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      Role of Microorganisms 
in Microbial Fuel Cells 
for Bioelectricity Production       

     Ravinder     Kumar       ,     Lakhveer     Singh       , 
and     Zularisam     Ab. Wahid      

    Abstract  

  The catalytic microorganisms oxidise the organic matter to produce elec-
trical energy in microbial fuel cells (MFCs). The microorganisms that can 
shuttle the electrons exogenously to the electrode surface without utilising 
artifi cial mediators are referred as exoelectrogens. The microorganisms 
produce specifi c proteins or genes for their inevitable performance towards 
electricity generation in MFCs. Multiple studies have confi rmed the 
expression of certain genes for outer membrane multiheme cytochromes 
(e.g. OmcZ), redox-active compounds (e.g. pyocyanin), conductive pili, 
and their potential roles in the exoelectrogenic activity of various microor-
ganisms, particularly in the members of  Geobacteraceae  and 
 Shewanellaceae  family. This chapter explores the various mechanisms of 
microorganisms that are advantageous for the technology: biofi lm forma-
tion, metabolism, electron transfer mechanisms from inside the microor-
ganisms to the electrodes and vice versa.  

9.1          Introduction 

 Microbial fuel cells (MFCs) are fascinating bio-
logical fuel cells that typically contain two com-
partments, i.e. the anode and the cathode, and use 
biological catalysts (mostly bacteria) to produce 
electric energy from organic matter present natu-

rally in the environment or in waste (Wang and 
Ren  2013 ). General principle of a microbial fuel 
cell is presented in Fig.  9.1 . The microorganisms 
that act as biocatalysts oxidise organic and inor-
ganic substrate to carbon dioxide and generate 
electrons at the anode. It requires transferring 
these electrons from inside the cells to the anode 
(surface) in anoxic conditions to produce electric 
current (Logan and Rabaey  2012 ). The bacteria 
can transfer these electrons to the anode by pro-
ducing electron shuttles (e.g. fl avins, phenazines, 
etc.) or by using electron mediators generally 
found in extracellular environment (e.g. humic 
substances) (Brutinel and Gralnick  2012 , 
Kotloski and Gralnick  2013 ). Alternatively, the 
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electrons can be transferred via electrically 
conductive proteinaceous fi laments, referred as 
‘microbial nanowires’ produced by the bacteria 
(Malvankar and Lovley  2012 ). The electron shut-
tles further may be reduced by outer surface 
redox-active molecules, such as c-type cyto-
chromes (Inoue et al.  2010a ; Voordeckers et al. 
 2010 ; Orellana et al.  2013 ). In earlier MFC stud-
ies, chemical mediators (e.g. neutral red) were 
added to the system to carry the electrons from 
inside the cell to the electrode for electricity pro-
duction (Park and Zeikus  1999 ; Bond et al.  2002 ). 
Electrons from the anode surface are passed 
through a resistor or another type of electrical 
device to the cathode surface and protons through 
a proton exchange membrane (PEM) or cation- 
selective membrane (commonly used Nafi on, 
Ultrix and Salt Bridge) where they combine with 
oxygen to form water (Huang et al.  2012 ).

   With the instantaneous increase in the global 
energy demand every year, overconsumption and 
dwindling of nonrenewable sources of energy, 
microbial electricity production may become a 
pivotal form of bioenergy because MFCs offer 
effective opportunities of extracting current from a 
wide range of biodegradable organic matter and 
renewable biomass from simple molecules such as 
carbohydrates and proteins to complex mixtures of 

organic matter present in animal, human and food 
processing wastewaters. The versatility and avail-
ability of different microorganisms to use wide 
range of organic matter makes MFC an exemplary 
and quirky technology for renewable bioelectricity 
production. The MFC technology is not a new 
technology, but it is only recently MFCs are in the 
limelight of research for bioelectricity production 
(Rabaey et al.  2003 ,  2004 ; Schroder et al.  2003 ; 
Liu et al.  2004 ). MFC is a promising technology 
for harvesting energy and can be advantageously 
combined with various applications, such as biore-
mediation, sensors and powering electronic moni-
toring devices (Patil et al.  2012 ; Ren et al.  2012 ). 

 The diverse microbes (mostly bacteria) from 
different phylogenetic groups have been reported 
to generate electricity in MFCs without using a 
mediator. Five classes of Proteobacteria, 
Firmicutes and Acidobacteria phyla have shown 
electrical current generation, but also, some 
microalgae, yeast and fungi have been reported in 
MFCs, being used as substrate or assist the anode 
or the cathode. The nomenclature of such micro-
organisms is not standardised yet; however, some 
terms have been given for microorganisms that 
can transfer electrons exogenously to the anode 
without using any artifi cial mediator. These terms 
include exoelectrogens, electrogenic microor-

  Fig. 9.1    General principle 
of a microbial fuel cell       

 

R. Kumar et al.



137

ganisms, electrochemically active bacteria, ano-
dophiles, anode-respiring bacteria and 
electricigens. Moreover, microorganisms can 
also be termed according to their functions in the 
MFC, e.g. sulphate-reducing bacteria and iron- 
reducing bacteria can be referred as sulphate 
reducers and iron reducers, respectively. The 
microorganisms that donate electrons to the elec-
trode (anode) in MFCs can be referred to as elec-
trode reducers, while those that accept electrons 
from the electrodes are referred to as electrode 
oxidisers. The prevalent bacterial species known 
to produce electricity in MFCs include dissimila-
tory iron-reducing  Geobacter spp . (Bond and 
Lovley  2003 ),  Shewanella  spp. (Gorby et al. 
 2006 )  Rhodoferax ferrireducens  (Chaudhuri and 
Lovley  2003 ),  Aeromonas hydrophila  (Pham 
et al.  2003 ),  Pseudomonas aeruginosa  (Jayapriya 
and Ramamurthy  2012 ),  Clostridium butyricum  
(Park et al.  2001 ) and  Enterococcus gallinarum  
(Chisti  2007 ). Alternatively, microalgae have 
been used as a substrate or biocathode in MFC 
(Wang et al.  2012 ). In yeast, besides 
 Saccharomyces cerevisiae ,  Hansenula anomala  
also showed current production successfully in 
MFC (Prasad et al.  2007 ). However, use of yeasts 
for electricity generation using MFCs in general 
does not seem to have been considered further 
very deeply. An oxygenic phototrophic cyano-
bacterium  Synechocystis sp . which produces 
nanowires has been discovered to generate elec-
tricity in MFC (El-Naggar et al.  2010 ). The 
microorganisms can contribute effectively for 
power generation those able to oxidise organic 
compounds completely and transfer the electrons 
with accelerated rates to the anode. Biofi lms on 
the anode have been demonstrated to increase the 
current density due to the direct electron transfer 
between the microbes and the surface of the 
anode. Earlier studies have shown that biofi lms 
of mixed cultures have more capability to pro-
duce higher current density than the biofi lms of 
pure cultures (Dumas et al.  2008 ). For example, a 
bacterium  Brevibacillus sp . produced little power 
as a pure culture in MFC but produced compara-
tively high power when a  Pseudomonas sp.  was 
added in MFC (Pham et al.  2008 ). The bacteria 
capable of dissimilatory metal reduction can 

effectively produce electricity in a mediatorless 
MFC. Such bacteria transfer electrons either by 
excreting electron shuttles or by direct contact 
via outer membrane cytochromes. Later, another 
mechanism for electron transfer was revealed 
providing the evidence that bacteria synthesise 
appendages known as microbial nanowires that 
are capable of transferring electrical current. In a 
study, a bacterium  Pelotomaculum thermopropi-
onicum  was found connected to the methanogen 
 Methanothermobacter thermautotrophics  by an 
electrically conductive appendage, promoting the 
interspecies electron transfer (Gorby et al.  2006 ). 
Multiple studies suggest that quorum-sensing 
chemicals (e.g. fatty acyl-homoserine lactones) 
play an important role in the communication 
between the bacteria of different species within 
the biofi lm (Schaefer et al.  2008 ).  Pseudomonas 
aeruginosa  produces pyocyanin that acts as an 
electron shuttle and signalling molecule to upreg-
ulate the transcription of quorum-sensing genes 
(Dietrich et al.  2006 ). 

 This chapter describes the different microbial 
mechanisms that are advantageous to the MFC 
technology, including formation of biofi lm by the 
microorganisms, different mechanisms of elec-
tron transfer from microorganisms to electrode 
and vice versa, followed by the description of 
high current-producing microorganisms used for 
electricity production.  

9.2     Biofi lm Formation and Its 
Regulation 

 Bacteria prefer to live in polymeric matrix (con-
tains proteins, lipids, carbohydrate, etc.) pro-
duced by the bacteria attached to a surface, which 
is known as a biofi lm. In MFCs, it is highly sig-
nifi cant to produce electroactive biofi lms to gen-
erate electricity more effi ciently. Biofi lm 
formation is regulated via different pathways 
depending on the microbe used in the MFC, the 
substrates, electrode material and the operating 
conditions of the MFC. The physiological and 
morphological properties of electrode surface 
also infl uence biofi lm formation. Some particular 
studies demonstrated that microorganisms favour 
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to adhere on hydrophobic surfaces in rival to 
hydrophilic materials (Patil et al.  2012 ). The ear-
lier studies suggest that the bacteria unable to 
form biofi lms on the electrode can’t generate 
substantial current densities in MFCs. However, 
the bacteria able to form thick biofi lms on the 
anode generate higher current densities in rival to 
bacteria adept to form thin biofi lms. For example, 
confocal microscopy revealed that  Thermincola 
ferriacetica , Gram-positive bacteria which form 
thick biofi lms (~38 μm), generated a sustained 
current density 7–8 Am −2  (Prathap et al.  2013 ), 
while  Thermincola potens , which form mono-
layer biofi lms, produced comparatively lower 
current densities (Wrighton et al.  2011 ). 

 The process of biofi lm formation is triggered 
by the transport of microbes to a surface, fol-
lowed by their attachment to the surface (in MFC, 
on anode or cathode), formation of microcolonies 
and biofi lm maturation (Sauer et al.  2002 ). The 
bacterial cells produce some adhesins, and carbo-
hydrates (polysaccharides), nucleic acids and 
proteins interconnect and encase the bacteria in 
the form of a biofi lm (Pamp and Nielsen,  2007 ). 
The most distinguished feature of electroactive 
biofi lms is their ability to respire terminal elec-
trons from metabolism onto electrode surfaces or 
soluble electron acceptors (Bond et al.  2002 ). It 
has been demonstrated that outer membrane 
c-type cytochromes are crucial for biofi lm forma-
tion in  Geobacter spp.  and  Shewanella spp.  
(Bond and Lovley  2003 ; Gorby et al.  2006 ). 
While, type IV pili protein composed of PilA 
monomers are chiefl y responsible for  Geobacter 
spp . and  Aeromonas spp . conductive biofi lm for-
mation (Pham et al.  2003 ; Malvankar and Lovley 
 2012 ).  G. sulfurreducens  defi cient in  omcZ  and 
 pil A genes inhibited biofi lm formation and con-
sequently, the current production, suggesting the 
role of c-type cytochromes and the protein pilin 
in biofi lm formation (Inoue et al.  2010a ). While 
in  Shewanella spp.  other redox-active compo-
nents such as fl avins mediate the exocellular 
electron transport through biofi lm (Kotloski and 
Gralnick  2013 ). In  P. aeruginosa  biofi lm forma-
tion, bacteria transfer to the surface with the 
movement of fl agella. Cellular aggregation and 
microcolony formation is driven by type IV pili, 

and the subsequent formation of mushroom- 
shaped biofi lm occurs via a maturation process 
that requires cell-to-cell signalling (Stoodley 
et al.  2002 ; Merritt et al.  2010 ; Malone et al. 
 2012 ). The mechanism known as quorum sensing 
(QS) allows bacterial population to communicate 
and coordinate group behaviour. QS regulates the 
expression of biofi lm-related genes and is pivotal 
for structural development of biofi lm in  P. aeru-
ginosa  and other microorganisms as well (Diggle 
et al.  2003 ; Holm et al.  2006 ). 

 The biofi lms of mixed culture generate high- 
power densities than pure culture. For example, a 
mixed culture-inoculated MFC produced ca. 20 
% more power in rival to pure culture in the simi-
lar MFC (Ishii et al.  2008 ). However, the role of 
non-exoelectrogens (the microorganisms when 
used as pure cultures were not able to generate 
electric current) in power generation is not 
known. In monolayer biofi lms, bacterial cells 
remain in the close proximity with anodic surface 
and transfer the electrons directly to the anode 
either via c-type cytochromes or electron shut-
tles. While in thick multilayer biofi lms, it has 
been found that biofi lms produce pili that medi-
ate the electron transfer from the distant cells to 
the anode surface (Reguera et al.  2006 ). The role 
of pili and its role in electron transfer are dis-
cussed in the later section of the chapter. The use 
of microorganisms at the cathode to catalyse oxy-
gen reduction has increased the interest in 
cathodic biofi lm studies. In rival to anodic bio-
fi lms, it has been observed that power generation 
slowly decreases with increase in thickness of 
cathodic biofi lms (Behera et al.  2010 ).  

9.3     Microbial Metabolism 
and Bioelectrogenesis 

 Many microorganisms have been experimented 
in MFCs for electricity generation, bioremedia-
tion and other manifold applications. Besides, 
several nutrients (acetate, glucose, starch, 
sucrose, ethanol, lactate and xylose, etc.) and 
wastewaters (beer brewery wastewater, chocolate 
industry wastewater, swine wastewater, paper 
recycling wastewater and protein-rich wastewa-
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ter, etc.) from various sources have been used as 
substrate for microbial growth in MFC technol-
ogy (Liu et al.  2004 ). Despite the availability of 
wide range of substrates and microorganisms, 
only restricted and specifi c microorganisms are 
known to produce electricity in MFCs. 
Exoelectrogens from various categories such as 
Gram-positive bacteria, Gram-negative bacteria, 
yeast, cyanobacteria, algae and even fungi have 
already been utilised in different kinds of MFCs. 
Those organisms are substantially effi cient for 
electricity generation that can completely oxidise 
complex organic substrates into their respective 
components in the anodic chamber. But, a par-
ticular exoelectrogen can oxidise specifi c sub-
strates or a specifi c type of substrate for its growth 
and energy production. Moreover, depending on 
the type of substrate, every exoelectrogen has dif-
ferent pathways and genes, enzymes or proteins 
for its degradation or oxidation. Therefore, selec-
tion of a suitable bacterial consortia and preferred 
substrate determine the output of MFC. For 
example, a MFC fed with aerobic-anaerobic 
sludge inoculum and glucose, when operated for 
3 months, increased the bacterial substrate to 
electricity conversion rates sevenfolds (Rabaey 
and Verstraete  2005 ). 

 In MFC, organic substrates containing carbo-
hydrates, lipids and proteins serve as electron 
donors for redox reactions at the anode to pro-
duce energy. These complex organic molecules 
further undergo through glycolysis and other 
respective processes to yield acetyl Co-A, which 
then participate in citric acid cycle. Three equiva-
lents of reduced NADH are generated from three 
nicotinamide adenine dinucleotide (NAD + ), one 
fl avin adenosine dinucleotide (FAD) reduces to 
FADH 2 , and CO 2  is released as by-product in 
single turn of citric acid cycle. These metabolic 
pathways (glycolysis and Krebs cycle) occur in 
cytoplasm in both prokaryotes (bacteria) and 
eukaryotes (yeast). NADH and FADH 2  act as 
electron carriers, which then transfer their elec-
trons to electron transport chain (ETC) to pro-
duce energy carrier molecule, adenosine 
triphosphate (ATP). In bacteria, respiratory reac-
tion occurs in the cell membrane (constituting 
outer cell membrane, inner cell membrane and 

periplasm), the machinery containing all the pro-
teins or enzymes required for the electron trans-
fers (the basis of MFC). While in yeast, ETC 
resides on the inner mitochondrial membrane. 
The ETC typically contains four intermediary 
proteins, NADH dehydrogenase, ubiquinone, 
coenzyme Q and cytochromes (however, these 
intermediary proteins may vary with species). 
The electrons are passed through these proteins 
to the fi nal electron acceptor, and the protons 
(reduced) are pumped out of the cell, in the anode 
which is then transferred to the cathode through 
PEM. Prior to the prominence that bacteria can 
facilitate electron transfer, chemical mediators 
were utilised to catalyse electron transfer from 
inside the bacterial cell to the anode surface. 
These mediators react with ETC components and 
get reduced, release out of the cell and transfer 
their electrons to the anode. 

 Moreover, metabolism of the bacteria can 
switch from oxidative phosphorylation (metabo-
lism) to fermentative metabolism depending on 
the anode potential. At low anode potential, in 
the presence of electron acceptors (sulphate, 
nitrate, etc.), bacteria adapt to oxidative metabo-
lism, and the electrons are deposited on electron 
acceptors. But, when electron acceptors are not 
present, bacteria prefer the fermentation metabo-
lism. During the fermentation process, e.g. of 
glucose, one-third of electrons can be used for 
electricity generation, while the rest of electrons 
reside in the fermentation products, which can be 
further oxidised by anaerobic bacteria such as 
 Geobacter sp.  in MFC for current generation 
(Logan  2004 ; Rabaey et al.  2005 ; Reguera et al. 
 2005 ). Beyond electricity generation, many bac-
teria ( Clostridium sp., Enterococcus sp. ) have 
been inoculated anaerobically in MFCs to pro-
duce fermentation products (Logan  2009 ). Like 
 Geobacter sp.  is the most effi cient exoelectrogen 
known in MFC,  Clostridium sp.  is the most effi -
cient hydrogen producer in MFC (Singh et al. 
 2013 ; Singh and Wahid  2015 ). No doubt, bio-
fi lms of mixed consortia studied so far in MFC 
have showed higher-power densities than pure 
cultures, and it can be conceived due to the net-
works of metabolisms between the bacteria in 
biofi lms, but it needs a complete elucidation and 
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experimental corroboration over the matter. The 
potential of anode plays an important role to 
determine the bacterial metabolism. Negative 
anode potential infl uences the bacteria to deliver 
the electrons through more reduced complexes 
(Logan  2009 ). As a result, the bacteria extract 
less energy and greater is the energy recovery in 
MFC and thus the power output. Evidently, 
microbial community of sulphate-reducing bac-
teria at negative anode potentials produced 
higher-power density, 45 mA m −2  at −0.6 V than 
15 mA m −2  at −0.2 V (Chou et al.  2014 ). Also, 
setting the cathode potential has shown to 
improve the performance of MFC. A study dem-
onstrated that MFC for Cr (VI) reduction with set 
cathodic potentials at -300 V increased the maxi-
mum power density from 4.1 W/m 3  (control, no 
set potential) to 6.4 W/m 3 , and the start-up time 
was reduced to 19 days from 26 days as com-
pared to control (Huang et al.  2011 ).  

9.4     Mechanisms of Electron 
Transfers 

 In MFC, electron transfer chiefl y occurs in two 
directions: at the anode, from microorganisms to 
electrode, and at the cathode, from electrode to 
microorganisms when biocathodes are used to 
catalyse oxygen reduction. 

9.4.1     Electron Transfer 
from Microorganisms 
to Electrode 

 Microorganisms can transfer electrons to an elec-
trode directly by three mechanisms (see Fig.  9.2 ) 
known till date: (1) short-range electron transfer 
via redox-active proteins such as cytochromes 
present on the outer surface of bacterial cell 
membrane; (2) electron transport via microbial- 
secreted soluble electron shuttles, for example, 
fl avins and pyocyanin; and (3) long-range elec-
tron transfer through conductive pili.

9.4.1.1       Direct Electron Transfer 
via Cytochromes 

  Geobacter sulfurreducens  has been studied most 
extensively to comprehend the mechanisms for 
direct electron transfer.  G. sulfurreducens  con-
tains the enzymes for the central metabolism to 
anaerobically oxidise carbon (effectively acetate) 
completely to carbon dioxide and water and can 
transfer electrons to different electron acceptors 
(Kiely et al.  2011 ). The genetic studies of  G. sul-
furreducens  genome unveiled the presence of 
many c-type cytochromes containing heme 
groups in their motifs, exposing on the outer sur-
face of cell (Leang et al.  2010 ; Inoue et al.  2010a ). 
The abundance of cytochromes is an advanta-
geous characteristic for the organism that amelio-
rates electron transport across cell/electrode 
interface. The other compounds or proteins that 
help in electron transport include quinones, iron- 
sulphur proteins and b-type cytochromes. The 
electron transport proteins are present in the peri-
plasm or on outer membrane of  G. sulfurredu-
cens . Besides, many studies including gene 
deletions demonstrated that c-type cytochromes 
transfer electrons to diverse extracellular electron 
acceptors in vitro as well as in vivo (Leang et al. 
 2003 ; Inoue et al.  2010a ; Voordeckers et al. 
 2010 ). The immunogold labelling of  G. sulfurre-
ducens  biofi lms validated the accumulation of 
profuse OmcZ at biofi lm and anode interface 
(Inoue et al.  2010a ), while OmcZ mutant strain 
halted the electron transfer between biofi lm and 
the anode. Hence, all the results confi rmed the 
vital role of OmcZ in direct electron transfers. 
Nevin et al. compared the gene expression in 
cells of  G. sulfurreducens  biofi lms growing on 
different electron acceptors, between cells grown 
on graphite and graphite with fumarate. The 
microarray studies revealed the genes  omcB , 
 omcT ,  omcE ,  omcS  and  omc Z encode c-type 
cytochromes. OmcZ and OmcE cytochromes 
were most abundant in current harvesting cells, 
while OmcS was least abundant. Further, the 
cells defi cient in  omcZ  inhibited the current pro-
duction and biofi lm formation, showing the 
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importance of the cytochrome in the electron 
transfer. The cells defi cient in other genes didn’t 
show any impact on current generation as well as 
on biofi lm formation (Leang et al.  2003 ; Inoue 
et al.  2010a ; Smith et al.  2013 ). Multiple evi-
dences suggest that OmcZ is the most important 
cytochrome in high current-producing biofi lms 
and is an octaheme hydrophobic protein which 
occurs in two forms, one large (OmcZ L ) and one 
short (OmcZ S , the predominant form) (Inoue 
et al.  2010a ,  b ). It has been suggested that in  G. 
sulfurreducens  biofi lms, OmcZ mediates the 
electron transfer through the biofi lm, while 
OmcB mediates the electron transfer across the 
biofi lm/electrode interface. The cytochromes 
OmcS and OmcE also play a secondary role in 
electron transfer through the biofi lm (Richter 
et al.  2009 ). A study demonstrated that OmcF 
mutant strain of  G. sulfurreducens  showed low 
current density (Kim et al.  2008 ). Further, the 
results suggested that the OmcF is either directly 
or indirectly involved in electron transfer pro-
cess, and hence OmcF is a pivotal role in electric-
ity production (Kim et al.  2008 ). 

 In  G. sulfurreducens  proteins other than the 
outer membrane c-type cytochromes, the outer- 
membrane multicopper protein OmpB and OmpC 
are also required for Fe (III) oxide reduction 
(Mehta et al.  2006 ; Holmes et al.  2008 ). However, 
it’s not clear how these multicopper proteins 
affect the electricity production in MFCs, there-
fore, will be a highly interesting topic for future 
research.  Desulfovibrio alaskensis  G20, a 
sulphate- reducing bacteria studied to identify the 
components involved in electron fl ow, revealed a 
new model for electron transfer and showed that 
type I tetraheme cytochrome  c  3  (TpI c  3 ) and the 
transmembrane complexes (QrcA) also play a 
key role to transfer the electrons across the cell 
membrane for sulphate reduction (Keller et al. 
 2014 ). 

 Gram-positive species of the genus 
 Thermincola potens  has also been studied to elu-
cidate the direct electron transfer mechanism. 
Surface-enhanced Raman spectroscopy evinced 
the expression of profuse multiheme c-type cyto-
chromes (MHCs) on the cell wall or cell surface 
during  T. potens  growth on hydrous ferric oxides 

  Fig. 9.2    Different mechanisms of electron transfers from microorganisms to electrode       
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or AQDS, an analogue of the redox-active 
 components of humic substances. The results 
unveiled unique evidence for cell wall-associated 
cytochromes and involvement of MHC in trans-
porting the electrons across the cell envelope of a 
Gram-positive bacterium (Wrighton et al.  2011 ). 
A better understanding of genes or proteins 
involved in direct electron transfer along with 
genetic manipulation can amend increases in cur-
rent production and effi ciency of MFCs.  

9.4.1.2     Electron Transfer via Electron 
Shuttles Secreted 
by Microorganisms 

 Some microorganisms have been identifi ed that 
can mediate the electron transfer to soluble or 
insoluble electron acceptors or electrodes by 
secreting soluble electron shuttles, for example, 
 Shewanella oneidensis ,  Pseudomonas aerugi-
nosa  and  Geothrix fermentans , etc.  G. fermen-
tans  releases a soluble electron shuttle which 
promotes reduction of Fe (III) oxides (Bond and 
Lovley  2005 ).  G. fermentans  secreted two differ-
ent soluble redox-active electron shuttles to 
reduce Fe (III); fi rst was ribofl avin at redox 
potential of −0.2 V and the other, still unknown at 
redox potential of 0.3 V (Mehta and Bond  2012 ). 
 P. aeruginosa  produces pyocyanin and phenazine-
1- carboxamide that are very important for elec-
tron transfers. A mutant strain of  P. aeruginosa , 
defi cient in the synthesis of pyocyanin and 
phenazine- 1-carboxamide, achieved only 5 % 
power output as compared to wild type’s strains 
(Baron et al.  2009 ). Further, the study demon-
strated that pyocyanin promotes substantial elec-
tron transfer, not only used by  P. aeruginosa  but 
also by other bacterial species (Baron et al.  2009 ; 
Shen et al.  2014 ). Moreover, overexpression of 
phzM (methyltransferase-encoding gene) in  P. 
aeruginosa -phzM-inoculated MFC increased the 
pyocyanin production by 1.6-folds and conse-
quently the exocellular electron transfer effi -
ciency and power output (Yong et al.  2014 ). 

  Shewanella  species produces fl avin mononu-
cleotide and ribofl avin as the extracellular elec-
tron shuttles to reduce of Fe (III) oxides coupled 
with anoxic growth of the species (Von et al. 
 2008 ; Chaudhuri and Lovley  2003 ). Fluorescence 
emission spectra showed an increase in concen-

tration of quinone derivatives, and ribofl avin in 
the cell-free supernatant of  Shewanella loihica  
PV-4 strain grown on graphite electrode, respon-
sible for direct electron transfer and mediated 
electron transfer, produced maximum anodic cur-
rent density of 90 μAcm −2  (Jain et al.  2012 ; 
Marsili et al.  2008 ). Kotloski and Gralnick ( 2013 )  
identifi ed a fl avin adenine dinucleotide trans-
porter in  S. oneidensis , responsible for the export 
of fl avin electron shuttles to further the electron 
transfer to insoluble substrates. In  S. oneidensis  
MR-1, decaheme c-type cytochromes MtrC and 
OmcA present on the outer surface of the cell; 
part of multiprotein complex helps in hopping the 
electrons cell membrane (Baron et al.  2009 ). The 
cytochrome OmcA also plays an important role 
in the attachment of bacteria to the electrode sur-
face during biofi lm formation (Coursolle et al. 
 2010 ). Electron transfer complex MtrCAB 
responsible for direct and mediated exocellular 
electron transport in  S. oneidensis  (Baron et al. 
 2009 ) was introduced in  E. coli  with a more tun-
able induction system. The strains showed lim-
ited control of MtrCAB expression and impaired 
cell growth, and the results demonstrated that 
maximum current densities was produced not by 
the strains that expressed more MtrC and MtrA 
but by the strains with improved cell growth and 
fewer morphological changes (Goldbeck et al. 
 2013 ). 

  Lactococcus lactis  produces variegated 
membrane- associated quinones which mediate 
electron transfer to extracellular electron accep-
tors such as Fe (III) and Cu (II) (Fuller et al. 
 2014 ). The bacterium transfers electrons to the 
anode via soluble redox mediators. The study 
suggested that one of these two mediators was 
2-amino-3-dicarboxy-1,4-naphthoquinone 
(Freguia et al.  2009 ).  Klebsiella pneumoniae  
strain L17 also studied in MFC produces a recy-
cle electron shuttle 2, 6-di-tert-butyl-p- 
benzoquinon to transfer electrons to the anode 
(Lifang et al.  2010 ; Torres et al.  2010 ).  

9.4.1.3     Electron Transfer via Microbial 
Nanowires 

 Long-range electron transfer is mediated by 
dense network of conductive pili produced by the 
microorganism, responsible for the conductive 
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biofi lms of high current production. Though, 
diverse microorganisms are known to produce 
pili, only  Shewanella sp.  (Leung et al.  2013 ; 
Pirbadian and El-Naggar  2012 ) and  Geobacter 
sp.  (Malvankar et al.  2012 ; Snider et al.  2012 ; 
Bonanni et al.  2013 ) are competent to produce 
conductive pili that account for electricity 
production. 

 The role of conductive pili in long-range elec-
tron transfer in biofi lms was demonstrated earlier 
in  Geobacter sulfurreducens , and the study 
revealed that these electronic networks contrib-
uted for more than tenfold increase in electricity 
production (Reguera et al.  2006 ).  G. sulfurredu-
cens  pili are type IV pili composed by the mono-
mers of PilA protein (Craig et al.  2004 ). Type IV 
pili are small structural proteins of molecular 
weight ca. 7–20 kDa, 10–20 μm long and 3–5 μm 
broad with a conserved N-terminal domain form-
ing α-helix with a transmembrane domain and a 
protein-protein interaction domain (Craig et al. 
 2004 ). Moreover, C terminus of PilA contains a 
conserved sequence of aromatic amino acids 
(Trp, Phe, Tyr, His and Met) responsible for over-
lapping of pi-pi orbitals in the pili structure and 
consequently for metal-like conductivity and 
lacks in nonconductive biofi lms (Vargas et al. 
 2013 ). The function of PilA is directly regulated 
by PilR which functions as an RpoN-dependent 
enhancer-binding protein. Further, the study 
revealed that a strain defi cient in  pilR  gene 
showed waned insoluble Fe (III) reduction as 
well as soluble Fe (III) reduction (Juárez et al. 
 2009 ). The hypothesis that cytochromes are asso-
ciated with  G. sulfurreducens  pili and serve a key 
role in electron transfer along with pili was ruled 
out with the publication of Malvankar et al. 
( 2011 ); the study unveiled that conductivity of  G. 
sulfurreducens  nanowires don’t attribute to cyto-
chromes because the spacing between cyto-
chrome to cytochrome was ca. 200 times greater 
than required for electron hopping. It was further 
clarifi ed by Liu  et al ., who demonstrated a  G. sul-
furreducens  strain PA, that  pilA  gene was replaced 
with  pilA  gene of  Pseudomonas aeruginosa  
PAO1, expressed the pili subunits and  c -type 
cytochrome OmcS similar to control strain, but 
showed waned current production and Fe (III) 

oxides reduction. Further, the results suggested 
that  c -type cytochrome OmcS on pili don’t con-
fer for the conductivity of pili (Liu et al.  2014a ,  b ; 
Smith et al.  2014 ). Fanghua et al. revealed that 
magnetite can facilitate microbial extracellular 
electron transfer. The study demonstrated that 
magnetite compensated for the extracellular elec-
tron transfers for OmcS-defi cient strain in Fe 
(III) oxide reduction (Liu et al.  2014a ). 

 Conducting probe atomic force microscopy 
technique and gene deletion studies of MtrC and 
OmcA suggested that  S. oneidensis  MR-1 nanow-
ires are conductive in nature (El-Naggar et al. 
 2010 ). Electronic transport characteristics of  S. 
oneidensis  MR-1 nanowires was further studied 
and exhibited p-type, tunable electronic behav-
iour with a fi eld-effect mobility (Leung et al. 
 2013 ). In an alternative study, deletion of the 
structural pilin genes (mshA-D) which encode 
for extracellular Msh (mannose-sensitive hemag-
glutinin) structural proteins in  S. oneidensis  
MR-1 produced 20 % less current compared to 
control strain, indicating extracellular electron 
transfer ability of intracellular- and membrane- 
bound Msh biogenesis complex in  S. oneidensis  
MR-1 (Fitzgerald et al.  2012 ). A multistep hop-
ping mechanism has been proposed for extracel-
lular charge transfer in  S. oneidensis  MR-1 
biofi lms, suggesting that redox components are 
associated with each other at less than 1 nm dis-
tance, forming a chain along extracellular 
appendages, responsible for electron hopping or 
electron tunnelling (Polizzi et al.  2012 ). However, 
the actual organisation of cytochromes on  S. 
oneidensis  MR-1 nanowires and their exact role 
in electron transfer mechanism is yet to be 
clarifi ed. 

 The pilus-associated  c -type cytochrome 
OmcS and pili have also been associated with 
electron transfer via direct interspecies electron 
transfer (DIET). Gorby et al .  provided the fi rst 
evidence that nanowire production is not limited 
to dissimilatory metal-reducing bacteria; further 
the study demonstrated that an oxygenic photo-
trophic cyanobacterium  Synechocystis  and ther-
mophilic, fermentative bacterium  Pelotomaculum 
thermopropionicum  produced electrically 
 conductive nanowires that established connec-
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tions with the methanogen  Methanothermobacter 
thermautotrophicus  for effi cient electron transfer 
and energy distribution (Gorby et al.  2006 ). The 
mechanism DIET has also been seen within 
aggregates of  G. metallireducens  and 
 Methanosaeta harundinacea  in anaerobic digest-
ers (Rotaru et al.  2014 ). Granular-activated car-
bon (GAC) has been hypothesised to stimulate 
DIET between bacteria and methanogens (Liu 
et al.  2012 ). GAC simulates the role of pili and 
associated  c -type cytochrome involved DIET 
(Liu et al.  2012 ). The molecular mechanism of 
DIET and its contribution towards energy pro-
duction is not understood well and, therefore, 
demands a deep investigation into the matter.   

9.4.2     Electron Transfer 
from Electrodes 
to Microorganisms 

 Many microorganisms have already been used as 
biocathodes in the technology, but only limited 
information is available on electron transport 
mechanisms from electrode to microbes. Though, 
it’s clear that microorganisms use different mech-
anisms to accept electrons from the cathode (see 
Fig.  9.3 ) than to donate electrons to the anode, 

Gregory et al. provided the fi rst evidence that 
 Geobacter species  can accept electrons directly 
from an electrode (Gregory et al.  2004 ). 
Alternatively,  Shewanella oneidensis  MR-1 in 
the aerated cathode produced ribofl avin, an elec-
tron shuttle mediator to transfer electrons to Cr 
(VI) (Xafenias et al.  2013 ).  Acinetobacter calco-
aceticus  and  Shewanella putrefaciens  as pure 
cultures excrete redox compound similar to pyr-
roloquinoline quinone (PQQ) that further use 
outer membrane-bound redox compounds for 
extracellular electron transfer (Freguia et al. 
 2010 ). An acidophile microorganism, 
 Acidithiobacillus ferrooxidans , used as biocath-
ode demonstrated that the redox species, an outer 
membrane-bound cytochrome c (Cyc2), is asso-
ciated to microbial-catalysed O 2  reduction 
(Carbajosa et al.  2010 ). Transmission electron 
microscopy of immunogold-labelled 
 Leptospirillum  group II bacterium-dominated 
biofi lm (acidophilic microbial communities) 
revealed that Cyt 579  (structurally, 70 % α-helical) 
is localised in periplasmic space (Jeans et al. 
 2008 ) and helps in accepting the electrons derived 
from Fe (II) oxidation (Jeans et al.  2008 ). 
Similarly, another unusual membrane protein, 
Cyt 572  (structurally, β-helical), isolated from aci-
dophilic microbial communities showed the abil-

  Fig. 9.3    Mechanisms of electron transfers from electrode to microorganisms       
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ity for Fe (II) oxidation (Jeans et al.  2008 ), but 
it’s still elusive that the protein participates in 
electron transfer mechanisms. Recently, cyclic 
voltammetry scanned an unidentifi ed redox- 
active molecule secreted from  P. aeruginosa , 
involved in the electron transfer from the elec-
trode to targeted azo bonds, leading to decolori-
sation of azo dye (Wang et al.  2014 ). A 
biocathodic microbial community predominated 
by  Proteobacteria ,  Bacteroidetes  and  Firmicutes  
during dechlorination of pentachlorophenol 
(PCP) in MFC transferred the electrons directly, 
as cyclic voltammetry characterisation of the 
medium didn’t confi rm any redox mediator 
secreted by the bacteria (Liu et al.  2013 ). Besides, 
many Gram-negative and Gram-positive bacteria 
utilised as biocathodes such as  Dechlorospirillum 
anomalous ,  Acinetobacter calcoaceticus , 
 Staphylococcus carnosus ,  Streptococcus mutans , 
 Enterococcus faecalis ,  Shigella fl exneri ,  Kingella 
denitrifi cans  and  Lactobacillus farciminis  have 
shown the ability to transfer electrons directly or 
accept the electrons indirectly from different 
electrodes through redox-active compounds for 
manifold applications of the technology (Thrash 
et al.  2007 ; Aulenta et al.  2010 ; Cournet et al. 
 2010 ). Unfortunately, the molecular mechanism 
of accepting electrons from the electrodes in any 
microorganism is yet not understood well and 
can be taken as a future aspect.

9.5         High-Power-Producing 
Microorganisms in MFC 

 The power density produced by a particular 
microorganism such as  Geobacter sp.  can’t be 
compared to other microorganism, e.g. 
 Shewanella sp ., unless the MFC structure, 
 operating conditions, nutrients and chemical 
solutions used for the study will be indistinguish-
able. Till date, many microorganisms used in dif-
ferent MFCs produced electrical energy in 
unalike conditions. Although this chapter 
describes only the prevalent microorganisms 
studied (in anode and cathode) that produced 
effi cient power densities in MFC technology, 
also, some novel microorganisms were discov-

ered recently. The microorganisms with known 
and unknown natural electron mediators are 
given in Tables  9.1  and  9.2 , respectively.

9.5.1        Microorganisms in Anode 

 The most studied and effi cient exoelectrogens in 
MFC technology belong to  Geobacteraceae  fam-
ily of bacteria.  G. sulfurreducens , 
 δ -proteobacteria, can reduce acetate with ca.100 
% electron recovery to generate electricity. The 
organism has successfully produced the current 
density of 3147 mA/m 2  in a MFC with gold elec-
trodes, acetate as the electron donor and fumarate 
as the electron acceptor (Richter et al.  2008 ). 
However,  G. metallireducens  (pure culture) could 
produce only 40 mWm −2  power output in MFC 
using wastewater as inoculum (Min et al.  2005 ). 
 Shewanella spp. , γ-proteobacteria, can reduce 
iron and manganese and can use them as electron 
acceptors.  Shewanella oneidensis  DSP10 in a 
miniature MFC using lactate as the anolyte and 
ferricyanide as catholyte produced power density 
of 3000 mW/m 2  which is quite appreciable 
(Ringeisen et al.  2006 ). Recently,  S. putrefaciens  
in a single-chamber microbial fuel cell (sMFC) 
produced maximum power density of 4.92 W/
m 3 using CaCl 2  as anolyte (Pandit et al.  2014 ). 
 Rhodopseudomonas palustris , α-proteobacteria 
and a photosynthetic purple non-sulphur bacte-
rium, can utilise volatile acids, yeast extract and 
thiosulphate and produce power density of 2720 
mW/m 2  higher than mixed cultures in indistin-
guishable MFCs (Xing et al.  2008 ). A thermo-
philic, Gram-positive, metal-reducing bacterium, 
 Thermincola ferriacetica , is able to generate cur-
rent from acetate and exhibited maximum current 
density 12 Am −2  (Prathap et al.  2013 ). 
 Pseudomonas aeruginosa , γ-proteobacteria, in 
MFC produced power density of 4310 mWm −2  
using glucose as electron donor and graphite 
electrodes as the electron acceptor (Rabaey et al. 
 2004 ). A sulphate-reducing bacterium, 
 Desulfovibrio desulfuricans , in MFC with 
surface- treated graphite felt electrodes generated 
maximum current density of 233 mA/m 2  which 
was ca. 50 % higher than with untreated elec-
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trodes (Kang et al.  2014 ).  E. coli , Gram-negative 
bacteria in MFC successfully achieved power 
density of 1300 mW/m 2  at 3390 mA/m 2  current 
density (Qiao et al.  2008 ). 

  Saccharomyces cerevisiae  in sMFC (open-air 
cathode) fed with synthetic wastewater using 
noncatalysed graphite as electrodes without the 
use of artifi cial mediators generated maximum 

   Table 9.1    Microorganisms with known electron transfer intermediaries   

 Microbes 
 Current density/power 
density 

 Proteins/compounds involved in 
electron transfers  References 

  Geobacter sulfurreducens   3147 mA/m 2   Type IV pili  Inoue et al. 
( 2010a )  c-Type cytochrome Z 

  Geobacter metallireducens   40 mW/m 2   c-Type cytochromes  Min et al. ( 2005 ) 

 I.e. OmcB and OmcE 

  Shewanella oneidensis   3000 mW/m 2   fl avins, ribofl avin  Ringeisen et al. 
( 2006 ) 

  Shewanella putrefaciens   4.92 W/m 3   c-Type cytochromes  Pandit et al. ( 2014 ) 

 I.e. MtrC and OmcA, 

  Rhodopseudomonas palustris   2720 mW/m 2   c-Type cytochromes  Xing et al. ( 2008 ) 

  Thermincola ferriacetica   12000 mA/m 2   Anthraquinone 2, 6  Prathap et al. 
( 2013 )  disulfonate 

  Pseudomonas aeruginosa   4310 mW/m 2   Pyocyanin  Rabaey et al. 
( 2004 )  Phenazine-1-carboxamide 

  Desulfovibrio desulfuricans   233 mA/m 2   c-Type cytochromes  Kang et al. ( 2014 ) 

  Desulfovibrio alaskensis   –  Tetraheme cytochrome C 3   Keller et al. ( 2014 ) 

 Transmembrane complexes 
(QrcA) 

  Klebsiella pneumonia   199 mA/m 2   2, 
6-Di-tert-butyl-p- 
benzoquinone    

 Lifang et al. ( 2010 ) 

  Note: Units of surface power density are given in mW/m 2 , volume power density in W/m 3  and units of current density 
in mA/m 2   

   Table 9.2    Microorganisms with unknown electron transfer intermediaries   

 Microbes  Current density/power density  References 

  Bacteria  

  Escherichia coli   3390 mA/m 2   Qiao et al. ( 2008 ) 

  Saccharomyces cerevisiae   282 mA/m 2   Raghavulu et al. ( 2011 ) 

  Lysinibacillus sphaericus   85 mW/m 2   Nandy et al. ( 2013 ) 

  Citrobacter sp.   205 mA/m 2   Xu and Liu ( 2011 ) 

  Ochrobactrum sp .  2625 mW/m 3   Xin et al. ( 2014 ) 

  Algae  

  Scenedesmus   1926 mW/m 2   Cui et al. ( 2014 ). 

  Arthrospira maxima   10 mW/m 3   Inglesby et al. ( 2012 ) 

  Cyanobacteria  1  14 mW/m 2   Yuan et al. ( 2011 ) 

  Chlorella vulgaris   2485 mW/m 3   González et al. ( 2013 ) 

  Coriolus versicolor   320 mW/m 3   Wu et al. ( 2012 ) 

  Note: Units of surface power density are given in mW/m 2 , volume power density in mW/m 3  and units of current density 
in mA/m 2   
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current density 282.83 mA/m 2  (Raghavulu et al. 
 2011 ). Other yeast  Hansenula anomala  using Pt 
electrode and ferricyanide as catholyte produced 
power density of 2.9 W/m 3  (Prasad et al.  2007 ). 
Moreover,  Candida melibiosica  in a MFC of 
modifi ed carbon felt electrode with surface nickel 
nanostructures produced signifi cant power output 
of 720 mW/m 2  (Hubenova and Mitov  2010 ). 
Some microorganisms not used commonly in 
MFC and a few novel exoelectrogens discovered 
recently have also shown the ability to produce 
electricity. 

 Analysis of 16S rRNA gene sequences has 
unveiled a new exoelectrogen;  Geobacter ano-
direducens  showed 98 % similarity to  Geobacter 
sulfurreducens  but cannot reduce fumarate as the 
electron acceptor (Sun et al.  2014a ,  b ). Another 
novel strain,  Ochrobactrum sp.  575 isolated 
recently from the anodic chamber of a xylose 
MFC, produced maximum power density of 2625 
mW/m 3 . Further, the results suggested that xylose 
digestion in  Ochrobactrum sp.  575 was different 
to other electroactive bacterial strains, which 
depends on the succinate oxidation respiratory 
chain instead of traditional NADH oxidation 
respiratory chain (Li et al.  2014 ).  Klebsiella 
pneumonia , Gram-negative, nonmotile, lactose- 
fermenting bacteria in a cubic air-chamber MFC, 
generated 199.2 mA/m 2  current density and max-
imum voltage output of 426.2 mV (Lifang et al. 
 2010 ). A Gram-positive bacterium  Lysinibacillus 
sphaericus  in MFC using graphite felt as elec-
trode generated a maximum current density of ca. 
270 mA/m 2  and power density of 85 mW/m 2  
(Nandy et al.  2013 ). Further,  Citrobacter sp . 
SX-1 can utilise diverse simple substrates like 
acetate, glucose, sucrose, glycerol and lactose in 
MFCs but produced the highest current density of 
205 mA/m 2 from citrate (Xu and Liu  2011 ; 
Kimura et al.  2014 ; Zhang et al.  2013 ). Besides 
bacteria and yeast, microalgae have been also 
used in MFC technology either as bioanode or a 
substrate assisting the anode for the prevalent 
application.  Scenedesmus , green algae in powder 
form as substrate, was used in anode and 
 Chlorella vulgaris  as a biocathode in MFC pro-
duced maximum power density of 1926 mW/m 2  
(Cui et al.  2014 ). In another study,  Arthrospira 

maxima  was used as a substrate as well as a car-
bon source for the metabolism and growth of  R. 
palustris  in a micro-MFC and exhibited volumet-
ric power density of 10.4 mW/m 3 , the highest in 
rival to other substrates used in the study 
(Inglesby et al.  2012 ). Furthermore, blue-green 
algae (cyanobacteria) in a sMFC produced maxi-
mum power density of 114 mW/m 2  at 0.55 mA/
m 2  current density (Yuan et al.  2011 ). In 
microalgae- assisted MFCs, algae degradation 
produces intermediate compounds like acetate 
and lactate which can be further used by exoelec-
trogens such as  G. sulfurreducens  for bioelectric-
ity production.  

9.5.2     Microorganisms in Cathode 

  Geobacter spp.  highly effi cient as bioanodes in 
MFC also evidenced to be prelusive biocathodes 
to accept the electrons from cathodic electrodes 
(Gregory et al.  2004 ). The study revealed that  G. 
metallireducens  reduced nitrate to nitrite and  G. 
sulfurreducens  reduced fumarate to succinate 
with the electrode as the sole electron donor 
(Gregory et al.  2004 ). Furthermore,  G. sulfurre-
ducens  reduced fumarate in a reactor with stain-
less steel electrodes producing the current density 
of 20.5 Am −2  (Dumas et al.  2008 ).  Shewanella 
oneidensis  MR-1 as biocatalyst in the air-cathode 
MFC and lactate as electron donor showed 
increase in Cr (VI) reduction rate with maximum 
current density of 32.5 mA/m 2  (Xafenias et al. 
 2013 ). The study demonstrated the expression of 
ribofl avin in the electron transport. In an alterna-
tive investigation,  Shewanella putrefaciens  and 
 Acinetobacter calcoaceticus  showed the ability 
to reduce the oxygen to water with increased rate 
by utilising outer membrane-bound cytochromes 
and self-excreted PQQ respectively (Freguia 
et al.  2010 ). An acidophile microorganism, 
 Acidithiobacillus ferrooxidans , fed as a biocath-
ode in MFC, up to 5 Am −2  of current densities, 
were obtained for O 2  reduction at low pH (Yuan 
et al.  2011 ). In a study,  Enterobacter and 
Pseudomonas spp.  demonstrated for the catalysis 
of acetate oxidation actually resulted to catalyse 
the electrochemical reduction of oxygen- 
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producing maximum current density of 145 mA −2  
(Parot et al.  2009 ). Cyclic voltammetry unveiled 
that  Micrococcus luteus  and other Gram-positive 
( Staphylococcus spp., Lactobacillus farciminis ) 
and Gram-negative bacteria ( Pseudomonas fl uo-
rescens, Escherichia coli, Acinetobacter sp. ) are 
able to catalyse the electrochemical reduction of 
oxygen on the carbon electrode (Cournet et al. 
 2010 ). Seawater-formed aerobic biofi lms coated 
on stainless steel electrodes have shown signifi -
cant ability to catalyse oxygen reduction and 
achieved current densities up to 460 mA/m 2  at 
different set potentials (Bergel et al.  2005 ). 

 An acetate-fed MFC utilising  Chlorella vul-
garis  as a biocathode produced maximum power 
density of 1926 mW/m 2 . CO 2  produced at the 
anode was used by  C. vulgaris  as a carbon source 
for its growth. Further, the study demonstrated 
that  C. vulgaris  could not grow in acetate-fed 
MFC without anodic CO 2  supply (González et al. 
 2013 ; Cui et al.  2014 ). The immobilisation of  C. 
vulgaris  into the cathode chamber turned the 
MFC highly effi cient, consequently producing 
the power density 2485.35 mWm −3  at a current 
density of 7.9 Am −3 , while the MFC with sus-
pended  C. vulgaris  achieved 1324.68 mWm −3  
power density (Zhou et al.  2012 ). A strain of 
white-rot fungus,  Coriolus versicolor  (secretes 
laccase to reduce oxygen at the cathode), inocu-
lated in the cathode chamber of a MFC to catalyse 
the cathodic reaction generated the maximum 
power density 320 mWm −3  (Wu et al.  2012 ).   

9.6     Future Directions 

 It is unfortunate for the MFC technology that the 
studied applications of the technology are still 
confi ned to the four walls of the laboratory. In 
other words, the technology is not commercialised 
yet. The electron transfer mechanisms from exo-
electrogens to electrodes are well understood only 
in  Geobacter spp.  and  Shewanella spp. ; hence, 
the investigations about electron transfer mecha-
nisms in other microorganisms are also intended. 
Further, the effi ciency of the exocellular electron 
transfer rates can be increased by genetic manipu-
lations. The microorganisms exhibiting conduc-

tive pili are proposed to be discovered, though 
such microorganisms can generate higher-power 
densities. The electron transfer mechanisms from 
electrodes to microorganisms are still not known. 
The microorganisms that can accept the electrons 
from the electrode will have a great signifi cance 
in cathode compartment. The outer membrane 
multicopper proteins, OmpB and OmpC, showed 
their key role in Fe (III) oxide reduction, but a 
deep investigation is needed to explore their func-
tions in electron transfer mechanisms.  

9.7     Conclusions 

 In MFCs, the microorganisms act as the power 
houses of the MFC, and those that can form con-
ductive biofi lms is of great importance in MFCs. 
The bacteria produce specifi c proteins such as 
c-type cytochromes, pili and QS that play impor-
tant roles in the formation of a conductive bio-
fi lm. Moreover, line of multiple studies suggests 
that c-type cytochromes, OmcZ and OmcB, are 
crucially required in electron transfer mecha-
nisms. So far, only  Geobacter spp.  and 
 Shewanella spp.  are able to perform the long- 
range electron transport through pili. The other 
exoelectrogens like  Pseudomonas spp . secretes 
pyocyanin, and  Shewanella spp.  prefers to use 
fl avins to transfer electrons to the electrodes. The 
latter exoelectrogen has shown to accept elec-
trons from the electrodes using ribofl avin as elec-
tron mediator. Further, some unusual 
cytochromes, Cyt 579  and Cyt 572 , have been 
reported to mediate the electron transfers from 
the electrode to bacterial cells. The use of bio-
cathodes has made the technology more eco-
nomic. Moreover, MFC has become the only 
technology towards renewable energy production 
and other manifold applications.     
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