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      Treatment Planning for Protons: 
An Essay       

     Hanne     Kooy     

8.1            A Brief History of Protons 
at the Harvard Cyclotron 
Laboratory 

 The fi rst proton radiotherapy patient was treated 
in 1957 at the Berkeley Radiation Laboratory. At 
the Harvard Cyclotron Laboratory, treatments 
commenced shortly after in the early 1960s under 
the direction of the Massachusetts General 
Hospital neurosurgeon Dr. Raymond Kjellberg. 
Neurosurgeons were well equipped to use the 
precision of proton beams without the availabil-
ity of 3D imaging technologies such as CT. Their 
appreciation of the 3D cranial anatomy projected 
on X-rays suffi ced to treat neoplasms such as 
pituitary abnormalities and arterial venous mal-
formations. Both Dr. Kjellberg in Boston and Dr. 
Leksell in Stockholm pioneered the use of pro-
tons in the cranial anatomy. Dr. Kjellberg’s pro-
gram, however, had ready access to the proton 
beam at the HCL (Fig.  8.1 ). Dr. Leksell’s pro-
gram did not have ready access which led to the 
invention of the Leksell Gamma Knife as an 
alternative therapeutic system for stereotactic 
radiosurgery. Protons were thus the fi rst modality 
used in cranial stereotactic radiosurgery, while 

the Gamma Knife made cranial stereotactic 
radiosurgery a standard modality.

   A second program for eye treatments com-
menced under the direction of Dr. Evangelos 
Gragoudas from the Massachusetts Eye and Ear 
Infi rmary in Boston. Again, the static and visu-
ally apparent anatomy of the eye and neoplasm 
afforded effective use of localized proton 
radiation. 

 Both programs were effective without the use 
of volumetric imaging or dose calculations; both 
were suffi ciently served by manual calculation 
processes. 

 A third program in large-fi eld “conventional” 
radiotherapy commenced in 1974 under the aegis 
of Dr. Herman Suit from the department of radia-
tion oncology at Massachusetts General Hospital. 
The introduction of this program did require the 
use of volumetric data sets. Dr. Michael Goitein 
was one of the fi rst to combine volumetric image 
data provided by the now available CT scanners 
and computational algorithms in a treatment 
planning system, dubbed Rx, for proton radio-
therapy. Rx presented the physician and physicist 
with the necessary information and confi dence to 
treat internal neoplasms reconstructed from the 
volumetric data. 

 All three programs continued at the HCL until 
2001 and were transferred, uninterrupted, to the 
Northeast Proton Therapy Center (now the 
F.H. Burr Proton Therapy Center) on the campus 
of the Massachusetts General Hospital, the 

        H.   Kooy ,  PhD      
  Department of Radiation Oncology ,  Massachusetts 
General Hospital, Harvard Medical School , 
  Boston ,  MA ,  USA   
 e-mail: hanne.kooy@gmail.com  

 8

mailto:hanne.kooy@gmail.com


112

 second (the fi rst was Loma Linda CA) proton 
facility within a hospital.  

8.2     Implication for Modern 
Radiotherapy 

 The precision of proton beams requires concomi-
tant precision in treatment planning capabilities, 
in treatment delivery, and in patient positioning. 
Thus, proton radiotherapy in the 1980s already 
required and implemented these now assumed 
obvious requirements for precision radiotherapy. 
The limitation in proton energy up to 160 MeV at 
the HCL necessitated a focus on precisely those 
neoplasms that proved particularly suited for 
early application of proton radiotherapy: those in 
the head and neck, in the cranium, and soft tissue 
sarcomas. It is indisputable that proton radiother-
apy, as demonstrated in those sites and especially 
for chordomas, proved the axiom of radiother-
apy: increasing dose while sparing normal tissue 
increases cure. It should be noted that the HCL 
did not, per se, demonstrate the superiority of 
protons. It primarily demonstrated that when pre-
cision in dose delivery is achieved, outcome can 

be improved. It secondarily demonstrated that 
protons well achieve such precision. 

 It was the well-understood physics of proton 
interactions in matter, i.e., scatter and energy 
loss, that allowed the precise manipulation of 
scattered and modulated (in energy and inten-
sity) protons by mechanical means to create 
spread- out Bragg peak, SOBP, fi elds of variable 
range, and modulation. The use of apertures and 
range compensators, as modeled in the Rx treat-
ment planning system, provided highly confor-
mal 3D SOBP dose fi elds where the aperture 
served to provide lateral conformance, as in pho-
ton fi elds, and the range compensator served to 
provide distal target conformance to “stop” the 
proton fi eld beyond the distal surface of the 
target. 

 Proton radiotherapy at HCL in the early 1980s 
was in sharp contrast to the parallel practice of 
radiotherapy. The fi rst relied on now assumed 
obvious practices in precision therapy (Fig.  8.2 ), 
while the latter relied on X-ray simulation and 
simple 2D calculation methods. It would take 
two decades until photon radiotherapy would 
“catch up” and achieve the clinical performance 
of 1980 proton radiotherapy. Our question now is 

  Fig. 8.1    Dr Raymond Kjellberg (and assistant) manipu-
lating the stereotactic frame for a proton radiosurgery 
patient ( left ). An example dose calculation (not for this 
patient) shows the dose hand calculation for a pituitary 

lesion using 14 proton beams that penetrate beyond the 
target volume, but their composite dose creates a focal 
region with sharp penumbra       
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whether photon radiotherapy can maintain parity 
to proton radiotherapy to further the modern aims 
of radiotherapy.

8.3        Aims of Modern Radiotherapy 
and Proton Radiotherapy 

 Modern radiotherapy aims to optimize the 
response to radiation by minimizing dose to non- 
involved tissue to decrease normal tissue compli-
cations and to increase in target dose. These aims 
require improved differential imaging and identi-
fi cation of inter-target disease, improved local-
ization (even in real time) with on-treatment 
imaging and target dose modulation, improved 
patient-specifi c response, and, now most impor-
tantly, improved quality of life for the patient. 

 These requirements require the application of 
in vivo and biological imaging capabilities, more 
advanced treatment planning and delivery sys-
tems, and, signifi cantly, better understanding and 
utilization of differential biological response in 
the target and healthy tissues. Only some of these 
are furthered by external beam radiotherapy in 
the treatment management of the patient. All, 
however, need to synchronize over the course of 
treatment. It is this synchronization that is not 
promoted by the current treatment planning 

architectures. Instead, treatment planning for 
modern radiotherapy must be deployed in an 
architecture that permits its functions to be dis-
tributed and accessed in their appropriate opera-
tional location. Current treatment planning 
systems are inconsistent with this requirement. 

 Radiotherapy operates in a safe zone of dose 
fractionation imposed by dose toxicity of the, at 
least originally, large volumes of irradiated 
healthy tissues. Modern conformal dose treat-
ments reduce the volume of irradiated healthy 
tissues and offer the opportunity to increase 
fraction doses and modulate dose within a tar-
get. If such opportunity benefi ts the patient, pro-
ton and ion radiotherapy outperform photon 
radiotherapy. 

 It is recognized that physical, chemical, and 
genetic regional differences can exist within a 
single target. It is assumed that in such regions, 
differential dose delivery in terms of local ion-
ization differentials (i.e., different lineal energy 
transfer, LET, distributions) can improve 
response through enhanced local biological 
response. Ion radiotherapy has a twofold advan-
tage compared to photon radiotherapy. The 
application of different doses to different 
regions within a target will benefi t from that 
modality that can achieve the sharpest regional 
dose gradients. The use of modulated LET 

  Fig. 8.2    Patient setup and 
verifi cation in the stereotactic 
treatment room at the Harvard 
Cyclotron Laboratory. A 
water-fi lled variable range 
shifter ( A ) permitted variable 
penetration into the cranium, 
while X-ray ( B ) permitted 
setup verifi cation. The 
treatment technology thus 
implemented now assumed 
standards of precision       
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distributions can only be achieved with ion 
radiotherapy. Thus, proton and ion radiotherapy 
outperform photon radiotherapy where spatial 
and biological differentials are expected to 
improve outcome. 

 Imaging requirements prior and during treat-
ment are core to the aims of modern radiother-
apy. The original workfl ow model assumed that 
the treatment planning process preceded and 
remained static over a set of treatment delivery 
sessions. Treatment planning occurred as a 
stand- alone activity whose result was the treat-
ment plan and the patient setup reference geom-
etry to be applied and referenced daily. The 
daily effort to minimize inaccuracies and 
achieve presumed compliance was to reposition 
the patient to this static representation. Thus, 
the mitigation of all inaccuracies, and assumed 
worst case, had to be incorporated in the treat-
ment plan to achieve acceptable dose coverage 
(and avoidance) over the time course of treat-
ment. This process led to the defi nition of the 
planning target volume (PTV) as a geometric 
expansion of the target. This PTV expansion 
suffi ced for photon treatments as the photon 
dose distribution in patient is invariant with 
respect to the patient’s anatomy and geometric 
setup which equates dosimetric accuracy. An 
PTV expansion, or a pure geometric registration 
of the patient, does not suffi ce in proton treat-
ments as the dose distributions is sensitive to 
geometry, and thus, geometry and dosimetry are 
strongly coupled, and one cannot serve as a sur-
rogate for the other. Whereas geometric setup 
certainly serves as the best fi rst corrective 
action, it does not in and of itself guarantee 
dosimetric accuracy even in XRT. 

 The optimal process re-images and re-plans 
the patient before treatment delivery and moni-
tors during treatment for compliance to the 
adapted plan (and in the furthest extreme adapts 
the radiation fi eld during treatment). Particle 
beams in these processes offer novel capabilities 
compared to photon beams. The particle beam, as 
a unit or as individual particles, can be readily 
detected in task-specifi c detection systems. These 
include geometric ionization chambers for posi-
tion, solid state imaging planes for indirect spec-

troscopy of particle interaction products, and 
Faraday chambers for energy. These unique 
(compared to a photon beam) methodologies 
offer unique opportunities to obtain necessary 
inpatient information during treatment and can 
enable real-time feedback in the delivery 
process. 

 It is important to observe that the control 
parameters in ion radiotherapy – per spot charge 
position and energy – are more consistent than 
those – MLC leaf positions – in photon radio-
therapy. For the latter, these leaf positions are an 
awkward (if necessary) transformation from the 
physical quantity – fl uence – in patient. For ion 
radiotherapy, the spot parameters represent fl u-
ence in patient directly, are the parameters that 
are used to control the delivery, and are the 
parameters that are observed directly. There is no 
transformation from the intended to observed 
quantities, and treatment delivery observation 
can be directly translated to the dose in patient 
and used in a feedback control to maintain the 
correct dose in the patient under variable circum-
stances. Thus, particle radiotherapy can achieve 
better delivery performance when considering 
the modern aims of radiotherapy. 

 Effective use of particle radiotherapy is ham-
pered by its label “expensive.” Any therapy has 
to be of course cost-effective. This is, unfortu-
nately, a subjective debate within a society and 
between societies. Nevertheless, if considered 
as a debate in terms of cost-benefi t in develop-
ment, deployment, and clinical effectiveness, 
the outcome should favor particle radiotherapy 
as many of the aims are better (and thus likely 
cheaper) achieved with particle radiotherapy. 
Looking back, of course, one should question 
that because proton radiotherapy in the 1980s 
was superior to photon radiotherapy and because 
the cost to achieve parity between the two 
modalities has been signifi cant over three 
decades, perhaps we should have adapted pro-
tons more broadly earlier. We should pose the 
same question now where signifi cant expendi-
tures will be made to achieve the latest aims of 
radiotherapy and where ion radiotherapy may 
signifi cantly improve on the achievement and 
effi cacy of those aims.  
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8.4     Requirements for Treatment 
Planning 

 It is necessary to challenge the current model for 
treatment planning given the above stated aims 
and the necessary integration of up-to-date tech-
nologies in the treatment management processes. 
There are three facets in the current model. The 
fi rst continues to emphasize the pretreatment 
static (over time) treatment plan model without 
explicit consideration of the dynamics of the pos-
sible daily changes in treatment or other changes 
incurred by clinical realities. The second perpetu-
ates the deployment of treatment planning sys-
tems with a 1980s model of a “workstation” with 
a functionally overburdened software application 
that aims to achieve too many workfl ow steps 
within its confi nes. The third emphasizes algo-
rithmic components but not computational archi-
tectures that promote data management, 
communication, and workfl ow processes. 

 The deployment of a single, heavy, and shrink- 
wrapped application makes it diffi cult and con-
trived to move the various functions that 
accommodate the adaptive radiotherapy work-
fl ow to their optimal locations. In contrast, 
modern computing paradigms emphasize service-
oriented architectures that promote logical 
decomposition of computational and data man-
agement domains and promote distributed access 
to these services. These architectures are based 
on distributed and disjointed processes connected 
by communication protocols. 

 Of particular interest are radiotherapy data 
management requirements characterized by large 
data sets and numerous temporal, logical, and 
computational associations between data. For 
example, a dose computation result should adapt 
when a treatment fi eld parameter changes. The 
consequences of time have to be incorporated to 
model both motion effects and to model changes 
over the course of treatment. 

 Data management for radiotherapy has been 
often managed at the operating system fi le sys-
tem level where individual patients are mapped to 
directories and patient data to sub-directories and 
fi les. Associations between data (i.e., a beam 
dependency of a dose calculation) were typically 

not represented or implicit, and the state (i.e., the 
dose up to date vis-à-vis the beam state) was 
assumed. Relational databases have been com-
mercially popular and readily available but are ill 
suited to radiotherapy data representations. 
Relational databases impose a rigid schema 
structure on the data and are coded to perform 
relational queries on large datasets of the type 
which are not useful for radiotherapy data (i.e., 
one is generally not interested in fi nding all 
patients with a gantry angle between 0° and 10°). 
Thus, neither the data casting nor the framework 
and its signifi cant overhead are useful. 

 Instead, radiotherapy data is best managed by 
hierarchical structures linked by key-value associ-
ation pairs to manage links between data instances. 
These key-value pairs and the desired query opera-
tions are better managed by much simpler systems 
such as NoSQL databases. Data is contained in 
XML documents, e.g., that allow for dynamic 
changes in the data defi nitions, dynamic manage-
ment of associations, and ready replication and 
versioning. Most importantly, such databases 
readily scale to accommodate the problem and 
data size and promote distributed architectures. 

 Modern deployment models, such as cloud 
computing, are still absent in radiation oncology. 
It is clear, however, that the large computational 
requirements readily benefi t from such models. A 
cloud deployment for computational and data 
management services would be to great benefi t 
for both smaller and larger clinics. It provides 
affordable access to necessary computing 
resources on demand and distributed access in a 
hospital network. It frees clinical centers from 
the burden to invest in ever increasing computing 
hardware. 

 The limitations of the current, functionally 
monolithic, systems for treatment planning (TPS) 
and treatment management (TMS) have led to the 
introduction of ad hoc and institution-specifi c 
procedures to implement and manage workfl ow. 
After all, the clinical reality may require a patient 
to receive a new treatment plan which currently is 
essentially a repeat of the workfl ow for that 
patient’s treatment plan. Explicit tracking of such 
a repeat workfl ow, however, is not rendered in the 
TPS. 
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 Of great signifi cance is the work of the DICOM 
radiotherapy Working Group 7 which, in DICOM 
supplement 147, makes explicit the need for data 
objects that model the changing state of the patient 
as a consequence of treatment events and adapt-
able workfl ow tasks. In addition, IHE-RO, the 
Integrated Health Enterprise comprised of com-
mittees concerned with vendor and equipment 
interoperability and workfl ow within the radiation 
oncology domain, has defi ned specifi c workfl ow 
profi les that specify the details of various com-
posite workfl ow processes necessary to accom-
plish tasks. An example workfl ow profi le is 
“Integrated Positioning and Delivery Workfl ow,” 
which concerns itself with the positioning of a 
patient prior to treatment delivery, position moni-
toring (if any) during treatment delivery, and radi-
ation delivery all managed by a single device. 

 In summary, modern requirements for treat-
ment planning emphasize distributed computing 
as afforded by service-oriented architecture, 
explicit modeling of the workfl ow to dynamically 
connect the services needed as the treatment ses-
sion unfolds.  

8.5     Case Study 

8.5.1     Volumetric Studies 

 Volumetric treatment planning requires the use of 
volumetric image studies for both photon (XRT) 
and proton radiotherapy (pRT). For pRT, the use 
of CT is axiomatic as CT is the only practical 
modality for which acceptable conversion from 
image voxel data, Hounsfi eld unit for CT, to 
voxel stopping power has been validated. 

 Volumetric image studies are necessary to 
defi ne the physical computational space as repre-
sented by volumetric voxel elements and which 
allows the accurate computational transport of 
radiation through the patient’s anatomy. 

 Multimodality, cohesively registered, image 
studies allow the volumetric segmentation into 
discrete organs for dosimetric analysis of the 
internal anatomy. Multimodality image studies 
allow the geometric defi nition, in a known coor-
dinate system, of target and organs at risk. Special 

emphasis should be placed on accurate defi nition 
especially for the targets; failure negates the 
inherent precision of proton radiotherapy. 
Volumetric representations are derived from con-
tour representations on image sections, while 
their computational representations are dictated 
by the computational requirements. 

 XRT and pRT differ notably in the use of a 
planning target volume (PTV). For XRT, the geo-
metric expansion of a clinical target volume 
(CTV) into a PTV suffi ces to account for uncer-
tainties equal to the geometric expansion. The 
lack of sensitivity of the photon fi eld to these 
uncertainties, at least within the typical clinical 
magnitude, removes errors in dose and means 
that geometric accuracy equates to dosimetric 
accuracy. Thus, geometric positioning of the 
patient and geometric tracking of the patient suf-
fi ce to maintain the dose distribution envelop 
within the desired specifi cation. For a proton 
fi eld, the fi eld-patient interactions do depend on 
local geometry. Thus, geometric positioning does 
not suffi ce, or otherwise, and a change in geom-
etry implies a change in dose. The use of a PTV 
is thus generally excluded. The PTV concept is 
nevertheless used, especially for spread-out 
Bragg peak (SOBP) fi elds. For the latter, the defi -
nition is typically obtained after a site-specifi c 
study reveals what margins yield in the desired 
tolerances after assessing dosimetric changes as a 
function of geometry [ 1 ]. 

 Nevertheless, the use of PTV should be voided 
in favor of statistical approaches that model the 
treatment dynamics, in terms of geometric uncer-
tainties in setup, patient motion, and patient 
changes. Bohoslavsky et al. [ 2 ], for example, 
defi ne such a stochastic method and produce a 
margin prescription that improves on the use of a 
PTV margin. The improvement is a consequence 
of the fact that the dynamic consideration assesses 
the effect of statistical uncertainties, whereas the 
use of a PTV margin assumes that every treat-
ment has to be within specifi cation and thus rep-
resents is the worst case scenario. 

 The conversion of CT Hounsfi eld unit to rela-
tive (to water) stopping power is necessary as 
input to a proton dose algorithm, whether imple-
mented as a heuristic (i.e., pencil beam) model or 
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as a Monte Carlo. This conversion has two basic 
problems. First, the conversion is based on a 
population- averaged conversion curve. This stan-
dard curve is applied to the CT Hounsfi eld unit 
value perhaps corrected or scaled to the specifi cs 
of a patient. Second, the conversion ignores 
details of the actual organ. Thus, different organs 
may have the same Hounsfi eld unit but different 
relative stopping powers. These limitations on 
the conversion to relative stopping power are an 
intrinsic limitation for pRT. The fundamental 
approach requires the use of proton transmission 
corrected data to allow the patient and site- 
specifi c derivation of stopping powers. Alternate 
methods, such as multispectral CT, are under 
active investigation to improve this conversion to 
voxel stopping power. 

 In practice, these uncertainties in stopping 
power assessment translate to a range uncertainty 
on the order of ~3 mm [ 3 ] and hence must be 
considered. For spread-out Bragg peak fi elds, the 
range and modulation width are increased by this 
amount which increases the longitudinal dimen-
sion by 6 mm! For pencil beam scanning (PBS) 
fi elds, the uncertainty needs to be considered in 
the optimization process, which is referred as 
robust optimization, i.e., the optimized result 
remains insensitive to the uncertainty [ 4 ].  

8.5.2     Prescription and Course 
Considerations 

 The clinician’s intent is expressed in statements 
that quantify the treatment course aims. There is, 
typically, a dichotomy between these statements 
and their use in a computational form. Most opti-
mization algorithms are gradient based and use 
an objective function that is a quadratic summa-
tion of terms with heuristic weights to express 
relative term signifi cance. Each term relates to an 
organ objective and thus a prescription statement. 
Such a form may be adequate for XRT where the 
number of optimization variables, i.e., leaf posi-
tions as a substitute for fl uence profi les, is rela-
tively (compared to pRT) small and the sensitivity 
of the optimal plan to these variables is relatively 
weak; i.e., the objective function has typically a 

gentle varying minimum region. Even then, such 
forms often result in plans that, when evaluated 
by the physician, require heuristic tweaking of 
the weighting terms or the artifi cial introduction 
of “steering” volumes to meet the clinician’s 
demand. Such algorithms therefore do not match 
well the supposed precision of a prescription. 

 The clinician’s intent must be transformed 
into a computational form as input to an optimi-
zation algorithm. There are two issues.  First, the 
prescription statement needs to be translated in to 
a computational form representative of the clini-
cian’s intent.  Second, the nature of the computa-
tional form must yield a clinically optimal plan 
numerically consistent with the clinician’s intent. 

 For prescriptions, we identify constraints and 
objectives (Fig.  8.3 ). Constraints are absolute 
statements such as minimum or maximum doses 
to a particular structure. Constraints are transpar-
ent – a constraint must be met and hence matches 
well to a computational form. Even so, gradient- 
based optimization methods often fail to meet the 
set of constraints. Objectives are clinical desires 
and often in competition with each other; that is, 
improving one objective must worsen another 
objective in a truly optimal plan. Objectives are 
constrained by the phase space of possibilities 
that remains after the constraints are satisfi ed. 
Objectives are not readily cast in computational 
form as their values are continuous and interde-
pendent. It is the quantifi cation and computation 
of objectives that often lack in optimization 
methods and impose iterations on the “optimal” 
plan as the clinician’s intent is not represented. 
The use of multi-criteria optimization is a popu-
lar technique to manage objectives and inter- 
objective trade-offs [ 5 ].

   In addition, we need to consider the time 
structure of a treatment; one reason already stated 
is to obviate the artifi cial use of a PTV. In XRT, 
the treatment session invariably requires a large 
set of beams that must be delivered as a single 
unit. This time structure is therefore invariably 
invisible and collapsed in a set of repeated identi-
cal fractions for a phase of the course. (Of note, 
we defi ne a phase here as sub-course segment 
with its specifi c dose objectives such that all 
phase dose objectives meet the course dose objec-
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tives.) The practice of multi-beam sets within a 
XRT phase is rare to nonexistent. 

 The pRT practice does allow for intra- 
treatment session variability of the beam confi gu-
ration. Such a confi guration may be used for 
practical reasons, it is quicker to deliver two 
fi elds out of four per day, or biological reasons, 
where specifi c fractions can satisfy a sub- 
treatment phase biological objective compared to 
other fractions for the course phase. 

 The above observations concerning course 
and time management are consistent with 
DICOM Second Generation Radiotherapy 
(DICOM 2G; DICOM Supplement 147) [ 6 ]. 
DICOM 2G, fi rst, recognizes the limitation of the 
fi rst-generation objects and, second, makes 
explicit the above requirements in its data object 
defi nitions. The fi rst-generation objects were 
time collapsed and ignorant of workfl ow order 
and simply served to move data between pro-
cesses. The second-generation objects explicitly 

  Fig. 8.3    The prescription, constraints, and objectives are 
shown for a nasopharynx case. The set provides a clini-
cally complete specifi cation for the multi-criteria optimi-
zation schema used in astroid. The prescriptions (total dose 
and fraction number) translate the total doses computed in 
the system to the appropriate fraction doses and spot 
parameters for treatment delivery. The constraints are 
absolute and must be achieved by the optimization (which 
otherwise fails to achieve a solution if the constraints can-

not be achieved). The objectives represent clinical desires 
within the bounds of constraints and are optimal trade- offs 
with respect to each other. That is, improving one objective 
worsens all others. The system uses fraction groups (see 
DICOM RT [Ion] Plan Fraction Scheme Module) that per-
mit, for a particular course phase, to defi ne and group sub-
set of beam sets with individual constraints. The fraction 
group maps the total fraction group dose to individual frac-
tion doses using the number of fractions       
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model the evolution of a treatment course and its 
delivery as a function of time. Adaptive radio-
therapy (ART) requires DICOM 2G to consis-
tently model and communicate patient changes 
and adaptations between computational and 
delivery services. 

 The second-generation model provides an RT 
course container structure that locates this course 
with respect to previous treatment courses and 
contains (1) prescriptions, (2) treatment phases 
that capture the time structure and differential 
objectives of the course, and (3) radiation sets 
(Fig.  8.4 ). A radiation set, in turn, captures frac-
tionation schemas and the beams delivered in a 
fraction. The second-generation model, unlike 
the fi rst-generation model which aggregated 
most data in the RT plan object, correctly decom-
poses data into orthogonal 1  object defi nitions, 
manages the time dimension, and captures the 
dynamics, i.e., variability, of the treatment 
course.

   pRT is well positioned to use the second- 
generation structure and our planning methodol-
ogy (astroid, a joint development between 

1   Orthogonal design in data management implies that only 
a single data object represents a subset of data. 

Massachusetts General Hospital (MGH), Boston, 
MA and .decimal, Sanford, FL) explicitly models 
this structure. Astroid models a treatment course 
as above and has a radiation set as a fundamental 
planning unit. The user can model one or more 
radiation sets as a single set over which a (sub)set 
of the prescription statements and hence optimi-
zation are applied. Thus, optimization directly 
considers individual fractions and allows inter- 
fraction optimization to ensure that combinations 
of fractions (i.e., radiation sets) achieve a global 
course objective.  

8.5.3     Field Considerations 

 Even a single proton fi eld may provide the oppor-
tunity to achieve the dose objectives in contrast to 
the numerous fi elds required in XRT to achieve a 
measure of conformality. Thus, dose shaping 
does not rely per se on the number of fi elds. The 
choice of the number of fi elds and the orientation 
of the fi elds therefore remains an unsettled issue. 
Typically, the number of fi elds ranges from one 
to four per isocenter, and their orientation is best 
chosen to provide target coverage with the least 
lateral dimension, largest target to organ-at-risk 

Intent

Prescription

Treatment

Plan

Fraction scheme

Delivery set Radiation set

PhaseCourse

  Fig. 8.4    DICOM second-generation object inspired 
model for treatment planning and delivery. A course 
defi nes its intent expressed as prescriptions. A course has 
one or more phases. Each phase has a plan representation 
in the treatment planning system and expressed by a frac-
tion scheme (a set of one or more fraction groups) which 

references radiation sets, a set of beams delivered in a 
fraction. A phase also has a parallel treatment representa-
tion expressed by the actual delivered radiation sets. The 
ability to represent and act on this model is a key to adap-
tive radiotherapy and complete documentation of the 
actual treatment versus planned       
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separation, and sharpest lateral penumbral falloff 
gradient between the target and organ at risk. 
Integral dose minimization is less of a practical 
concern as the integral dose is intrinsically low. It 
should be noted that these considerations are 
heuristic. The optimal number of beams and their 
optimal placement is a very diffi cult computa-
tional problem and beyond the current generation 
of treatment planning systems. 

 For our case, we assume a class solution and 
use a 3-fi eld approach consisting of left and right 
oblique fi elds (at ±45°) and a posterior fi eld. 
Field size is typically not a limitation for scanned 
fi elds as for scattered fi elds where elongated tar-
gets require multiple isocenters. Multi-isocenter 
SOBP fi elds are exceedingly cumbersome as they 
require feathered match lines. 

 The next consideration is the placement of 
“spots” defi ned as the (hypothetical) terminal 
point of the proton pencil beam. A spot point is 
defi ned in the, e.g., isocentric plane as a coordi-
nate pair and in the longitudinal direction by 
energy/range. The choice of coordinates in the 
isocentric plane is typically chosen on a regular, 
rectangular or hexagonal, spaced grid. The choice 
of ranges may be constrained by the available 
ranges of the delivery device and is invariably 
constrained to sets of constant ranges, so-called 
energy layers, due to the long (compared to the 
lateral positioning of spots) time required to 
change energies. Thus, current systems require as 
many spots as possible to be delivered at the 

same energy to minimize dead time between 
energy switches. The choice of layer spacing is 
“optimal” when consecutive layers are spaced 
proportional (or close to) the width of the layer 
pristine peaks. Pristine peaks, however, sharply 
decrease in width as a function of lower energy, 
and this optimal strategy causes a signifi cant 
pileup of low-energy layers which results in a 
signifi cant increase in treatment time because, 
again, energy switching time is a long process 
(on the order of seconds compared to millisec-
onds for spot lateral movement). Thus, our prag-
matic approach, which contributes less than 2 % 
to the overall dose heterogeneity, is to space the 
energy layers by the width of the deepest and thus 
the broadest peak in the set. 

 It should be noted that the total number of 
spots (50,000 in our case for three fi elds, Fig.  8.5 ) 
for our case creates operational requirements for 
the delivery system. It is a rule of thumb that 10 8  
protons deliver 1 Gy(RBE) to 1 cc of volume. 
The three fi elds, with a spot σ ~ 5 mm, deliver 
about 250 × 10 11  protons in 50,000 spots with a 
mean of 5 × 10 6  protons/spot and a range of 10 4 –10 8  
protons/spot. Thus, a delivery system needs a 
dynamic range of about 10,000 in terms of spot 
charge control. A priori each spot should be 
delivered with high accuracy. Often, a specifi ed 
charge may require the same spot to be delivered 
multiple times or at low (cyclotron) current to 
ensure the required charge precision. This, again, 
is an important treatment delivery system consid-

  Fig. 8.5    Spot placement for three energy layers (111, 155, and 194 MeV) for the posterior-anterior fi eld. Note that 
illustration of the respective target and organ-at-risk volumes is contained with the energy layer       
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eration. The number of protons per spot scales 
with the spot size when spots are spaced on a 
regular grid. For a spot with σ ~ 10 mm, the mean 
and ranges would be 2 × 10 7  and 4 × 10 4 –4 × 10 8 . It 
is, of course, the lowest necessary charge in a 
problem that drives the performance of the deliv-
ery system. The ability of a proton production 
system, beamline, and scanning system to pre-
cisely deliver a spot of the minimum dose is a key 
performance requirement (Fig.  8.6 ).

    The above spot placement strategy, as is the 
beam placement strategy, is heuristic. It ensures 
volumetric coverage of the set of spots but not 
that this set is optimal either to achieve the 
desired dose objectives or in terms of delivery. 
Again, a consideration of optimality for these 
parameters exceeds current practical computa-
tional abilities but is of considerable interest. 

 The resultant three fi elds result in 50,000 spots, 
each defi ned by a triplet of energy, isocenter plane 
position, and number of protons. The latter is con-
verted to the reference ionization chamber moni-

tor unit to allow accurate control of the spot dose 
deposition. It is common to directly quantify the 
spot intensity by the equipment monitor unit in 
the treatment planning system. We cannot recom-
mend this practice. Instead, we recommend the 
use of the number of protons as it is a device-inde-
pendent and physically well- defi ned expression 
of the intensity. Thus, proton plans expressed by 
number of protons per spot can be readily inter-
compared between different institutions. 

 Recent work in spot placement optimization 
[ 7 ] considers optimized placement of spots to 
minimize the number of spots while achieving 
prescription objectives. They allow for arbitrary 
spot placement, i.e., unconstrained in position 
and energy, and iterate over a set while continu-
ously adding new spots and removing low-weight 
spots. Their analysis results in fewer spots and 
more charge per spot, more energy layers (as 
expected), reduction of dose to organs at risk 
(because spots can be removed), and (almost) an 
order of magnitude decrease in optimization 
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  Fig. 8.6    The spot charge distribution within each energy 
layer (X-axis) for one fi eld containing about 16,000 spots. 
The spot charge has an average of about 5 × 10 6  protons per 
spot. The range varies from (about) 100,000 to 100,000,000 
protons per spot, a dynamic range of 1000. The ability for 
precise charge spot defi nition is an important requirement 

of the proton production and delivery system. Considering 
the spot size of σ ~ 5 mm, the average spot charge is about 
10 6 ·mm −2 . That is, if the spot size increases (decreases), the 
average (and spreads) charge per spot increases (decreases). 
Thus, smaller spot size further increases the need for high-
precision production and delivery       
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times. In addition, the technique improves as spot 
size decreases. 

 This strategy does require that spots can be of 
arbitrary energy, a capability not available with 
current generation of treatment planning and 
delivery systems. The next generation of delivery 
systems, such as the LIGHT linear accelerator 
(see Ugo Amaldi   http://cds.cern.ch/
record/1312611    ), promises such capability. It 
should be noted that the current practice of con-
stant and separated energy layers intrinsically 
reduces the precision of proton target dose con-
formance by increasing the penumbral region 
around the target. Target dose inhomogeneity also 
increases as constant spot placement “misses” 
small target extensions and hence can cause an 
increase in local spot intensity as the spot is not 
well positioned relative to the target. Thus, the 
ability to place spots where needed and uncon-
strained by the current artifact of energy layers 
will improve dose conformance and homogeneity 
and the ability to use dose painting of targets. 

 It is, of course, the assessment of the optimal 
spot intensities that now remains as the core 
problem of the treatment plan optimization.  

8.5.4     Plan Optimization 

 Our plan has the constraints and objectives listed 
in Figure  8.3 . Our astroid system uses multi- 
criteria optimization ([ 8 ] and Fig.  8.7 ) to create a 
Pareto surface where each objective spans a 
dimensional axis and where the axis value range, 
i.e., minimum and maximum achievable objec-
tive value, is determined by the constraint values. 
That is, the optimization ensures (or fails other-
wise) that every constraint is met and subse-
quently assesses the range of objective values. 
The objectives are correlated, i.e., their possible 
value sets span a Pareto surface in the multidi-
mensional objective space, and improving one 
objective value (such as “minimized lung dose” 
and within the allowed range, see Fig.  8.6 ) neces-
sarily worsens all the other objective values. That 
is, each set of objective values is best when con-
sidering the ensemble of values in the set. If the 
user wishes to improve one objective (say reduce 
surface dose to the brainstem), the set with that 

new brainstem objective value out of necessity 
changes all other objective values. Algorithms 
that allow the user to change objective values are 
labeled as “Pareto surface navigation” algorithms 
and, themselves, are of a class of algorithms 
under investigation.

   The astroid system allows the user to interac-
tively change objective values within the con-
strained range, and the system will interactively 
update the dose displays to refl ect the new set of 
objective values. Its navigation algorithm uses 
the new objective value as a constraint to fi nd the 
set on the Pareto surface that contains that value. 

 Thus, the clinical practitioner, in effect, scrolls 
through all possible trade-offs and assures that 
each trade-off plan is the best given set of objec-
tive values. It is important to note that if the con-
straint values are changed, a completely different 
set of trade-offs can be considered. Thus, the 
Pareto surface optimization does not accommo-
date trading off a constraint. If so desired, the 
user can change a particular constraint to an 
objective and vice versa. 

 The result for our example case is shown in 
Fig.  8.8 .

8.5.5        Plan Robustness 

 The dose computation on a static patient represen-
tation is considered incomplete for proton radio-
therapy where the dose distribution is sensitive to 
uncertainties in geometry and range [ 9 ]. The latter 
is a consequence of the intrinsic systematic uncer-
tainty in the conversion from CT Hounsfi eld unit 
to relative stopping power (among others). Figure 
 8.9  shows the dose- volume histograms (DVHs) 
for selected organs at risk and targets.

8.5.6        Dose Quality 

 The now practical availability of Monte Carlo 
computational methods will result in a shift, 
eventually complete, away from empirical pen-
cil beam dose calculation models. Nevertheless, 
the pencil beam dose calculation models have 
been the basis for the clinical decision process 
and, in fact, have been quite accurate (except in 
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pathological cases such as where metallic 
implants are present in the patient). Figure  8.10  
shows the results of dose computation with 
three different methods, one with a pencil beam 
model and two with a Monte Carlo, to illustrate 
the qualitative and quantitative differences and 
similarities between the methods.

8.6         Conclusion 

 Treatment planning requirements given the cur-
rent aims of radiotherapy are not well imple-
mented by the current commercial  treatment 
planning system architectures. That is, proton 
radiotherapy permits a more dynamic evolution 
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  Fig. 8.7    Example trade-off scenario in a 3-fi eld mesothe-
lioma of the right lung pleura. The trade-off considers 
mean right lung dose ( Y -axis) versus GTV minimum dose 
( X -axis). The curve that represents the possible trade-off 
pair values is illustrated in the graph above and forms a 
curve in the trade-off space. In this space, a hypothetical 
suboptimal plan ( red square ) lies above the curve. Its sub-

optimality is indicated by the observation that the GTV 
minimum dose can be signifi cantly improved while 
maintaining mean right lung dose. The two isodose distri-
butions represent the two points indicated on the curve. 
The clinical operator can move along the curve to assess 
the dosimetric consequence of a particular trade-off value 
pair       
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  Fig. 8.8    The achieved dose distribution for the nasophar-
ynx case example. The three fi elds contain about 50,000 
spots (determined and placed heuristically without the 

benefi t of spot optimization). Note the ability for both 
dose avoidance and dose painting (the spot  σ  ~ 5 mm)       

  Fig. 8.9    The  left panels  show the DVHs for (selected) 
organs at risk and the  right  for the two CTV volumes. The 
 upper panels  show the effect of position error where the 
dose is recomputed on the error-modifi ed patient with the 
nominal plan parameters. The  lower panels  show the effect 
of range over and undershoot of 3 %. The effect of position 
is more severe on the organs at risk as a consequence of the 
fact that these organs are invariably in high- dose gradients 
and thus are susceptible to geometric shifts of that gradi-
ent. The target volumes are much less affected. The range 

error ( lower panels ) has almost no effect on the organs at 
risk but does affect the targets. The DVHs show the maxi-
mum and minimum bands with the  dashed line  represent-
ing the mean DVH of the error scenarios and the  solid line  
representing the nominal DVH. One must observe that the 
positioning errors will average out to this mean over the 
large number of fractions for this site. Thus, the mean (or 
nominal) DVH is the representative as it is in XRT treat-
ments. The range errors, however, are systematic and must 
be assessed within the band of the DVH       
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and implementation of a treatment course as mul-
tiple radiation sets of only a few fi elds each can 
achieve competing dose objectives and thus per-
mit a more tuned and adaptive approach to the 
planning and delivery process. The DICOM 2G 
defi nitions are a complete model for such 
approaches. 

 Proton treatment plans are computationally 
demanding because the number of optimization 
variables, namely, spot intensities, is very large 
(on the order of 10,000–100,000 per patient), 
because the set of “optimal” but competing solu-
tions are (presumably) better, and because a 
treatment plan must explicitly model the uncer-
tainty space (as compared to the PTV heuristic in 
XRT). These computational demands will greatly 
benefi t from modern service-oriented and scal-
able architectures to provide the necessary com-
putational horsepower. 

 Thus, just as proton radiotherapy in the 1980s 
led the way toward computational treatment 

planning systems, proton radiotherapy in the 
coming decade again will push treatment plan-
ning toward more capabilities.     
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