
Vector Evaluated Genetic
Algorithm-Based Distributed Query
Plan Generation in Distributed Database

Vikash Mishra and Vikram Singh

Abstract Distributed query processing (DQP) determines an optimal query plan,
which generates user query results in efficient manner by selecting optimal set of
database sites. Multi-objective DQP problems become more complex because a
query optimizer has to select optimal, non-dominated QEP’s, query equivalent
plans, based on conflicting objective values. In past few years, evolutionary tech-
niques are employed on such problems, although they are unable to get a good
balance between efficacy and efficiency in all attempts. A meta-heuristic-based
algorithm is presented which determines the combinations of database sites, in
response to a query or group of queries. In this paper a technique is proposed for the
optimal query plan generation, based on the meta-heuristics, modelled for dis-
tributed query processing, through an improved vector evaluated genetic algorithm
for generation and selection of optimal query plans on distributed database. The
algorithm’s optimization performance is evaluated with other approaches and
optimization reliability along with efficiency is benchmarked using performance
graphs; comparisons indicate that the vector evaluated genetic algorithm (VEGA)
converges better than aggregation-based method (weighted-sum approach). Top-K
query plans, average query cost and number of generations are the parameters used
for the comparative analysis.

Keywords Aggregation-based genetic algorithm � Bi-objective genetic algorithm �
Distributed database � Distributed query processing � Top-K � Query vector
evaluated genetic algorithm

Vikash Mishra (&) � Vikram Singh
National Institute of Technology, Kurukshetra, Haryana, India
e-mail: mishravikash03@gmail.com

Vikram Singh
e-mail: viks@nitkkr.ac.in

© Springer India 2016
N. Afzalpulkar et al. (eds.), Proceedings of the International Conference
on Recent Cognizance in Wireless Communication & Image Processing,
DOI 10.1007/978-81-322-2638-3_37

325

Introduction

In modern history, the Internet in its all probability is the most desired and used
distributed processing and computing environment and on the other hand, a user in
this environment with limited capabilities for retrieving the desired result are at
best. In such distributed processing environment, queries posed by user or appli-
cations routinely require gathering data from multiple sites or data sources [1].
Advanced database systems are embedded with the capability of various trans-
parency mechanisms due to which as user never face or feel the effect of distri-
bution of data and in such systems the data pertinent to a query move to a single
server for final compilation. In traditional way, query on distributed processing
environment is optimized centrally and executed synchronously [2]. Improving the
performance of a database system is one of the key research issues from over the
decades. Distributed database system (DDBS) is effectual means to improve reli-
ability and availability of data to improve the overall performance of a processing
system [3]. The users at local sites can work independently as well as communicate
with other sites to retrieve data for answering global queries. Such a setup is
referred to as a distributed database system (DDS) [4]. Query posed on a DDS is
generally decomposed into secondary queries, which are executed at respective
local sites with local data store, before communicated to central control sites for
final result generation and finally at the user end, an integrated result is displayed.

A distributed query processing (DQP) strategy aims to minimize the overall cost
of query processing in such systems [5, 6]. The cost of query processing in a DDS
comprises two costs: the local processing cost and the site-to-site communication or
the transmission cost of relation fragments. The total cost incurred in processing a
distributed query can thus be taken as the sum of the local processing cost, cost of
local operations on local data and cost of transferring locally processed data from
participating sites to a central control sites. DQP iteratively evaluates all QEPs of a
user query and determines the most optimal query plan that minimizes the total cost
that is local processing (CPU, I/O) cost and communication cost [7]. In DDBS, the
number of query equivalent plans (QEPs) grows at least exponentially through the
increase in amount of relations accessed by the query, as relations are either repli-
cated fully or replicated with partitioned sub-relations. Performing an exhaustive
search for optimal QEPs over the all possible combinations of query plans is not
viable due to a huge solution space. Therefore, in large DDB, devising a query
processing strategy that optimizes the total query processing cost is shown to be a
combinatorial optimization problem with NP-complete in complexity nature [8].

Over the last two decades, evolutionary algorithms have gained immense popu-
larity due to their applicability in solving engineering optimization problems and
complex scientific problems. These algorithms are inspired by the Darwinian evo-
lution that accentuates the concept of “Survival of the Fittest”. It is, thus,
metaphorical to the natural social behaviour and biological evolution of species. The
evolutionary strategies are now proved to be the most proficient method of choice for
solving such problems. Genetic algorithm-based techniques which belong to the

326 Vikash Mishra and Vikram Singh

class of evolutionary algorithms have also been widely used in solving complex
real-life science and engineering problems. The strength of GA as a meta-heuristic
comes from its ability to combine the good features from several solutions to create
new and better solutions over generations. Most real-world scientific and engineering
problems have often conflicting and competing objectives that need to be optimized.
In subsequent years, several different evolutionary algorithms (VEGA [9], NPGA
[10], NSGA [11], NSGA-II [4], SPEA [11], SPEA-II [11], PAES [11], PESA [12,
11]) have effectively employed to solve the classic optimization problems.

This paper is organized as follows. Next section describes DQP and its moti-
vation and proposed heuristic. Fundamentals of MOEA are discussed in subsequent
section, also its suitability for DQP problem. Vector evaluated genetic algorithm
(VEGA) is described in next section and an example illustrate the use of
VEGA-based DQPG algorithm for generating optimal query plans. In graph section
performance over other techniques in same section, in which comparison. In the last
section conclusive discussion is presented with summary of approach.

Distributed Query Processing

In today’s scenario, with a multifold increase in the size operational data leads to
growth of size of DDBS, the communication cost asserts a major impact on the
overall cost of query processing. The cost incurred in communicating data through a
congested network path or the communication of large data units between sites with
higher communication costs can highly influence the cost of query processing. It
thus also plays a key role in determining the overall performance of a DDBS [4, 6].
There can be a number of possible ways to process and communicate sub-relations
relevant to the user query. In difference to the centralized query processing, dis-
tributed query processing cannot statically generate result at one single site. In DQP
the user query is executed at node and its neighbours [6, 13, 14]. The optimal query
plan generation and selection greatly depend on the cost function, as shown in Fig. 1.

Fig. 1 Distributed query
optimization

Vector Evaluated Genetic Algorithm-Based Distributed … 327

In distributed relational database, logical data is replicated either fully or parti-
tioned way to achieve higher degree of reliability in environment and serve higher
availability data for efficient processing closer to the user sites or locations. This
leads query processing to complex optimizations scenario, as a number of QEPs are
exponentially increased. An approach is proposed in this paper using genetic
algorithm (GA) to generate the query plans keeping optimality among solutions at
highest priory. Primarily, a query optimization focuses on to diminish cost or
amount of data a query requiring from multiple logical sites for processing queries.
As a result, computing optimal distributed query plans becomes a multifaceted
problem. In [14] a distributed query plan generation (DQPG) approach for
single-objective, query proximity cost (QPC) is proposed, where optimization
among QEPs is according to the heterogeneity within a QEP on the order of sites
used. We proposed a solution for DQPG problem, and analysed optimization
performance by including additional design objective. In the following objectives
are briefly discussed.

Motivation: DQP is a model to determine the optimal policy for processing any
given user query. The model is based on operating cost (cost of local processing
and communication), which is a function of processing sites for query operators and
sequence of these database operators. In DQP quality of QEP is evaluated
according to the processing time required by the QEP [15]. In DQP, cost of data
transmission between sites is the dominating cost. The objective of distributed
query processing is to minimize the data transmission among sites thereby reducing
the data transmission cost. Semi-joins have been used [16, 17] to reduce the
communication cost. Semi-join reduces the communication cost and exploits the
parallelism for query plan execution. Semi-joins carry out this by reducing the
amount of attributes or tuples/attributes transfers among sites for generating results,
thereby reducing the communication cost. DQP is phenomenon driven by the
heuristics [18].

Heuristic-1: Query proximity cost (QPC) quantifies the heterogeneity in a QEP;
a QEP with least number of distinct sites is better as it leads to less data transfer
among sites. In this case, more than one QEPs with higher number of same relation
is considered better [13, 14]. The fitness function, i.e. the QPC, based on these two
heuristics is given below:

QPC ¼
XM

i¼1

Ki

N
1� Ki

N

� �

where M indicates the total number of sites required in a QEP, Ki refer times the ith
site in the QEP and finally N is the total number of relations required in QEP. GA
uses the above fitness function to select the query plans having minimum QPC for
the next generation. The selected query plans undergo genetic operator (crossover,
mutation) for the generation of new pool.

Heuristic-2: Communication cost (CC), first of all algorithm forms the all
possible trees assuming sites as nodes of tree, then evaluate minimum cost tree

328 Vikash Mishra and Vikram Singh

among all. The communication path between two node is defined on the basis of
data stored into the sites, such as the communication cost between node A and B is
different in the case when we want move from B to A or A to B. The data from sites
is transferred such a way that caused minimum cost to overall plan. So we are trying
to minimize this heuristic. For the generation of the communication cost for query
plan set, we need a communication cost table consisting communication cost of all
site-to-site path.

Multi-objective Evolutionary Algorithm (MOEA)

These algorithms are inspired by the Darwinian evolution that accentuates the
concept of “Survival of the Fittest” [19, 20]. It is, thus, metaphorical to the natural
social behaviour and biological evolution of species. The evolutionary techniques
are now proved to be the most proficient method of choice for solving such
problems. Genetic algorithm-based techniques which belong to the class of evo-
lutionary algorithms have also been widely used in solving complex real-life sci-
ence and engineering and scientific problems [21]. The strength of GA as a
meta-heuristic comes from its ability to combine the good features from several
solutions to create new and better solutions over generations. Most real-world
scientific and engineering problems have often conflicting and competing objec-
tives that need to be optimized [22]. The evolutionary tactics are established as a
best possible tool for many engineering and science related problems to optimize
the different objectives and find efficient trade-offs unlike the classic techniques.
The strength of GA as a meta-heuristic comes from its ability to combine the good
features from several solutions to create new and better solutions over generations.
Design objectives in most engineering and science scenario are disparate and
contradictory for which optimized solution is required [20, 22]. A technique based
on evolution is best fit for these kinds of problem, each evolution or iteration
generated new improved solution and continues until certain degree of optimality is
achieved over set of solutions. Evolutionary techniques are being used and suited
for such problems on which concurrent optimization can be achieved over multiple
objectives. The best part of GA emerges for multi-heuristic problems on its ability
to combine the good features from several solutions to create new and better
solutions over generations [20]. Most real-world scientific and engineering prob-
lems have often conflicting and competing objectives that need to be optimized.
The evolutionary strategies are proved to be best suited for this class of problems as
they can simultaneously optimize the different objectives and find efficient
trade-offs unlike the classic techniques.

Many engineering and scientific problems cannot realistically modelled using
single design objective, and thus multiple and often conflicting objectives are
designed. Single genetic algorithm (SGA) is potentially unable to solve optimiza-
tion problems with multiple conflicting objective functions, and this leads to a set of
evolution of customized genetic algorithms; these are demonstrated and observed

Vector Evaluated Genetic Algorithm-Based Distributed … 329

effective on determining the excellent solutions. The solution set consists of a
pareto front of optimal solutions for problem, and a solution in pareto front is
considered best with respect to other solution for each of the objectives.

Schaffer (1985) considers the capability of single-objective GA (SGA) for
multi-objective-based optimization problems and adapted a new variant of GA,
named vector evaluated genetic algorithm (VEGA). In this new development, basic
methodology of GA is same except the selection process of chromosomes, as
selection is based performed on entire population by applying fitness values from
each of the objectives, simultaneously and this generates set of population equal to
the number of objectives considered. A problem having m design objectives and
total population size of N, m subpopulations of N/m size is created. The selection
step was modified to perform proportional selection at each generation for each of
the objectives [15], and next for algorithm to proceed with the application of
crossover and mutation in the standard mode.

VEGA is implemented over bi-objective query optimization, and performance of
aggregation-based genetic algorithm (weighted-sum approach) with VEGA is
analysed. The outcome of VEGA-based optimizations is better, as a
aggregation-based GA has main demerits in complexity to decide the weights that
can be appropriate to scale the objective, to accomplish this prior information which
is required about problem, particularly if we consider that optimal point obtained
will be purpose of these weights [23].

Vector Evaluated Genetic Algorithm (VEGA)

VEGA is first practical algorithm, implemented for the population with multiple
properties or objectives. In [24] Schaffer adapted fundamental GA for
multi-objectives by modifying the selection genetic operator of GA. In VEGA
vector term represents the objective value for the multi-objective problem. This
variant of genetic algorithm is a simplest and an uncomplicated adaption of
single-objective genetic algorithm (SGA) for multi-objective optimization with
modified selection genetic operator [25]. This algorithm divides total population
into set of subpopulations equal to number of design objectives. Each subpopula-
tion is created based on the fitness values of specific objectives, and for each
generation, fitness assignment for first subpopulation is done according to the
values of first objective function, and so on [24]. Selection techniques are applied
on each of the subpopulations and based on the objectives, fitness value due to
mating pool is created. In order to minimize positional partiality among the solu-
tions by randomly shuffling before they are partitioned according to the objectives
into set of subpopulations, this is useful in managing problems on which objective
takes values of different domains and orders of magnitudes. As all QEPs of each of
subpopulations is allotted fitness and restricted selection within each of subpopu-
lations, this emphasizes better solution equivalent to respective objective function.
Moreover, since neither two QEPs are compared on different objective functions

330 Vikash Mishra and Vikram Singh

nor generate any complexity. In VEGA, any fundamental operator of selection can
be used, and we used for a proportionate (Roulette wheel method) as selection
operator. Selected QEPs are inserted into the mating pool for the further repro-
duction using genetic operators, like crossover using crossover probability (Pc) and
mutation using mutation probability (Pm). VEGA iteratively evolves solutions until
as stopping criteria met or fulfilled these criteria values are provided by decision
maker or user [26].

(a) Algorithm

Input: Query plans {query1 [], query 2[]…}
Output: New set of Query Plans
Step 1: Initialized set of query plans, P0

Step 2: Evaluate Objective 1 (Proximity cost) and Objective 2 (communication cost) for each Query plan.

Obj1: (PC) = ∑
=1i CL

Ki
(1-

CL

Ki
); // Ki is count of ith server used in query plan, CL is length of query

plan//
Obj2:(CC)= Spanning Tree (query plan[]); //to evaluate minimum communication cost among all possible

combination of sites for specific query//
Step3: Set a objective function counter i=1;
 Define q =N/M; // N is size of population & M no. of objective//

For (J = qi ∗−+)1 (1 to J= qi ∗) //Assign fitness for each query plan within subpopulation//

{

F(x
(J)

)=f
i
(x

(J)

) ; //f
i
(x

(J)

) is objective value & F(x
(J)

) is fitness value of ith chromosome in jth

subpopulation// }
Step 4: Perform Selection through Tournament selection method on each sub-populations (q), mating pool p

i

Step 5: #if (i=M) then Go to step (6)
 #else i =i+1; and Go to step (2)

Step 6: Combine all mating pools from sub-populations :Mating Pool =

M

i

Pi
1=

//Pi is mating pool for ith

subpopulation//
Step 7: Apply genetic operator on mating pool of query plans,
 Apply Crossover with Crossover probability (Pc)

Mutate chromosome with Mutation probability (Pm)
Step 8 : #if (stopping criteria meet), then

Final set of chromosome copy to output (Optimal solutions);
 #else Go to Step (2); // to next iteration//

(b) Example
In GA, first chromosomes for a population are initialized. In proposed solution, two
important aspects are the values used for encoding a chromosome and the sizes
of the chromosome. The size of a QEP(chromosome) is equal to the number of
relation required in FROM clause of the query and values in a QEP are name of
sites of relations. Tables 1 and 2 show relation site matrix and some valid query
plans. VEGA initially divides entire population into subpopulations, as 20 chro-
mosomes are in Table 3, initial population (P0). The number of objective decides
the size of subpopulation (q) = N/M, where N is the total number of query plans and
M is the number of objectives. Initial population (P0) consists of 20 query plans,
and is now equally divided into subpopulation of 10 query plans in each.

Vector Evaluated Genetic Algorithm-Based Distributed … 331

Table 1 Relation site matrix Site

Relation 1 2 3 4 5 6 7 8 9

R1 1 0 0 1 0 1 0 0 1

R2 1 0 0 1 1 0 1 0 0

R3 1 0 1 0 1 0 0 1 0

R4 1 1 0 1 0 0 1 0 0

Table 3 Partitioned
population, subpopulation 1
(objective 1) and
subpopulation 2 (objective 2)

S. no. Query plans Fitness value Comm. cost

1 [4,4,3,4] 6/16 32

2 [1,1,1,1] 0 0

3 [4,4,1,2] 10/16 21

4 [9,4,8,4] 10/16 46

5 [6,1,1,1] 6/16 20

6 [9,4,3,4] 10/16 74

7 [4,5,5,4] 8/16 16

8 [6,5,5,1] 10/16 36

9 [1,7,8,4] 12/16 61

10 [4,4,8,4] 6/16 61

11 [6,4,8,4] 10/16 70

12 [1,4,4,1] 8/16 20

13 [4,5,5,9] 12/16 63

14 [9,5,5,9] 8/16 47

15 [6,5,5,9] 10/16 51

16 [1,7,5,9] 12/16 38

17 [9,7,8,9] 12/16 30

18 [6,4,5,4] 10/16 56

19 [9,1,8,4] 12/16 44

20 [1,1,1,9] 6/16 14

Table 2 Valid query plans
(chromosomes)

Query plan Description

[1,1,1,1] All relations are in site 1

[4,4,3,7] R1 and R2 from site 4, R3 from site 3 and R4

from site 7

[6,7,8,2] R1, R2, R3, R4 from site no. 6, 7, 8, 2
respectively

[4,4,8,4] R1, R2, R4 from site 4 and R3 from site 8

332 Vikash Mishra and Vikram Singh

Query: Select a, b
From R1, R2, R3, R4

Where R1.a = R4.t
and R4.p = R2.x
and R2.x = R3.n;

In this query R1, R2, R3, R4 are required for result retrieval. Relation R1 is
replicated on sites (1, 4, 6, 9), R2 at sites (1, 4, 5, 7), R3 at sites (1, 3, 5, 8) and
similarly relation R4 at sites (1, 2, 4, 7) as shown in Table 1 relation site matrix
(RSM). Total number of relation required by the query is 4, and the QEP size would
be 4. The values into QEP are names of sites for the relation and ordering will be
from R1 to R4, from left to right.

Selection of the fitter and better chromosomes is achieved parallel in VEGA, as
both subpopulation are treated differently with different heuristics, as first sub-
population is based on the heuristic 1 and second on the heuristic 2. In Table 3,
query plans with lower fitness value are inserted into the mating pool from sub-
population 1, similarly from the subpopulation 2, query plans with lower com-
munication cost are inserted into mating pool.

Now for implementing the crossover and mutation, combine all mating pool of
different subpopulations. Table 4 mating pool consists of fitter and better QEPs,
combine mating pool 1 and pool 2. Next, apply crossover with Pc in [0.5, 0.9]. In
graph section, the effect of different crossover probability (Pc) values on generation

Table 4 Mating pool sub Mating pool 1

S No Query plans Fitness value Comm. cost

1 [4,4,3,4] 6/16 32

2 [1,1,1,1] 0 0

10 [4,4,8,4] 6/16 61

5 [6,1,1,1] 6/16 20

6 [9,4,3,4] 10/16 74

7 [4,5,5,4] 8/16 16

4 [9,4,8,4] 10/16 46

Mating pool 2

18 [6,4,5,4] 10/16 56
12 [1,4,4,1] 8/16 20
17 [9,7,8,9] 12/16 30

19 [9,1,8,4] 12/16 44
14 [9,5,5,9] 8/16 47
20 [1,1,1,9] 6/16 14
15 [6,5,5,9] 10/16 51

Vector Evaluated Genetic Algorithm-Based Distributed … 333

of new population is shown. Mutation required in the QEP (chromosomes)
according to Pm value, for VEGA Pm, is [0.0, 0.2]. In Table 5, new population
consists of new set of QEPs for initial population given in Table 4.

(c) Graphs
The comparative analysis of optimization performance is according to parameters,
e.g. Number of generations, Average query cost and Top-K query of VEGA;
aggregation-based genetic algorithm is shown in the following graphs. The
experimental setup includes simulation on genetic algorithm toolkit in MATLAB
with modelled cost functions and pool of QEP given relation site matrix. For the
comparative experimentation, different crossover schemes are implemented: single
point crossover (SPC), double point crossover (DBC) and uniform point crossover
(UPC). UPC converged more consistently as compared to other schemes for all set
of parameters. In Figs. 2 and 3, the comparative results are shown. The experi-
mental analysis states that VEGA’s convergence is better than any multi-objective
aggregation-based genetic algorithm for different values of crossover and mutation
probability, Pc and Pm.

Table 5 New population S No Query plans Fitness value Comm. cost

4 [9,4,8,4] 10/16 46

7 [4,5,5,4] 8/16 16

2 [1,1,1,1] 0 0

1 [4,4,3,4] 6/16 32

5 [6,1,1,1] 6/16 20

12 [1,4,4,1] 8/16 20

14 [9,5,5,9] 8/16 47

20 [1,1,1,9] 6/16 14

N1 [4,4,5,4] 6/16 14
N2 [6,5,5,4] 8/16 25
N3 [6,4,5,9] 10/16 41
N4 [6,5,8,4] 10/16 42

N5 [4,4,5,9] 8/16 16
N6 [9,4,5,9] 8/16 16
N7 [6,5,3,4] 10/16 40
N8 [9,4,3,4] 8/16 18
N9 [9,1,5,4] 10/16 41
N10 [9,4,5,4] 8/16 23
N11 [4,5,8,4] 8/16 20
N12 [9,1,3,4] 10/16 42

334 Vikash Mishra and Vikram Singh

Top-k Vs. Generation
Average Fitness = 0.2

0

20

40

60

80

100

120

140

5 10 15 20 25 30

Top-k Chromosome

G
en

er
at

io
n

SPC

DPC

UPC

Top-k Vs. Generation
Average Fitness = 0.3

0

10

20

30

40

50

60

70

5 10 15 20 25 30

Top-k Chromosome

G
en

er
at

io
n

SPC

DPC

UPC

Top-k Vs.Generation
Average Fitness = 0.4

0

5

10

15

20

25

30

35

5 10 15 20 25 30

Top-k Chromosome

G
en

er
at

io
n

SPC

DPC

UPC

Top-k Vs.Generation
Average Fitness = 0.5

0

2

4

6

8

10

12

5 10 15 20 25 30

Top-k Chromosome

G
en

er
at

io
n

SPC

DPC

UPC

Top-k Vs.Generation
Average Fitness = 0.6

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

Top-k Chromosome

G
en

er
at

io
n

SPC

DPC

UPC

Fig. 2 Top-K versus generation for fixed average fitness

Average Fitness Vs. Generation
Top-5 Chromosome

0

10

20

30

40

50

60

70

80

0.2 0.3 0.4 0.5 0.6

Average Fitness

G
en

er
at

io
n

SPC

DPC

UPC

Average Fitness Vs. Generation
Top-10 Chromosome

0
10
20
30
40
50
60
70
80
90

100

0.2 0.3 0.4 0.5 0.6

Average Fitness

G
en

er
at

io
n

SPC

DPC

UPC

Average Fitness Vs. Generation
Top-10 Chromosome

0
10
20
30
40
50
60
70
80
90

100

0.2 0.3 0.4 0.5 0.6

Average Fitness

G
en

er
at

io
n

SPC

DPC

UPC

Average Fitness Vs. Generation
Top-20 Chromosome

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6

Average Fitness

G
en

er
at

io
n

SPC

DPC

UPC

Average Fitness Vs. Generation
Top-25 Chromosome

0

20

40

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6

Average Fitness

G
en

er
at

io
n

SPC

DPC

UPC

Average Fitness Vs. Generation
Top-30 Chromosome

0

20

40

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6

Average Fitness

G
en

er
at

io
n

SPC

DPC

UPC

Fig. 3 Average fitness versus generation for fixed Top-K

Vector Evaluated Genetic Algorithm-Based Distributed … 335

Conclusion

Distributed database system is one of the most reliable processing environments;
logical data is kept in multiple sites. The users at local sites can work independently
as well as communicate with other sites to retrieve data for answering global
queries; setup is defined as distributed query processing (DQP). A distributed query
processing strategy aims to reduce the overall cost of query processing. The query
optimizer primarily minimizes the time required for result retrieval for a user query.
Genetic algorithm is nature-based optimization technique which has also been
widely used in solving complex real-life optimization problems. The strength of GA
as a meta-heuristic comes from its ability to combine the good features from several
solutions to create new and better solutions over generations. Schaffer proposed a
multi-objective genetic algorithm to accommodate the different types of fitness
function, vector valued fitness values, called vector evaluated genetic algorithm.
Initial steps are similar to single-objective GA, while selection is modified, so that
at proportional selection according to each of the objectives is achieved. This
selection approach justifies the importance of each of the design objectives of
optimization problem, and in query optimization query plans are selected for
evolution in proportional contribution of each of the objective populations. The
performance trade-offs are discussed result section, and the comparative graphs are
drawn between various parameters, e.g. number of generation (evolution) and
average query cost.

References

1. Bernstein, P.A., Goodman, N., Reeve, C.L, Rothnie, J.B., Wong, E.: Query processing in a
system for distributed database. ACM Trans. Database Syst. 4(602–625) (1981)

2. Chu, W., Hurley, P.: Optimal query processing for distributed database systems. IEEE TC
C-31(835–850) (1982)

3. Chang, C.C., Yu, C.T.: Distributed query processing. ACM Comput. Surv. 16(4), 399–433
(1984)

4. Ceri, S., Pelagati, G.: Distributed Database: Principles and Systems. McGraw Hill (1984)
5. Gregory, M.: Performance issues in distributed query processing. IEEE Trans. Parallel Distrib.

Syst. 4(8) (1993)
6. Kossmann, D.: The State of the art in distributed query processing. ACM Comput. Surv.

(2000)
7. Chang, J.M.: A heuristic approach to distributed query processing. In: Proceedings of VLDB

(1982)
8. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv. (1984)
9. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective

optimization. Evol. Comput. 3(1), 1–16 (1995)
10. Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective optimization

techniques. Knowl. Inf. Syst. (1999)
11. Ishibuchi, H., Narukawa, K.: Comparison of evolutionary multi-objective optimization with

reference solution-based single-objective approach. In: Proceedings of GECCO-2005, USA,
pp. 787–794 (2005)

336 Vikash Mishra and Vikram Singh

12. Fleming, P., Wang, R., Purshouse, R., Fleming, P.: Local preference-inspired co-evolutionary
algorithms, In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation, vol. 3, no. 1, pp. 513–520 (2012)

13. Vijay Kumar, T.V., Singh, V., Verma, A.K.: Int. J. Comput. Theory Eng. 3(1) (1793–8201)
(2011)

14. Panicker, S., Vijay Kumar, T.V.: Distributed query plan generation using multiobjective
genetic algorithm. In: ICICA (2011)

15. Goldberg, D., Deb, K.: A comparative analysis of selection schemes used in genetic
algorithms. Found. Genet. Algorithms (69–93) (1991)

16. Epstein, S.R., Wang, M.E.: Distributed query processing in relational databases system. In:
Proceedings of ACM SIGMOD (1978)

17. Kambayashi, Y.S., Yoshikawa, M.: Query processing for distributed databases using
generalized semi-joins. In: International Conference of Management of Data in
ACM SIGMOD, pp. 151–160 (1982)

18. Bodorik, P., Riordon, J.S.: Distributed query processing optimization objectives. In:
Proceedings of the IEEE Fourth ICDE, LA CA, pp. 320–329 (1988)

19. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press
(1975)

20. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1998)
21. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley (2001)
22. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function

optimization. In: Proceedings of the Third ICGA, pp. 1–10 (1990)
23. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test

problems. Evol. Comput. 7(3), 205–230 (1999)
24. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In:

Proceedings of ICGA, Hillsdale, pp. 93–100 (1987)
25. Zitzler, E., Deb, K., Thiele, L.: Comparison of multi-objective evolutionary algorithms:

empirical results. Evol. Comput. 8(2), 173–195 (2000)
26. Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. Found.

Genet. Algorithms V, 265–286 (1998)
27. Yu, C.T., Guh, K.C., Chen, A.L.P.: An integrated algorithm for distributed query processing.

In: IFIP Conference on Distributed Processing, Amsterdam (1987)

Vector Evaluated Genetic Algorithm-Based Distributed … 337

	37 Vector Evaluated Genetic Algorithm-Based Distributed Query Plan Generation in Distributed Database
	Abstract
	Introduction
	Distributed Query Processing
	Multi-objective Evolutionary Algorithm (MOEA)
	Vector Evaluated Genetic Algorithm (VEGA)
	Conclusion
	References

