 ) reported two phosphorus solubilizing 
mutants (of 115) that were more effi cient than 
their wild-type strain within a temperature range 
from 4 to 28 °C (Mendes et al.  2013 ). 

 Other abiotic factors that may badly affect 
plant growth are pH and high concentrations of 
toxic compounds. Low pH soils or contaminated 
soils are main challenges in many production 
systems worldwide. Kawasaki et al. ( 2012 ), used 
a split-root model and a combination of T-RFLP, 
DGGE, and 16SrRNA gene pyrosequencing and 
showed that  Trifolium  and other legumes respond 
to polycyclic aromatic hydrocarbons contamina-
tion in a systemic manner. Similarly, Rani et al 
( 2013 ) explored cadmium (Cd) resistant  P. putida  
710A for  Vigna radiata  (L.) Wilczek plant 
growth promotion and metal sequestering in Cd 
polluted soils. Also, fungi play an important role 
in rhizoremediation, for example, inoculation 
of the endophytic fungus  Lewia  sp. in the rhizo-
sphere of  Festuca arundinacea  (Cruz-Hernandez 
et al.  2012 ).  
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18.4     Himalayan Cold Adapted 
Diazotrophs for Sustainable 
Hill Agriculture 

 Isolation and characterization of the diazotrophs 
adapted to temperature is central to understand-
ing the ecology of cold adaptive nitrogen fi xers 
and their cold adaptive mechanisms. Previous 
reports highlighted the prevalence of  nif  and  csp  
from the Indian Himalayas (Prema Latha et al. 
 2009 ; Singh et al.  2010 ). Predicted proteins look 
to be benefi ciary in the agronomic practices at 
ice-cold heights of the Himalayas (Prema Latha 
et al.  2009 ). Recently, Suyal et al. ( 2014 ) isolated 
seven cold adapted bacteria from the rhizosphere 
of Red Kidney bean ( Phaseolus vulgaris  L.) 
from Western Indian Himalaya (Table  18.1 ). 
Furthermore, proteomics of S10724 strain 
revealed the up-regulation of stress proteins 
under cold diazotrophy, while most of the down 
regulated proteins were related to cell division 
(Suyal et al.  2014 ). In subsequent studies, net 
house studies were performed to determine the 
plant growth promoting ability of strain S10724 
on native Green gram ( Vigna radiata  (L.) wilc-
zek) (Suyal et al.  2014 ). The strain signifi cantly 
(p < 0.05) stimulated the growth of roots (45.3 %) 
and shoots (45.6 %) of Green gram plants (Table 
 18.2 ). Furthermore, other growth related param-
eters  viz . fresh and dry weight was also found to 
be increased signifi cantly. The total chlorophyll 
and nitrate reductase activity was also found to 
increase in S10724 inoculated plant as compared 
to their untreated control. Moreover, S10724 
treatment increase the germination effi ciency of 
the seeds by 22 % at 25 °C while 25 % at 12 °C 
unlikely to respective controls (Table  18.2 ). 
Similarly, Plant growth promoting properties of 
Himalayan psychrotroph  Pseudomonas jesenii  
MP1 were tested against fi ve native crops  viz. 
Cicer arietinum  L. (Chickpea),  Vigna mungo  (L.) 
Hepper. (Black gram),  Vigna radiata  (L.) Wilczek. 
(Green gram),  Cajanus cajan  (L.) Millsp. (Pigeon 
pea) and  Eleusine coracana  (L.) Gaertn. (Finger 
millet) (Kumar et al.  2014 ). The strain signifi -
cantly (p < 0.05) stimulated the growth of shoot 
length, root length, plant fresh weight and plant 
dry weight of each crop, over their respective 

untreated controls. Moreover, MP1 treatment 
signifi cantly increases chlorophyll content, 
nitrate reductase activity and P content of the 
plants. MP1 inoculation showed better effect on 
Chickpea and Black gram in comparison to other 
crops. Further, total bacterial and diazotrophic 
count of MP1 treated soils along with their avail-
able Phosphorus (P) and Nitrogen (N) content 
were found to increase signifi cantly, in compari-
son to their respective untreated controls (Kumar 
et al.  2014 ). These results suggest that  P. migulae  
S10724 and  P. migulae  MP1 can be potential 
plant growth promoting diazotrophs under fl uctu-
ating temperature ranges and therefore, could be 
used effectively as a low cost bioinoculant in 
high altitudes agro-ecosystems successfully. The 
exploration of the psychrophilic diazotrophs for 
the agricultural purpose is in its infancy and 
therefore, further studies will defi nitely contrib-
ute to the understanding of low temperature 
diazotrophy mediated agriculture practices.

18.5         Bioinoculants 
as Biofertilizers 

 The majority of bio-inoculants used in last few 
years are mostly  Rhizobia , constituting ~79 % of 
the global demand. Phosphate-mobilising bio- 
inoculants are ~15 %, with other bio-inoculants, 
such as mycorrhizal products, making up 7 % 
(Transparency Market Research  2014 ; Owen 
et al.  2014 ).  Azospirillum  species heads a long list 
of commercial free living PGPR products that are 
applied to crops in formulations. Some of them 
are good biocontrol agents and some improve 
plant growth as well. Additionally, one of the 
most important species of PGPR used for com-
mercial products is  Bacillus subtilis  under the 
trade names Serenade, Kodiak, etc. The benefi -
ciary crops are beans, cotton, legumes, pea, rice 
and soybean. Moreover, well known commercial 
product is  Agrobacterium radiobacter , under the 
trade names Diegall, Nogall, etc. In this case, the 
benefi ciary crops are: fruit, nuts, ornamentals and 
trees. Finally,  Pseudomonas fl uorescens  has also 
been used to produce commercial inoculants 
under the trade names Conquer and Victus. 
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   Table 18.1    Characterization of the N 2  fi xing psychrophilic bacterial strains isolated from Himalaya (Suyal et al.  2014 ).   

 S. No.  Strain ID 
 Gram reaction 
and morphology  Accession no. 

 Nearest phylogenetic 
neighbour (NCBI- 
BLAST/EzTaxon) with 
% similarity 

 Temperature 
optima ( °C) 

  nif H amplicon 
(Poly et al. 
 2001 ) 

 1.  S10103  Gram + ve, 
Rods 

 JX173281   Bacillus megaterium  
strain SVC4 (100 %) 

 15 

      

 2.  S10105  Gram + ve, Rod/
coccus 

 JX173282   Arthrobacter  sp. BA51 
(2011) (100 %) 

 15 

 3.  S10107  Gram + ve, 
Rods 

 JX173283   Rhodococcus 
qingshengii  (100 %) 

 15 

 4.  S10501  Gram + ve, Rod/
coccus 

 JX173284   Arthrobacter 
nicotinovorans  strain 
KNUC2107 (100 %) 

 15 

 5.  S10504  Gram + ve, 
Rods 

 JX173285   Bacillus  sp. IPPBC 
p001 (100 %) 

 15 

 6.  S10724  Gram −ve, 
Small rods 

 JX173286   Pseudomonas migulae  
(100 %) 

 12 

 7.  S10725  Gram + ve, Rod/
coccus 

 JX173287   Arthrobacter  sp. bB6 
(2011) (100 %) 

 15 

Despite their established economic and eco-
logical benefi ts the application of such PGPR as 
biofertilizer must be carefully assessed because of 
their importance as opportunistic pathogens in 
nasocomial infections and in patients with diverse 
diseases (Mendes et al.  2013 ).  

18.6     Conclusion 

 Besides promoting plant growth, bioinoculants 
can also alleviate biotic as well as abiotic stresses 
on crops, thus, providing an environmental 
friendly sound alternative for sustainable agri-
culture. However, successful implementation 
of microbial bioinoculants is dependent on 

shelf- life, variable effi cacy across environments 
and different plants species other than soil forms. 
Moreover, the inconsistency of bio-inoculant 
performance and lack of independent validation 
does little to build confi dence in their effi cacy. 
Therefore, more elementary knowledge is 
required about microbial behavior and interac-
tions along with dynamics of edaphic and biotic 
factors for sustainable agriculture. Nevertheless, 
targeted microbial inoculant for particular soil 
type is a better approach than uniform 
formulation.     
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