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1          Introduction 

1.1     Emerging Contaminants 

 Emerging contaminants (EC) or contaminants of emerging 
concerns (CEC) cover a broad spectrum of chemicals and 
compounds which are being recognized as potentially harm-
ful in the last decade or so. These compounds may have been 
in application for a long period, but their environmental and 
health impacts are being observed and their hazardous nature 
identifi ed recently; these might belong to a whole new class 
of compounds in application for their certain properties. The 
major concern over these emerging contaminants is the non-
availability of analytical techniques to identify them in the 
fi rst place within the complex environmental matrices and to 
quantify them since their concentrations are very low (rang-
ing from μg L −1  to ng L −1  or even lower). Because of the 
nonavailability of these protocols for either identifying or to 
quantify these compounds, regulatory limits are virtually 
nonexistent. This results in their uninhibited discharge into 
environment. With the advancement of analytical methods, 
such compounds are being increasingly identifi ed and quan-
tifi ed. In addition, their environmental hazards are being rec-
ognized, thus raising a concern on their continued applications 
and initiating a search for better alternatives. The endocrine 
disruption potential is one of the major concerns of many of 
these products. 

1.1.1     Pharmaceutical and Personal Care 
Products (PPCP) 

 The continuous and unchecked use of pharmaceutical and 
personal care products (PPCP) over a long period has resulted 
in their presence in aquatic bodies all over the world (Li et al. 
 2013 ; Yang et al.  2013 ). These products include, but not lim-
ited to, following distinct classes of compounds (Ellis  2006 ): 
veterinary and human antibiotics (e.g., trimethoprim, erytro-
mycine, lincomycin, sulfamethaxazole, chloramphenicol, 
amoxicillin, etc.), analgesics and anti-infl ammatory drugs 
(e.g., ibuprofen, diclofenac, fenoprofen, acetaminophen, 
naproxen, acetylsalicylic acid, fl uoxetine, ketoprofen, indo-
metacine, paracetamol, etc.), psychiatric drugs (e.g., diaze-
pam, carbamazepine, primidone, salbutamol, etc.), lipid 
regulators (e.g., clofi bric acid, bezafi brate, fenofi bric acid, 
etofi brate, gemfi brozil, etc), β-blockers (e.g., metoprolol, 
propranolol, timolol, sotalol, atenolol, etc), X-ray contrasts 
(e.g., iopromide, iopamidol, diatrizoate, etc.), steroids and 
hormones (e.g., estradiol, estrone, estriol, diethylstilbestrol, 
etc), fragrances (e.g., nitro, polycyclic, and macrocyclic 
musks; phthalates), sunscreen agents (benzophenone, meth-
ylbenzylidene camphor, etc.), insect repellents (e.g., N, 
N-diethyl toluamide), and antiseptics (e.g., triclosan, chloro-
phene, etc.). Recent advancements in analytical techniques, 
e.g., GC-MS, LC-MS, and LC-MS-MS, have lowered their 
detection limits to parts per trillion (ppt) levels (Oulton et al. 
 2010a ), which has resulted in the increasing observations of 
these compounds or their metabolites in environmental 
matrices. The recent interest in these contaminants and their 
metabolites is due to their possible toxicological nature 
(including endocrine disruptive potential) to humans and 
other living organisms which is often complicated by their 
synergistic effects (Tyler et al.  1998 ). The sources of these 
products in aquatic bodies are mainly from wastewater treat-
ment plant effl uents and also due to leaching from landfi lls 
of domestic/medical garbage or sludge laden with these 
compounds (Kaplan  2013 ). Due to their persisting nature in 
environment, these compounds could affect many  generations 
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of organisms and produce exposure effects that may be cor-
related wrongly to other factors (Daughton and Ternes  1999 ; 
Kaplan  2013 ).  

1.1.2     Pesticides 
 The use of pesticides in human civilization has a long history 
spanning centuries, where earlier pesticides were mainly of 
inorganic nature such as calcium arsenate and lead arsenate 
and some fl uoroorganic compounds (Battaglin and Fairchild 
 2002 ). Since then, numerous new organic compounds have 
been developed for their application as pesticides. Many 
such pesticides, viz., DDT (dichlorodiphenyltrichloroeth-
ane), remain in the environmental matrices long after their 
targeted application, mainly due to their persistent nature. 
This results in their subsequent buildup and provided their 
toxicological profi le for human health; over the years these 
pesticides have been identifi ed as contaminants of concern. 
Although, with improved analytical methods and availability 
of their toxicological profi le, many of these pesticides, for 
example, DDT and endosulfan, have been banned and their 
application discontinued; environmental matrices are still 
contaminated with their presence. A major concern is the 
carcinogenic nature and endocrine-disrupting potential of a 
majority of these compounds even at low concentrations (at 
ppb levels). As the information is garnered about these pesti-
cides and their toxicological risks determined, new com-
pounds presumably of lower risks are introduced as a 
replacement. However, with continued application of these 
new compounds, more information about their fate and haz-
ardous characteristics are gathered, and new compounds are 
further searched. Such application of many pesticides 
through decades results in the buildup of a very complex mix 
of original compounds as well as their metabolites in envi-
ronmental matrices and whose interactions are yet unknown 
and hence a matter of great concern.  

1.1.3     Endocrine Disruptors 
 A normal hormonal function in a living organism is a prereq-
uisite for good health. However, many natural and synthetic 
compounds mimic and possess similar chemical and biologi-
cal properties like these hormones and thus disrupt/interfere 
with their normal functions or organisms. A wide variety of 
compounds has demonstrated their ability to interfere with 
the endocrine system and hence is collectively termed as 
endocrine disruptors or endocrine-disrupting compounds 
(EDC). These include pesticides (e.g., atrazine), surfactants, 
dioxins, polychlorinated biphenyls (PCBs), synthetic estro-
gens (e.g., 17β-ethinyl estradiol), natural estrogens (e.g., 
17β-sitosterol, estrone), natural androgens (e.g., testoster-
one), phytosteroids (e.g., 17β-sitosterol), etc. (Richardson 
and Ternes  2005 ). The main complexity in streamlining the 
study and analysis of these compounds arises due to their 
highly variable affi nities to hormonal receptors and different 

pathways. Due to these reasons, their endocrine potencies 
show a huge variability. Continued exposure of organisms to 
these EDCs may lead to drastic impacts on their health and 
the overall ecology of the system.   

1.2     Major Challenges in Conventional 
Wastewater Treatment in Removal 
of Emerging Contaminants 

 Effl uents from conventional wastewater treatment plants are 
recognized as a major source for these emerging contami-
nants into receiving bodies, mainly due to the limitations of 
these plants in achieving an effective removal (Battaglin and 
Fairchild  2002 ; Oulton et al.  2010b ; Sedlak et al.  2000 ). This 
is in part due to the inherent limitations of the conventional 
treatment processes which are not designed and optimized 
for these emerging contaminants, for example, secondary 
treatment is optimally designed for BOD removal and in part 
due to the specifi c properties of these compounds which ren-
der it very diffi cult to be removed from water with conven-
tional methods, such as high chemical stability, low 
biodegradability, low sorption coeffi cients, etc. Another 
major factor which complicates the removal of ECs is their 
highly variable response to a particular treatment process 
due to the sheer number and diversity of these compounds. 

1.2.1     Low Levels and Limited Availability 
of Protocols for Identifi cation 
and Quantifi cation 

 The foremost challenge in the study of the fate of ECs in 
wastewater treatment plants is the unavailability of appropri-
ate analytical protocols to identify and quantify such com-
pounds and their metabolites at their low levels of presence 
(Battaglin and Fairchild  2002 ; Petrović et al.  2003 ). Without 
any identifi cation and quantifi cation, these products have not 
been an area of focus while developing the conventional pro-
cesses. Hence, conventional treatments are not effi cient in 
their removal because of the inherent design limitations.  

1.2.2     Low Biodegradability 
 Most of these compounds have low biodegradability with 
conventional microbial populations found in treatment plants 
under natural conditions. This results in its ineffi cient 
removal during such treatments. For example, Ternes ( 1998 ) 
observed only 7 % removal of carbamazepine in municipal 
sewage treatment plants. Oulton et al. ( 2010a ) also identifi ed 
the conventional treatment plants to achieve removal effi -
ciencies of all PPCPs not higher than 1-log 10 . A major reason 
for such poor biodegradability of these compounds in con-
ventional treatments is the requirement of stable specifi c 
microbial culture for them. Since conventional activated 
sludge systems do not facilitate the enrichment of such 
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 specifi c culture because of their suspended growth and low 
retention times, which may result in a wash out, the removal 
effi ciencies are low. In comparison, processes such as trick-
ling fi lters allow the development of a stable microbial cul-
ture which could be, with operation, enriched specifi cally for 
these endocrine disruptors and hence could perform better in 
removal of these compounds (Kasprzyk-Hordern et al. 
 2009 ).  

1.2.3     High Water Solubility 
 Many of these compounds, mainly pharmaceuticals, demon-
strate high solubility in water. For example, norfl oxacin, tet-
racycline, and fl uoxetine have water solubility of 1.78 × 10 5  
mg L −1 , 5 × 10 4  mg L −1 , and 5 × 10 4  mg L −1 , respectively. Such 
high solubility also results in high variability in their levels 
in the infl uents. Petrie et al. ( 2014a ) observed acetaminophen 
to appear at concentrations ranging from 6924 to 492,340 ng 
L −1  in infl uent wastewater. Such high variability in ECs con-
centrations complicates the optimization of a process design 
for their effective treatment.  

1.2.4     Solid Phase Partitioning 
 Another important aspect of dealing with these compounds 
is its partitioning between solid and liquid phase depending 
on their sorption coeffi cients and subsequent hydrophobic-
ity. Many organic pesticides and drugs (e.g., triclosan and 
triclocarban) are extremely hydrophobic in nature (log K ow  of 
4.2–4.8) and thus are retained within the solid matrices (e.g., 
sludge etc.). For example, concentrations in excess of 1 mg 
kg −1  in biosolids have been reported for chemicals such as 
triclocarban, triclosan, bisphenol A, ciprofl oxacin, ofl oxacin, 
etc. (Petrie et al.  2014a ). Disposal of such laden sludge is a 
major source of contamination for these compounds. In addi-
tion, the mobility of these compounds in the solid matrices, 
e.g., soil, is also dependent on many factors and widely var-
ies among all compounds. For example, partitioning of 
charged endocrine disruptors is highly governed by electro-
static forces (Hyland et al.  2012 ). pH also plays a critical role 
in such partitioning behavior within the complex solid-water 
matrices (Petrie et al.  2014a ).  

1.2.5    Metabolites 
 Majority of these compounds are present with metabolites or 
undergo transformation into its metabolites during conven-
tional treatment, both biological and physicochemical. 
Serious concerns about these metabolites have been raised 
recently, since these could reach concentrations highly in 
excess to their parent compounds and may also be biologi-
cally active in nature (Kasprzyk-Hordern et al.  2008 ; Petrie 
et al.  2014a ). For example, Huerta-Fontela et al. ( 2010 ) 
observed carbamazepine to be present in infl uent wastewater 
at concentrations less than 1.5–113 ng L −1 , while concentra-
tions of one of its metabolite carbamazepine epoxide ranged 

from 880 to 4026 ng L −1 . In addition, many of these metabolites 
are more toxic in nature than the parent compound and hence 
may pose a serious threat (Petrie et al.  2014a ). The ability of 
these metabolites to again form the parent compound within 
the environmental matrices after treatment is also a concern, 
and limited information is available. A major limitation is 
that pathways for these metabolite formations are not yet 
identifi ed and established for majority of the parent 
compounds.   

1.3     Bioremediation 

 Bioremediation is a process where biologically mediated 
treatment of hazardous pollutants with naturally occurring 
organisms into compounds with less or no toxicity is 
achieved. The treatment occurs by the uptake of these com-
pounds from environmental matrices by organisms and sub-
sequent utilization for their growth or enzyme-mediated 
breakdown into other less hazardous compounds that are 
released into the environment. 

1.3.1    Phytoremediation 
 Various plants have the ability to remove pollutants from 
environmental matrices and hence in the process provide 
treatment. Phytoremediation involves this ability of plants 
and their symbiotic microbes to effectively remove various 
pollutants from a contaminated site. This process has been 
successfully implemented worldwide to remediate heavy 
metals, pesticides, and other hazardous organic compounds 
from the environment (Ali et al.  2013 ; Malik  2004 ). Since it 
is a lost cost treatment option, phytoremediation is applica-
ble at large contaminated sites where other treatments are not 
cost effective. Phytoremediation occurs by different distinct 
mechanisms such as phytoextraction, phytostabilization, and 
phytotransformation. The direct uptake of a pollutant from 
environment by plants is termed as phytoextraction. This 
process directly reduces the level of contaminants in the bulk 
surrounding medium. Uptake of heavy metals by plants 
occurs by phytoextraction (Ali et al.  2013 ). Another mecha-
nism by which plants treat the contaminated sites is by stabi-
lizing and containing the pollutants within the site. Plants do 
not uptake the pollutants but provide a microenvironment 
near their root zone, where with the help of symbiotic 
microbes, sequestering of the pollutants and sorption are 
supported. Such stabilization reduces the bioavailability of 
these pollutants and lowers their harmful effects in long 
term. Plants can also transform various compounds into less 
toxic metabolites with various enzymes by the process of 
biotransformation (Ali et al.  2013 ). However, phytoremedia-
tion also suffers from many limitations. Effective treatments 
of contaminated sites may need long duration depending 
on selected plant species, contaminants, and level of 

11 Phycoremediation of Emerging Contaminants



132

 contamination. Also, plants are able to treat low to mild levels 
of contaminants in sustainable manner, since high levels of 
pollutants are toxic for them too. Such phytoremediation 
also poses a very realistic threat of contaminating the whole 
food chain and requires proper management (Ali et al.  2013 ).  

1.3.2    Phycoremediation 
 Pollution abatement from contaminated environmental 
matrices with the application of algae is termed as phycore-
mediation. Algae have historically been utilized for domestic 
wastewater treatment and have led to the development of 
specifi c processes (e.g., raceway ponds and photobioreac-
tors). Their ability to uptake heavy metals has also lead sig-
nifi cant research on their application for heavy metal removal 
(Chojnacka et al.  2005 ; Perales-Vela et al.  2006 ; Yu and 
Wang  2004 ) and other hazardous organic pollutants (Muñoz 
et al.  2006 ; Munoz and Guieysse  2006 ). In addition, algae 
have been demonstrated as a suitable sink for CO 2  (Jacob- 
Lopes et al.  2009 ). The ability of algae to grow on wastewa-
ters in hitherto nonarable land with high productivity makes 
phycoremediation an attractive subset of bioremediation. 
The value-added algal biomass can potentially be utilized for 
extracting many useful products, for example, lipids, pro-
teins, carbohydrates, pigments, etc. (Olguín  2012 ). The 
recent focus in phycoremediation is on following sustainable 
biorefi nery approach, where wastewater treatment and 
removal of other pollutants is complimented with the value 
extraction from generated algal biomass (Prajapati et al. 
 2013b ; Subhadra  2010 ).    

2     Ecological Fate of Emerging 
Contaminants 

 Emerging contaminants are mainly released into the environ-
ment due to its unregulated applications. Such applications 
include domestic or medical discharges of various PPCPs 
and other compounds, agricultural applications or runoff of 
various pesticides, or inadequacy of conventional treatment 
in their effective removal from infl uent streams and thus dis-
charge into receiving bodies. Once these contaminants enter 
environmental matrices, they undergo various processes 
which govern their ecological fate in the system. 

 Contaminants, as they reach aquatic bodies due to ineffi -
cient sewage collection/treatment or leaching from agricul-
tural fi elds/domestic sources, pose a direct threat to living 
organisms and the ecology of these receiving bodies. Many 
of these dissolved contaminants (e.g., gemfi brozil, ibupro-
fen, ketoprofen, etc.) have shown evidences of undergoing 
photolysis and effective breakdown into harmless metabo-
lites (Lin and Reinhard  2005 ). However, the ability of these 
compounds to undergo photolytic breakdown varies substan-

tially due to their different structures. In addition, such 
photolytic degradation could also result in compounds of 
higher toxicity. However, the actual pathways of such degra-
dation for majority of these compounds are still not available 
and pose a serious limitation in establishing their fate. 
Indirect photolysis of many such compounds also occurs due 
to the presence of free radicals in aquatic bodies (Ryan et al. 
 2011 ). Also, compounds which are resistant to such degrada-
tion persist in aquatic bodies and are more prone for uptake 
by living organisms and eventually undergo biodegradation 
or bioaccumulation. This uptake also refl ects in the harmful 
effects on the health of these organisms and ultimately affects 
the ecology of the whole system. 

 Those compounds which are hydrophobic in nature get 
sorbed on various organic solids or sediments present within 
these matrices and are effectively removed from liquid phase. 
Such solid phase partitioning results in heavily laden solid 
mixture which is retained in the matrix where partial desorp-
tion may occur eventually, thus releasing these compounds 
into the aquatic phase. In addition, such solid–liquid phase 
partitioning is also governed by various environmental fac-
tors such as pH and temperature. The widely different char-
acteristics of these compounds also determine the governing 
mechanism of such phase separation and their relative distri-
butions. For example, charged and uncharged compounds 
experience different levels of electrostatic forces. 

 In addition to these major physicochemical processes 
occurring in the receiving bodies, emerging contaminants 
also undergo biological transformation during their original 
use or during their treatment within the treatment plants in 
both aerobic and anaerobic conditions. For example, Tiwari 
and Guha ( 2013b ) studied the degradation of endosulfan in 
both aerobic and anaerobic conditions and established the 
degradation pathways. Degradation metabolites for acet-
aminophen and azithromycin have been observed in the 
effl uent from a treatment plant (Gómez et al.  2010 ). Similarly, 
Tiwari and Guha ( 2013a ) quantifi ed various degradation 
metabolites of endosulfan and chlorpyrifos. However, the 
availability of information about degradation products and 
the governing pathway is very limited for majority of the 
emerging contaminants. This results partially due to the non-
availability of analytical protocols for identifi cation and 
quantifi cation of these products and partially due to the com-
plexity of the environmental matrices and highly variable 
formation mechanism for a single product from a parent 
compound. Since many of the intermediate metabolites are 
more toxic than parent compounds, the degradation actually 
worsens their impact on the environment. Hence, it is utmost 
important to focus on these metabolites along with parent 
compounds while performing their removal and degradation 
analysis within treatment plants or other environmental 
matrices.  
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3     Ecotoxicological Risks of Emerging 
Contaminants 

 The main reason behind increasing concerns over ECs is due 
to their ecotoxicological risks toward humans and other liv-
ing organisms. Most of these compounds show acute or 
chronic toxicity depending on their concentrations in envi-
ronmental matrices or the exposure duration. Main effect is 
their endocrine-disrupting potential where many of these 
compounds can mimic the hormonal functions within the 
body and disrupt/interfere with endocrine system. The toxic-
ity of a particular compound is determined by acute toxicity 
test on a single organism, and such analyses have been per-
formed for various parent compounds as well as their metab-
olites. Based on their EC 50  values, compounds can be 
classifi ed as harmful (EC 50  as 10–100 mg L −1 ), toxic (EC 50  as 
1–10 mg L −1 ), or very toxic (EC 50  < 1 mg L −1 ). Petrie et al. 
( 2014b ) collated the information about EC 50  values of differ-
ent contaminants and analyzed their potential of being very 
toxic (e.g., erythromycin) to harmful (e.g., trimethoprim) for 
aquatic organism. However, such toxicity analysis is valid 
only for test species and is not universal. Other organisms 
can respond differently than the subject organism. Still, such 
EC 50  values provide an indicative baseline for the toxic 
nature of these compounds. Farré et al. ( 2008 ) observed that 
the concentrations of emerging contaminants such as phar-
maceutical products in environmental matrices are 2–3 
orders of magnitude lower than their required levels for caus-
ing any acute toxicity. These compounds pose a more serious 
concern due to their potentials to cause chronic toxicity dur-
ing prolonged exposure to living organisms even at low lev-
els. Another factor which governs the toxicity profi le of 
these compounds is their complex behavior in a mixture. 
Environmental matrices accommodate a mixture of various 
such compounds. The toxicological profi le of these mixtures 
might be very complex and synergistic in nature. For exam-
ple, the mixture of diclofenac, ibuprofen, naproxen, and 
aspirin showed increased toxicity than their individual 
effects, thus highlighting the synergistic behavior of these 
compounds in a mixture (Cleuvers  2004 ). In addition to the 
acute and chronic toxicity analysis of these compounds, 
Petrie et al. ( 2014b ) also highlighted the importance of inves-
tigating the toxicological nature of different chiral enantio-
mers of these compounds which are used concurrently, since 
there might be a severe difference in their toxicity levels. To 
analyze and streamline the toxicity analysis of mixture of 
various such compounds, Eljarrat and Barceló ( 2003 ) pro-
posed the concept of toxic equivalency factor to denote the 
overall toxicity of the whole mixture. However, the ecotoxi-
cological analysis of these emerging compounds while 
incorporating their synergistic as well as enantiomeric effects 
remains to be streamlined and standardized for universal 
applicability and acceptance.  

4     Phycoremediation of Emerging 
Contaminants 

 As per Chemical Abstracts Service Registry (CAS RN 
1649503-59-2), presently, more than 91 million organic and 
inorganic substances are being formulated and in use, and 
more than 12,000 new formulations and compounds are 
being added daily (CAS  2012 ). All these chemicals and their 
metabolites are continuously being introduced, disposed, 
and dumped to various environmental matrices through 
industrial discharges, agricultural runoff, or inappropriate 
waste disposal practices and pose deleterious effects to the 
environment, all living beings, and ultimately to the human 
health (Daughton and Ternes  1999 ; Pavlostathis et al.  2003 ). 

 In recent years, the occurrence of traces of emerging con-
taminants such as pharmaceuticals and personal care prod-
ucts (PPCPs), endocrine-disrupting chemicals (EDCs), 
disinfection by-products (DBPs), persistent organic pollut-
ants (POPs), pesticides, cyanotoxins, etc., in the natural and 
drinking waters has been reported widely. In aquatic sys-
tems, these chemicals get adsorbed and immobilized sub-
jected to various transformations depending upon the 
biogeochemical processes and prevailing environmental fac-
tors. Such chemical contaminants remain available to the 
benthic microorganisms through the sediment water inter-
face (Perelo  2010 ). The US EPA ( 2009 ) has listed 116 drink-
ing water contaminants in Contaminant Candidate List 3 
(CCL3), which have been detected in public water systems 
in the USA which are of serious concerns. The presence of 
such low levels of these contaminants in the environment 
may not stance lethal effects immediately, but in a long term 
it may pose catastrophic effects on aquatic organisms and 
human health. 

 It is now well established that biological remediation is 
eco-friendly, economically viable, and comparatively less 
expensive than chemical or physical treatment processes 
(Herbes and Schwall  1978 ). However, studies and reports on 
the phycoremediation of organic pollutants by microalgae 
and cyanobacteria lag far behind than that of bacterial and 
fungal biodegradation (Subashchandrabose et al.  2013 ). 

 As far as phycoremediation is concerned, microalgae and 
cyanobacteria have advantages over various species of bacte-
ria and fungi as these species can grow autotrophically, het-
erotrophically, or mixotrophically in very harsh environmental 
conditions, i.e., low nutrient level, wide pH and temperature, 
etc. (Subashchandrabose et al.  2013 ). Various cyanobacteria 
and microalgae have been identifi ed for their potential of 
wastewater treatment especially nutrient removal such as 
nitrogen and phosphorus and biomass production (Prajapati 
et al.  2013a ; Shriwastav et al.  2014 ). However, literature on 
degradation of complex organic compounds such as polyaro-
matic hydrocarbons (PAHs), polychlorinated biphenyls 
(PCBs), pharmaceutical, and personal care products is limited. 
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Previous studies on microalgae-based wastewater treatments 
have demonstrated that the removal of organic contaminants 
(EDCs, PAHs, PCBs, pesticides, surfactants, etc.) takes place 
by virtue of various physicochemical processes which 
include both biotic transformation through microalgal accu-
mulation, metabolization, and degradation and abiotic trans-
formation through photodegradation, volatilization, sorption, 
and adsorption (Abargues et al.  2013 ; de- Bashan and Bashan 
 2010 ; Haritash and Kaushik  2009 ; Matamoros et al.  2015 ). 

 Recently, phycoremediation of 26 types of various emerg-
ing organic contaminants including pharmaceuticals and per-
sonal care products, pesticides, surfactants, anticorrosive 
agents, fi re retardants, etc., in high-rate algal ponds (HRAPs) 
was reported by Matamoros et al. ( 2015 ). The fi ndings of this 
study revealed 0–90 % removal, based on the nature of the 
chemical compound which is majorly achieved by photodeg-
radation and biodegradation. However, hydraulic retention 
time (HRT) and seasonality affect the effi ciencies of HRAPs. 

 Detoxifi cation, degradation, and transformation of 
organic environmental contaminants by the use of microal-
gae/bacteria, microalgae/cyanobacteria, or bacteria/fungi 
consortia has been found to be more effi cient and easy in 
comparison to the individual species (Subashchandrabose 
et al.  2013 ). As in microbial degradation of organic com-
pounds, both species act in a symbiotic way. In a consortium, 
the catabolic degradation of organics by bacteria is done by 
getting electrons from algae and the mineralization end prod-
ucts being used by algae for their photoautotrophic growth. 
Figure  11.1  provides an overview of the phycoremediation 
for various emerging contaminants.

4.1       Pharmaceutical Products 

 Water streams adjacent to the urban areas receive consider-
ably large amount of wastewater from wastewater treatment 
plants which contains residues of various pharmaceuticals. 
In recent years, several studies have been published on the 
spatial and temporal monitoring of water streams for various 
kinds of pharmaceuticals such as antibiotics, analgesics, 
antimicrobials, antidiabetics, antineoplastics, anticonvul-
sant, antiepileptics (e.g., carbamazepine), antipsychotics, 
antihistamines, antianxiety, anti-infl ammatory drugs, antide-
pressants, beta-blockers (e.g., metoprolol), beta- 
sympathomimetics, cytostatics and estrogens (e.g., 
17b-estradiol) and hormonal compounds, lipid regulators 
(e.g., clofi brinic acid), stimulants, X-ray contrast media and 
antiepileptic drugs, etc. (Adler et al.  2001 ; Buser et al.  1999 ; 
Hirsch et al.  1999 ; Kuch and Ballschmiter  2000 ; Sedlak et al. 
 2000 ; Ternes  1998 ). These pharmaceuticals are excreted 
directly or partially in metabolized form by human beings 
and passed into the environment through wastewaters, as 
most of the wastewater treatment systems are not typically 
designed for the removal of traces of such contaminants. 

Therefore, the removal of such residues from wastewaters is 
challenging and of serious concern. Intense research and 
technological advent is the need of the day for the removal of 
pharmaceutical residues from water and wastewater. 

 Separation and detection of most of the pharmaceutical 
residues, with concentrations ranging from few ng/L to μg/L, 
are two of the major challenges. Nevertheless, these residues 
exert deleterious effects on aquatic organisms either individ-
ually or due to the combined effect of the mixtures. However, 
due to the unavailability of exact information on mode of 
action and fate of various pharmaceuticals in the aquatic eco-
system, systematic understanding of their potential ecotoxi-
cological effects is sparse (Cleuvers  2003 ; Webb  2001 ). 
While evaluating ecotoxicological potential of ten prescrip-
tion drugs, Cleuvers ( 2003 ) reported that the acute toxicity of 
most of the individual pharmaceuticals was moderate, while 
in combinations it was comparatively more toxic. The con-
cept of independent action should be used for the ecotoxico-
logical risk assessment for the algal tests; however, the acute 
toxicity of individual pharmaceuticals is very unlikely, there-
fore chronic combination effects of substances are of con-
cern (Cleuvers  2003 ). 

 While assessing the ecotoxicity of three pharmaceuticals 
and personal care products (ciprofl oxacin, triclosan, and 
Tergitol NP 10) to the natural algal communities of the receiv-
ing natural bodies, Wilson et al. ( 2003 ) reported marked shifts 
in the algal community and signifi cant difference in the bio-
mass yield. They also reported the potential infl uence on the 
structure and function of algal communities which may result 
in changes in the natural food web structure. 

 The phycoremediation of most of the drugs and personal 
care products is mediated through its cellular metabolism 
and transformation by mostly cytochromes P450 (P4503A 
and 2C8 families) in fi rst phase and catabolic biotransforma-
tion of such xenobiotics by various metabolic isozymes in 
second phase (Stresser et al.  2000 ). Such isozymes facilitate 
by conjugation of secondary metabolites with reduced gluta-
thione (Stresser et al.  2000 ; Thomas et al.  1976 ). Glutathione 
reductase, responsible for the maintenance of lipid peroxida-
tion and glutathione levels, due to elevated oxidative stress 
during oxidative biotransformation, also needs to be moni-
tored (Laville et al.  2004 ; Peakall  1992 ). Monitoring of met-
abolic markers such as glutathione S-transferases (GSTs) 
activity in microalgal and cyanobacterial cells, for the assess-
ment of their phycoremediation potential, can be applied for 
the screening of suitable species for bioremediation purposes. 
Vernouillet et al. ( 2010 ) investigated phycoremediation 
potential of a green alga,  Pseudokirchneriella subcapitata , 
for an antiepileptic drug (carbamazepine) by monitoring of 
glutathione-S-transferase (GST), GR activity, and LPO 
levels. The cellular concentration of carbamazepine in 
 Pseudokirchneriella subcapitata  was found more than two-
fold of initial exposure concentration. Such accumulation 
also results in more than 50 % reduction in cytochromes 
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P450 3A4-like activity in  P. subcapitata , but glutathione 
reductase activity was increased up to 40 % which demon-
strated that direct exposure to such contaminants results in 
strong modulation of biochemical biomarkers in aquatic 
organisms (Vernouillet et al.  2010 ). In the process of phyco-
remediation of pharmaceuticals and personal care products, 
bioaccumulation by algae and cyanobacteria is the primary 
mechanism. However, it depends on several factors such as 
toxicity, ionization state, and lipophilicity of the chemical 
compound as well as sensitivity of tested species (Delépée 
et al.  2004 ; Vernouillet et al.  2010 ; Voutsas et al.  2002 ).  

4.2     Personal Care Products 

 The ecotoxicological consequences of continuous release 
and environmental exposure of personal care products 
(PCPs) are poorly understood. The major contaminant used 
in PCPs is triclosan (5-chloro-2-(4-dichlorophenoxy)-phe-
nol) (TCS), an antimicrobial compound which has been 
majorly used in a variety of PCPs such as various cosmetics, 
soaps, toothpaste, etc., over the last 40 years (Katz et al. 
 2013 ). It is also used as a preservative in various consumer 

products such as textiles, countertops, cutting boards, etc. 
(Cooney  2010 ; Savage  1971 ). Contamination of aquatic bod-
ies and the surrounding environment is resulted through con-
tinuous release of inadequately treated domestic wastewaters 
containing traces of TCS. WWTPs are the major sources of 
TCS in surrounding water bodies (Fair et al.  2009 ; Fernandes 
et al.  2011 ; Kumar and Xagoraraki  2010 ). Previous studies 
have demonstrated that even at very low concentrations, TCS 
poses serious adverse effects to the phytoplankton, microal-
gae, cyanobacteria, invertebrates, and fi sh (Dann and Hontela 
 2011 ; DeLorenzo et al.  2008 ; Jacobs et al.  2005 ; Perron et al. 
 2012 ; Wilson et al.  2003 ). However, there are various physi-
cochemical and environmental factors such as lower 
 solubility and photolytic degradation and transformation, 
which regulate the distribution, toxicity, and ecological risk 
of PCPs (Wong-Wah-Chung et al.  2007 ) (US EPA  2011 ). 
Studies have also demonstrated that TCS easily gets adsorbed 
to the organic matter thus getting accumulated in sediments 
(Fernandes et al.  2011 ; Kumar et al.  2010 ; Orvos et al.  2002 ; 
Ying et al.  2007 ). In a study of spatial distribution of triclo-
san, Katz et al. ( 2013 ) evidenced that WWTP effl uent is an 
important source of TCS as the annual accumulation rates of 
TCS in the sediments of Greenwich Bay of Rhode Island, 
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  Fig. 11.1    Generalized overview of phycotransformation and degradation of organic contaminants       
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USA, exceeded the calculated annual discharge of TCS from 
the local WWTP. Therefore, the regulation and control of 
TCS exposure to the environments can be regulated primar-
ily through the better management of WWTPs. 

 Phthalate esters (1,2-benzenedicarboxylic acid) are com-
monly used as plasticizers and also used in a wide range of 
products such as pharmaceuticals, detergents, and personal 
care products. Phthalate esters are known to possess 
endocrine- disrupting potential for human beings. Babu and 
Wu ( 2010 ) reported the degradation and mineralization of 
three phthalate esters, i.e., diethyl phthalate, di- n -butyl 
phthalate, and dimethyl phthalate by cyanobacteria  Anabaena 
fl os-aquae  by transesterifi cation on the side chains of phthalate 
esters instead of de-esterifi cation. In this study, two pathways, 
i.e., C 16  → C 14  → C 12  → C 10  → C 8  and C 16  → C 15  → C 13  → C 11  → C 9 , 
following fi rst order kinetics were demonstrated and proposed 
for phthalate esters degradation by cyanobacteria. Table  11.1  
lists some phycoremediation applications for these PPCPs.

4.3        Surfactants 

 As per estimates, globally more than 1.5–2 million tons of 
synthetic detergents are produced per year (de Wolf and 
Feijtel  1998 ). The extent of environmental discharge of 
detergents and its degradation by-products depends on the 
effectiveness of STPs and WWTPs, its adsorption to the sew-
age sludge and more importantly chemical structure, and the 
persistence of the detergent molecules (de Wolf and Feijtel 
 1998 ; Ojo-Omoniyi  2013 ). Linear alkyl benzene sulfonate 
(LAS), alkylphenol polyethoxylates, nonylphenol ethoxyl-
ates, alkyl ethoxysulphates, etc., are some of the anionic sur-
factants most widely used in industrial and domestic 
detergents. Residual surfactants fi nd their way to the natural 
water bodies through STPs and WWTPs effl uents and enter 
to the hydro-geological cycle. Biological degradation of 
LAS is comparatively simpler than the branched, nonlinear 
alkyl benzene sulfonate (ABS), e.g. dodecylbenzene sulfo-
nates (Gledhill  1974 ; Nomura et al.  1998 ; Ojo and Oso 
 2009 ). Biodegradation of LAS occurs primarily through 
w-oxidation of methyl group followed by b-oxidation, i.e., 
oxidative cleavage of C2 units of alkyl chain (Cook  1998 ). 
Sulfo-phenyl carboxylic acids (SPACs) are formed in the pri-
mary degradation phases and get further mineralized by 
desulfonation (Field et al.  1992 ). Dialkyltetralin sulfonates 
(DATS) and iso-LAS, which account for 10–15 % as impuri-
ties in commercial LAS, are also found to be degraded and 
being used as a sulfur source by bacteria in various studies 
(Cook  1998 ; Field et al.  1992 ; Kölbener et al.  1995 ). 

 Alkylphenols and nonylphenol, which are the precursors 
of alkylphenol polyethoxylates and nonylphenol  ethoxylates, 
are widely used in detergents and several other industrial 

products and have been identifi ed to exert estrogenic effects. 
Nonylphenol (NP) has been identifi ed for its potential endo-
crine disruptor- and xenoestrogen-like activity (Maguire 
 1999 ). While studying the biodegradation of xenoestrogen 
nonylphenol by  Cyclotella caspia , Liu et al. ( 2013 ) reported 
37.7 % removal in 192 h at initial concentration of 0.18 mg/L 
of nonylphenol. The degradation rate was found to be decreas-
ing with the increasing concentration of the nonylphenol, and 
at 0.22 mg/L, the degradation reduced to 6.7 % due to its 
toxicity. In natural seawater, degradation of alkyl ethoxysul-
fates (anionic surfactants) takes place in two phases. In fi rst 
phase, cleavage of ether bonds by means of hydrolytic reac-
tion, followed by ω- and β-oxidations of the secondary 
metabolites in second phase (Sibila et al.  2008 ). More than 
96.5 % degradation of anionic surfactant Empicol® ESB 70/
SP was observed after 124 days by Sibila et al. ( 2008 ).  

4.4     Persistent Organic Compounds 

 Persistent organic pollutants are ubiquitous in nature due to 
“grasshopper effect” (Koziol and Pudykiewicz  2001 ). 
Moreover, due to two or more enantiomers and chirality, 
more than 25 % of organic compounds pose serious threat in 
the biosphere (Williams  1996 ). The major challenge with the 
persistent organic pollutants (POPs) to the human being is 
higher carcinogenic potential of these contaminants. Most of 
the organohalogenated and organochlorinated compounds 
such as PAHs, PCBs, and chlorinated pesticides pose serious 
threat to the fl ora and fauna and are potentially carcinogenic 
to the human beings and wild life (IARC  1983 ). Therefore, 
once these contaminants fi nd their way to the food chain, 
they get accumulated to the higher trophic levels and pose 
serious threats to the human beings. The potential collateral 
effect of POPs to the nontarget organisms is not well under-
stood as such contaminants behave differently individually, 
whereas the toxicity increases/decreases several folds due to 
synergistic and antagonistic effects of co-occurring POPs. 

 Due to the complexity of the environmental matrices, 
degradation pattern, and ultra-trace levels of emerging 
contaminants, the identifi cation and quantifi cation of their 
occurrences is an intricate process. Though tremendous 
efforts have been made in the past few decades, the removal 
of such contaminants has not yet been completely under-
stood by the scientifi c community. Since most of these par-
ent contaminants and their metabolites have different 
chemical properties such as molecular weight, normality, 
polarity, oxidation-reduction state, they follow completely 
different environmental degradation/removal pathways. 
Therefore, today the major challenge is the development 
of suitable techniques for identification and quantifica-
tion. Moreover, the development of eco-friendly and 
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environmentally sustainable techniques for the removal of 
such residues from water and wastewater is the topmost 
priority in the scientifi c communities. 

4.4.1    Polyaromatic Hydrocarbons 
 In aquatic systems, several microorganisms such as bacteria, 
fungi, protozoa, and some of the microalgae species possess 
the bioremediation potential for PAHs, PCBs, and other 
POPs such as chlorinated organic compounds and utilize 
these compounds as a source of carbon and energy (Brusseau 
 1998 ). However, in the degradation of complex aromatic 
hydrocarbons, asphaltenes is very slow due to its low hydro-
phobicity; moreover, the shorter- (<C10) and longer-chain 
alkanes (C20–C40) remain diffi cult to degrade (Brusseau 
 1998 ; Guiliano et al.  2000 ; Yuste et al.  2000 ). Studies have 
demonstrated that certain microalgae species possess some 
enzymes which facilitate and enhance the degradation poten-
tial of microbes. Study of Tang et al. ( 2010 ) is in accordance 
with the above statement. While studying the biodegradation 
of aliphatic and aromatic hydrocarbons, Tang et al. ( 2010 ) 
observed signifi cant degradation of alkanes (46 %), alkylcy-
cloalkanes (51 %), and monoaromatic alkylbenzenes (33 %) 
by  S. Obliquus  GH2. Enhanced degradation of PAHs (81 %) 
of crude oil with the consortia of four bacteria ( Sphingomonas  
GY2B,  Burkholderia cepacia  GS3C,  Pseudomonas  GP3A, 
and  Pandoraea pnomenusa  GP3B) and axenic  Scenedesmus 
obliquus  GH2 was clearly demonstrated. 

 In recent years, various studies have demonstrated bioac-
cumulation, biotransformation, and biodegradation potential 
of several algal species for various organic contaminants. 
However, majority of literature is available of microalgal bio-
accumulation of organic and inorganic pollutants, and limited 
studies have been done of phycoremediation of such contami-
nants other than nutrient removals. Selective phytoplankton, 

diatoms, and microalgal species have shown the potential of 
biodegradation of organic contaminants, especially biotrans-
formation of the complex organic compounds in lower carbon 
compounds. Such secondary or tertiary metabolites are easily 
degraded by resident consortia of microbes such as bacteria 
and fungi (Walker et al.  1975 ). Jacobson and Alexander ( 1981 ) 
reported the degradation (meta-cleavage) of dehalogenate 
4-chloro-3,5- dinitrobenzoic acid to 2-hydroxymuconic semi-
aldehyde by non-axenic cultures of  Chlamydomonas  sp. Such 
transformation is not possible with the only bacterial consor-
tia, which clearly indicates that phycotransformation plays 
crucial role in the biodegradation of complex organics. Walker 
et al. ( 1975 ) also reported signifi cant degradation of saturated 
aliphatic hydrocarbons (38–60 %), aromatic compounds (12–
41 %) of crude oil by  Prototheca zopfi i . In a recent review, 
Semple et al. ( 1999 ) summarized various studies on catabolic 
sequences of degradation pathway in phycoremediation of 
organic  contaminants. They highlighted the phycoremediation 
potential of microalgae for polyaromatic hydrocarbons. At 
high initial concentrations, PAHs get accumulated in algal 
cells and pose toxicity at initial growth phases, but in log 
phases it becomes ineffective, whereas, on exposure of lower 
concentrations, algae and cyanobacteria are capable of phy-
cotransformation of PAHs (Cerniglia et al.  1979 ,  1980 ; Soto 
et al.  1975 ). The 1-naphthol, 4-hydrox-4-tetralone, cis-naph-
thalene dihydrodiol, and trans-naphthalene dihydrodiol are the 
major metabolites of microalgal phycotransformation of 
naphthalene (Cerniglia et al.  1979 ,  1980 ).  Scenedesmus 
obliquus  was found to possess the ability to desulfonate the 
1-naphthalene which releases sulfonate naphthalene sulfonic 
acids and being used as sulfur for growth (Luther  1990 ; Luther 
and Soeder  1987 ), whereas amino substituents of aminonaph-
thalenes and amino and nitrobenzoates are used as nitrogen 
sources by chlorophyte algae. Such studies clearly indicate 

   Table 11.1    Bioremediation/biotransformation in algae and cyanobacteria of pharmaceuticals and personal care products   

 Compounds  Nature of compounds  Algae  Remarks  Reference 

 Carbamazepine  Antiepileptic drug   Pseudokirchneriella 
subcapitata  

 Bioaccumulation and biotransformation  Vernouillet 
et al. ( 2010 ) 

 Fluoxetine and its 
metabolites norfl uoxetine, 
propranolol, lidocaine, and 
trimipramine 

 Pharmaceuticals 
with an aliphatic 
amine group 

  Scenedesmus vacuolatus   Toxicity of aliphatic amine-based 
pharmaceuticals toxicokinetic effect 
rather than toxicodynamic effect 

 Neuwoehner 
and Escher 
( 2011 ) 

 Tetracycline  Veterinary antibiotics   C. vulgaris   Removal of antibiotics through 
|photodegradation which depends on 
shallow geometry of HRAPs 

 de Godos 
et al. ( 2012 ) 

 Bisphenol A (BPA; 2,2-bis 
(4-hydroxyphenyl)propane) 

 Potential endocrine 
disruptor 

  Nannochloropsis  sp.  13–34 % removal by  Nannochloropsis  sp. 
and was 25–53 %  C. gracilis  in 6 days 
under light conditions. 

 Ishihara 
and Nakajima 
( 2003 ) 

  C. gracilis  

 Bisphenol A (BPA; 2,2-bis 
(4-hydroxyphenyl)propane) 

 Potential endocrine 
disruptor 

  Chlorella fusca   85 % degradation under light conditions 
and production of monohydroxybisphenol 
A (secondary metabolite) 

 Hirooka et al. 
( 2005 ) 

 Ibuprofen, acetaminophen 
caffeine 

 Pharmaceuticals   Stigeoclonium  sp. diatoms, 
 Chlorella  sp.,  Monoraphidium  

 Up to 90 % removal in the high-rate algal 
pond (HRT of 8 days) 

 Matamoros 
et al. ( 2015 ) 
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that algal bacterial consortia are well capable of phycotrans-
formation and accelerated the degradation of polyaromatic 
hydrocarbons. Tikoo et al. ( 1997 ) reported pentachlorophenol 
mineralization and degradation by three  Chlorella  species. 
Various studies have reported mineralization of exogenous 
phenol in aqueous medium (Ellis  1977 ; Semple and Cain 
 1996 ; Semple et al.  1999 ). Phycoremediation by conversion of 
phenols to the corresponding catechols by eukaryotic alga 
 Ochromonas danica  was reported by Semple and Cain ( 1996 ). 
They observed further degradation of these intermediate 
compounds by the meta-cleavage of aromatic ring in axenic 
culture of eukaryotic alga  O. danica . Pinto et al. ( 2002 ) 
reported up to 70 % removal of phenolic compounds by two 
green algae,  Ankistrodesmus braunii  and  Scenedesmus 
quadricauda.  

 From above examples it is clear that in phycoremediation 
of PAHs, algae produce various kinds of exudates and 
enzymes such as dioxygenase and cytochrome P-450 mono-
oxygenases which oxidize or hydrolyze and/or transform the 
aromatic compounds in various secondary or tertiary metab-
olites. Such metabolites either get accumulated in algal cells 
itself or undergo further degradation by other microorgan-
isms of the native environment (Cerniglia et al.  1979 ,  1980 ; 
Schoeny et al.  1988 ; Warshawsky et al.  1995 ). It has been 
observed that the degradation of complex organic com-
pounds by consortia of algae and other biodegrading 
microbes is more effective in the removal in comparison to 
the algal systems alone (Meulenberg et al.  1997 ). 

 Degradation of crude oil is reported in various studies. 
Walker et al. ( 1975 ) reported extensive degradation of mixed 
hydrocarbon and n- and iso-alkanes of crude oil by  Prototheca 
zopfi i , isolated from the crude oil-contaminated matrix. 
Various algae species (green, red, and brown), diatoms, and 
cyanobacteria have shown promising biodegradation poten-
tial for organic contaminants. Cerniglia et al. ( 1979 ) and 
Cerniglia et al. ( 1980 ) did extensive studies on the degrada-
tion of naphthalene by various green, red, brown algal spe-
cies and diatoms. The results revealed that most of the 
studied species have degradation potential; however, the 
extent of degradation mechanism is not fairly understood 
(Leahy and Colwell  1990 ). A detailed review compiled by 
Semple et al. ( 2009 ) on aromatic compounds biodegradation 
by microalgae is recommended for elaborated reading.  

4.4.2    Polychlorinated Biphenyls (PCBs) 
 PCBs are relatively refractory to the biodegradation and are 
highly toxic, carcinogenic, and ubiquitous in the environment. 
Microbial and microalgal degradation of these contaminants 
are very diffi cult and depend on the extent of halogenation and 
location of halogen atom in such compounds (Campbell  1977 ; 
Saeger and Thompson  1980 ). It has been established that deg-
radation of chlorinated benzenes and PCBs is done through 
reductive dehalogenation of such compounds under aerobic 
conditions (Bouwer et al.  1981 ; Colwell and Sayler  1978 ). 

Degradation of PCBs also mostly occurs via reductive deha-
logenation/dechlorination and accelerated by photochemical 
transformation (Cerniglia et al.  1980 ; Matsumura and Benezet 
 1978 ). Dai et al. ( 2002 ) reported that orthochlorinated PCBs 
suppress dehydroxybiphenyl oxygenase, which is the key 
enzyme responsible for the microbial degradation. Lynn et al. 
( 2007 ) reported signifi cant alteration in the PCBs (2,2ʹ,6,6ʹ-
tetrachlorobiphenyl) uptake by phytoplankton (diatom, 
 Stephanodiscus minutulus ) due to nutrient availability which 
directly affects its trophic transfer. However, such trophic 
transfer mainly depends on various factors such as algal spe-
cies, type of organic compound, its environmental circulation, 
geochemistry, and bioavailability. Moreover, nutrient limita-
tion signifi cantly affects the trophic transfer of such contami-
nants in the aquatic environment. Removal of PCBs by uptake 
and accumulation in lipid stores by various algae and phyto-
plankton has been reported widely (Fitzgerald and Steuer 
 2006 ; Lara et al.  1989 ). Replantation of benthic microalgae in 
the natural systems accelerate the growth of aerobic microor-
ganisms thus the aerobic activity in the biota (Yamamoto et al. 
 2008 ). Such condition leads conversion of anoxic sediment to 
oxic condition, and in turn the synergy of algae and aerobic 
bacterial system facilitates aerobic decomposition of organic 
contaminants. Uptake- and accumulation-based removal of 
several chlorinated hydrocarbons by marine phytoplankton 
has been reported widely (Harding and Phillips  1978 ). 
Commonly the major constrain in the in situ biodegradation of 
polychlorinated biphenyls is the lack of effective electron 
donors which can promote the degradation pathways (Chun 
et al.  2013 ). An application of an electric potential in to the 
PCB-contaminated soils or sediment matrix was found effec-
tive for enhancing electron donors/acceptors to the microor-
ganisms (Chun et al.  2013 ). Therefore, an amalgamation of 
physical and biological approaches could be a cost-effective 
and environmentally sustainable option for the in situ remedia-
tion of PCB-contaminated sediments and soils. Table  11.2  lists 
some phycoremediation examples of these hydrocarbons.

4.4.3       Pesticides 
 Most of the organochlorine pesticides (OCPs) are persistent 
and highly toxic to fl ora and fauna, including human beings 
and wild life. “ According to the Stockholm Convention on 
Persistent Organic Pollutants, 9 of the 21 persistent organic 
chemicals are pesticides.”  The main mechanism of biodeg-
radation of pesticides is the reductive dehalogenation/
dechlorination, which is accelerated by photochemical 
transformation in autotrophic microorganisms and has been 
reported widely (Cerniglia et al.  1980 ; Matsumura and 
Benezet  1978 ; Miskus et al.  1965 ). In such reductive deha-
logenation processes, microorganisms facilitate electron 
transfer from reduced organic compounds for the oxidation-
reduction which results in the removal of halogen atoms 
from the complex halogenated compounds (Esaac and 
Matsumura  1980 ; Kobayashi and Rittmann  1982 ). In gen-
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eral, similar principle also works for algal degradation or 
transformation of chlorinated pesticides (Matsumura and 
Benezet  1978 ; Matsumura and Esaac  1979 ). However, in 
algal system, electrons required for the reductive dechlori-
nation are produced and transferred from photosystem. 
Esaac and Matsumura ( 1980 ) reported that the reductive 
dechlorination of chlorinated compound mainly depends on 
its degree of chlorination and occurs only at 0.35 V and/or 
lower oxidation-reduction potential of a medium. 

 Other than carcinogenicity to the human beings, some of 
these contaminants, e.g., endosulfan, are also potential endo-
crine disruptors. In last few decades, various studies have 
been done on bioremediation of OCPs especially endosulfan 
by individual or mixed culture of bacteria and fungi (Guerin 
 1999 ; Kullman and Matsumura  1996 ; Sutherland et al. 
 2000 ). However, studies on phycoremediation of such com-
pounds are scanty. Shivaramaiah ( 2000 ) reported the biore-
mediation potential of  Anabaena  sp . , a blue-green alga for 
endosulfan. While studying biodegradation of a cyclodiene 
insecticide, α-endosulfan, Sethunathan et al. ( 2004 ) convinc-
ingly demonstrated that high-density cultures of 
 Chlorococcum  sp. or  Scenedesmus  sp. were capable of the 
biosorption and biotransformation of this α-endosulfan. It 
was noted that such phycoremediation process includes 
transformation of R-endosulfan to endosulfan sulfate and 
endosulfan ether. These metabolites were further removed by 
sorption in the algal cells. In this study, 60–70 % degradation 
was recorded in 20 days, whereas up to 99 % degradation of 
endosulfan was achieved in 30 days. Such type of phy-
cotransformation coupled with phycosorption makes algae 
potential candidate for bioremediation of organochlorine 
pesticides. Kobayashi and Rittmann ( 1982 ) compiled inter-
action of eukaryotic algae with pesticides and reported that 

algae are capable of biotransforming of some of the organic 
contaminants. 

 Time-dependent environmental risk assessment is very 
important in the evaluation of algal biodegradation and bio-
transformation of pesticides, as some of the degradation by- 
products or transformation products are more toxic to the 
biota than the parent chemical compounds. Cai et al. ( 2009 ) 
observed a signifi cant biotransformation of an herbicide, 
diclofop-methyl, which gets hydrolyzed to diclofop after 
absorption in the cells of  Chlorella vulgaris  and further 
degraded intracellularly to 4-(2, 4-dichlorophenoxy) phenol. 
It was found that the 4-(2, 4-dichlorophenoxy) phenol was 
more toxic to  C. vulgaris  in comparison to the diclofop- 
methyl. Signifi cant biotransformation of diphenyl ether her-
bicide by  Chlorocorrum  sp. of an algal bacterial consortium 
was reported by Wolfaardt et al. ( 1994 ). These studies have 
clearly demonstrated that in algal microbial consortia, other 
than bioaccumulation in the cells, most of the microalgal 
species perform biotransformation of the complex organic 
compounds to the simpler or low-carbon compounds and 
ultimately facilitate their degradation by other microbes 
present in the consortia/biota. Though there is no concrete 
evidence available, however, it can be hypothesized that in 
natural conditions the autotrophs such as algae and cyano-
bacteria provide oxic conditions during photosynthesis and 
nitrogen fi xation which facilitate growth of a wide range of 
other microorganisms, and in turn these bacteria and fungi 
accelerate degradation in harmony with these autotrophs 
(Rao and Burns  1990 ; Sethunathan et al.  2004 ). Table  11.3  
lists some examples of phycoremediation of pesticides. 
Figure  11.2  provides a generalized overview of phycotrans-
formation and degradation of PCBs and OCPs 
contaminants.

   Table 11.2    Bioremediation/biotransformation in algae and cyanobacteria of hydrocarbon   

 Compounds  Nature of compounds  Algae  Remarks  Reference 

 14c Naphthalene  Aromatic hydrocarbon   Agmenellum quadruplicatum   Catalysis of cis hydroxylation of 
aromatic hydrocarbons 

 Cerniglia et al. 
( 1979 ) 

 R-endosulfan and its 
oxidation product 
endosulfan sulfate 

 Cyclodiene insecticide   Chlorococcum  sp.  95–99 % degradation in 30 days  Sethunathan et al. 
( 2004 )   Scenedesmus  sp. 

 BaP   Selenastrum capricornutum   Metabolizes BaP to cis-dihydrodiols 
using a dioxygenase enzyme system to 
todiols, and quinones 

 Warshawsky et al. 

 Polyurethane   Protothecazopfi i   Removal by immobilized and free 
cells 

 Ueno et al. ( 2008 ) 

 Fluoranthene   Chlorella vulgaris, 
Scenedesmus platydiscus, 
Scenedesmus quadricauda, 
Selenastrum capricornutum  

 Species-specifi c removal  Lei et al. ( 2007 ) 

 Pyrene 

 Phenanthrene   S. costatum  and  Nitzschia  sp.  Higher removal of mixture than the 
single compound. 

 Hong et al. 

 Fluoranthene  The presence of any PAH compound 
in the matrix enhances the degradation 
of the other PAH compounds 
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5           Phycoremediation: Limiting Factors 

 The algal biotransformation and degradation, i.e., phycore-
mediation of emerging contaminants depend on various fac-
tors such as physiology of the selected species, their survival 
and growth, species density, tolerance potential, and prior 

exposure to the specifi c xenobiotic compound. The synergy 
and compatibility of selected species with other resident- 
competing microfl ora and fauna also play very important 
role (Corner  1981 ; Horvath  1972 ; Rosenzweig and Stotzky 
 1980 ). Various studies have demonstrated that the consortia 
of algae and bacteria were found to be more effective in bio-

   Table 11.3    Bioremediation/biotransformation in algae and cyanobacteria of pesticides   

 Compounds  Nature of compounds  Algae  Remarks  Reference 

 Monocrotophos  Organophosphate 
insecticides 

  Chlorella vulgaris, 
Scenedesmus bijugatus  

 Degradaton  Megharaj 
et al. ( 1987 ) 

 Quinalphos  Cyanobacteria: 

  Synechococcus 
elongatus ,  Nostoc 
linckia ,  Formidiumtenue  

 Methyl Parathion  Megharaj 
et al. ( 1994 ) 

 DDT (1,1,1-trichloro-2,2- bis 
(p-chlorophenyl)ethane) 

 Organochlorine 
pesticide 

  Anabaena  and  Nostoc   Transformed to DDD
[1,1- dichloro- 2,2 bis 
(p-chlorophenyl)ethyl]benzene 

 Megharaj 
et al. ( 2000 ) 

 DDT (1,1,1-trichloro-2,2- bis 
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transformation and mineralization of the organic contami-
nants in comparison of individual algal or bacterial 
degradation (Chekroun et al.  2014 ; Horvath  1972 ; Kobayashi 
and Rittmann  1982 ). Other than the physiology of algal sp., 
the concentration, physical and chemical properties i.e. 
hydrophobicity, solubility and volatility of the xenobiotics 
are also important and need to be considered while accessing 
the phycoremediation (Gibson  1978 ; Kobayashi and 
Rittmann  1982 ; Steen et al.  1980 ). The susceptibility of 
hydrocarbons degradation depends on their chemical form as 
well. Polar and high molecular weight compounds are less 
liable to degradation, whereas light aromatic and saturated 
compounds are comparatively more susceptible for degrada-
tion (Leahy and Colwell  1990 ). In case of petroleum hydro-
carbons, physical state and the contaminated matrix both 
play crucial role in its biodegradation. In natural water sys-
tem, petroleum hydrocarbons easily get dispersed, resulting 
the formation of a thin slick due to the action of wind and 
fl ow current, tidal oscillation. Such thin slicks provide high 
surface area thus higher degradation. In contrast thick slick 
or large mousse of hydrocarbons either in water or in soil 
inhibits the biodegradation due to low surface area (Colwell 
and Sayler  1978 ; Cooney  2010 ). In general, algal mineraliza-
tion and degradation is proportional to the concentration, 
water solubility. Degradation of low molecular weight aro-
matic hydrocarbons such as toluene follows the Michaelis- 
Menten kinetics (Boethling and Alexander  1979 ; Pfaender 
and Bartholomew  1982 ), whereas the same is not applicable 
for insoluble hydrocarbons such as naphthalene and phenan-
threne, having high molecular weight (Thomas et al.  1986 ; 

Wodzinski and Coyle  1974 ). The octanol-water partition 
coeffi cient for the organic compound is also crucial for deg-
radation (Gibson  1978 ) (Fig.  11.3 ).

   As far as halogenated complex and persistent organic 
contaminants are concerned, the degree of halogenation, 
number of halogen atoms, and their bioavailability and toxic-
ity have direct potential effects on the phycoremediation pro-
cess (Colwell and Sayler  1978 ; Gibson  1978 ; Kobayashi and 
Rittmann  1982 ; Leahy and Colwell  1990 ). There are several 
environmental factors such as temperature, light duration 
and intensity, pH and oxidation-reduction potential, salinity, 
and dissolved oxygen of the medium, which directly or indi-
rectly affect the feasibility and success of phycoremediation 
process either by limiting growth and survival of the micro-
algae or by changing the geochemistry of the medium 
(Colwell and Sayler  1978 ; Gibson  1978 ; Kobayashi and 
Rittmann  1982 ). For example, temperature plays very impor-
tant role in in situ biodegradation of PAH; therefore, the opti-
mal degradation varies seasonally. Moreover, the solubility 
of the PAHs is temperature dependent (Bamforth and 
Singleton  2005 ). The solubility, thus the bioavailability, 
increases with the increase of the temperature (Kobayashi 
and Rittmann  1982 ; Leahy and Colwell  1990 ; Margesin and 
Schinner  2001 ). pH also plays critical role in the algal degra-
dation of polyaromatic hydrocarbons. Degradation of PAHs 
is higher in acidic to neutral pH range in comparison to basic 
range (Wong et al.  2002 ). PHAs degradation is also affected 
by oxygen. Therefore, the rate of aerobic and anaerobic deg-
radation of PAHs is greatly affected by the infl uence of oxy-
gen (Bamforth and Singleton  2005 ).  

  Fig. 11.3    Generalized overview of factors infl uencing phycoremediation of emerging contaminants       
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6     Conclusions 

 Though several incidences are available to date on degrada-
tion of various organic contaminants by individual algae and 
cyanobacteria or in conjugation of other native microbes 
such as bacteria and fungi, however, such mechanistic under-
standing of algal degradation pathways for individual type of 
contaminants needs to be elucidated. The biodegradation 
potential of mixotrophic cyanobacteria and microalgae spe-
cies should be identifi ed, and efforts should be made to 
improve the biodegradation potential of selected species by 
employing genetic engineering. Microbial consortium engi-
neering by functional genomics, metabolic profi ling, and 
other genetic engineering tools can help in improving the 
biodegradation potential of such microorganisms 
(Subashchandrabose et al.  2011 ,  2013 ).     
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