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Abstract

Attributed to their multifaceted abilities, microorganisms have been con-
stantly explored for several applications ranging from product synthesis, 
energy recovery to waste treatment. Biological production of electricity 
has been an important area of research in the past decade and half. 
Bioelectrochemical systems (BESs) offer a promising solution in aiding 
the energy development sector due to its supplementing ability to gener-
ate electricity from wastes and wastewaters. This chapter lays focus on 
the mechanisms and applicability of microorganisms to tap the potential 
in the wastes and wastewaters to function as active substrates for bioelec-
tricity generation. Simultaneous bioenergy recovery is an added advan-
tage in the BESs along with waste treatment. The main emphasis is on the 
electron-transfer mechanisms across microorganisms and electrodes, 
reactor architecture, and operating conditions. A brief overview on the 
potential of various solid wastes and wastewaters from domestic, agricul-
tural, and industrial sectors is also included. The advancements in the 
field of microbial electrocatalysis have been highlighted under various 
sections which shed some light on the possibilities of active integration of 
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BESs with other existing bioprocesses. Further technical and technologi-
cal advancements can supplement the capability of waste to bioenergy 
conversion concept of BESs to tackle the energy sustainability and waste 
management issues.

10.1	 �Introduction

The quest to find sustainable ways for producing 
electricity has become a challenging task for the 
scientific and industrial world. Modernization and 
industrialization may have eased the living style 
but have massively increased our dependence on 
electricity for its regular maintenance and func-
tioning. To meet this high energy demand from 
the over burgeoning population, many unsustain-
able resources are being extensively exploited 
which not only lead to their rapid depletion but 
also have a negative toll on the environment. 
Consequently, this has led to the development of 
clean and green alternate technologies for elec-
tricity generation during the past few decades. 
This advancement looked one step ahead by tap-
ping the potential of wastes and wastewaters to 
serve as a potential feedstock for energy recovery 
thereby curtailing the dependence on conven-
tional carbon-based fuels. This also serves the 
purpose of reducing the costs incurred in waste 
treatment systems. One such promising technol-
ogy that has been developed over the last decade 
is the bioelectrochemical systems (BESs) such as 
microbial fuel cells (MFCs) which employ micro-
bial communities for the conversion of chemical 
energy present in the wastes and wastewaters into 
the electrical energy (Oh and Logan 2005; Min 
and Logan 2004; Liu et  al. 2004; Moon et  al. 
2006; ElMekawy et al. 2014a, b). An MFC is a 
bio-catalyzed system which harnesses bioenergy 
in the form of electrical energy through microbial 
oxidation of biodegradable organic matter present 
in the wastes or wastewaters under mild reaction 
conditions (ambient temperature and pressure) 
(Logan 2004a, b; Aelterman et  al. 2006; Moon 
et  al. 2006). The energy recovery is usually 
accompanied by or linked to simultaneous waste 
treatment (Patil et al. 2009; Pant et al. 2013; Sevda 

et al. 2013a). In this chapter, emphasis is laid on 
the mechanism of biological generation of elec-
tricity by microorganisms by degrading the 
organic matter present in waste particulates and 
wastewaters. In subsequent sections, a brief 
description on various feedstocks, technical, and 
technological advancements in the BESs is 
included.

10.2	 �MFCs: Fundamentals 
and Technology

10.2.1	 �MFC: Principle

Electrocatalytic conversion of chemical form of 
energy stored in the chemical bonds of organic 
matter, wastes, or wastewaters to electricity using 
microorganisms is the principle mechanism of a 
MFC. A typical MFC comprises of anode and 
cathode chambers, which are separated by an ion 
exchange separator (Fig. 10.1). Anodic oxidation 
and cathodic reduction reactions govern the elec-
trocatalytic activity in MFCs (Mohanakrishna 
et al. 2015). In the anode chamber, microorgan-
isms oxidize the organic matter present in the 
wastes to produce carbon dioxide, electrons, and 
protons. The diffusion of protons from anodic to 
cathodic chamber through an ion exchange mem-
brane generates a potential difference between 
the anode and the cathode which leads to the flow 
of electrons, i.e., current from the anode to the 
cathode through an external circuit. 
Conventionally, oxygen functions as a terminal 
electron acceptor which combines with the elec-
trons and protons at cathode surface to form 
water as an end product.

General electrode reactions considering glu-
cose as an electron donor and O2 as a terminal 
electron acceptor are presented below:
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Anode reaction: C H O H O CO H e6 12 6 2 26 6 24 24+ → + ++ −

Cathode reaction: 24 24 6 122 2H e O H O+ −+ + →
Overall reaction: C H O O CO H O

Electrical energy
6 12 6 2 2 26 6 6+ → +

+

The overall reaction is breakdown of the sub-
strate into carbon dioxide and water with electri-
cal energy as a main product.

10.2.2	 �Electron-Transfer Mechanisms 
from Microorganisms 
to the Anode in MFCs

The key mechanisms involved in microbial elec-
tron transfer (ET) to the anode are illustrated in 
Fig. 10.2. These include the ET via (a) membrane-
bound cytochromes and/or electrically conduc-
tive cell appendages such as pili or nanowires, (b) 
self-excreted (by microorganisms) or exogenous 
redox mediators, and (c) via the oxidation of 
reduced primary metabolites such as hydrogen 
(Patil et al. 2012). Broadly, these can be catego-
rized into direct electron transfer (DET) and indi-
rect or mediated electron-transfer (IET/MET) 
mechanisms.

The DET occurs when the microorganisms 
are attached to the electrode surface. This mech-
anism is prominent in two well-studied 
microorganisms, viz, Geobacter sulfurreducens 

(Bond and Lovley 2003; Reguera et  al. 2006) 
and Shewanella oneidensis MR-1 (Kim et  al. 
2002; Gorby et al. 2006; Biffinger et al. 2007). 
In these microbial strains, involvement of termi-
nal reductases such as c-type outer-membrane 
cytochromes in ET to the anode has been well 
documented (Patil et al. 2012). In particular, in 
the case of G. sulfurreducens, outer-membrane 
cytochromes such as OmcS (Mehta et al. 2005), 
OmcB (Leang et al. 2003), and OmcZ are involved 
in the DET process. Among these, OmcZ is 
prominent in establishing and promoting the 
DET to the anodes. Similarly, in S. oneidensis 
MR-1, membrane spanning and outer-membrane 
cytochromes help in establishing rapid connec-
tion between cytoplasm and extracellular electron 
acceptor. Specifically, the role of outer-membrane 
MtrC-OmcA complexes in EET to anodes has 
been established in the case of the S. oneidensis 
MR-1 strain (Baron et al. 2009). G. sulfurredu-
cens are shown to have electrically conductive 
pili referred to as nanowires, (Reguera et  al. 
2006), which assist long-range ET across anodic 
biofilms. Similarly, in S. oneidensis MR-1, the 
nanowires have been reported to play a role in 
DET to the electrodes (Gorby et al. 2006).

In the case of IET, direct contact of microbial 
cells to the electrode is not necessary. In one of 
the IET mechanisms, electrochemically or meta-

Fig. 10.1  Schematic 
diagram of a double-
chambered microbial fuel 
cell. R resistance and PEM 
proton exchange 
membrane. The oxygen 
reduction reaction at the 
cathode can be abiotic or 
catalyzed by the 
microorganisms
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bolically produced hydrogen and formate can 
mediate and boost the ET to anodes. In another 
IET mechanism, soluble redox mediators that can 
be added externally (Biffinger et  al. 2007; 
Rozendal et al. 2006; Lee and Rittman 2010) or 
produced by microbes (Cheng et  al. 2009; 
Clauwaert and Verstraete 2009) facilitate the ET 
process. These mediators promote electrogenic 
activity of biofilm and are secreted specially by 
species of Shewanella and Pseudomonas. Flavin 
mononucleotide (FMN) and riboflavin are the 
mediators that are identified in Shewanella spe-
cies (Rabaey et al. 2005b). The ET is mediated by 
compounds like phenazines in Pseudomonas sp. 
(Rabaey et  al. 2005b). Riboflavin encourages 
efficient ET at EAB-electrode interface as it 
accumulates at the interface during sustained 
incubations (>72 h) (Marcus et al. 2011).

10.2.2.1	 �Electron Transfer Across 
Electrocatalytically Active 
Anodic Biofilms

Microorganisms are the core elements of the 
MFCs, which determine the performance in 
terms of current production by forming a slime 
layer on the anode surface, technically referred to 
as electrocatalytically active biofilm (EAB). The 
diffusion of wastes and nutrients to the microbes 
is governed by the natural chemical gradient 
which in turn modulates the biological activity of 
biofilm both spatially and temporally (Marcus 
et al. 2007; Logan et al. 2006). The process of ET 
across the biofilm is a mechanically and spatially 
heterogeneous pathway (Torres et al. 2010) and 
occurs through varied mechanisms such as DET 
and/or MET. The position of cells within the bio-
film affects the mechanism of ET with DET dom-
inating in those resting at electrode surface, and 
indirect mechanisms are required to transport the 
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Fig. 10.2  Electron transfer (ET) mechanisms from 
microorganisms to the electrode (anode) in MFCs. A. 
Cell-membrane-bound cytochromes and/or electrically 

conductive pili (nanowires) mediated ET. B. Self-secreted 
(by microbes) or exogenous redox mediated ET, and CET. 
via oxidation of reduced primary metabolites
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electrons across the biofilm thickness. The cells 
on the outer rim of the biofilm are farther from 
the electrode surface and are readily exposed to 
the waste and nutrients, whereas the cells in 
direct contact with electrode surface are prone to 
many physical and chemical limitations. Redox-
active components on the outer membrane of the 
bacteria like c-type cytochromes (Shi et al. 2009) 
assist in the DET when they come in contact with 
electron acceptor. Indirect mechanisms involve 
intermediary synthesis of either electron shuttles, 
redox mediators (Gralnick and Newman 2007), 
or appendages like nanowires (Gorby et al. 2006; 
Reguera et al. 2005). Additionally, IET depends 
either on solid conductive matrix of variable 
composition or produced soluble and mobile 
electron carriers (Torres et al. 2010).

10.2.3	 �Electrocatalytically Active 
Anodic Biofilms

Microorganisms are present either as planktonic 
cells or EABs in BESs (Borole et  al. 2011). 
Biofilms can be monolayered or multilayered 
collection of microorganisms on the electrode 
surface which facilitate ET and subsequent power 
generation. Both biofilm and planktonic microor-
ganisms coexist and work in unison to produce 
electricity. The EABs house both electrochemi-
cally active and inactive microorganisms with the 
former contributing actively to the generation of 
electricity from waste organics or inorganics. The 
latter supplement the electricity production pro-
cess by degrading the complex organics through 
mechanisms like fermentation or utilizing other 
electron donors or acceptors. The electrochemi-
cally active microorganisms primarily help in 
efficient ET and enhance the energy output and 
treatment efficiency. The majority of the electro-
active microbial communities are generally either 
enriched or adapted from mixed microbial inocu-
lum sources before using in BESs (Borole et al. 
2011). The power output depends on the activity 
of electrode-associated biofilms. Eliminating 
non-electroactive microbial communities like 
methanogens, nitrate reducers, hydrogen scaven-
gers, and, potentially, aerobic organisms in EABs 
is critical for getting better power output with 

MFCs. Therefore, flow-over or flow-through 
anodes are currently being preferred in BESs 
because high substrate concentration and pH gra-
dients help in the washout of suspended, non-
electroactive microorganisms. Operational, 
biological parameters and system design are the 
critical parameters which contribute toward high 
performance of a biofilm. The structure and the 
composition of the biofilm are dependent on the 
operational conditions which are well associated 
with electroactivity and performance of the sys-
tem. The composition and activity of the biofilm 
depend on the type of inoculum and mode of 
operation.

The biological parameters which influence the 
formation of an efficient EAB are the source and 
nature of inoculum (mixed or consortia) and sub-
strate, type (gram positive or negative), and the 
nature of enrichment. The inoculum affects bio-
film parameters like growth and ET rates and 
mechanisms, abundance, film thickness, conduc-
tivity, and substrate uptake, all of which contrib-
ute to the activity of the biofilm and the 
performance of the system (Borole et  al. 2011; 
Gimkiewicz and Harnisch 2013; Erable et  al. 
2010; Dulon et  al. 2006). The use of pure or 
mixed culture affects the electroactivity and at 
the same time also influences the power output. 
Studies found that gram-negative bacteria gener-
ate higher current compared to gram-positive 
bacteria as the presence of cell envelope struc-
tures (thick cell wall) in gram-positive bacteria 
inhibits easy transfer of electrons from the cell to 
electrode (Milliken and May 2007). However, an 
investigation found that Thermincola spp., a 
gram-positive microbe, isolated from a thermo-
philic system, were able to transfer electrons 
directly to electrode which might be with the help 
of c-type cytochromes of the cell envelope 
(Wrighton et  al. 2008). EABs are complex in 
nature and are susceptible to minute changes in 
the system (Borole et  al. 2011). In waste treat-
ment system, biofilm-forming electroactive bac-
teria capable of DET are crucial in generating 
high current densities. Formation and sustenance 
of a conductive biofilm matrix which can ably 
facilitate high ET rates between electrodes and 
microorganisms is the critical need for commer-
cial and large-scale applications.

10  Biological Electricity Production from Wastes and Wastewaters
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10.2.3.1	 �Pure or Mixed Culture 
Inoculum Sources

The nature of the microbial inoculum plays an 
important role in contribution toward the internal 
resistance of the BESs. Pure as well as consor-
tium of microorganisms have been employed by 
several research groups in MFCs. Very few pure 
cultures of bacteria help in DET from the cell 
membrane to the electrode. Exoelectrogenic bac-
teria such as Geobacter spp. (Bond and Lovley 
2003; Dumas et  al. 2008a, b), Shewanella sp. 
(Kim et  al. 1999a, b; Ringeisen et  al. 2006; 
Biffinger et  al. 2007; Liang et  al. 2009; Yang 
et  al. 2011b), and Rhodoferax sp. (Liu et  al. 
2007a, b) showed promising ability to generate 
bioelectricity. The major challenge with pure cul-
tures is the possibility of microbiological con-
tamination and low growth rate. To overcome this 
problem, a wide variety of mixed consortia of 
bacteria or waste streams such as domestic waste-
water (Min and Logan 2004), soil (Niessen et al. 
2006), fresh as well as marine sediments (Zhang 
et al. 2006), activated sludge (Ki et al. 2008; Patil 
et al. 2009), and anaerobic digester sludge (Kim 
et al. 2004; Chae et al. 2010) have been used. The 
mixture of different microorganisms assists in the 
transfer of electrons derived from the metabolism 
of organic wastes in this case.

The bacteria in pure culture systems are highly 
substrate specific compared to their mixed cul-
ture counterpart. Studies found that the power 
density using mixed cultures is relatively higher 
than those using pure cultures in same MFC 
(Logan et  al. 2006; Ishii et  al. 2008). Mixed 
microbial communities are preferred mainly due 
to their stability, robustness, nutrient adaptability, 
and stress resistance. Additionally, the ease of 
availability and tolerance to environmental 
changes makes the use of mixed cultures highly 
promising for bulk-scale systems. The mixed cul-
ture systems adapt slowly to generate stable 
power output which is evident from the reports 
that the start-up time ranges from a few days to 
3 months. The use of complex substrates such as 
wastewaters and mixed inoculum sources leads 
to the growth of a diverse group of microbes at 
anode and in bulk of MFCs (Min et  al. 2005b; 
Venkata Mohan et al. 2007).

10.2.4	 �MFC Configurations

A wide variety of MFC designs and configura-
tions have been employed by several research 
groups for simultaneous waste treatment and bio-
electricity generation. Based on the architecture 
and operation, they are broadly classified into 
double-chambered, single-chambered air-
cathode, up-flow, and stack MFCs.

10.2.4.1	 �Two- or Double-Chambered 
MFC

A typical double-chambered MFC comprises of 
anodic and cathodic chambers separated by a cat-
ion or proton exchange membrane (CEM or 
PEM). These membranes facilitate the flow of 
cations or protons to the cathode chamber and 
limit the diffusion of oxygen or other oxidants to 
anode chamber. The two-chambered MFCs can 
have various practical shapes. H-type MFC is the 
most extensively used MFC configuration, which 
consists of two bottles or units connected by a 
tube containing a PEM as separator (Min et  al. 
2005b; Oh and Logan 2006; Hou et  al. 2009; 
Picot et  al. 2011). The power generated in this 
system is quite low due to high internal resistance 
(Logan et al. 2006). This configuration primarily 
finds its application in basic research such as 
evaluating power generation using new electrode 
or separator materials or for microbial commu-
nity analysis that develops during the degradation 
of specific pollutants (Sevda et  al. 2013b). 
Nowadays, parallel-plate configurations are more 
frequently used. These offer better membrane to 
working volume ratio, low resistance, and better 
symmetry (Fuentes-Albarrán et al. 2012).

10.2.4.2	 �Single-Chambered  
Air-Cathode MFC

The scale-up of double-chambered MFCs has 
been found to be tough task due to its complex 
design. Hence, single-chambered MFCs are 
developed to minimize the costs and construction 
issues. A typical single-chambered cell consists 
of only an anode chamber with cathode in direct 
contact with air widely referred to as air cathode. 
The cost-effective single-chambered air-cathode 
MFCs have been found to be more advantageous 
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over the double-chambered MFCs (Park and zei-
kus 2003; Liu and Logan 2004; Sukkasem et al. 
2008; Lorenzo et  al. 2009; Tugtas et  al. 2011; 
Zhang et al. 2011a). This is mainly due to follow-
ing reasons: (1) no aeration in cathode chamber is 
needed and passive air can be used; (2) ease of 
operation, no recycling, or chemical regeneration 
of catholyte is required; and (3) higher volumet-
ric power density can be obtained because of 
smaller cell volume (Fan et al. 2007). In this con-
figuration, the PEM is bonded with the cathode 
material into a single entity.

In order to further minimize the costs, 
membrane-less MFCs have been developed. 
These MFCs were easier to construct and gener-
ated relatively high power density (Liu and Logan 
2004). However, before the columbic efficiency 
was much lower than the system with membrane 
mainly due to the consumption of substrate by 
the oxygen diffused across the cathode (Liu and 
Logan, 2004). Other major challenge in this sys-
tem is the distance between the anode and the 
cathode. It is confined to range of 1–2 cm because 
of higher risk of short circuit and potential nega-
tive effect of oxygen on the activity of biocata-
lysts on the anode (Liu et al. 2005; Cheng et al. 
2006a). Researchers have tried many configura-
tions in order to overcome these obstacles and 
generate high current density (Min et al. 2005b; 
Oh and Logan 2006; Hou et al. 2009; Picot et al. 
2011).

10.2.4.3	 �Up-Flow MFC
In the initial attempts to scale up MFC technol-
ogy, up-flow MFCs (UMFCs) seemed to be a 
promising configuration for bulk-scale wastewa-
ter treatment and simultaneous electricity genera-
tion (Jang et  al. 2004). This hybrid design 
combining the features of MFC and up-flow 
anaerobic sludge blanket (UASB) reactor mini-
mizes the power consumption during agitation/
mixing. In this design, increased rate of electro-
chemical reactions and quick biofilm formation 
is well facilitated due to nonmechanical mixing 
or agitation. When the reactor is fed from the bot-
tom of the anodic chamber with anolyte along 
with simultaneous discharge of effluent from 
cathodic chamber to anodic chamber, an up-flow 

hydraulic pattern is created. This pattern ensures 
proper mixing of the anolyte. To avoid any biogas 
accumulation, the PEM in UMFC is inclined at 
an angle of 15° to the horizontal plane. Being a 
low-power consuming and continuously fed 
MFC, UMFC is considered to be an encouraging 
design for large-scale treatment of wastewaters. 
Scalable and commercial UMFCs  – multiphase 
UMFC and U-shaped cathode UMFC  – have 
been developed by researchers showcasing the 
ability of MFCs to generate high power output 
(Yang et al. 2011a).

10.2.4.4	 �Stack MFC (Scalable MFCs)
The voltage or current output can be enhanced 
using a uniquely structured MFC architecture 
known as stack MFCs. In this system, several 
MFCs are connected either in series or parallel 
based on the operational requirements. The 
MFCs are connected head-to-tail using insulated 
pipes. The current gets summed up when the 
cells are connected in parallel and the voltage 
remains same. While in series connection, com-
mon current flows through the cells and the volt-
age gets added (Larminie and Dicks 2000). In 
both series and parallel connections, the perfor-
mance of individual cells is interindependent on 
each other. A study found that current production 
in series connection is six times lower compared 
to that in parallel connection when operated at 
same volumetric flow rate. Due to relatively high 
short-circuit current in parallel connection, high 
rate of biochemical reaction is achieved than fuel 
cells in series (Aelterman et  al. 2006). Stack 
MFC with parallel connection is the most appro-
priate configuration for rapid substrate degrada-
tion and high current densities. Electrode 
separators are essential in this type of configura-
tion limiting their use in open environment (Kim 
et al. 2012; Cheng and Logan 2007).

10.2.5	 �Factors Affecting the MFC 
Performance

In self-sustaining systems like MFCs, the 
research focus has been always on enhancing the 
efficiency of waste treatment and optimizing the 
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bioelectrocatalytic performance of these systems. 
Several critical parameters such as microbial 
inoculum and its concentration, substrate compo-
sition and concentration, pH of the feed, feeding 
rate, temperature, electrode materials, ion 
exchange separators, and reactor configuration 
influence the performance of MFCs. In general, 
mixed microbial communities offer to be better 
biocatalysts for electricity generation with waste-
waters. Loading pH affects current density and 
coulombic efficiency in a waste treatment sys-
tem. Metabolic activities like proton transloca-
tion, amino acid degradation, adaptation to acidic 
or basic conditions, and virulence (Olson 1993) 
are dependent on the pH of the system. The influ-
ent pH affects the start-up time of biofilm forma-
tion and also the maximum current outputs (Patil 
et al. 2011). Higher current density and coulom-
bic efficiency were observed in acidophilic con-
ditions. Effective electron discharge at higher 
resistance was observed in acidic conditions 
compared to neutral and alkaline conditions 
(Veer Raghavulu et al. 2009). In small-scale sys-
tems, the pH gradients across the electrode hin-
der the growth of microorganisms and lead to 
reduced performance of microorganisms in con-
tact with electrode surface. At low pH, microor-
ganisms are prone to higher stress levels. 
Investigations found that enriched bacteria have 
improved pH tolerance compared to normal cul-
tures (Borole et  al. 2011). Acidic pH facilitates 
efficient proton transfer to the cathode chamber 
and at the same time also minimizes the proton 
gradient. A study found acidic pH of 6.0 proved 
to be ideal for mixed consortia to form biofilm 
with simultaneous electricity generation (Veer 
Raghavulu et al. 2009).

The impact of temperature on the MFC per-
formance is crucial for long-term and commer-
cial operations. The growth and electrocatalytic 
properties of the biofilm vary with temperature. 
In tropical weather conditions, the performance 
of bacteria enriched at higher temperatures 
showed great promise in MFC applications. In 
such cases high current density is observed at 
temperature of 40  °C (Liu et  al. 2010). 
Additionally, the temperature used during the 
enrichment phase also affects the bioelectrocata-

lytic performance of the system (Patil et  al. 
2010). Bacteria enriched at lower temperatures 
produced higher current densities when operated 
at low temperatures. The thermophilic bacteria 
are found to be generating higher current densi-
ties at high temperatures like 60  °C.  Substrate 
concentrations and loading also affect the MFC 
performance. The metabolism might shift toward 
other metabolic pathways like acetogenesis or 
methanogenesis when there is excess of substrate 
and absence of low-resistance path to an electron 
sink. Further, the performance of MFCs depends 
on many other factors like electrode spacing, 
anolyte conductivity, and membrane type (Liu 
et al. 2005; Cheng et al. 2006b).

Electrode materials and their properties are 
the key factors which influence the performance 
of MFCs. High electrical conductivity, biocom-
patible surface, chemical stability, inert nature 
(non-oxidative), non-self-destructive and electro-
catalytic activity, and sustainability of its proper-
ties with time are some of the important properties 
of the electrodes, which need to be considered 
(Srikanth et  al. 2011; Rosenbaum et  al. 2007; 
Guo et al. 2014b). Both electron propagation and 
electron-transfer characteristics vary with prop-
erties of electrode (Aelterman et  al. 2008; 
Larrosa-Guerrero et al. 2010; Liu et al 2010). In 
open circuit condition, the biofilm formation is 
affected by nature of electrode but not affected in 
closed conditions (Larrosa-Guerrero et al. 2010). 
Current densities vary with surface roughness or 
microbially accessible surface of the electrode 
(Dumas et al 2008a). Biofilm growth and diffu-
sion of substrate is maximized by either increas-
ing the pore properties or nano-modification of 
electrodes. This modification maximizes the true 
surface area for swift electron exchange. The 
influence of substrate composition, waste, and 
wastewaters on the production of bioelectricity 
will be explained in the upcoming sections.

10.2.6	 �Electrode Materials Used 
in MFCs

A wide variety of materials have been investi-
gated to function as electrodes over the past few 
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decades. Several noble metals like Pt, Au, Ag, 
and Pd and other metals like Rh, Ir, Ni, and Cu 
have been used mainly due to their properties like 
high conductivity, broad working potential range, 
and specificity for sensing and detection applica-
tions (Kumar et  al. 2013). But high costs and 
weak adhesion of inoculated bacteria restrict the 
utility of these electrodes in MFCs. Later on, 
researchers turned to other materials like, stain-
less steel, aluminum, and carbon based materials 
to function as anodes (Ouitrakul et  al. 2007). 
High ohmic and activation losses were reported 
when nickel was used and weaker adhesion of 
inoculated bacteria on stainless steel limited the 
application of these materials as anodes.

Several advantages associated with carbon-
based electrodes prompted researchers to use 
these materials as a potential substitute to previ-
ously employed metal-based electrode materials. 
Many forms of carbonaceous materials with/
without modifications have been tried as anode 
materials in MFCs. These include mainly carbon 
cloth (Liu et al. 2005), carbon felt (Logan et al. 
2007), carbon foam (Chaudhuri 2003), reticu-
lated vitreous carbon (RVC) (He et  al. 2005), 
graphite sheets (Srikanth et  al. 2011; Venkata 
Mohan et  al. 2007, 2009a, b), graphite rods 
(Rabaey et al. 2004), graphite granules (Rabaey 
et al. 2005a), graphite fiber brushes (Logan et al. 
2007; Zou et  al. 2010; Liu et  al. 2005; Cheng 
et al. 2006b), and carbon fiber mats (Chen et al. 
2011; Patil et al. 2013). Relatively high physical 
strength, enhanced conductivity, eco-friendly 
nature, low cost, roughness, biocompatibility, 
etc. made carbon-based materials more suitable 
as anodes.

These carbonaceous electrodes are grouped 
broadly into flat, packed, and brush electrodes 
based on their configuration. Materials like carbon 
cloth and paper, graphite plates, glassy carbon, 
carbon mesh, and fibers fall under the category of 
flat electrodes, whereas carbon felt, reticulated vit-
reous carbon, granular activated carbon, granular 
graphite, and graphite disks fall under the stuffed 
electrodes. Graphite fiber, a brush electrode, pos-
sesses fibrils which are structures formed by wind-
ing finely cut slices of carbon fibers in the form a 
brush. These fibrils enhance the sustenance of 
microorganisms on the surface of anodes. Fiber 

brush electrodes have higher surface area com-
pared to flat and stuffed configurations (Kumar 
et al. 2013). Carbon nanostructures are being used 
in several studies because they exhibit excellent 
electron-transfer characteristics with a high sur-
face area to volume ratio and also provide a viable 
support for biofilm growth (Sharma et al. 2008). 
Further, impregnated and immobilized nanostruc-
tures are being extensively explored due to their 
positive impact on conductivity and charge trans-
fer (Wei et al. 2011).

Generally, the cathode material is the same as 
that of anode. In wastewater-fed MFCs, carbon 
fibers linked with conducive and noncorrosive 
materials like nickel and titanium proved to func-
tion as good cathodes (Hasvold et al. 1997, 1999). 
Previously, precious metal like pt has been used 
as a catalyst when oxygen is used as the electron 
acceptor. But recent advancements in electrode 
development found new cathodes where pt is 
held on the electrode supporting material using a 
binder like Nafion (perfluorosulfonic acid) or 
polytetrafluoroethylene (PTFE). Studies found 
that though density of pt loading can be reduced 
to minimize the costs, cheaper alternates like 
cobalt- and iron-organic mixture catalysts should 
be used (Cheng et  al. 2006b; Zhao et  al. 2005) 
mainly due to the high costs incurred in electrode 
development. Materials like carbon paper and 
graphite rods are not quite suitable for scale-up 
because of their inherent lack of durability, struc-
tural strength, and high costs. Design of new 
electrodes like activated carbon air cathodes is 
quite essential for large scale and longer use of 
MFCs for wastewater treatment (Zhang et  al. 
2011a, c, 2014; Pant et al. 2010b).

10.3	 �Potential Waste 
and Wastewater Feedstocks 
for MFCs

10.3.1	 �Potential of Wastes 
and Wastewaters 
as Substrates for MFCs

A diverse array of waste and wastewaters offers 
to be a rich and renewable substrate for bioen-
ergy, biofuels, and value-added chemical genera-
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tion (Rozendal et  al. 2008a, b). The use of 
negative or low-value waste streams helps in 
simultaneous tackling of globally and environ-
mentally critical issues like sustainable energy 
sources, pollution reduction, and wastewater 
treatment (Pant et al. 2012). Abundance, cheaper 
costs, and sustainability of wastes make them an 
economic commodity to be used as a potential 
substrate source for MFC technology for the pro-
duction of sustainable, renewable, and eco-
friendly power with simultaneous 
accomplishment of waste treatment. Major con-
stituents of wastes/wastewaters act as active elec-
tron donors to promote growth, metabolic 
activity, and functioning of electrogenic 
bacteria.

10.3.2	 �Influence of Wastewater 
Nature or Composition 
on the Performance of MFCs

The substrate is the most integral component in 
any biological system principally because it 
serves as carbon (nutrient) and/or energy source 
(Pant et al. 2012). The composition, nature, and 
characteristics of the wastes are the driving fac-
tors which determine the efficiency and commer-
cial viability of the waste to energy conversion 
systems. The concentration of individual compo-
nents of waste/wastewaters that can be trans-
formed into energy is of special interest in BESs 
(Angenent and Wrenn 2008). The composition of 
the microbial assemblage and its integrity on the 
electrode surface as a biofilm varies drastically 
with the nature of the waste stream. Equally, crit-
ical performance parameters like coulombic effi-
ciency, power density and treatment efficiency, or 
COD removal of waste treating MFCs depend on 
the influent constituents and concentration (Chae 
et al. 2009).

10.3.3	 �Types of Wastes Feedstocks

The primitive/first usage of wastewaters in MFCs 
for bioelectricity generation dates back to 2004 
(ElMekawy et  al. 2015). Since then, a broad 

spectrum of soluble or dissolved complex organic 
wastes/wastewaters and renewable biomass 
emerging from domestic to industrial sectors 
have been employed for simultaneous bioenergy 
generation and waste remediation (Pant et  al. 
2012; ElMekawy et  al. 2015). Several solid 
wastes like food wastes, cattle manure, wheat 
straw, corn stover, etc. and various domestic, 
industrial, and agricultural wastewaters have 
been studied for bioelectricity generation. 
Tables 10.1 and 10.2 showcases an overview of 
the performance of MFCs fed with various wastes 
and wastewaters.

10.4	 �Electricity Production 
and Waste/Wastewater 
Treatment Using MFCs

The wastes and wastewaters are the most obvious 
potential substrates to operate MFCs due to their 
high organic content. Various electroactive and 
non-electroactive microorganisms aid in trans-
forming the chemical energy stored in chemical 
compounds in biomass or wastes to electrical 
energy. Due to direct conversion of chemical 
energy into electricity instead of heat in MFCs, 
Carnot cycle with a limited thermal efficiency is 
avoided and theoretically a higher conversion 
efficiency system (>70  %) can be developed, 
similar to a conventional fuel cell (Du et  al. 
2007). Besides renewable production of electric-
ity, biofilms of electroactive bacteria in MFCs 
facilitate proficient removal of organic carbon 
from wastewaters (Pant et al. 2012). By doing so, 
MFCs potentially reduce the energy requirement 
by over 50 % compared to the energy required for 
conventional treatment technologies where huge 
amount of energy is spent on aerating the acti-
vated sludge (Du et  al. 2007). Comparatively, 
they produce 50–90  % lesser disposable solids 
during the treatment process (Holzman 2005). 
Most importantly, they enhance and sustain the 
growth of bioelectrochemically active microbes 
during the treatment ensuring operational stabil-
ity (Du et al. 2007). The most striking advantage 
of bioelectricity over bioproducts production 
using BESs is that it can be utilized in situ or on 
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site without any purification or isolation steps 
(Kang et al. 2010). Both solid wastes and liquid 
waste streams can be potentially treated using 
MFCs as further elaborated in subsequent 
sections.

10.4.1	 �Solid Wastes

The origin of various solid waste feedstocks is 
dispersed over many domains ranging from 
marine environment (Bond et  al. 2002) to agri-
culture and domestic sectors (Pant et al. 2010a; 
ElMekawy et al. 2015). Agricultural residues like 
corn stover, cattle manure, wheat straw, etc. have 
been tried as substrate in BESs. The carbon and 
nitrogen compounds present in cattle manure 
help in proliferation of microbial communities in 
MFCs (ElMekawy et al. 2015). Agricultural par-
ticulate matter like wheat straw and corn stover is 
majorly composed of cellulose and hemicellulose 
which can be actively utilized for bioelectricity 
generation. The challenge of using such lignocel-
lulosic biomass rests on the inability of the elec-
troactive microorganisms to degrade them 
directly. Conversion of cellulose into monosac-
charides or other low-molecular-weight com-
pounds through hydrolysis (Ren et al. 2007) and 
hemicellulose into soluble sugars using cellulo-
lytic enzyme treatment or steam explosion pro-
cess (Zuo et al. 2006) becomes a necessary step 
to boost the degradation and activity of microor-
ganisms in this case. These hydrolyzed com-
pounds are ideal substrates to support 
bioelectricity generation. Microbial communities 
with both cellulolytic and exoelectrogenic activi-
ties are necessary to maximize the power output 
with such agricultural wastes (Rezaei et  al. 
2009b).

Highly biodegradable food wastes in the form 
of vegetable waste, yogurt waste, and other edi-
bles are available in surplus due to daily routine 
of mankind. These can be readily used to tap bio-
electrochemical energy due to their rich organic 
content (Digman and Kim 2008; Li and Yu 2013). 
Pre-fermentation of these food wastes before 
feeding them in MFCs can lead to better perfor-
mances. Studies performed under different oper-

ational and experimental conditions using 
multiple solid residual wastes highlight their 
promising use in MFCs (Table 10.1). The power 
densities achieved with such wastes vary from 16 
to 331  mW/m2 accompanied by COD removal 
efficiencies lying between 62 % and 91 %.

10.4.2	 �Wastewater Sources

10.4.2.1	 �Industrial Wastewaters
The effluents from slaughter houses, chemical, 
brewery, food processing, and other industries 
are the most sought out substrates in BESs 
(Katuri et al. 2012; Li et al. 2013a, b). The ease of 
availability and the necessity to treat these high 
organic matter-containing high strength effluents 
have made these wastewaters an ideal fuel source 
to generate bioelectrochemical energy. 
Wastewater streams from food processing and 
beverage industries like brewery, winery, dairy, 
vegetable, meat, and other food-processing 
industries are abundant in availability, rich in 
organic content, and possess high biodegradabil-
ity (Digman and Kim 2008; Li and Yu 2013; Guo 
et  al. 2014a). The absence of microbial growth 
inhibiting agents in these wastewaters adds up to 
an additional advantage. In the frequently used 
wastewaters in MFCs, COD concentration ranges 
from 3000 to 5000 mg/L (Zhang et al. 2013a, b; 
Zhuang et al. 2012). Integrated treatment systems 
coupled with MFCs have also been employed to 
treat wastewaters such as palm oil mill effluents 
to pull down the costs incurred in conventional 
treatment of the mill wastewaters (Ahmad et al. 
2011; Cheng et  al. 2010; Leaño et  al. 2012). 
MFCs have been proved to be better treatment 
systems for animal and chemical industrial 
wastewaters with COD removal efficiencies 
ranging from 65 to 92 % (Table 10.2).

10.4.2.2	 �Domestic and Agricultural 
Wastewaters

The domestic and agricultural wastewaters are 
relatively less strong in terms of organic content 
compared to industrial counterparts (Pant et  al. 
2010a). The necessity to treat household and san-
itary let-offs led researchers and public environ-
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mental bodies to focus on treatment systems like 
BESs. These low-strength wastewaters have been 
well exploited by several research groups to 
obtain better energy output than industrial waste-
waters. Manure wash water and agricultural 
effluents are more efficient than agricultural par-
ticulate and residual wastes for electricity 
production in MFCs (Zheng and Nirmalakhandan 
2010). Power densities obtained using domestic 
wastewaters are greater than agricultural and 
industrial counterparts (Table  10.2). However, 
the treatment efficiencies obtained using these 
wastewaters are relatively lower due to lesser 
COD levels. Table 10.2 gives a comparative over-
view of the most commonly used wastewaters 
employed for bioenergy generation in MFCs.

10.5	 �Challenges of Employing 
MFCs for Waste/Wastewater 
Treatment

Though MFC technology seems to be a promis-
ing bioprocess system, its utility is limited by 
various operational and economic challenges. 
From application’s point of view, power density 
of about 1 kW/m3 or equivalent current density of 
5000 A/m3 of total anolyte volume or 50 A/m2 of 
projected anode surface area, if an average volt-
age output of 0.2 V is expected to be reachable 
under load conditions, would be sufficient for 
long-term and commercially viable applications 
(Clauwaert et al. 2008). Thus far, maximum cur-
rent densities ranging from 10 to 25  A/m2 for 
milliliter-scale systems and 6 A/m2 or lower for 
liter- or higher-scale systems have been achieved 
with wastewater-fed MFCs (Rabaey et al. 2010a). 
The challenges associated with the use of MFCs 
for wastewater treatment are discussed in the 
upcoming sections.

10.5.1	 �Scale-Up

The commercialization of bioelectricity produc-
tion using MFCs has always been a curious and 
challenging attempt for many research groups. 
The notable attempts of pilot testing of MFCs 

were made by three research groups during the 
last decade. A reactor with total volume of 1 m3 
comprising of 12 modules, each 3 m high, was 
tested at Foster’s brewery in Yatala, Queensland 
(Australia), by the Advanced Water Management 
Center at the University of Queensland (Logan 
2010). This MFC generated maximum current of 
2A/cell at 400 mV voltage with power density of 
0.5  W/m2 of membrane area and 8.5  W/m3 of 
reactor volume. Additionally, COD removal of 
0.2  kg COD/(m3  d) was reported in this pilot 
study (Keller and Rabaey 2011). Researchers at 
University of Connecticut and their collaborators 
(Fuss and O’Neill and Hydroqual Inc.) set up a 
system at a site in the USA (Jiang and Li 2009) 
treating wastewater, removing up to 80 % of the 
chemical oxygen demand present at 300–
600  mg/L. A large-scale setup for biohydrogen 
production using MEC technology was con-
structed at the Napa Wine Company, in Oakville, 
CA, USA, by Penn State researchers with engi-
neering services by Brown and Caldwell (Walnut 
Creek, CA, USA). It consisted of 24 modules, 
each with six pairs of electrodes, and is approxi-
mately treating 1 m3 of wastewater (Logan 2010).

The scale-up of this technology is limited by 
many factors such as the cost of electrodes, low 
power densities, and potential losses in long-term 
operation. Extensive tests including pilot-scale 
studies are necessary to know the performance of 
materials at larger scale and their longevity, and at 
the same time examination of BESs with varia-
tions in fuel (wastewater) composition, tempera-
ture, and as a function of maintenance (e.g., to 
control fouling on electrodes) are highly critical 
(Logan 2010). The economic and operational lim-
itations in bulk-scale systems are discussed in the 
forthcoming sections. Stacks cells are found to be 
useful in enhancing the performance, but the 
problem of voltage reversal due to differences in 
resistances between stack cells and substrate star-
vation in cells during operation (Oh and Logan 
2007) limits their chance of operating on large 
scale. It has been found that the voltage reversal 
can be minimized by avoiding low substrate con-
centrations (that occur in fed-batch cycling) using 
continuous flow and by closely matching internal 
resistances among cells in the stack (Logan 2010).
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10.5.2	 �Operational Limitations

The major operational limitations of pilot-scale 
MFCs include operating under natural 
environment; exposure to sun, wind, rain, and 
insects; low temperature during night time; 
uneven flow and composition of wastewater; 
clogging of feed line due to biofilm growth; and 
lastly difficulty in online potentiometric mea-
surement at large scales (Keller and Rabaey 
2011). Partial utilization or degradation of waste 
in large-scale continuous reactors is another 
major point of concern. The growth of excessive 
and unwanted biomass in cathode chambers and 
biofouling on cathode also affects the long-term 
performance in pilot-scale MFCs.

10.5.3	 �Economic Limitations

The major obstacle in bulk-scale production sys-
tems is the high costs of electrodes, installation, 
and operation. Though introduction of current 
collectors into electrodes (Zhang et  al. 2009a; 
Zuo et al. 2008), chemical treatments, and use of 
precious metals (Cheng and Logan 2007; Liu 
et al. 2007b) enhance the power output, the eco-
nomic constraints restrict their utility. For exam-
ple, fuel cell grade materials can cost 
approximately $1,000/m2 which is quite expen-
sive (Logan 2010). Cheaper electrode treatment 
techniques like simple heat treatment of the car-
bon mesh offer to be economical and sufficient 
for good energy generation (Wang et al. 2009a) 
compared to expensive high-temperature ammo-
nia gas treatment which facilitates bacterial adhe-
sion and increases power densities (Cheng and 
Logan 2007). For scale-up, graphite fiber brush 
anodes (Feng et  al. 2010; Logan et  al. 2007; 
Nielsen et  al. 2007) are promising electrode 
materials. In waste treatment systems, aeration in 
cathode chamber is a costly affair. Alternate 
materials like activated carbon with metal mesh 
current collector are used for oxygen reduction. 
Cathodes impregnated with metals like iron and 
nickel displayed power densities ranging from 23 
W/m3 to 36 W/m3 (Aelterman et al. 2009; Zhang 
et  al. 2009a). But usage of cheaper metals like 
stainless steel and cheaper binders protects the 

cathode from corrosion and at the same time 
improves power densities in bulk-scale systems. 
Interestingly, biocathode research is catching 
pace to help developing BESs into large-scale 
energy-producing units. In attempts to pull the 
cost further down, removal of membrane separa-
tors improved the performance in treatment sys-
tems. But, the use of membrane separator is 
beneficial in scale-up systems as it allows closer 
electrode spacing and prevents short circuiting 
which in turn improves power densities on a vol-
umetric basis (Logan 2010).

10.6	 �MFCs Toward a Sustainable 
Technology Development

Some strategies that can be used to improve the 
performance of MFCs are discussed below.

10.6.1	 �Waste/Wastewater 
Pretreatment

The nature of substrate and applied organic load 
affects power generation as well as substrate degra-
dation in MFCs. Majority of solid wastes are highly 
heterogeneous in nature which hinder rapid meta-
bolic degradation by electroactive microorganisms. 
Pretreated wastes/wastewaters generated either 
through fermentation or hydrolysis offer optimum 
organic content compared to raw substrates. 
Pretreatment minimizes the activation losses which 
further enhances the bioelectrochemical activity of 
the biocatalyst and the process efficiency. It has 
been reported that pre-fermented food wastes show 
high catalytic activity and decent current density 
with added advantage of effective electron transfer. 
With pre-fermented waste, 47  % higher current 
density has been obtained than that with untreated 
waste (Goud and Mohan 2011).

10.6.2	 �Bioaugmentation

Bioaugmentation majorly finds its application in 
treatment systems as it accelerates the treatment 
efficiency of hazardous waste sites or bioreactors 
for the effective removal of undesired compounds. 
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Studies found that bioaugmentation was benefi-
ciary in improving the start-up of a bioreactor 
(Wilderer et  al. 1991), to boost reactor perfor-
mance (Stephenson and Stephenson 1992), to 
protect the existing microbial community against 
adverse effects (Venkata Mohan et al. 2009a), to 
accelerate the onset of degradation process (Bathe 
et al. 2005; Hu et al. 2008; Park et al. 2008), or to 
compensate for organic or hydraulic overloading 
(Chong et al. 1997). It offers a promising strategy 
to improvise the working of wastewater treating 
MFCs. It spins around the concept that the active 
inter-special interactions in a biological system 
like MFC could aid in efficient electron transfer 
(Lovley 2006) and consequently enhance the bio-
electricity generation. Augmentation with robust 
and catabolically relevant organisms having spe-
cialized and desired characteristics improves the 
bioprocess efficiency. Nowadays, indigenous 
wild type or genetically modified organisms are 
employed as augmenting catalysts (Veer 
Raghavulu et  al. 2012). The alliance between 
Brevibacillus sp. and Pseudomonas sp. enhanced 
the energy outcome and highlighted the higher 
and effective electron transfer (Pham et al. 2008). 
The synthesis of mediators by Pseudomonas sp. 
helped its counterpart to achieve extracellular 
electron transfer. On similar grounds, Shewanella 
sp. has been identified to function as an augment-
ing agent (Veer Raghavulu et  al. 2012) under 
diverse environmental conditions to assist elec-
tron transfer due to its ability to synthesize redox 
mediators (Fredrickson et al. 2008; Richter et al. 
2007; Lower et  al. 2007). A stable and higher 
electrogenic activity throughout the operation was 
reported in a system augmented with S. haliotis 
(Veer Raghavulu et al. 2012). High potential dif-
ference is maintained for a longer period enabling 
higher electron discharge and reduction in activa-
tion losses. Augmented systems have greater 
functioning than those using individual and mixed 
consortia (Veer Raghavulu et  al. 2012). 
Syntrophically associated bioaugmented systems 
can be commercially viable mainly due to its abil-
ity to supplement performance parameters like 
higher power output for longer periods, stable 
electron discharge throughout operation, and high 
substrate degradation.

10.6.3	 �Bioprocess Integration

For a sustainable technology development, 
neutral-energy operation, cost-effective process, 
stable performance, high effluent quality to meet 
water reclamation and reuse requirement, less 
resource consumption, a low environmental foot-
print, and good social equity are quite essential 
(Muga and Mihelcic 2008; Levine and Asano 
2004). In the present technological scenario, it is 
quite challenging to achieve these traits concur-
rently. Bioprocess integrations offer a fascinating 
concept to visualize an efficient and sustainable 
technology for electricity generation and simulta-
neous waste treatment. Attempts to integrate 
MFC technology with other bioprocesses gener-
ated higher current densities compared to con-
ventional reactors. Incorporating processes like 
forward osmosis (Zhang et  al. 2011b) and acti-
vated sludge process (Liu et al. 2011b) with MFC 
showcased better performance in terms of power/
current densities. The use of forward osmosis 
membrane separator facilitates better proton dif-
fusion with water flux and more electricity. This 
technology helps in simultaneous wastewater 
treatment, water extraction from wastewater, and 
bioelectricity generation. Development of a 
sophisticated reactor design like anaerobic fluid-
ized bed MFC and bioelectrochemical membrane 
reactor holds great promise for sustainable and 
green energy recovery and waste treatment pro-
cess. Simultaneous integration of multiple treat-
ment processes like an up-flow anaerobic sludge 
blanket reactor–MFC biological aerated filter 
(UASB–MFC–BAF) highlights the commercial 
ability of integrated MFC technology (Zhang 
et al. 2009a).

10.7	 �Microbial Electrocatalysis: 
Latest Advancements 
and Other Applications

Over the past few years, MFC technology paved 
way for developing advanced and alternate bio-
processes. Several research groups showed keen 
interest in investigating its possible integration 
with other processes mainly due to its innovative 
features and environmental benefits (Logan et al. 
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2006; Rabaey and Verstraete 2005; Rozendal 
et al. 2009). Microbial electrocatalysis has been 
explored to develop applications for the produc-
tion of hydrogen (Logan et  al. 2008) and other 
chemicals (Rozendal et al. 2009), resource recov-
ery (Xie et  al. 2014), desalination (ElMekawy 
et al. 2014a), and bioelectrochemical treatment. 
A brief discussion explaining these advance-
ments is given in the upcoming sections.

10.7.1	 �Microbial Electrolysis Cells: H2 
Production

Biohydrogen is projected to be crucial player in 
the nonfossil fuel-based future economy. This 
green fuel was initially produced using two bio-
processes: converting carbohydrates by fermen-
tative bacteria (dark fermentation) and converting 
organic acids by photosynthetic bacteria (photo-
fermentaion) (Liu et  al. 2010). Microbial elec-
trolysis cells (MECs) are developed to curtail the 
limitations and challenges of biohydrogen pro-
duction using these two processes. In this modi-
fied MFC system, hydrogen is produced by 
electrohydrogenesis from acetate or fermentation 
end products. Bacteria referred as exoelectrogens 
help in the oxidation of substrate to transfer elec-
trons to anode. The basic difference between 
MFC and MEC lies in the cathodic reaction. In a 
MFC, current is produced by the oxygen reduc-
tion under aerobic condition at cathode, whereas 
in a MEC, due to anaerobic condition at cathode, 
no spontaneous generation of current is possible. 
Current is spontaneously produced in MFCs due 
to the higher redox potential of oxygen compared 
to that of a microbial anode which facilitates easy 
flow of electrons from anode to cathode. But in 
MECs, there is no spontaneous flow of electrons 
because the redox potential of hydrogen reduc-
tion, protons to hydrogen, at cathode is lower 
compared to that of reaction at anode. Thus, a 
small external voltage is required to the circuit 
for the reaction to proceed (Logan et al. 2006). 
MECs were initially referred to as bioelectro-
chemically assisted microbial reactors (BEAMR) 
(Logan et  al. 2006). Owing to higher hydrogen 
recovery and wider substrate diversity, biohydro-

gen production through MECs gained a lot of 
interest compared to that of the fermentative 
counterparts. But, the production has been low 
with domestic wastewaters feeds (Ditzig et  al 
2007; Wagner et al. 2009). Simultaneous produc-
tion of methane is one of the major limiting fac-
tors in extensive use of MECs for hydrogen 
production. Several studies have focused on eval-
uating the simultaneous wastewater treatment 
capacity of MECs. Treatment efficiencies rang-
ing from 19 to 72  % have been reported when 
swine wastewaters were used as substrate 
(Wagner et al. 2009). Reported pilot-scale studies 
using winery wastewaters displayed 44 % lesser 
performance compared to lab-scale setups 
(Cusick et al. 2011). This shows the need for fur-
ther improvements in developing efficient MEC 
technology.

10.7.2	 �Microbial Electrosynthesis

Besides electricity generation and waste treat-
ment, BES has garnered great interest in the field 
of microbial electrosynthesis. This concept aims 
at reducing carbon dioxide or waste gases and 
organic substrates to multicarbon compounds 
using different terminal electron acceptors (Nevin 
et al. 2010). The first report of reducing carbon 
dioxide to acetate and 2-oxobutyrate was exhib-
ited by biofilms of Sporomusa ovata growing on 
graphite cathode surfaces. This field addresses 
the use of microorganisms to function as biocata-
lysts on cathodes (i.e., biocathodes) to perform 
electricity-driven synthesis of chemicals and 
fuels compounds (Rabaey et al. 2010b; Sharma 
et al. 2013). Other hydrocarbons such as methane 
and ethanol have been synthesized using this 
mechanism (Pant et al. 2012). Extensive research 
is yet to be done to establish this field on lab and 
then pilot to commercial scales.

10.7.3	 �Microbial Desalination

The major limiting factors in large-scale treat-
ment of wastewaters using MFCs are (1) lower 
conductivity (1–2 mS/cm) and alkalinity (100–
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300  mg CaCO3/L) of wastewaters (Rozendal 
et al. 2008a; Ter Heijne et al. 2006; WEF 2007) 
and (2) pH variations during operation. The main 
reason for the pH drop is the relative slower dif-
fusion of protons compared to transfer of elec-
trons which subsequently inhibits microbial 
activity (Luo et al. 2012). Recent advancements 
found a way to curtail these limiting factors in the 
form of a microbial desalination cell (MDC). 
MDC is a modified version of a MFC with a cen-
tral desalination chamber separated from anode 
and cathode chambers with the help of an ion 
exchange membrane. In MDC, a potential gradi-
ent is generated due to typical anodic and cathodic 
reactions. This gradient generated by the bacteria 
helps in the diffusion of ions from the central 
chamber to the adjoining cathode and anode 
chambers (Cao et al. 2009) thereby increasing the 
ionic strength and the conductivity of the waste-
water. For example, the effluents of oil and gas 
production industries are a rich source of bicar-
bonate ions (Benko and Drewes 2008). The trans-
fer of these bicarbonate ions during desalination 
to anode chamber increases the alkalinity of 
wastewater which further enhances the treatment 
efficiency and bioelectricity production. A study 
found that an MDC can improve the power den-
sity by four times, COD removal by 52 %, and 
coulombic efficiency by 131 % (Luo et al. 2012) 
clearly highlighting an integrative and promising 
approach for wastewater treatment with simulta-
neous energy production and desalination.

10.7.4	 �Bioelectrochemical Treatment 
of Pollutants

In an advancing approach, BESs are being 
explored for bioelectrochemical treatment of var-
ious organic, inorganic, and aromatic compounds 
alongside conventional COD reduction.

The shift of focus toward these systems from 
conventional treatment methodologies is primar-
ily attributed to the synthesis of toxic by-products, 
operational, and economic constraints of existing 
physicochemical remediation approaches. 
Moreover, biological treatment systems are rela-
tively 5–20 and 3–10 times cheaper in terms of 

capital and operational costs, respectively, than 
advanced oxidation methods (Marco et al. 1997). 
In these systems, several chemotrophic and het-
erotrophic species, primarily present in mixed 
culture, actively degrade pollutants and environ-
mentally hazardous compounds by both cathodic 
reduction and anodic oxidation reactions 
(Mohanakrishna et  al. 2015). The anaerobic 
treatment at cathode requires an organic co-
substrate (electron donor) to create reductive 
conditions in the cathodic chamber. The resultant-
reduced products are found to be eco-friendly 
and harmless. Several investigations showcased 
the ability of BESs to treat perchlorates (Thrash 
et al. 2007), sulfides (Rabaey et al. 2006), nitrates 
(Clauwaert et al. 2007; Virdis et al. 2008), nitro-
benzene (Mu et al. 2009a), azo dyes (Mu et al. 
2009b; Ding et al. 2010), and chlorinated organic 
compounds (Aulenta et  al. 2007). These com-
pounds, in the absence of oxygen, perform the 
role of electron acceptors to accomplish terminal 
electron reduction which further facilitates their 
remediation in BESs (Mohanakrishna et  al. 
2015). Other compounds like sulfur and estro-
gens are treated at the anode (Chandrasekhar and 
Venkata Mohan 2012; Kiran Kumar et al. 2012). 
Nitrogen-rich effluents are treated using simulta-
neous nitrification-denitrification technique 
(Zhang and He 2012). In azo dye degradation 
process, the thick color is removed due to the for-
mation of colorless amines (Frijters et al. 2006).

10.8	 �Conclusions and Future 
Prospects

Waste to bioenergy conversion offers a promising 
way to tackle the energy sustainability and waste 
management issues. This chapter summarized 
the ability of BESs such as MFCs to generate 
bioelectricity from different wastes and wastewa-
ters with simultaneous waste treatment. Though 
the technology seems advantageous in terms of 
waste treatment, the magnitude of energy recov-
ery is still the major point of concern. It is chal-
lenged by various constraints and limitations for 
large-scale applications. Investigations aimed at 
enriching desirable electroactive microbial com-
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munities could help developing MFCs into a 
competitive technology. Complexity of wastes, 
expensive electrode materials, and complex reac-
tor architectures are the domains which seek fur-
ther technological advancements for better 
outcome. Waste pretreatment, bioaugmentation, 
and bioprocess integration are viable options for 
improvising wastewater treatment using MFCs. 
To achieve a commercially viable and eco-
friendly technology, research should be carried 
on integrating MFCs with other bioprocess like 
fermentation, desalination, bio-product recovery, 
and metal recovery. Research focuses in the 
direction of operating MFCs at higher loading 
rates with cheaper electrode materials, and sim-
plified reactor designs are important in order to 
realize the practical applications of MFCs for 
tapping energy from the wastes and wastewaters. 
The future for BESs seems promising in waste-
water treatment sector as some of these technolo-
gies are currently under trial or operational at 
larger scales. These include production of meth-
ane from wastewater using MECs (Cambrian 
Innovation Inc., 2013) and energy-efficient 
wastewater treatment with MFCs (www.emefcy.
com).
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