
Chapter 7
Hamiltonian Systems

It is well known fact that Newton’s equation of deterministic motion correctly
describes the motion of a particle or a system of particles in an inertial frame. In
Newtonian set up there is no chance for unpredictable nature of motion. On the
other hand, sometimes the particle may be restricted in its motion so that it is forced
to follow a specified path or some forces may act on the particles to keep them on
the surface. Thus it is out of question to treat such cases using the Newtonian
formalism. Besides, if the forces of constraints acting on a system are unknown to
us in advance then the Newton’s equation of motion remains undefined. To get over
such situation, Lagrangian mechanics, introduced by renowned Italian mathe-
matician Joseph Louis Lagrange in 1788, provides a technique of two kinds. In the
first kind of Lagrange’s formulation, Newton’s equation of motion is solved by
evaluating the forces of constraints using the constraint relations. But it is a tedious
procedure. Moreover, Newton’s equation of motion is applicable in an inertial
frame only. The forces of constraints operating on a dynamical system regulate
some of these coordinates to vary independently this means that all the coordinates
which describe the configuration of a dynamical system moving under the forces of
constraints may not necessarily be independent. Consequently, the resulting
equations of motion are not independent. So, to describe the configuration of the
dynamical system and also to obtain a general equation of motion valid in any
coordinate system, a set of independent coordinates is required. This gives a general
equation of motion which is known as Lagrange’s equation of motion. It is valid in
any coordinate system, and the knowledge of constraint forces is not necessary for
its derivation instead the knowledge of work, energy and principle of virtual work
are needed. Thus, Lagrangian’s method can provide a much fresher way of solving
some physical systems compared to Newtonian mechanics, in particular for the
system moving under some constraints. Thus Lagrangian mechanics is a refor-
mulation of classical mechanics in terms of arbitrary coordinates.

In Lagrangian mechanics, the Lagrange’s equation of motion is a second order
differential equation, where the Lagrangian variables are the generalized coordi-
nates and generalized velocities with time t as parameter. Apart from Lagrangian
formulation there is another formulation in terms of Hamiltonian function. The
corresponding dynamics is called Hamiltonian dynamics named after the famous
Scottish mathematician Sir William Rowan Hamilton (1805–1865). Hamilton
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originated this formulation of classical mechanics in 1833 which is applicable to a
holonomic system described by a set of generalized coordinates. Hamiltonian
mechanics is founded on the basis of Lagrangian formulation where the basic
variables are the generalized coordinates and the generalized momenta. This
reformulation provides a deeper understanding of the equations of motion of a
dynamical system compared to the Lagrangian formulation and makes possible to
write the equation of motion in a very stylish, yet simple way. The main beneficial
thing about this formulation is that rather than providing a more convenient way of
solving a particular problem, Hamiltonian mechanics gives a deeper understanding
of the general structure of classical mechanics. Also, it makes clear its relationship
with the quantum mechanics and other related areas of science. In this chapter we
shall learn the basics of Lagrangian and Hamiltonian mechanics, and also
Hamiltonian flows in the phase space, symplectic transformations and Hamilton–
Jacobi equation.

7.1 Generalized Coordinates

The position of a point in space is generally specified by its position vector with
respect to a fixed set of coordinate system or by the help of three Cartesian coor-
dinates x; y; zð Þ of that point. Generally, the positions of N points are determined by
N vectors or by 3N Cartesian coordinates. But the position of a system can be
determined not only by using Cartesian coordinates, but there also exists alternative
coordinates systems or alternative parameters by which one can determine the
position of a system completely at any time t. These coordinates are called the
generalized coordinates. Therefore generalized coordinates are the independent
coordinates which completely specify or describe the configuration of a dynamical
system at any given time. Now if we consider a set of quantities say, q1; q2; . . .; qn,
defining the position of a dynamical system as generalized coordinates of the
system then the set of their first order derivatives _q1 ; _q2 ; . . .; _qn are called as
generalized velocities. Any set of parameters which gives the representation of the
configuration of a dynamical system without any ambiguity can serve the purpose
of generalized coordinates. So one can use angles, axes, moments or any set of
parameters as the generalized coordinates. But one should be careful while making
choice of generalized coordinates as it is totally dependent on skill. Correct choice
of generalized coordinates; make the problem look easy while the problem becomes
difficult to handle for a wrong choice of the generalized coordinates. Some
examples of generalized coordinates are as follows:

(i) For a simple pendulum of length l, the generalized coordinate is the angular
displacement h from the vertical.

(ii) For a spherical pendulum of fixed length l, the generalized coordinates are
h;/; h;/ being the spherical polar coordinates.
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(iii) Consider a rod lying on a plane surface. The generalized coordinates are
x; y; h, where x; yð Þ are the coordinates of one end of the rod and h is the angle
between x-axis and the rod.

(iv) Consider a lamina lying in a plane. For this case, the generalized coordinates
are x; y; h, where ðx; yÞ are the coordinates of the centroid and h is the angle
made by a line fixed in the plane.

So far we have defined the generalized coordinate and the generalized velocities.
The generalized momentum is the product of mass and the generalized velocity. If
pj is the generalized momentum of the jth particle whose mass is mj and generalized
velocity is _qj then pj ¼ mj _qj.

7.1.1 Configuration and Phase Spaces

The configuration of a dynamical system is described instantaneously by the gen-
eralized coordinates. The n-generalized coordinates q1; q2; . . .; qn correspond to a
particular point in the n-dimensional space. The n-dimensional space spanned by
these n-generalized coordinates of a dynamical system is called the configuration
space of that system. The state of the system changes with time and the system
point traces out a curve in moving through the configuration space. The curve traces
out by the system point is known as trajectory or the path of the motion of the
dynamical system. On the other hand phase space is generally a 2n-dimensional
space spanned by n generalized coordinates and n generalized momenta where the
qualitative behavior of a dynamical system is represented geometrically. A 2n-di-
mensional space spanned by n generalized coordinates and n generalized momenta
of a dynamical system is called the phase space of that dynamical system. At any
instant of time a point in a phase space is called the phase point. As the dynamical
system evolves with time the phase point moves through the phase space thereby
traced a path, known as phase curve. When one additional dimension in terms of
time t is added to the phase space then the phase space is a (2n + 1)-dimensional
space which is called as state space.

For instance, Hamiltonian system which does not depend on time t explicitly is a
2n-dimensional phase space. The axes of a Hamiltonian system give the values of
generalized coordinate q and generalized momentum p. Hamiltonian of such sys-
tems are conserved quantities and gives the energy of the system. The trajectories of
Hamiltonian system therefore can go only to those regions of phase space where the
energy of the system remains same as to the initial point of the trajectory. The
trajectories of a Hamiltonian system are thus confined to a 2n − 1-dimensional
constant energy surface.
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7.2 Classification of Systems

A dynamical system is said to be holonomic if it is possible to give arbitrary and
independent variations to the generalized coordinates without breaching the con-
straint relations. Otherwise it is called nonholonomic system. In mechanics the
constraint is very important and can be found in Sommerfeld [1], Goldstein [2] and
Arnold [3].

More specifically, a system is said to be holonomic if it contains only the
holonomic constraints. If there is any nonholonomic constraint then the system is
called nonholonomic. For instance, if q1; q2; . . .; qn be the n generalized coordinates
of a dynamical system then for a holonomic system it is possible to change qr to
(qr þ dqrÞ without changing the other coordinates.

Again consider two particles of masses m1 and m2 connected by a string of
length l moving in space. If ~r1 and ~r2 are the position vectors of masses at time
t then clearly we have ~r2 �~r1j j � l or l2 � ~r2 �~r1ð Þ2 � 0: In this case the system is a
holonomic system with unilateral constraint. If the conditions of the constraints are
expressed by means of non-integrable relations of the following form
amdtþ

Pn
j¼1 ajmdqj ¼ 0 for m = 1,2, …, k(< n) where a’s are functions of gener-

alized coordinates then the system is called a non-holonomic dynamical system.

Example 7.1 Examine whether the motion of a vertical wheel on a horizontal plane
is holonomic or non holonomic.

Solution Consider the motion of a vertical wheel of radius a rolling on a perfectly
rough horizontal plane specified by the coordinate axes Ox;Oy. The contact point P
traces out some curve C on the xy-plane. If h be the angle of rotation of the wheel
when the contact point P has travelled a distance s (measured from Po) along the
curve then s ¼ ah (assuming that the wheel rolls without sliding). Now, ds ¼ a dh
(Fig. 7.1).

Fig. 7.1 Motion of a vertical
wheel on a horizontal plane
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If the coordinates of P are (x, y) and if the tangent at P makes an angle w with Ox

then

dx ¼ cos wds ¼ a cos wdh

and

dy ¼ sin wds ¼ a sin wdh

The coordinates ðx; y; h;wÞ form a nonholonomic system.

7.2.1 Degrees of Freedom

The degrees of freedom of a system are the minimum number of generalized
coordinates needed to describe the configuration of a system or to specify the exact
position of an object of that system. In other words, the minimum number of
independent parameters necessary to describe the configuration of the dynamical
system at any time is called the degrees of freedom.

We shall now give some examples of degrees of freedom which will help in
understanding the idea more clearly.

Example 7.2 If a system is made up of N particles, we need 3N coordinates to
specify the positions of all the particles of the system. If a system of N particles are
subjected to C constraints (i.e. if some of the particles are connected by C relations),
there will be (3N-C) number of independent coordinates only. So, the number of
degrees of freedom is (3N-C).

Example 7.3 If a point mass is constrained to move in a plane (two dimensions) the
number of spatial coordinates necessary to describe its motion is two. So the
degrees of freedom in this case are two.

Example 7.4 Consider a particle moving on a surface x2 þ y2 þ z2 ¼ a2: In this case
the degrees of freedom is 2, though the degrees of freedom in 3-dimensional
Cartesian coordinate system is 3. Again if the particle is inside the sphere (i.e.,
x2 þ y2 þ z2 � a2\0Þ, then the degrees of freedom is 3.

Example 7.5 Consider a system of three free objects. The system has 9 degrees of
freedom. If by imposing some constraints the free spaces between the objects are
fixed, then the number of degrees of freedom of the system will be 9 − 3 = 6. These
six degrees of freedom can be chosen in any way. For example, the three coordi-
nates of the centre of mass with the 3 angles of their inclinations to a fixed frame of
reference.
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The set of coordinates used to describe a system can be selected freely, keeping
in mind that, the number of coordinates minus the number of constraints must give
the number of degrees of freedom for that system.

7.2.1.1 Some Important Features of the Degrees of Freedom
of a System

1. The number of degrees of freedom is independent of the choice of coordinate
system.

2. The number of coordinates and number of constraints do not have to be the
same for all possible choices.

3. There are freedoms of choices of origin, coordinate system.

7.3 Basic Problem with the Constraints

The most fundamental problem associated with the forces of constraints is that they
are unknown beforehand. So, in the absence of knowledge of the total force acting
on the system, it is impossible to solve Newton’s equation of motion which is a
relation between the total force and the acquired acceleration. The total force is the
sum of the externally applied force and the force of constraints. Let us try to
overcome this situation.

Consider the motion of a particle of mass m under the velocity dependent
(nonholonomic) constraint

g ~r; _~r; t
� �

¼ 0 ð7:1Þ

Let~f að Þ and~f be the externally applied forces and constraint forces respectively
acting on the particle. So, the total force acting on the particle is given by ~F ¼
~f að Þ þ~f : The Newton’s equation of motion therefore becomes

m€~r ¼ ~F ¼~f að Þ þ~f ð7:2Þ

The numbers of equations are four whereas the numbers of unknowns are six.
Therefore, the problem does not possess unique solution. To obtain a unique
solution one needs additional constraint relations. The search for additional rela-
tions gives rise to Lagranges’s equations of motion of the first kind. We shall now
give the derivation of Lagrange’s equation of first kind.
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7.3.1 Lagrange Equation of Motion of First Kind

Consider a holonomic, bilateral constraint given by

g ~r; tð Þ ¼ 0 ð7:3Þ

Differentiating Eq. (7.3) with respect to time t we get,

@g
@t

þ @g
@~r

� _~r ¼ 0 ð7:4Þ

Again differentiating Eq. (7.4) with respect to time ‘t’ we get,

@2g
@t2

þ @2g
@~r@t

� _~rþ d
dt

@g
@~r

� �
� _~rþ @g

@~r
� €~r ¼ 0 ð7:5Þ

The above constraint relation on the total acceleration ð€~rÞ is therefore directly
affected by the vector @g

@~r. Only the component of acceleration (hence the force)

parallel to the vector @g
@~r enters the above constraint relation due to scalar nature of

the product @g
@~r � €~r. In other words,~f must be parallel to @g

@~r, that is

~f ¼ k
@g
@~r

ð7:6Þ

where k is a scalar.

Let us consider a nonholonomic, bilateral constraint of the form g ~r; _~r; t
� �

¼ 0

and taking time derivative we get, @g
@t þ @g

@~r :
_~rþ @g

@ _~r
:€~r ¼ 0.

Arguing as above, one can get,

~f ¼ k
@g

@ _~r
: ð7:7Þ

Since, g ~r; tð Þ ¼ 0 or, g ~r; _~r; t
� �

¼ 0 is given, hence~f is known except for k.

Now there are four unknowns and four independent equations which can give
simultaneous solution for ~r. Hence ~f can be uniquely specified along with k.
Newton’s equations of motion now take the following form:

For holonomic one particle system

m€~r �~f að Þ � k
@g ~r; tð Þ

@~r
¼ 0; ð7:8Þ

and for nonholonomic system
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m€~r �~f að Þ � k
@g ~r; _~r; t
� �
@ _~r

¼ 0: ð7:9Þ

The Eq. (7.8) or (7.9) is sometimes called Lagrange’s equation of motion of the
first kind and k is called Lagrange’s multiplier.

This can easily be generalized for the motion of a system of N particles having
k bilateral constraints, viz.

gi ~r; tð Þ ¼ 0; i ¼ 1; 2; . . .; k for holonomic systemð Þ

and

gi ~r; _~r; t
� �

¼ 0; i ¼ 1; 2; . . .; k for nonholonomic systemð Þ:

Thus Lagrange’s equations of motion of the first kind for the jth particle having
mass mj become

mj
€~rj �~f að Þ

j �
Xk
i¼1

ki
@gi ~rj; t
� �
@~rj

¼ 0; j ¼ 1; 2; . . .;N for holonomic systemð Þ

ð7:10Þ

mj
€~rj �~f að Þ

j �
Xk
i¼1

ki
@gi ~rj; _~rj; t
� �
@ _~rj

¼ 0; j ¼ 1; 2; . . .;N for nonholonomic systemð Þ

ð7:11Þ

~f að Þ
j being the total externally applied force on the jth particle of the system.
These vector equations for holonomic and nonholonomic systems can be applied

to the systems containing scleronomic or rheonomic bilateral constraints forms. The
total number of scalar equations is 3N + k (3N equations for motion and k number
of constraints). The total number of unknowns are 3N + k (3N components for~r and
k number of unknown k). Since these equations are coupled, so obtaining solutions
of these equations become rather complicated. So, Lagrange’s equations of motion
of the first kind are of little help and find a few applications in practice. But if
solved then the solution provides the complete description of the dynamical
problems of diversified nature.

Let us now show that the order of differentiation is immaterial in Lagrange’s
equation of motion.

Suppose that the dynamical system be comprised of N particles of masses
miði ¼ 1; 2; . . .;NÞ. Let~ri be the position vector of the ith particle having mass mi.
The position of the system at time t is specified by n generalized coordinates
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denoted by q1; q2; . . .; qn. Then each~ri is a function of q1; q2; . . .; qn and time t, that
is~ri ¼~ri ðq1; q2; . . .; qnÞ.

Time derivative of the generalized coordinate qi is called the generalized
velocity of the ith particle. The velocity of the ith particle is given by

_~r ¼
Xn
j¼1

@~ri
@qj

_qj þ @~ri
@t

Differentiating again this equation with respect to generalized coordinate ‘qj’ we
have,

@ _~ri
@ _qj

¼ @~ri
@qj

for j ¼ 1; 2; . . .; n

Again,

d
dt

@~ri
@qj

� �
¼ @ _~ri

@qj

This proves that the order of differentiation with respect to ‘t’ and ‘qj’ are
immaterial.

7.3.2 Lagrange Equation of Motion of Second Kind

Let the system contains N particles of masses miði ¼ 1; 2; . . .;NÞ. The position of
the system at time t is specified by n generalized coordinates q1;q2;. . .; qn. If~ri be
the position vector of the ith mass then

ri ¼~riðq1; q2;. . .; qnÞði ¼ 1; 2; . . .;NÞ

From the generalized D’Alembert’s principle we have

XN
i¼1

~Fi � mi
€~ri

� �
:d~ri ¼ 0 ð7:12Þ

where ~Fi’s being the external forces acting on the system and d~ri’s are the small
instantaneous virtual displacements consistent with the constraints.

From Eq. (7.12) we have,

XN
i¼1

mi
€~ri:d~ri ¼

XN
i¼1

~Fi:d~ri ð7:13Þ
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Since~ri =~ri(q1; q2; . . .; qn), d~ri ¼
Pn

e¼1
@~ri
@qe

dqe.

Then dw ¼PN
i¼1

~Fi:d~ri ¼
PN

i¼1
~Fi:

Pn
e¼1

@~ri
@qe

� �
dqe ¼

Pn
e¼1

PN
i¼1

~Fi: @~ri@qe

� �
dqe ¼

Pn
e¼1 Qedqe

where Qe ¼ @w
@qe

being the generalized force associated with the generalized

coordinates qe; ðe ¼ 1; 2; . . .; nÞ.
Now,

XN
i¼1

mi
€~ri:d~ri ¼

XN
i¼1

mi
€~ri:

Xn
e¼1

@~ri
@qe

dqe

 !
¼
Xn
e¼1

XN
i¼1

mi
€~ri:

@~ri
@qe

 !
dqe

¼
Xn
e¼1

d
dt

XN
i¼1

mi
_~ri:

@~ri
@qe

 !
�
XN
i¼1

mi
_~ri:

d
dt

@~ri
@qe

� �" #
dqe

¼
Xn
e¼1

d
dt

XN
i¼1

mi
_~ri:

@~ri
@qe

 !
�
XN
i¼1

mi
_~ri:

@

@qe

d~ri
dt

� �" #
dqe

¼
Xn
e¼1

d
dt

XN
i¼1

mi
_~ri:

@~ri
@qe

 !
�
XN
i¼1

mi
_~ri:

@ _~ri
@qe

" #
dqe

T = Kinetic Energy of the system ¼ 1
2

PN
i¼1

mi
_~r2i

Therefore, @T
@ _qe

¼Pn
i¼1 mi

_~ri:
@ _~ri
@ _qe

¼Pn
i¼1 mi

_~ri:
@~ri
@qe

(since, @ _~ri
@ _qe

¼ @~ri
@qe

).

@T
@qe

¼
XN
i¼1

mi
_~ri:

@ _~ri
@qe

Thus,
PN

i¼1 mi
€~ri:d~ri ¼

Pn
e¼1

d
dt

@T
@ _qe

� �
� @T

@qe

h i
dqe.

Substituting the above expression into Eq. (7.13) and transferring all the terms in
one side we have,

Xn
e¼1

Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
 �
dqe ¼ 0 ð7:14Þ

Case (i) System with n degrees of freedom
In this case the coordinates are free coordinates and can be varied arbitrarily. So,

the coefficients of each dqe must vanish separately, giving
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Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
¼ 0 for e ¼ 1; 2; . . .; n

or,

d
dt

@T
@ _qe

� �
� @T
@qe

¼ Qe for e ¼ 1; 2; . . .; n ð7:15Þ

These equations are second order differential equations and are called as the
Lagrange’s equations of motion of a dynamical system with n degrees of freedom.

If in addition, the system is conservative then Qe ¼ � @V
@qe

where V ¼ Vðqe; tÞ is
the potential function.

Substituting the value for Qe in Eq. (7.15) we have,

d
dt

@T
@ _qe

� �
� @T
@qe

¼ � @V
@qe

If we assume that V is independent of the generalized velocity _qe, then we can

write the above equation as d
dt

@ T�Vð Þ
@ _qe

n o
� @ T�Vð Þ

@qe
¼ 0.

If we set L ¼ T � V , known as Lagrangian of the system then Lagrange’s
equations of motion can be written as

d
dt

@L
@ _qe

� �
� @L
@qe

¼ 0; e ¼ 1; 2; . . .; n

Note that if the system contains some forces derivable from a potential function
and some other forces not derivable from a potential function then the Lagrange’s
equation of motion can be written as

d
dt

@L
@ _qe

� �
� @L
@qe

¼ Q=
e ; e ¼ 1; 2; . . .; n ð7:16Þ

where all the potential forces have been included in the Lagrangian L and the
non-potential forces are given by Q=

e .

Case (ii) Holonomic dynamical system with k bilateral constraints
For a holonomic dynamical system with k bilateral constraints, the generalized

coordinates are connected by k independent relations of the following form:

fj q1; q2; . . .; qn; tð Þ ¼ 0; j ¼ 1; 2; . . .; kðk\nÞ ð7:17Þ

Let us now consider a virtual change of the system at time t consistent with the
constraints in which the coordinates q1; q2;. . .; qn are changed to
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q1 þ dq1; q2 þ dq2; . . .; qn þ dqn. Therefore, from Eq. (7.17) we have,
fj q1 þ dq1; q2 þ dq2; . . .; qn þ dqn; tð Þ ¼ 0, this can be expanded in a series like

fj q1; q2; . . .; qn; tð Þþ
Xn
e¼1

@fj
@qe

dqe þOðdqeÞ2 ¼ 0

Since changes dqe are small we have

Xn
e¼1

@fj
@qe

dqe ¼ 0 for j ¼ 1; 2; . . .; kðk\nÞ ð7:18Þ

It is evident from (7.18) that the changes dq1; dq2; . . .; dqk are not independent.
We now introduce k arbitrary parameters k1; k2; . . .; kk: We now multiply the

Eq. (7.18) by these k parameters and sum up to obtain
Pk

j¼1 kj
Pn

e¼1
@fj
@qe

dqe ¼ 0 or,

Xn
e¼1

Xk
j¼1

kj
@fj
@qe

� �
dqe ¼ 0 ð7:19Þ

Adding Eq. (7.19) to the Eq. (7.14), we get

Xn
e¼1

Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
þ
Xk
j¼1

kj
@fj
@qe

" #
dqe ¼ 0 ð7:20Þ

Now choose the parameters k1; k2; . . .; kk in such a way that the coefficients of
dq1; dq2; . . .; dqk vanish separately. This gives

Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
þ
Xk
j¼1

kj
@fj
@qe

¼ 0 for e ¼ 1; 2; . . .; k ð\nÞ

or,

d
dt

@T
@ _qe

� �
� @T
@qe

¼ Qe þ
Xk
j¼1

kj
@fj
@qe

for e ¼ 1; 2; . . .; kð\nÞ ð7:21Þ

Now Eq. (7.19) takes the following form

Xn
e¼kþ 1

Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
þ
Xk
j¼1

kj
@fj
@qe

" #
dqe ¼ 0 ð7:22Þ
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Since the variations dqkþ 1; dqkþ 2; . . .; dqn are arbitrary and independent we
must have

Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
þ
Xk
j¼1

kj
@fj
@qe

¼ 0 for e ¼ kþ 1; kþ 2; . . .; n

or,

d
dt

@T
@ _qe

� �
� @T
@qe

¼ Qe þ
Xk
j¼1

kj
@fj
@qe

for e ¼ kþ 1; kþ 2; . . .; n: ð7:23Þ

The Eqs. (7.20) and (7.22) together give

d
dt

@T
@ _qe

� �
� @T
@qe

¼ Qe þ
Xk
j¼1

kj
@fj
@qe

for e ¼ 1; 2; . . .; k; kþ 1; kþ 2; . . .; n

ð7:24Þ

These are the Lagrange’s equations of motion for a holonomic dynamical system
with k bilateral constraints.

These equations have (n + k) unknown quantities q1; q2; . . .; qn; k1; k2; . . .; kk . In
order to solve the n number of equations given by (7.24) we have to supply
k equations of constraints.

Case (iii) Nonholonomic dynamical system
In this case the changes dq1; dq2; . . .; dqk are connected by k-nonintegrable

relations of the following form

aj dtþ
Xn
e¼1

ajedqe ¼ 0 for j ¼ 1; 2; . . .; kð\nÞ ð7:25Þ

where aj’s are the functions of the coordinates.
For virtual changes at time t,

Xn
e¼1

ajedqe ¼ 0 for j ¼ 1; 2; . . .; kð\nÞ ð7:26Þ

From Eq. (7.25) it is clear that the changes dq1; dq2; . . .; dqk are not independent.
We now multiply Eq. (7.25) by k arbitrary parameters kjðj ¼ 1; 2; . . .; kÞ and sum
up to obtain

Xk
j¼1

kj
Xn
e¼1

ajedqe ¼ 0 or,
Xn
e¼1

Xk
j¼1

kjaje

 !
dqe ¼ 0 ð7:27Þ

Adding Eq. (7.27) with the (7.14), we get
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Xn
e¼1

Qe � d
dt

@T
@ _qe

� �
� @T
@qe

� 	
þ
Xk
j¼1

kjaje

" #
dqe ¼ 0 ð7:28Þ

Let us choose k1; k2; . . .; kk such that the coefficients dq1; dq2; . . .; dqk vanish
separately.

This gives Qe � d
dt

@T
@ _qe

� �
� @T

@qe

n o
þ Pk

j¼1 kjaje ¼ 0 for e ¼ 1; 2; . . .; n

or,
d
dt

@T
@ _qe

� �
� @T
@qe

¼ Qe þ
Xk
j¼1

kjaje for e ¼ 1; 2; . . .; n ð7:29Þ

Equations (7.29) are the Lagrange’s equations of motion for nonholonomic
dynamical system.

The equations of constraints are added in the modified form:

aj þ
Xn
e¼1

aje _qe ¼ 0 for j ¼ 1; 2; . . .; kð\nÞ ð7:30Þ

If Qe ¼ � @V
@qe

and L ¼ T � V then we have,

d
dt

@L
@ _qe

� �
� @L
@qe

¼
Xk
j¼1

kjaje

7.3.2.1 Physical Significance of k’s

Let us suppose that we remove the constraints of the system and instead of con-
straints let us apply external forces Q0

e in such a manner so as to keep the motion of
the system unchanged. Clearly, the extra applied forces must be equal to the forces
of constraints. Then under the influence of these forces Q0

e the equations of motion

are d
dt

@L
@ _qe

� �
� @L

@qe
¼ Q0

e for e ¼ 1; 2; . . .; n.

But this must be identical with d
dt

@L
@ _qe

� �
� @L

@qe
¼Pk

j¼1 kjaje for e ¼ 1; 2; . . .; n.

Hence one can identify
Pk

j¼1 kjaje with Q0
e, the generalized forces of constraints.

7.3.2.2 Cyclic Coordinates (Ignorable Coordinates)

If a coordinate is explicitly absent in the Lagrangian function L of a dynamical
system then the coordinate is called a cyclic or ignorable coordinate. Thus if qk is a
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cyclic coordinate, then the form of the Lagrangian is L � Lð _qk; tÞ and @L
@qk

¼ 0. The

cyclic co-ordinate is very important in deriving Hamilton’s equations of motion.

Example 7.6 Find the Lagrange’s equation of motion of a simple pendulum

Solution The generalized coordinate of a simple pendulum of length l is the angle
variable h. The velocity of the ball is l _h where l is the length of the string of the
pendulum. A simple pendulum oscillating in a vertical plane constitutes a conser-
vative holonomic dynamical system with one degree of freedom.

Here, Kinetic Energy ¼ T ¼ 1
2ml

2 _h2, m is the mass of the ball.
Potential Energy ¼ V ¼ mgh ¼ mglð1� cos hÞ.
Therefore, Lagrangian of the system ¼ L ¼ T � V ¼ 1

2ml
2 _h2 � mglð1� cos hÞ.

Lagrange’s equation of motion is d
dt

@L
@ _h

� �
� @L

@h ¼ 0 or, ml2€hþmgl sin h ¼ 0

or, ml2€h ¼ �mgl sin h or, €h ¼ � g
l sin h ’ � g

l h (if the amplitude of oscillation
is small then h is small and so sin h ’ h).

Time period is given by 2p
ffiffi
l
g

q
, g is the acceleration due to gravity.

Example 7.7 For a dynamical system Lagrangian is given by L ¼ 1
2 _x2 þ _y2 þ _z2ð Þ �

Vðx; y; zÞþA _xþB _yþC _z where A;B;C are functions of x; y; zð Þ. Show that

Lagrange’s equations of motion are x
:: þ _y @A

@y � @B
@x

� �
þ _z @A

@z � @C
@x

� �
þ @V

@x ¼ 0 and

similar ones.

Solution The generalized coordinates for the given dynamical system are x; y; z.
Now the Lagrange’s equation of motion corresponding to x-coordinate is

d
dt

@L
@ _x

� �
� @L

@x
¼ 0

or, ddt _xþAð Þ � � @V
@x þ @A

@x _xþ @B
@x _yþ @C

@x _z

 � ¼ 0

or, x
:: þ dA

dt þ @V
@x � @A

@x _x� @B
@x _y� @C

@x _z ¼ 0

or, x
:: þ _y @A

@y � @B
@x

� �
þ _z @A

@z � @C
@x

� �
þ @V

@x ¼ 0 since dA
dt ¼ @A

@x _xþ @A
@y _yþ @A

@z _z.

In an analogous way one can obtain the other two Lagrange’s equations of
motion corresponding to y and z coordinates.

Example 7.8 Obtain the Lagrangian and also the Lagrange’s equation of motion of
a harmonic oscillator.

Solution A harmonic oscillator consists of a single particle of mass m moving in a
straight line which can be taken as x-axis (see Fig. 7.2). The particle is attracted
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towards the origin by a force which varies proportionally with the distance of the
particle from the origin.

Then the Kinetic Energy of the harmonic oscillator is given by T ¼ 1
2m _x2

whereas the Potential Energy is given by V ¼ 1
2 kx

2, k being a constant.
Then the Lagrangian of the motion is L ¼ T � V ¼ 1

2m _x2 � 1
2 kx

2.

Lagrange’s equation of motion is d
dt

@L
@ _x

� �� @L
@x ¼ 0 or, mx

:: þ kx ¼ 0.

Example 7.9 Find the Lagrangian of motion of a particle of unit mass moving in a
central force field under a force that varies inversely as the square of the distance
from the centre O (Fig. 7.3).

Solution Here r; h are the generalized coordinates. Let V be the potential.

Then, � dV
dr ¼ F ¼ � l

r2 which on integration gives V ¼ � l
r þConstant T ¼

Kinetic Energy of the particle = 1
2 _r2 þ r2 _h2
� �

.

The Lagrangian of the motion is L ¼ T � V ¼ 1
2 _r2 þ r2 _h2
� �

þ l
r � Constant.

Now, Lagrange’s equation of motion is given by d
dt

@L
@ _qe

� �
� @L

@qe
¼ 0; e ¼ 1; 2

Here, q1 ¼ r; q2 ¼ h.

Lagrange’s equation of motion corresponding to r-coordinate gives d
dt

@L
@ _r

� ��
@L
@r ¼ 0 or, d

dt _rð Þ � r _h2 þ l
r2 ¼ 0 or, r

:: � r _h2 þ l
r2 ¼ 0 and d

dt
@L
@ _h

� �
� @L

@h ¼ 0 or,

d
dt r2 _h
� �

¼ 0 which gives r2 _h ¼ constant

Fig. 7.2 Sketch of a harmonic oscillator

Fig. 7.3 Motion under a
central force field
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Theorem 7.1 For a scleronomous, conservative dynamical system of n degrees of

freedom the quantity
Pn

k¼1 _qk
@L
@ _qk

� L
� �

is a constant of motion where q1; q2; . . .; qn

are the n generalized coordinates and L is the Lagrangian of the system.

Proof Differentiating the quantity
Pn

k¼1 _qk
@L
@ _qk

� L with respect to t, we get

d
dt

Xn
k¼1

_qk
@L
@ _qk

� L

 !
¼
Xn
k¼1

q
::

k

@L
@ _qk

þ
Xn
k¼1

_qk
d
dt

@L
@ _qk

� �
� dL

dt

Now, L ¼ Lðqk; _qkÞ
Therefore, dLdt ¼

Pn
k¼1

@L
@qk

_qk þ
Pn

k¼1
@L
@ _qk

q
::

k

Thus;
d
dt

Xn
k¼1

_qk
@L
@ _qk

� L

 !
¼
Xn
k¼1

q
::

k

@L
@ _qk

þ
Xn
k¼1

_qk
d
dt

@L
@ _qk

� �
�
Xn
k¼1

@L
@qk

_qk �
Xn
k¼1

@L
@ _qk

q
::

k

¼
Xn
k¼1

d
dt

@L
@ _qk

� �
� @L
@qk


 �
_qk ¼ 0;

since by Lagrange’s equations of motion d
dt

@L
@ _qk

� �
� @L

@qk
¼ 0 for k ¼ 1; 2; . . .; n.

Therefore,
Pn

k¼1 _qk
@L
@ _qk

� L
� �

¼ constant = E (say)

Thus when the Lagrangian is independent of time, Lagrange’s equations possess
the integral of motion, known as the energy integral of the system.

Theorem 7.2 For a scleronomous, conservative dynamical system of n degrees of
freedom the total energy E ¼ T þV is constant

Proof We know that L ¼ T � V ¼ T qk; _qkð Þ � VðqkÞ
Now,

E ¼
Xn
k¼1

_qk
@ T � Vð Þ

@ _qk
� T � Vð Þ ¼

Xn
k¼1

_qk
@T
@ _qk

� T þV

¼ 2T � T þV ¼ T þV

since, @V
@ _qk

¼ 0 in a velocity independent potential field and since in a scleronomous

system, Kinetic Energy T is a homogeneous quadratic function of generalized
velocities _qk(k = 1, 2, …, n) i.e. 2T ¼Pn

k¼1 _qk
@T
@ _qk

(by Euler’s formula for homo-

geneous function). In such a system the total energy is conserved.

Theorem 7.3 (Law of conservation of generalized momentum) The generalised
momentum corresponding to a cyclic coordinate of a system is an integral of
motion or constant of motion.
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Proof Lagrange’s equation of motion corresponding to the coordinate qk is
given by

d
dt

@L
@ _qk

� �
� @L
@qk

¼ 0; L being the Lagrangian

If qk is cyclic coordinate then @L
@qk

¼ 0. Thus from the above equation, we have

d
dt

@L
@ _qk

� �
¼ 0 i:e:

@L
@ _qk

¼ constant or; pk ¼ constant ð7:31Þ

where pk ¼ @L
@ _qk

is the generalized momentum corresponding to the generalized

coordinate qk.
Therefore, the generalized momentum conjugate to a cyclic coordinate is an

integral of motion. So, when the Lagrangian is time independent there is an energy
integral for the system. In case of cyclic co-ordinate there is also an integral for the
system, known as a momentum integral.

Theorem 7.4 Let qj be a cyclic coordinate such that dqj corresponds to a rotation
of the system of particles around some axis, then the angular momentum of the
system is conserved.

Proof Let the system be conservative. Then the potential energy V depends on
position only. It is well known that kinetic energy T depends on translational
velocities which are not affected by rotation. As the position coordinate qj is
affected by rotation dqj, the kinetic energy T does not depend on the coordinate qj.

So,

@V
@ _qj

¼ 0 and
@T
@qj

¼ 0 ð7:32Þ

Now, Lagrange’s equation of motion corresponding to the generalized coordi-
nate qj can be written as

d
dt

@T
@ _qj

� �
� @T
@qj

¼ � @V
@qj

ð7:33Þ

Using (7.32) in (7.33) we have, ddt
@ T�Vð Þ

@ _qj

n o
¼ � @V

@qj
or, ddt

@L
@ _qj

� �
¼ � @V

@qj

or, ddt pj
� � ¼ � @V

@qj
i.e.

_pj ¼ Qj ð7:34Þ

where Qj ¼ � @V
@qj

is the generalized force corresponding to the generalized coor-

dinate qj.
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As qj is a rotational coordinate so pj is the component of the total angular
momentum along the axis of rotation.

The magnitude of change in the position vector~ri due to the change in rotational

coordinate qj is d~rij j ¼~ri sin h dqj which gives @~ri
@qj

��� ��� ¼~ri sin h

Now, @~ri
@qj

is perpendicular to both~ri and ~n where ~n is the unit vector along the

axis of rotation. Therefore, @~ri
@qj

¼~n�~ri.

Now, pj ¼ @T
@ _qj

¼Pi mi~ti:
@~ri
@qj

¼Pi mi~ti:~n�~ri ¼~n:
P

i
~Li ¼~n:~L

where ~L ¼Pi
~Li ¼

P
i mi~ti �~ri is the total angular momentum along the axis

of rotation.
It is known that if qj is cyclic then the generalized momentum pj is constant.
Hence, one can find that if the rotational coordinate is cyclic, the component of

total angular momentum along the axis of rotation remains constant.

Corollary 7.1 If the rotational coordinate is cyclic, the component of the applied
torque along the axis of rotation vanishes.

Proof Generalised force Qj is given by

Qj ¼
X
i

~Fi:
@~ri
@qj

;

~Fi being the force acting on the ith particle of the system and~ri is the position
vector of the ith particle.

Again, Qj ¼
P

i
~Fi:~n�~ri ¼~n:

P
i
~Fi �~ri ¼~n:

P
i
~Ni ¼~n:~N, ~N ¼Pi

~Ni ¼P
i
~Fi �~ri being the total torque acting on the system.
From Eq. (7.34) we have Qj ¼ 0 since pj is constant.
Thus if the rotational coordinate is cyclic, the component of the applied torque

along the axis of rotation vanishes.

Example 7.10 The Lagrangian of a particle of mass m moving in a central force
field is given by (in polar coordinates)

L ¼ 1
2
m _r2 þ r2 _h2
� �

� VðrÞ:

Discuss its motion.

Solution Clearly, r; h are the generalized coordinates and since h is not present in
the Lagrangian L, it is the cyclic coordinate.

Therefore,

ph ¼ @L

@ _h
¼ mr2 _h ¼ constant

which indicates that angular momentum of the particle is a constant of motion.
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Lagrange’s equation of motion corresponding to the r-coordinate is
d
dt

@L
@ _r

� �� @L
@r ¼ 0 or, m r

::�mr _h2 þ @V
@r ¼ 0 or, m r

::� p2h
mr3 þ @V

@r ¼ 0.

As ph is constant, so we have to deal with only one degree of freedom.

7.3.2.3 Routh’s Process for the Ignoration of Coordinates

Consider a dynamical system with n degrees of freedom specified by n generalized
coordinates q1; q2; . . .; qn. Let the system has j-cyclic coordinates q1; q2; . . .; qj (j \
n). We shall show that the dynamical system has (n-j) degrees of freedom. Clearly
the generalized momenta against the cyclic coordinates would be

pk ¼ @L
@ _qk

¼ constant = bk for k ¼ 1; 2; . . .; j ð7:35Þ

Let us define a new function R as

R ¼ L�
Xj

k¼1

bk _qk; L ð7:36Þ

being the Lagrangian of the system
With the help of (7.36), R can be expressed as a function of

qjþ 1; qjþ 2; . . .; qn; _qjþ 1; _qjþ 2; . . .; _qn; b1; b2; . . .; bj; t

that is, R ¼ R qjþ 1; qjþ 2; . . .; qn; _qjþ 1; _qjþ 2; . . .; _qn; b1; b2; . . .; bj; t
� �

.
The function R is called the Routhian function.
Taking a virtual change of R we get from Eq. (7.36),

dR ¼ dL�
Xj

k¼1

dbk _qk �
Xj

k¼1

bkd _qk: ð7:37Þ

Also, L ¼ Lðqjþ 1; qjþ 2; . . .; qn; _q1; _q2; . . .; _qn; tÞ.

) dL ¼
Xn

k¼jþ 1

@L
@qk

dqk þ
Xn
k¼1

@L
@ _qk

d _qk

¼
Xn

k¼jþ 1

@L
@qk

dqk þ
Xj

k¼1

@L
@ _qk

d _qk þ
Xn

k¼jþ 1

@L
@ _qk

d _qk:

ð7:38Þ

Substituting (7.38) in the Eq. (7.37) we get
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Xn
k¼jþ 1

@R
@qk

dqk þ
Xn

k¼jþ 1

@R
@ _qk

d _qk þ
Xj

k¼1

@R
@bk

dbk

¼
Xn

k¼jþ 1

@L
@qk

dqk þ
Xj

k¼1

@L
@ _qk

d _qk þ
Xn

k¼jþ 1

@L
@ _qk

d _qk �
Xj

k¼1

dbk _qk �
Xj

k¼1

bkd _qk

¼
Xn

k¼jþ 1

@L
@qk

dqk þ
Xn

k¼jþ 1

@L
@ _qk

d _qk �
Xj

k¼1

dbk _qk;

ð7:39Þ

since by Eq. (7.35), @L
@ _qk

¼ bk for k ¼ 1; 2; . . .; j.

Now Eq. (7.39) involves changes dqk, d _qk(k ¼ jþ 1; jþ 2; . . .; nÞ and dbkðk ¼
1; 2; . . .; jÞ which are arbitrary and independent.

This leads to the following equations

@R
@qk

¼ @L
@qk

;
@R
@ _qk

¼ @L
@ _qk

for k ¼ jþ 1; jþ 2; . . .; n ð7:40Þ

And

� @R
@bk

¼ _qk for k ¼ 1; 2; . . .; j: ð7:41Þ

By Lagrange’s equation of motion we have

d
dt

@L
@ _qk

� �
� @L
@qk

¼ 0 for k ¼ jþ 1; jþ 2; . . .; n:

Using (7.40) we have,

d
dt

@R
@ _qk

� �
� @R
@qk

¼ 0 for k ¼ jþ 1; jþ 2; . . .; n:

From (7.41) we have

qk ¼ �
Z

@R
@bk

dtþ constant for k ¼ 1; 2; . . .; j ð7:42Þ

This shows that R behaves as the Lagrangian L of a new dynamical system
having (n-j) degrees of freedom.

Example 7.11 Use the method of ignorable coordinates to reduce the degrees of
freedom of a spherical pendulum to one.
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Solution A spherical pendulum is a simple pendulum of length l. The bob of the
pendulum moves on the surface of a sphere of radius equal to the length of the
pendulum.

Let l; h;/ð Þ be the position of the bob at time t in spherical polar coordinate
system. Let h be the height of the bob from the horizontal plane.

Potential energy ¼ V ¼ mgh ¼ mg l� l cos p� hð Þf g ¼ mgl 1þ cos hð Þ

Kinetic energy ¼ T ¼ 1
2
m l _h
� �2

þ l sin h _/
� �2� 	

¼ 1
2
ml2 _h2 þ sin2 h _/2
� �

:

Now, Lagrangian of the system ¼ L ¼ T � V ¼ 1
2ml

2 _h2 þ sin2 h _/2
� �

� mgl

1þ cos hð Þ.
Clearly, / is a cyclic coordinate.

) @L
@ _/

¼ p/ ¼ constant ¼ b/ which gives ml2 sin2 h _/ ¼ b/ or, _/ ¼ b/
ml2 sin2 h

.

Now, Routhian function is given by

R ¼ L�
Xj

k¼1

bk _qk ¼ L� b/ _/ ¼ 1
2
ml2 _h2 þ sin2 h _/2
� �

� mgl 1þ cos hð Þ � b/ _/

¼ 1
2
ml2 _h2 þ b2/

m2l4 sin2 h

 !
� mgl 1þ cos hð Þ � b2/

ml2 sin2 h

¼ 1
2
ml2 _h2 � 1

2

b2/
ml2 sin2 h

� mgl 1þ cos hð Þ
¼ Rðh; _/;b/Þ

The equation of motion is d
dt

@R
@ _h

� �
� @R

@h ¼ 0,,

or, ml2€h� b2/ cos h

ml2 sin3 h
� mgl sin h ¼ 0:

The above equation can be interpreted as representing a system with single
degree of freedom.

Example 7.12 In a dynamical system the kinetic energy and the potential energy

are given by T ¼ 1
2

_q21
aþ bq22

þ 1
2 _q

2
2;V ¼ cþ dq22 where a; b; c; d are constants.

Determine q1ðtÞ and q2ðtÞ by Routh’s process for ignorable coordinates.

Solution Here, Lagrangian is given by

L ¼ 1
2

_q21
aþ bq22

þ 1
2
_q22 � c� dq22:
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Clearly, q1 is a cyclic coordinate and so, @L
@q1

¼ 0.

Generalized momentum corresponding to the coordinate q1 is p1 ¼ @L
@ _q1

¼
constant ¼ b1ðsayÞ i.e. _q1

aþ bq22
¼ b1. Now the Routhian function is given by

R ¼ L� b1 _q1 ¼
1
2

_q21
aþ bq22

þ 1
2
_q22 � c� dq22 � b1 _q1

¼ 1
2
b21 aþ bq22
� �2
aþ bq22
� � þ 1

2
_q22 � c� dq22 � b21 aþ bq22

� �
¼ � 1

2
b21 aþ bq22
� �þ 1

2
_q22 � c� dq22:

The equation of motion for the coordinate q2 is

d
dt

@R
@ _q2

� �
� @R

2
¼ 0; or; €q2 þ b21bq2 þ 2dq2 ¼ 0; or; €q2 þA2q2 ¼ 0

where A2 ¼ b21bþ 2d.
Thus we have, q2 ¼ B sinðAtþ 2Þ where B and 2 are arbitrary constants.
Again, we have _q1

aþ bq22
¼ b1 or, _q1 ¼ b1ðaþ bq22Þ ¼ b1 aþ bB2 sin2 Atþ 2ð Þ� �

.

Upon integration the above relation, we have

q1 ¼ b1atþ
1
2
b1bB

2
Z

1� cos 2 Atþ 2ð Þf gdt

¼ b1atþ
1
2
b1bB

2t � 1
4A

b1bB
2 sin 2 Atþ 2ð ÞþC

where C is an arbitrary constant.

7.4 Hamilton Principle

Sir W.R. Hamilton gave his famous principle of least action, also known as
Hamilton’s principle of least action in 1834 which states that

The variation of the integral
R 2
1 Ldt between the actual path and any neigh-

boring virtual path of a dynamical system moving from one configuration to
another, coterminous in both space and time with the actual path, is zero. That is,
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d
Z2
1

Lðq; _q; tÞdt ¼ 0;

L being the Lagrangian of the dynamical system, q; _q being the generalized
coordinate and generalized velocity, respectively and d denotes the variation of the
integral.

7.5 Noether Theorem

Conservation laws of a dynamical system in classical mechanics where time t is one
of the independent variable and other variables are spatial variables is the first
integral of motion or constant of motion of the system. Conservation laws reduces
the degrees of freedom of a system, thus makes the system simple to integrate. But,
deducing conservation laws of a system is not an easy task. One can notice that the
idea of conservation laws and symmetry with respect to group of transformations
are interrelated for instance, the translational symmetry provides the conservation of
linear momentum, rotational symmetry provides the conservation of angular
momentum etc.

German mathematician Emalie Emmy Noether in 1918 gave a general theory of
conservation laws and symmetry transformations recognizing the importance of the
relation between the symmetry and conservation laws. Actually, Noether gave two
theorems in this regard. Herein we only give the statement of the first theorem; we
shall discuss other in the later chapter.

Theorem 7.5 (Noether’s First theorem) Every conservation law gives rise to a
one-parameter symmetry group of transformation and vice versa.

Let us now explain this theorem
Consider that L be the Lagrangian of a system in a coordinate system ðq; _q; tÞ

and L0 be the Lagrangian in the coordinate system ðq0; _q0; tÞ obtained under the
coordinate transformations q0 ¼ q0ðq; _q; tÞ; _q0 ¼ _q0ðq; _q; tÞ. Then this transformation
of coordinates is said to be a symmetry transformation of the Lagrangian if

L0 q0; _q0; tð Þ ¼ L q; _q; tð Þ:

Noether’s theorem states that if the coordinates of a Lagrangian of a system has a
set of continuous symmetry transformations �t ¼ Pðt;2Þ where P 2¼ 0ð Þ ¼ t and �,
�qk ¼ Qk qk;2ð ÞwhereQk 2¼ 0ð Þ ¼ qk, � is a continuous parameter then the func-
tional I ¼ R x2x1 Lðqk; _qk; tÞdt with arbitrary end points x1 and x2 is an invariant with a
set of quantities that remain conserved along the trajectories of the system, given by:
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Xn
k¼1

pk
dQk

d�

����
f�¼0g

�
X

pk _qk � Lðqk; _qk; tÞ
� �dP

d�

����
f�¼0

g ¼ constant

where pk ¼ @L
@ _qk

is the momentum conjugate to generalized coordinate qk.

Example 7.13 Show that if the functional I ¼ R Lðq; _q; tÞdt is invariant with respect
to the homogeneity in time t then the total energy of a system is conserved.

Solution Homogeneity of time tmeans that the physical laws governing a system do
not change for any arbitrary shift in the origin of time. For such a system the
Lagrangian L is independent of time t. For homogeneity in time t, one have the
transformations �t ¼ tþ 2; �q ¼ q. Therefore P ¼ tþ 2 and Q ¼ q. Hence the con-
served quantity is p _q� Lðq; _qÞ, which is the total energy of the system.

Example 7.14 Show that if the functional I ¼ R Lðx; y; z; _x; _y; _z; tÞdt is invariant
with respect to the homogeneity of space then the total linear momentum of the
system is conserved.

Solution Homogeneity of space means that the space possesses the same property
everywhere. For homogeneity in x, one has the transformations �t ¼ t;�x ¼ xþ 2;
�y ¼ y;�z ¼ z. ThereforeP ¼ t andQ ¼ ðxþ 2; y; zÞ. Hence the conserved quantity is
px ¼ constant. Similarly, for homogeneity in y gives py ¼ constant and for homo-
geneity in z gives pz ¼ constant. Accordingly the total linear momentum p ¼
px̂iþ pŷjþ pzk̂ is conserved.

Example 7.15 Show that if the functional I ¼ R Lðx; y; z; _x; _y; _z; tÞdt is invariant
with respect to the isotropy of space then the total angular momentum of the system
is conserved.

Solution Isotropy of space means that an arbitrary rotation of a system about an
axis does not change the system. For isotropy of space about z-axis, one has the
transformations �t ¼ t;�x ¼ x cos hþ y sin h,

�y ¼ y cos h� x sin h, �z ¼ z. Therefore P ¼ t and QðhÞ ¼ ðx cos hþ y sin h;
y cos h� x sin h; zÞ.

Now @Q
@h

��
h¼0¼ ðy;�x; 0Þ. Hence the conserved quantity is ypx � xpy ¼ constant.

Similarly for isotropy about x-axis, ypz � zpy ¼ constant and for isotropy about y-
axis, xpz � zpx ¼ constant. Thus the components of angular momentum are con-
served quantity under rotation of space. Accordingly the total Angular momentum
H ¼ qk � pk is conserved.

Remarks Conservation theorem of generalized momentum is a particular case of
Noether’s theorem.
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7.6 Legendre Dual Transformations

Legendre dual transformation as the name suggests is a transformation that trans-
forms functions on a vector space to functions on the dual space. Legendre trans-
formation is a standard technique for generating a new pair of independent variables
ðx; zÞ from an initial pair ðx; yÞ. The transformation is completely invertible i.e.
applying the transformation twice one gets the initial pair of variables ðx; yÞ.

If L ¼ Lðqk; _qk; tÞ is the Lagrangian of a dynamical system where qk is the
generalized coordinate, _qk is the generalized velocity then the generalized momenta
are given by pk ¼ @L

@ _qk
; k ¼ 1; 2; . . .; n. If one wants to eliminate _qk in terms of pk then

this elimination considers L as a function of qk , @L
@ _qk

and time. The transformation

which does this (mathematically) is known as Legendre transformation.

Theorem 7.6 Let a function Fðx1; x2; . . .; xnÞ depending explicitly on the n inde-
pendent variables x1; x2; . . .; xn be transformed to another function Gðy1; y2; . . .; ynÞ,
which is expressed explicitly in terms of the new set of n independent variables
y1; y2; . . .; yn. These new variables are connected by the old variables by a given set
of relations

yi ¼ @F
@xi

; i ¼ 1; 2; . . .; n ð7:43Þ

and the form of G is given by

Gðy1; y2; . . .; ynÞ ¼
Xn
i¼1

xiyi � Fðx1; x2; . . .; xnÞ ð7:44Þ

Then the variables x1; x2; . . .; xn satisfy the dual transformations viz. the
relations:

xi ¼ @G
@yi

; i ¼ 1; 2; . . .; n ð7:45Þ

and

Fðx1; x2; . . .; xnÞ ¼
Xn
i¼1

xiyi � Gðy1; y2; . . .; ynÞ ð7:46Þ

The transformations (7.46) between the two set of variables given by the
Eqs. (7.43) and (7.45) are known as Legendre dual transformations.
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Proof It is given that,

Gðy1; y2; . . .; ynÞ ¼
Xn
i¼1

xiyi � Fðx1; x2; . . .; xnÞ

) dG ¼
Xn
i¼1

@G
@yi

dyi:

Again, dG ¼Pn
i¼1 xidyi þ

Pn
i¼1 yidxi �

Pn
i¼1

@F
@xi
dxi:

Thus we have,

Xn
i¼1

@G
@yi

dyi ¼
Xn
i¼1

xidyi þ
Xn
i¼1

yidxi �
Xn
i¼1

@F
@xi

dxi

¼
Xn
i¼1

xidyi þ
Xn
i¼1

yi � @F
@xi

� �
dxi:

) xi ¼ @G
@yi

; i ¼ 1; 2; . . .; n

since it is given that, yi ¼ @F
@xi

; i ¼ 1; 2; . . .; n and dyi’s are arbitrary (as all yi’s are
independent).

This proves the duality of the transformations.
Relation (7.46) can simply be obtained by rearranging terms of the relation

(7.44). Moreover, starting from the relation (7.45) one can easily prove the relation
(7.43), exactly in the same fashion.

7.7 Hamilton Equations of Motion

In Lagrangian mechanics, qk; _qk are treated as the Lagrangian variables with time
t as a parameter where qk are the n-generalized coordinates and _qk are the n-
generalized velocities (k = 1, 2,…, n). In Hamiltonian mechanics, the basic vari-
ables are the generalized coordinates qk and the generalized momenta pk(k = 1, 2,
…, n) defined by the equations

pk ¼ @L
@ _qk

; k ¼ 1; 2; . . .; n ð7:47Þ

where L is the Lagrangian of the system. With the aid of the Legendre dual
transformation the Lagrangian of a system can be converted into a new function H,
known as Hamiltonian function, by the relation
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H ¼
Xn
k¼1

_qkpk � L ð7:48Þ

where L ¼ L qk; _qk; tð Þ.
With the help of (7.47), _qk’s can be eliminated from the right hand side of (7.48)

which can then be expressed in terms of qk; pk; tð Þ so that H ¼ H qk; pk; tð Þ:
Theorem 7.7 The system of n second order differential equation known as
Lagranges’s equation of motion are equivalent to the 2n first order differential
equation known as Hamilton’s equation of motion given by

_qk ¼ @H
@pk

; _pk ¼ � @H
@qk

where H is the Legender dual transformation of the Lagrangian function L given by

H ¼
X

pi _qi � Lðqi; _qi; tÞ

ProofThe Legender dual transformation of the Lagrangian Lðqk; _qk; tÞ is given by

H ¼
X

pi _qi � Lðqi; _qi; tÞ
Let us consider a virtual change of H at time t. Then,

dH ¼
Xn
k¼1

d _qkpk þ
Xn
k¼1

_qkdpk � dL qk; _qk; tð Þ ð7:49Þ

Now, H ¼ H qk; pk; tð Þ:

) dH ¼
Xn
k¼1

@H
@qk

dqk þ
Xn
k¼1

@H
@pk

dpk þ @H
@t

dt ð7:50Þ

Again,

dL ¼
Xn
k¼1

@L
@qk

dqk þ
Xn
k¼1

@L
@ _qk

d _qk þ @L
@t

dt ð7:51Þ

Substituting (7.50) and (7.51) in (7.49) we have,
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Xn
k¼1

@H
@qk

dqk þ
Xn
k¼1

@H
@pk

dpk þ @H
@t

dt

¼
Xn
k¼1

d _qkpk þ
Xn
k¼1

_qkdpk �
Xn
k¼1

@L
@qk

dqk �
Xn
k¼1

@L
@ _qk

d _qk � @L
@t

dt

¼
Xn
k¼1

_qkdpk �
Xn
k¼1

_pkdqk � @L
@t

dt;

ð7:52Þ

as pk ¼ @L
@ _qk

; k ¼ 1; 2; . . .; n so Lagrange’s equations of motion give

d
dt

@L
@ _qk

� �
� @L
@qk

¼ 0 i.e. _pk ¼ @L
@qk

for k ¼ 1; 2; . . .; n:

Equation (7.52) is true for all arbitrary variations. Hence we get,

@H
@qk

¼ � _pk;
@H
@pk

¼ _qk for k ¼ 1; 2; . . .; n

and

@H
@t

¼ � @L
@t

:

Thus we have

_qk ¼ @H
@pk

; _pk ¼ � @H
@qk

for k ¼ 1; 2; . . .; n ð7:53Þ

These equations are called Hamilton’s equations of motion of a dynamical
system.

Theorem 7.8 If the Lagrangian does not explicitly depend on time, Hamiltonian is
also independent of time and Hamiltonian is a constant of motion or first integral of
the system.

Proof We have Hamiltonian H as defined by H ¼Pn
k¼1 _qkpk � L, where L is the

Lagrangian of the system. Now, if H ¼ H qk; pk; tð Þ then using Hamilton’s equa-
tions of motion and @H

@t ¼ � @L
@t , we have

dH
dt

¼
Xn
i¼1

@H
@qi

_qi þ
Xn
i¼1

@H
@pi

_pi þ @H
@t

¼ �
Xn
i¼1

_pi _qi þ
Xn
i¼1

_qi _pi � @L
@t

;

If in addition the Lagrangian does not explicitly depend on time that is, @L
@t ¼ 0

then @H
@t ¼ 0.

Hence the Hamiltonian is also independent of time t.
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Moreover, using the above result we have dH
dt ¼ 0, that is H ¼ constant. Thus,

Hamiltonian is a constant of motion.

Theorem 7.9 For a scleronomous dynamical system in a velocity independent
potential field the total energy (sum of the Kinetic Energy and Potential Energy)
remains conserved.

Proof If the Hamiltonian H is explicitly independent of time t then H ¼ H qk; pkð Þ,
k = 1, 2, …, n where pk’s are the generalized momenta corresponding to the
generalized coordinates qk of the system.

Now,

dH
dt

¼
Xn
k¼1

@H
@qk

dqk þ
Xn
k¼1

@H
@pk

dpk ð7:54Þ

By Hamilton’s equations of motion we have,

_qk ¼ @H
@pk

; _pk ¼ � @H
@qk

for k ¼ 1; 2; . . .; n:

Substituting these in (7.54) we get,

dH
dt

¼ 0which givesH ¼ constant: ð7:55Þ

Moreover, in a scleronomous system, the kinetic Energy T is a homogeneous
quadratic function of generalized velocities. Therefore, by Euler’s theorem on
homogeneous function we have,

2T ¼
Xn
k¼1

_qk
@T
@ _qk

ð7:56Þ

We have,

H ¼
Xn
k¼1

_qkpk � L ¼
Xn
k¼1

_qk
@L
@ _qk

� T � Vð Þ ¼
Xn
k¼1

_qk
@ T � Vð Þ

@ _qk
� T þV

Since in a velocity independent potential field, @V
@ _qk

¼ 0,

) H ¼Pn
k¼1 _qk

@T
@ _qk

� T þV ¼ 2T � T þV ¼ T þV . [using (7.56)]

Therefore, in a scleronomous dynamical system in a velocity independent
potential field the total energy (sum of the Kinetic Energy and Potential Energy)
remains conserved.

Theorem 7.10 If all the coordinates of a dynamical system are cyclic they can be
determined by integration. In particular, if the system is scleronomous, the coor-
dinates are all linear functions of time t.
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Proof It is known that a coordinate qk is said to be cyclic if it is explicitly absent
from the Hamiltonian.

Since H ¼Pn
k¼1 _qkpk � L, so qk’s are cyclic coordinates.

As all the coordinates are cyclic, so H ¼ H pk; tð Þ where pk’s are the n-gener-
alized momenta of the system.

Hamilton’s equations of motion give _qk ¼ @H
@pk

¼ fk pk; tð Þ, k = 1, 2, …, n.

Since qk’s are the cyclic coordinates, pk ¼ constant ¼ bkðsayÞ, k = 1, 2, …, n.
Therefore, _qk ¼ fk bk; tð Þ, this on integration gives

qk ¼
Z

fk bk; tð Þdtþ constant; k ¼ 1; 2; . . .; n:

So, the coordinates can be determined by integration.
For a scleronomous system, _qk ¼ fk pkð Þ, which on integration gives

qk ¼
Z

fk bkð Þdtþ constant ¼ fkðbkÞ
Z

dtþ constant ¼ t fkðbkÞþ constant ; for k

¼ 1; 2; . . .; n:

So, the coordinates are linear functions of time t.

Example 7.16 Obtain the equation of motion of a simple pendulum using
Hamiltonian function.

Solution Here, h is the generalized coordinate. The velocity of the ball is l _h where
l is the length of the string of the pendulum. A simple pendulum oscillating in a
vertical plane constitutes a conservative holonomic dynamical system.

Here, Kinetic Energy = T ¼ 1
2ml

2 _h2, m is the mass of the ball.
Potential Energy = V ¼ mgh ¼ mglð1� cos hÞ.
Therefore, Lagrangian of the system = L ¼ T � V ¼ 1

2ml
2 _h2 � mglð1� cos hÞ.

Since the system is scleronomous and conservative,

H ¼ T þV ¼ 1
2
ml2 _h2 þmglð1� cos hÞ

Generalized momentum ph ¼ @L
@ _h

¼ ml2 _h or, _h ¼ ph
ml2.

) H ¼ 1
2
ml2

ph
ml2

� �2
þmgl 1� cos hð Þ ¼ 1

2
p2h
ml2

þmgl 1� cos hð Þ ¼ Hðh; phÞ:

Hamilton’s equations of motion are given by

_h ¼ @H
@ph

¼ ph
ml2

i.e. ph ¼ ml2 _h and _ph ¼ � @H
@h

¼ �mgl sin h
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) ml2€h ¼ �mgl sin h or, €h ¼ � g
l
sin h ’ � g

l
h ðwhen h is very smallÞ:

Time period is given by 2p
ffiffi
l
g

q
, g is the acceleration due to gravity.

Example 7.17 For a dynamical system Hamiltonian H is given by

H ¼ q1p1 � q2p2 � aq21 þ bq22

Find q1; q2; p1; p2 in terms of time t. Hence find the corresponding equation of
motion of the dynamical system.

Solution Hamilton’s equations of motion give

_q1 ¼ @H
@p1

¼ q1 which on integration gives q1 ¼ Cet; C ¼ constant

_p1 ¼ � @H
@q1

¼ �p1 þ 2aq1 or; _p1 þ p1 ¼ 2aCet:

Multiplying both sides by the integrating factor et we get,

d
dt

p1e
tð Þ ¼ 2aCe2t

Integrating this we get, p1 ¼ aCet þDe�t;D ¼ constant

_q2 ¼ @H
@p2

¼ �q2 or, q2 ¼ Ae�t;A ¼ constant

_p2 ¼ � @H
@q2

¼ p2 � 2bq2 ¼ p2 � 2Abe�t or, _p2 � p2 � 2Abe�t ¼ 0

Multiplying both sides by the integrating factor e�t we get,
d
dt p2e�tð Þ ¼ �2Abe�2t which on integration gives p2 ¼ Abe�t þBet;B ¼ constant.

Therefore the required equation of motion is

_p1 þ p1 � 2aCet ¼ 0

_p2 � p2 � 2Abe�t ¼ 0

Example 7.18 Hamiltonian of a dynamical system is given by H ¼
1
2

P3
i¼1 p2i þ l2q2i
� �

where pi; qi are the n generalized momenta and generalized
coordinates, l is a constant. Show that F1 ¼ q2p3 � q3p2 and F2 ¼ lq1 cos lt �
p1 sin lt are constants of motion.
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Solution Now, H ¼ 1
2 p21 þ p22 þ p23 þ l2q21 þ l2q22 þ l2q23
� �

.

F1 ¼ q2p3 � q3p2 ¼ F1 q2; q3; p2; p3ð Þ

) dF1

dt
¼ @F1

@q2
_q2 þ @F1

@q3
_q3 þ @F1

@p2
_p2 þ @F1

@p3
_p3

¼ @F1

@q2

@H
@p2

þ @F1

@q3

@H
@p3

� @F1

@p2

@H
@q2

� @F1

@p3

@H
@q3

using Hamilton0s equations of motionð Þ
¼ p3p2 � p2p3 þ q3l

2q2 � q2l
2q3 ¼ 0

So, F1 ¼ constant.
Again, we have

dF2

dt
¼ @F2

@q1
_q1 þ @F2

@p1
_p1 þ @F2

@t
¼ @F2

@q1

@H
@p1

� @F2

@p1

@H
@q1

þ @F2

@t

ðusingHamilton0s equations of motion)

¼ p1l cos ltþ q1l
2 sin lt � q1l

2 sin lt � p1l cos lt ¼ 0

So, F2 ¼ constant.

7.7.1 Differences Between Lagrangian and Hamiltonian
of a Dynamical System

1. Lagrangian Lðq; _q; tÞ is described always in the configuration space of appro-
priate dimension and the configuration space is described only by the total
number of generalized coordinates of the system whereas Hamiltonian Hðq; p; tÞ
is described in the phase space of requisite dimension set by the equal number of
generalized coordinates and generalized momenta.

2. Lagrangian mechanics provides a second order differential equation of motion
corresponding to each degree of freedom of the system whereas Hamiltonian
mechanics provides us two first order differential equations of motion corre-
sponding to each degree of freedom.

3. Hamilton’s equations of motion can only be derived for holonomic dynamical
systems whereas Lagrange’s equations of motion can be derived for holonomic
as well as nonholonomic dynamical systems.

So far an introduction of basic concepts of Hamiltonian function has been given
in the context of classical mechanics. We shall now give the concept with respect to
the flow of a dynamical system.
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7.8 Hamiltonian Flows

We have knowledge that solutions of a system of differential equations are geo-
metrically curves which depict a flow in the space R

n. The system of differential
equation represents a vector field where the direction of the tangent at a given point
of the solution curve is given by the first order differential equation written in a
solved form. Herein we shall discuss the dynamical properties of the flow generated
by Hamiltonian vector fields in the phase space.

A system of differential equation on R
2n corresponding to n degrees of freedom

of a system is said to be Hamiltonian flows or systems if it can be expressed as

_qi ¼ @H
@pi

; _pi ¼ � @H
@qi

; i ¼ 1; 2; . . .; n ð7:57Þ

where Hð x�Þ ¼ Hðq1; q2; . . .; qn; p1; p2; . . .; pnÞ is a twice continuously differentiable
function. The dimension of the phase space is 2n for the n generalized coordinates qi
and n generalized momenta pi, i ¼ 1; 2; . . .; n. The function H is called Hamiltonian
of the system as defined earlier. Furthermore, Hamiltonian functions are commu-
tative. The Hamiltonian vector field is derived from the Hamiltonian function

H denoted by XHðxÞ and is given by XHðxÞ � @H
@p ;� @H

@q

� �
. From Liouville theorem

(see Chap. 1) it has been established that the flow induced by a time independent
Hamiltonian is volume preserving. The flow takes place on bounded energy mani-
folds and all orbits will return after some time to a neighbourhood of the starting
point. This is a consequence of the recurrence theorem by Poincarè stated below.

Theorem 7.11 (Poincarè Recurrence Theorem) Let f be a bijective, continuous,
volume preserving mapping of a bounded domain D 	 R

n into itself. Then each
neighbourhood U of each point in D contains a point x which returns to U after
repeated applications of the mapping f ðnÞx 2 U for some n 2 N.

It follows that HðxÞ is a first integral of _x ¼ f ðxÞ if and only if dHdt ¼ rH � f ðxÞ ¼
0 8x 2 R

n;HðxÞ is identically constant on any open subset of Rn. Furthermore, if
there is a first integral, that is, a Hamiltonian function then the orbits of the system
are contained in the one-parameter family of level curves HðxÞ ¼ k.

Given a system _x ¼ f ðxÞ; x 2 R
n, a set S
R

n which is the union of whole orbits
of the system, is called an invariant set for the system. For example, for a
Hamiltonian system in R

2 the level sets Hðx1; x2Þ ¼ k are invariant sets, since H is
constant along any orbit. More generally, a function H : Rn ! R of class C1, is
called a first integral of the system _x ¼ f ðxÞ if H is constant on every orbit,
d
dt Hðx; tÞ ¼ rHðxðtÞÞ � f ðxðtÞÞ ¼ 0 8t.

In general, the first integral of a dynamical system is defined as follows.
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First integral of a system A continuously differentiable function f : D !
R; D
R

n is said to be a first integral of the system _x ¼ FðxÞ; x ¼ ðx1; x2; . . .; xnÞ 2
X
R

n on the region D
X if

Dtf ðxðtÞÞ ¼ 0; x 2 X 
R
2

where Dtf ¼ @f
@x _x ¼ @f

@x1
_x1 þ @f

@x2
_x2 þ � � � þ @f

@xn
_xn; x ¼ ðx1; x2; . . .; xnÞ and Dt is

called the orbital derivative.
The first integral f ðxðtÞÞ is constant for any solution xðtÞ of the system i.e.

f ðxðtÞÞ ¼ CðconstantÞ and is therefore also called as constant of motion. The first
integral of a system when exists is not unique for if f ðxÞ is a first integral of a
system then f ðxÞþC and Cf ðxÞ, where C 2 R are also the first integral of the
system. The first integral of a system, as the name suggests is obtained by inte-
grating just once the system _x ¼ FðxÞ.

The level curve of the first integral of a system is denoted by Lc and is defined as
Lc ¼ fxjf ðxÞ ¼ Cg. The first integral of motion f is constant on every trajectory of
the system. Hence every trajectory of a system is a member of some level curve of f.
Each level curve is therefore a union of trajectories of the system. The level set
which contains family of trajectories of the system is called an integral manifold.

A system is said to be conservative if it has a first integral of motion on the
whole plane i.e. D ¼ R

n.

Theorem 7.12 If f 2 C1ðEÞ, where E is an open, simply connected subset of R2,
then the system _x ¼ fðxÞ is a Hamiltonian system on E if and only if
r � fðxÞ ¼ 0 8x 2 E.

Proof Hamiltonian system is given by _q ¼ @H
@p ; _p ¼ � @H

@q ; therefore

r � @H
@p

;� @H
@q

� �
¼ @2H

@q@p
� @2H
@p@q

¼ 0 forðq; pÞ 2 E

since fðxÞ � f1ðq; pÞ; f2ðq; pÞð Þ ¼ @H
@p ;� @H

@q

� �
is a continuously differentiable

function.
Hence, r � fðxÞ ¼ 0 8x 2 E for a Hamiltonian system, where fðxÞ � f1ðq; pÞ;ð

f2ðq; pÞÞ ¼ @H
@p ;� @H

@q

� �
.

For the converse part suppose that _x ¼ f1ðx; yÞ; _y ¼ f2ðx; yÞ where f1; f2 2 C1ðEÞ
and r � fðxÞ ¼ 0 8x 2 E holds. Therefore

r � ðf1ðx; yÞ; f2ðx; yÞÞ ¼ 0

@f1
@x

þ @f2
@y

¼ 0

@f1
@x

¼ � @f2
@y

Clearly, the system is Hamiltonian.
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Theorem 7.13 The flow defined by a Hamiltonian system with one degree of
freedom is area preserving.

Proof The rate of change of area of a system _x ¼ f ðxÞ; x ¼ ðx; yÞ; f ¼ ðf1; f2Þ is
given by

1
A
dA
dt

¼ @f1
@x

þ @f2
@y

Now for a Hamiltonian system @f1
@x ¼ � @f2

@y(since r � fðxÞ ¼ 0 ) hence

1
A
dA
dt

¼ 0 or, A ¼ constant

Thus the area of the flow generated by the Hamiltonian system is preserved.

7.8.1 Integrable and Non-Integrable Systems

The most crucial aspect of any system is its integrability. An integrable system is
that system whose solution curves and therefore the geometry of the flow in its
embedding space can be determined with certainty. At this juncture, question may
arise that when the Hamiltonian system will be integrable. The answer to this
question is given as follows:

When the degrees of freedom of a Hamiltonian system are equal to the constants
of motion of the system then the Hamiltonian system is said to be integrable. For
instance, all Hamiltonian system with only one degree of freedom for which the
Hamiltonian function H is analytic are integrable. Moreover, all Hamiltonian sys-
tems for which Hamilton’s equations of motion are linear in generalized coordinates
and momenta are integrable. Furthermore, if it is possible to separate the nonlinear
Hamilton’s equations of motion into decoupled one degree freedom systems, then
the system is integrable.

On the other hand, if the degrees of freedom are more than the constants of
motion of the system then the system is called non-integrable.

We have seen in our earlier discussions that if a coordinate is explicitly absent in
a system then the corresponding momentum is a constant of motion. But for a
Hamiltonian system it is not always the momenta which are constants of motion but
there are constants of motion which are expressed in terms of the generalized
coordinates and generalized momenta.

Generally the trajectory of an integrable system with n-degrees of freedom
moves on an n-dimensional surface of a torus which lies in the 2n-dimensional
phase space. Now if the motion of the trajectory is constrained by some constants of
motion then the dimension of the surface in which it stays in the phase space would
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get reduced. For instance, the trajectories of a Hamiltonian system which has
k numbers of constants of motion, lie on a (2n� k)-dimensional surface in the
phase space. Since the motion of the trajectories is always restricted to these sur-
faces so these surfaces are called as invariant tori. Nevertheless, systems with more
than one degree of freedom may not be integrable. If a Hamiltonian system with
two degrees of freedom is integrable then there exist exactly two constants of
motion. The trajectories of the system therefore would move on the two dimen-
sional surface (2� 2� 2 ¼ 2) of a torus lying in a four dimensional phase space.
The trajectories of the system are periodic or quasi-periodic, and do not show any
chaotic behavior. Now if the system is slightly nonintegrable due to some pertur-
bation then the constants of motion of the system is no longer constant except the
energy of the system. Since the energy of the Hamiltonian system is conserved even
now so, the trajectories of the system are constrained to move on a three dimen-
sional surface ð2� 2� 1 ¼ 3Þ in the four dimensional phase space. The trajectories
of this three dimensional motion of the system are no longer periodic and displays
chaotic motion. When the amount of non-integrability get increased then the tra-
jectories of the system move off the tori and the tori are destroyed. The trajectories
of the system therefore can move throughout the phase space without any restric-
tion. Note that for non-integrability, a system must have at least two degrees of
freedom which implies a phase space of at least four dimensions. The phase por-
traits of such system are very difficult to obtain, (see Hilborn [13]).

Theorem 7.14 For any Hamiltonian system, the Hamiltonian x; p

� �
is a con-

served quantity or first integral of the system.

Solution Let us consider a Hamiltonian system with x as generalized coordinate

and p as generalized momentum. Now, Hamilton’s equation of motion is given by

_x ¼ @H
@p

_p ¼ � @H
@x

9>>>>=
>>>>;

ð7:58Þ

We can write
dH
dt

¼ @H
@x

dx
dt

þ @H
@p

dp
dt

¼ _x
@H
@x

þ _p
@H
@p

¼ @H
@p

@H
@x

� @H
@x

@H
@p

¼ 0

Hence, the Hamiltonian H x; p

� �
¼ constant of motion or integral of motion along

the trajectories of the system.

Example 7.19 Show that the system _x ¼ �y; _y ¼ x is conservative.
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Solution The given system can be written as

dy
dx

¼ � x
y
; y 6¼ 0

The solution of this equation is x2 þ y2 ¼ c; y 6¼ 0, where c is a positive con-
stant. However

d
dt
f ðxÞ ¼ @f

@x
_xþ @f

@y
_y ¼ �2xyþ 2xy ¼ 0 8ðx; yÞ 2 R

2

Hence the given system is a conservative system.

Example 7.20 Find out whether the system _x ¼ x; _y ¼ y is a conservative system or
not.

Solution The given system can be written as
dy
dx

¼ y
x
; x 6¼ 0

The solution of this equation is y ¼ cx; x 6¼ 0, where c is a positive constant.
However the first integral of the system f ðx; yÞ ¼ y

x, x 6¼ 0 satisfies

d
dt
f ðxÞ ¼ @f

@x
_xþ @f

@y
_y ¼ �y=xþ y=x ¼ 0 8 ðx; yÞnð0; yÞ 2 R

2

Hence the given system is not a conservative system.

Example 7.21 Find a first integral of the system

_x ¼ xy; _y ¼ ln x; x[ 1

in the region indicated. Hence, sketch the phase portrait.

Solution The given system of equation can be written as a single system

dy
dx

¼ ln x
xy

Separation of variables yields

ydy ¼ ln x
x

dx

) y2 ¼ ðln xÞ2 þ constant

This is the first integral of the system. Since the first integral f ðx; yÞ ¼
y2 � ðln xÞ2 of the given system satisfies

d
dt
f ðxÞ ¼ @f

@x
_xþ @f

@y
_y ¼ �2y ln xþ 2y ln x ¼ 0 8ðx; yÞnð0; yÞ 2 R

2
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hence the system is not conservative. The sketch the phase portrait of the given
system in the x� _x plane is shown in Fig. 7.4. The direction of the trajectories is
given by the direction of _x. Now _x[ 0 when y[ 0 and _x\0 for y\0. Hence the
direction of the trajectories are from left to right in the upper half-plane and from
right to left in the lower half plane. The level curves give the shape of the trajec-
tories without the directions.

Example 7.22 Find a Hamiltonian H for a moving particle along a straight line,
given by the equation of motion

x
:: ¼ �xþ bx2; b[ 0; x is the displacement

Sketch the Level curve of the Hamiltonian H in the phase plane.

Solution The given nonlinear equation is converted into the following system of
equations

_x ¼ y

_y ¼ �xþ bx
2

If we consider the variable x as generalized coordinate and y as genaralised
momentum then we have

@H
@y

¼ y

@H
@x

¼ x� bx2

) dH
dt

¼ _x
@H
@x

þ _y
@H
@y

¼ _xðx� bx2Þþ y_y ¼ 0

and the Hamiltonian of the system is given by Hðx; yÞ ¼ x2
2 � b

3 x
3 þ y2

2 .

Fig. 7.4 a Level curves and b Phase portrait of the first integral
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Now we sketch the phase portrait of the given system in the x� _x plane shown
in Fig. 7.5. The direction of the trajectories is given by the direction of _x. Now
_x[ 0 when y[ 0 and _x\0 for y\0. Hence the direction of the trajectories are
from left to right in the upper half-plane and from right to left in the lower half
plane.

Example 7.23 Find a Hamiltonian H for the undamped pendulum, given by the
equation of motion

x
:: þ sin x ¼ 0

Sketch the level curves of the Hamiltonian H in the phase plane.

Solution The given equation of pendulum can be written as the following system
of equation

_x ¼ y

_y ¼ � sin x

If we consider the variable x as the generalized coordinate and y as the gener-
alized velocity then we will have

@H
@y

¼ y

@H
@x

¼ sin x

Fig. 7.5 Level curve and phase portrait of Hðx; yÞ ¼ x2
2 � b

3 x
3 þ y2

2 for b ¼ 1
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Hence dH
dt ¼ _x @H

@x þ _y @H
@y ¼ _x sin xþ _yy ¼ 0

Whence Hamiltonian H ¼ � cos xþ y2

2 . The level curves are shown in Fig. 7.6.

Example 7.24 Find the Hamiltonian for the system

_x ¼ y

_y ¼ �xþ x3

Also, sketch the Hamiltonian of the system in the phase plane.

Solution If x is the generalized coordinate of the system and y the generalized
velocity, then clearly,

@H
@x

¼ x� x3 and
@H
@y

¼ y

Hence dHdt ¼ _x @H
@x þ _y @H

@y ¼ _xðx� x3Þþ _yy ¼ 0. Therefore the Hamiltonian of the

system is

H ¼ x2

2
� x4

4
þ y2

2

Now we sketch the phase portrait of the given system in the x� _x plane shown
in Fig. 7.7. The direction of the trajectories is given by the direction of _x. Now
_x[ 0 when y[ 0 and _x\0 for y\0. Hence the direction of the trajectories are
from left to right in the upper half-plane and from right to left in the lower half
plane.

Example 7.25 Find a conserved quantity for the system ẍ = a – ex and also sketch
the phase portrait for a\0;¼ 0; and [ 0.

Solution The given system can be written as the following system of equation

_x ¼ p

_p ¼ a� ex

Fig. 7.6 Level curve of
undamped pendulum

7.8 Hamiltonian Flows 295



For this system @H
@p ¼ p and @H

@x ¼ ex � a. Therefore, the Hamiltonian H is given

by

dH ¼ ðex � aÞdxþ pdp

H ¼ ex � axþ p2

2

The given system of equation is a Hamiltonian system and the Hamiltonian H is
the conserved quantity of the system. When a ¼ 0 then the given system has no
fixed points and for a ¼ �1 the system has complex fixed points ðð2nþ 1Þip; 0Þ
while for a ¼ 1 the only real fixed point is ð0; 0Þ which is a center and the tra-
jectories in the phase plane are closed curves about the fixed point origin. The
sketch the phase portrait of the given system in the x� _x plane shown in Fig. 7.8.

Fig. 7.7 a Level curves of Hðx; yÞ ¼ x2
2 � x4

4 þ y2

2 . b Phase portrait of the system
_x ¼ y; _y ¼ �xþ x3

Fig. 7.8 Phase portrait of the Hamiltonian H ¼ ex � axþ p2

2 for a[ 0; a ¼ 0 and a\0,
a a = 1, b a = 0, c a = −1
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The direction of the trajectories is given by the direction of _x. Now _x[ 0 when
p[ 0 and _x\0 for p\0. Hence the direction of the trajectories are from left to
right in the upper half-plane and from right to left in the lower half plane.

Example 7.26 Show that the Hamiltonian H is p2

2m þ lx2

2 for a simple harmonic
oscillator of mass m and spring constant l. Also, show that H is the total energy.

Solution The equation of motion of a simple linear harmonic oscillator with spring
constant l is given by

mx
:: þ lx ¼ 0

This equation can be written as a system of equation given below

_x ¼ p
m

_p ¼ �lx

Now, @H
@p ¼ p

m and @H
@x ¼ lx. Hence the Hamiltonian Hðx; pÞ is given by

dH ¼ @H
@x

dxþ @H
@p

dp

H ¼ lxdxþ p
m
dp ¼ lx2

2
þ p2

2m

Since the given system is a Hamiltonian system, the conserved quantity is the
Hamiltonian function H. The only fixed point of the system is the origin ð0; 0Þ
obtained by solving @H

@p ¼ p
m ¼ 0 and @H

@x ¼ lx ¼ 0. The trajectories of the system are

ellipse. The sketch of the phase portrait is given in the Fig. 7.9. In the upper half
plane x[ 0, _x[ 0 hence the direction of the trajectories is from left to right and in

Fig. 7.9 Phase portrait of
simple harmonic oscillator
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the lower half plane (x\0), _x\0 hence the direction of the trajectories is from right
to left.

Now the total energy of the system = Kinetic energy of the system + potential
energy of the system.

Kinetic energy ¼ 1
2m _x2 and potential energy ¼ � R �lxdx ¼ lx2

2 (since the
system is conservative and the force acting on the system is �lx). Therefore

the total energy of the system is m _x2
2 þ lx2

2 ¼ p2

2m þ lx2

2 (Since _x ¼ p
m). Hence, the

Hamiltonian H is equal to the total energy of the system.

7.8.2 Critical Points of Hamiltonian Systems

We have learnt the qualitative analysis of a nonlinear dynamical system in Chap. 3
by evaluating the fixed points of the system and various behaviors in its neigh-
bourhood. The fixed points of a conservative Hamiltonian system _x ¼ Hy; _y ¼ �Hx

are given by

@H
@x

¼ 0;
@H
@y

¼ 0:

The Hamiltonian H is a conserved quantity along any phase path of the system,
and gives the shapes of the trajectories of the flow generated by the Hamiltonian
vector field XH in the phase plane of the system. And the fixed points of the system
give the local dynamics in its neighbourhood. Moreover, if the Hamiltonian H of a
system is known than one can directly yield the fixed points of the system.

Lemma 7.1 If the origin is a focus of the Hamiltonian system

_x ¼ @H
@y

; _y ¼ � @H
@x

Then the origin is not a strict local maximum or minimum of the Hamiltonian
function Hðx; yÞ.
Theorem 7.15 Any nondegenerate critical point of an analytic Hamiltonian system

_x ¼ @H
@y

; _y ¼ � @H
@x

ð7:59Þ

is either a saddle or a center; Again ðx0; y0Þ is a saddle for (7.59) iff it is a saddle of
the Hamiltonian function Hðx; yÞ and a strict local maximum or minimum of the
function Hðx; yÞ is a center for (7.59).

Proof Suppose that critical point of the Hamiltonian system
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_x ¼ Hyðx; yÞ; _y ¼ �Hxðx; yÞ

is at origin. Therefore Hxð0; 0Þ ¼ 0, Hyð0; 0Þ ¼ 0. The linearized system of the
Hamiltonian system at the origin is given by

_x ¼ Ax ð7:60Þ

where A ¼ Hyxð0; 0Þ Hyyð0; 0Þ
�Hxxð0; 0Þ �Hxyð0; 0Þ

� �
Trace of A ¼ 0 and the det A ¼ Hxxð0; 0ÞHyyð0; 0Þ � H2

xyð0; 0Þ. The critical point
at the origin is a saddle of the function H(x, y) if and only if it is saddle of the
Hamiltonian system. Now origin is a saddle of the Hamiltonian system if and only
if it is a saddle of the linearized system (7.60) i.e. detA\ 0. Also if trA ¼ 0 and
det A[ 0 then the origin is a center for the system (7.60) and then the origin is
either a center or focus for the Hamiltonian system. Now if the nondegenerate
critical point (0, 0) is a strict local maximum or minimum of the Hamiltonian H(x,
y) then det A[ 0 and then according to the above lemma the origin is not a focus
for the Hamiltonian system (7.59) i.e. the origin is a center for the Hamiltonian
system (7.59).

Example 7.27 Hamiltonian H for the undamped pendulum, is given by

H ¼ 1� cos xþ y2

2 . Calculate its fixed points and sketch the phase portrait of the
Hamiltonian H.

Solution The fixed points of the system is given by

@H
@x

¼ sin x ¼ 0;

@H
@y

¼ y ¼ 0

Hence the fixed points are ðnp; 0Þ, n 2 Z.
We shall now analyze the trajectories in the neighbourhood of ð0; 0Þ. In this case

the linearized system is

_x ¼ y

_y ¼ �xþ x3

3!
� x5

5!
þ � � �

Neglecting the higher order terms, the linearized system is obtained as

_x ¼ y

_y ¼ �x
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In matrix form it can be written as

_x

_y

 !
¼ 0 1

�1 0

� �
x

y

 !

The eigen values of the system are complex with real part zero. Hence the origin
ð0; 0Þ is the center of the system. About the fixed point ð�p; 0Þ the Hamiltonian
equation of motion can be linearized by introducing ðx; yÞ ! ðx� p; yÞ. We obtain

_x ¼ y

_y ¼ � sinðx� pÞ ¼ sinðp� xÞ

¼ sin x ¼ x� x3

3!
þ � � �

Neglecting higher order terms we get the linearized system as

_x ¼ y

_y ¼ x

In matrix form the above system can be written as
_x

_y

 !
¼ 0 1

1 0

� �
x

y

 !

In this case the system has real distinct eigen values of opposite signs. Hence the
fixed point ð�p; 0Þ is a saddle of the system.

About the fixed point ðp; 0Þ the Hamiltonian equation of motion can be lin-
earized by introducing ðx; yÞ ! ðxþ p; yÞ. We obtain

_x ¼ y

_y ¼ � sinðpþ xÞ ¼ sin x

¼ x� x3

3!
þ � � �

In this case also the linearized system is (Fig. 7.10)

_x ¼ y

_y ¼ x

Hence the fixed point ðp; 0Þ is a saddle of the system.
Now we will see the nature of the fixed points ð2p; 0Þ. Here introducing ðx; yÞ !

ðxþ 2p; yÞ we have the

_x ¼ y

_y ¼ � sinð2pþ xÞ ¼ � sin x

¼ �xþ x3

3!
þ � � �
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Neglecting the higher order terms we have the linearized system

_x ¼ y

_y ¼ �x

In matrix form the above system can be written as

_x

_y

 !
¼ 0 1

�1 0

� �
x

y

 !

which gives complex eigen values with real part zero, hence ð2p; 0Þ is a center
similarly the fixed point ð�2p; 0Þ is also a center. Hence, we can conclude that the
fixed points ð2np; 0Þ; n 2 Z are centers and the fixed points ð2nþ 1Þp; 0ð Þ; n 2 Z

are saddles. The phase portrait of the given system is given in Fig. 7.10. The given
system is a Hamiltonian system hence the system is a conservative system with no
dissipation and the total energy of the system is given by the Hamiltonian H, which
is the conserved quantity. The separatrices of the system divide the phase space into
two types of qualitatively different behaviors of the trajectories. Each trajectory
corresponds to a particular value of the energy H. The trajectories inside the
sepratrices around the fixed points ð2np; 0Þ; n 2 Z have small values of the energy
and are nearly circles which describes the usual to and fro (Oscillatory) motion of
the pendulum about the equilibrium points. The sepratrices which connects the

Fig. 7.10 Phase portrait of
undamped pendulum
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saddles at ð�p; 0Þ corresponds to the motion with total energy H ¼ 2 and the
pendulum tends to the unstable vertical position as t ! �1. The trajectories
outside the sepratrix loops are hyperbolas with total energy H[ 2 and the pen-
dulum swing over the top. The motion corresponds to clockwise motion for neg-
ative angular velocity and counterclockwise motion for positive angular velocity.

7.8.3 Hamiltonian and Gradient Systems

We have already defined the gradient systems in Chap. 4. Herein we will discuss
the relationship of the gradient system with the Hamiltonian system. For conve-
nience we are giving the definition of gradient system once again as follows

Definition 7.6 A system given by _x ¼ �gradFðxÞ, gradF ¼ @F
@x1

; . . .; @F@xn

� �T
and

the function F 2 C2ðEÞ, where E is an open subset of Rn is called a gradient system
on E.

The critical points or fixed points of a gradient system is given by the function
FðxÞ where gradFðxÞ ¼ 0. The points for which gradFðxÞ 6¼ 0 are called regular
points of the function FðxÞ. At regular points of FðxÞ the vector gradFðxÞ is
perpendicular to the level surface FðxÞ ¼ constant through the regular point.

We know that any system orthogonal to a two dimensional system _x ¼
f ðx; yÞ; _y ¼ gðx; yÞ is given as _x ¼ gðx; yÞ; _y ¼ �f ðx; yÞ. The critical points of these
two systems are same. Moreover, the centre of a planar system corresponds to the
nodes of its orthogonal system. Also the saddle and foci of the planar system are the
saddles and foci of its orthogonal system. At regular points the trajectories of the
planar system and its orthogonal system are orthogonal to each other. Again if the
planar system is a Hamiltonian system then the system orthogonal to this system is
a gradient system and conversely. It follows that there is an interesting relationship
between the gradient system and the Hamiltonian system. The following theorem
gives the relationship between the Hamiltonian and gradient system.

Theorem 7.16 The planar system given by _x ¼ f ðx; yÞ; _y ¼ gðx; yÞ is a
Hamiltonian system if and only if the system orthogonal to it, given by _x ¼
gðx; yÞ; _y ¼ �f ðx; yÞ is a gradient system.

Proof Suppose that the system

_x ¼ f ðx; yÞ
_y ¼ gðx; yÞ ð7:61Þ

is a Hamiltonian system, therefore r � ðf ; gÞ ¼ 0
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i.e.@f@x þ @g
@y ¼ 0. So there exist a function say H for which we can write f ¼ @H

@y

and g ¼ � @H
@x . Now the system orthogonal to this system is

_x ¼ gðx; yÞ
_y ¼ �f ðx; yÞ ð7:62Þ

which can be written as

_x ¼ � @H
@x

; _y ¼ � @H
@y

or _x ¼ �gradHðxÞ; x ¼ ðx; yÞ where gradH ¼ @H
@x ;

@H
@y

� �
. This is by definition a

gradient system. Conversely suppose that the system (7.61) orthogonal to (7.60) is a
gradient system therefore there exists a function say H such that we can write
g ¼ � @H

@x and f ¼ @H
@y . For this the system (7.60) can be written as

_x ¼ @H
@y

; _y ¼ � @H
@x

For which it can be easily checked that r � @H
@y ;� @H

@x

� �
¼ 0. Hence the system

(7.61) is a Hamiltonian system when the system (7.62) is a gradient system.
Note that the trajectories of the gradient system (7.62) cross the surface

Hðx; yÞ ¼ constant orthogonally.
For the Hamiltonian system in higher dimensional spaces say for n degrees of

freedom is given by

_x ¼ @H
@y

_y ¼ � @H
@x

9>>=
>>; ð7:63Þ

Then the system orthogonal to (7.63)

_x ¼ � @H
@x

_y ¼ � @H
@y

9>>=
>>; ð7:64Þ

is a gradient system in R
2n.

Example 7.28 For the Hamiltonian function Hðx; yÞ ¼ y sin x, sketch the phase
portraits of the Hamiltonian system and its gradient system.
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Solution For Hðx; yÞ ¼ y sin x, the Hamiltonian system is given by

_x ¼ sin x

_y ¼ �y cos x
ð7:65Þ

Therefore its gradient system is given by

_x ¼ �y cos x

_y ¼ � sin x

The critical points of the Hamiltonian system and the gradient system are at
ðnp; 0Þ; n 2 Z . The phase portrait of the Hamiltonian and Gradient system is shown
in Fig. 7.11.

7.9 Symplectic Transformations

The symplectic or canonical transformation is an important coordinate transfor-
mation from R

2n to R2n as it preserves the flow generated by the Hamiltonian vector
field XH of the Hamiltonian system. Under symplectic transformation, Hamilton
equation of motion is form invariant. Also, the Hamilton H in terms of new
coordinate, obtained under this transformation is such that the new system becomes
comparatively easier as it reveals all cyclic coordinates and conserved quantities.
We will first define the symplectic form.

Fig. 7.11 Phase portrait of
the Hamiltonian and its
gradient system
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7.9.1 Symplectic Forms

Let x� ¼ ðq; pÞ, then the Hamiltonian system can be written as _x
� ¼ JDHðxÞ; where

J ¼ O I
�I O

� �
; O; I denotes the n� n null and unit matrices respectively and

DHð _x�Þ ¼
@H
@q ;

@H
@p

� �
.

A bilinear form X is said to be symplectic on the phase space R
2n if it is a

skew-symmetric and nondegenerate that is, the matrix representation of the bilinear
form is non-singular and skew-symmetric. A vector space is said to be a symplectic
vector space if it is furnished with a symplectic form. A symplectic form for the
vector space, particularly for the phase space R

2n is given by

Xðu; tÞ ¼ u; Jth i; u; t 2 R
2n

where �; �h i is the standard Euclidean inner product on R
2n and J is the nonsingular,

skew-symmetric matrix defined above. This particular symplectic structure on R
2n

is called the Canonical symplectic form.

7.9.2 Symplectic Transformation

An r(� 1) times continuously differentiable diffeomorphism / : R2n ! R
2n is said

to be a Symplectic or Canonical transformation if, Xðu; tÞ ¼ XðD/ðxÞu;D/ðxÞtÞ
8x; u; t 2 R

2n.

7.9.3 Derivation of Hamilton’s Equations from Symplectic
Form

Hamilton’s equation of motion in phase space can be derived from the symplectic
form. For this consider the phase space R

2n for the Hamiltonian vector field

XHð x�Þ �
@H
@p ;� @H

@q

� �
obtained from the Hamiltonian function H. The symplectic

structure for XHðxÞ is expressed by

XðXHðxÞ; tÞ ¼ DHðxÞ; th i; x 2 U 	 R
2n; t 2 R

2n ð7:66Þ

Now if XHðxÞ ¼ ð _q; _pÞ is an arbitrary vector field on some subset U 	 R
2n with

DH ¼ @H
@q ;

@H
@p

� �
then the above equation becomes
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Xðð _q; _pÞ; tÞ ¼ ð _q; _pÞ; Jth i ¼ @H
@q

;
@H
@p

� �
; t

� �
ð7:67Þ

Now, J ¼ 0 I
�I 0

� �
¼ �JT ; therefore we get

ð _q; _pÞ; Jth i ¼ �Jð _q; _pÞ; th i ¼ ð� _p; _qÞ; th i ð7:68Þ

Substituting (7.68) into (7.67), we get

ð� _p; _qÞ; th i ¼ @H
@q

;
@H
@p

� �
; t

� �

For the symplectic form, the inner product must be nondegenerate. Using lin-
earity principle of symplectic form and for fixed t 2 R

2n, the above form can be
written as

ð� _p; _qÞ � @H
@q

;
@H
@p

� �
; t

� �
¼ 0

This relation holds for all t. By non degeneracy of the symplectic form we have

ð� _p; _qÞ � @H
@q

;
@H
@p

� �
¼ 0

) _p ¼ @H
@q

; _q ¼ � @H
@p

:

Hence, the Hamiltonian canonical equations are established.

Example 7.29 Show that a transformation / : R2n ! R
2n is symplectic with

respect to the canonical symplectic form if D/ðxÞTJD/ðxÞ ¼ J 8x; u; t 2 R
2n.

Solution We have for symplectic transformation Xðu; tÞ ¼ XðD/ðxÞu;D/ðxÞtÞ
8x; u; t 2 R

2n. Now for a canonical symplectic form this relation can be written as

uh ; Jti ¼ D/ðxÞuh ; JD/ðxÞti ¼ uh ; ðD/ðxÞÞTJD/ðxÞti
Since this holds for all u; t 2 R

2n, therefore ðD/ðxÞÞTJD/ðxÞ ¼ J.

Theorem 7.17. The flow generated by the Hamiltonian vector field XH defined on
some open convex set U 2 R

2n is a one parameter family of symplectic (canonical)
transformation and conversely if the flow generated by a vector field comprise of
symplectic transformation for each t, then the vector field is a Hamiltonian vector
field.

For proof see the book of Stephen Wiggins [11].
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7.10 Poisson Brackets

Poisson bracket is a connection between a pair of dynamical variables for any
holonomic system which remains invariant under any symplectic transformation.
This relation is helpful in testing whether a phase space transformation is sym-
plectic or not. Also, using Poisson bracket new integrals of motion can be con-
structed from those already known. Poisson bracket of the variables of the
Hamiltonian system in the phase space R

2n is given as follows:
The Poisson bracket of any two Cr; r� 2 (r times continuously differentiable

functions) functions F;G of x 2 R
2n such that F;G : U 	 R

2n ! R is a function
defined by the following notation:

F;Gf g ¼ X XF ;XGð Þ ¼ XF ; JXGh i ð7:69Þ

From (7.69), we can write

F;Gf g ¼ X XF ;XGð Þ ¼ XF ; JXGh i ¼ JTXF ;XG
� � ¼ �JXF ;XGh i ¼ � JXF ;XGh i

¼ � XG; JXFh i ¼ � G;Ff g

This implies that the Poisson bracket is anti-symmetric.
If F � H; the Hamiltonian vector fields XHðxÞ obtained from the Hamilton

function H is given by

XHðxÞ ¼ @H
@p

;� @H
@q

� �
; and similarly XGðxÞ ¼ @G

@p
;� @G

@q

� �
;

The Poisson bracket of H and G is therefore given as

H;Gf g ¼
Xn
i¼1

@H
@qi

@G
@pi

� @H
@pi

@G
@qi

;

this implies that

F;Ff g ¼ 0: ð7:70Þ

The Hamilton’s equation of motion _qi ¼ @H
@pi

and _pi ¼ � @H
@qi

can be written in

terms of Poisson bracket. For this, the rate of change of any function F along the
trajectories generated by the Hamiltonian vector field XH is given by

dF
dt

¼
Xn
i¼1

@F
@qi

_qi þ @F
@pi

_pi

� �
¼
Xn
i¼1

@F
@qi

@H
@pi

� @F
@pi

@H
@qi

� �
¼ F;Hf g ð7:71Þ

So the above relation is an alternative way to write Hamilton’s equation of
motion for all function F : U ! R. Again the Hamilton’s equation of motion
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_q ¼ @H
@p ; _p ¼ � @H

@q can be easily established from the relation dF
dt ¼ F;Hf g. For that

consider the time derivative of the function F, given as dF
dt ¼

Pn
i¼1

@F
@qi

_qi þ @F
@pi

_pi,

then subtracting the latter relation from the former, we have

F;Hf g �
Xn
i¼1

@F
@qi

_qi þ @F
@pi

_pi ¼ 0

Now since the Poisson bracket of F;H is
Pn

i¼1
@F
@qi

@H
@pi

� @F
@pi

@H
@qi
, we have

Xn
i¼1

@H
@pi

� _qi

� �
@F
@qi

� @H
@qi

þ _pi

� �
@F
@pi

¼ 0

which gives _qi ¼ @H
@pi

and _pi ¼ � @H
@qi

:

The relation (7.70) and (7.71) yields the following proposition.

Proposition 7.1 The Hamiltonian Hðq; pÞ is constant along trajectories of the
Hamiltonian vector field XH .

In other words, any function F which satisfies _F ¼ F;Hf g ¼ 0 is an integral or
constant of motion with respect to the flow generated by the Hamiltonian vector
field XH . We have already established this result without using Poisson bracket that
has a fine geometric structure and can be obtained as follows:

We have F;Hf g ¼ XF ; JXHh i ¼ � JXF ;XHh i ¼ 0

Now, JXF ¼ J

@F
@P

�@F
@q

0
B@

1
CA ¼ O I

�I O

� � @F
@P

�@F
@q

0
B@

1
CA ¼ �

@F
@q

@F
@p

0
B@

1
CA. Thus the vector

� @F
@q;

@F
@p

� �
is the vector perpendicular to the surface due to the level set of the

integral of motion F, at each point at which it is evaluated. Thus geometrically the
vector field is tangent to the surface given by the level set of the integral (see
Wiggins [11]).

The Poisson bracket of any two functions F and G satisfies the following
properties

(i) fF;Ggp;q ¼ �fG;Fgp;q ¼ fG;Fgq;p:
(ii) fF;Cg ¼ 0, if C is a constant.
(iii) fF1 þF2;Gg ¼ fF1;GgþfF2;Gg:
(iv) fF1F2;Gg ¼ F1fF2;GgþfF1;GgF2:
(v) For any three functions F;G;H, Poisson bracket satisfies the Jacobi identity

fF; fG;HggþfG; fH;FggþfH; fF;Ggg ¼ 0

Furthermore, the Poisson bracket of any two functions F and G remains invariant
under a symplectic transformation that is, F;Gf gp;q¼ F;Gf gP;Q, where P;Q are
obtained from p; q under symplectic transformation. Again the Poisson bracket of
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the variables P;Q obtained from p; q, given by fPi;Qjg ¼ dij, fPi;Pjg ¼ 0 ¼
fQi;Qjg are useful for testing the canonicality of any phase space transformation.

7.11 Hamilton–Jacobi Equation

Here we have another formulation of motion of a system that is, Hamilton–Jacobi
equation. At this point one may ask why to formulate any other method when we
already have Hamilton’s canonical equations of motions. The answer is that
Hamilton’s equations of motions are system of first order differential equation
which though looks simple is usually harder to solve. Thus Hamilton’s formulation
though provides us a simpler formulation over the Lagrangian by giving liberty in
choosing the generalized coordinate and momenta, but the difficulty in solving the
problem remains same. Hamilton–Jacobi equation on the other hand is a single
partial differential equation. Even though, it is also not easy to solve this equation,
but can be solved when variables are separable. Hamilton–Jacobi equation was
formulated by Carl Gustov Jacob Jacobi (1804–1851) which is useful in particular
for solving conservative periodic systems. This theory is regarded as the most
complex, yet significant and strong approach for solving problems in classical
mechanics. By using Hamilton–Jacobi equation all hidden constants of motion in
spite of having complicated form can be found out. We shall now give the for-
mulation of Hamilton–Jacobi equation as follows:

Suppose that �qðtÞ is the extremal of the action integral
R t
t0
Lðq; _q; tÞdt with

�qðt0Þ ¼ q0 and �qðtÞ ¼ q, where q0 and t0 are fixed. Mathematically this can be
written as

Aðq; tÞ ¼
Z t

t0

Lð�q; _�q; tÞdt ð7:72Þ

For an infinitesimal change h, its differential is given by

dAðq; tÞh ¼
Z t

t0

ðLðqi þ h; _qi þ _h; tÞ � Lðqi; _qi; tÞÞdtþ oðh2Þ

¼
Z t

t0

XN
i¼1

@L
@qi

� d
dt

@L
@ _qi

� �
hidtþ

XN
i¼1

@L
@ _qi

hi

����
t

t0

ðusing integration by parts)

this gives dAðq; tÞh ¼PN
i¼1

@L
@ _qi

hi ¼
PN

i¼1 pihi (by using pi ¼ @L
@ _qi
), the first term

vanishes since �qðtÞ is an extremal of the action integral and �qðt0Þ ¼ q0 is fixed for
each extremal. Since the variation is taken only for q in computing the differential
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of A one obtains the relation pi ¼ @A
@qi
. Again from the action integral (7.72) we have

dA
dt ¼ L.

Therefore

dA
dt

¼
XN
i¼1

@A
@qi

_qi þ @A
@t

¼ L )
XN
i¼1

pi _qi þ @A
@t

¼ L ) L�
XN
i¼1

pi _qi ¼ @A
@t

which can be rewritten as

Hðqi; pi; tÞ ¼ @A
@t

or;
@A
@t

� H qi;
@A
@qi

; t

� �
¼ 0 ð7:73Þ

The above equation is a first order partial differential equation for the function
Aðq; tÞ containing ðnþ 1Þ partial derivatives, known as Hamilton–Jacobi equation.
The trajectories of the Hamilton’s canonical equation can be obtained from the
solutions of the Hamilton–Jacobi equation which follows from the following Jacobi
theorem, proved by Jacobi in the year 1845.

Theorem 7.18 If the Hamilton Jacobi equation given by (7.73) admits a complete
integral A ¼ f ðq1; q2; . . .; qN ; t; c1; c2; . . .; cNÞþ a then the equations @f

@ai
¼ bi;

@f
@qi

¼
pi with the 2N arbitrary constant ai, ci, ai, bi, respectively gives the 2N parameter
family of solutions of Hamilton’s equations _qi ¼ @H

@pi
; _pi ¼ � @H

@qi
i ¼ 1; . . .;N.

Proof For a complete integral of the Hamilton Jacobi equation we must have

det @2f
@q@a

� �
6¼ 0 and therefore one can get the solution of the N equations @f

@ai
¼ bi for

qi as a function of t and the 2N constants ai; bi. Substituting these functions in
@f
@qi

¼ pi one will obtain pi as a function of t and the 2N constants ai; bi. Now in order

to obtain the proof of the theorem differentiate @f
@ai

¼ bi with respect to t, which gives

@2f
@t@ai

þ
XN
j¼1

@2f
@qj@ai

dqj
dt

¼ 0 ð7:74Þ

Now differentiate @f
@t þHðq; @f@q ; tÞ ¼ 0 with respect to ai which gives

@2f
@t@ai

þ
XN
j¼1

@H
@pj

@2f
@qj@ai

¼ 0 ð7:75Þ

Now using det @2f
@q@a

� �
6¼ 0 and subtracting (7.75) from (7.74), one will obtain

XN
j¼1

dqj
dt

� @H
@pj

� �
@2f

@qj@ai
¼ 0 ) _qj ¼ @H

@pj
j ¼ 1; 2; . . .
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Similarly, differentiating @f
@qi

¼ pi, with respect to t, we have

dpi
dt

¼ @2f
@t@qi

þ
XN
j¼1

@2f
@qj@qi

dqj
dt

ð7:76Þ

Again differentiating @f
@t þHðq; @f@q ; tÞ ¼ 0 with respect to qi, we will have

@2f
@t@qi

þ
XN
j¼1

@H
@pj

@2f
@qj@qi

þ @H
@qi

¼ 0 ð7:77Þ

Now substituting _qj ¼ @H
@pj

in (7.76) and then using (7.76) in (7.77), we will have

_pi ¼ � @H
@qi

i ¼ 1; 2; . . .;N

Let us elaborate this with the following examples.

Example 7.30 Find the trajectory of the motion of a free particle using Hamilton–
Jacobi equations.

Solution The Hamiltonian of a free particle is H ¼ 1
2mð _qÞ2 and the momentum

p ¼ m _q, therefore H ¼ p2

2m . Again p ¼ @A
@q. Therefore the Hamilton–Jacobi equation

becomes 1
2m

@A
@q

� �2
þ @A

@t ¼ 0.

Solving this equation one can get, Aðq;E; tÞ ¼ ffiffiffiffiffiffiffiffiffi
2mE

p
q� Et where E is the

non-additive constant.
This is a complete integral.
Now, using the solution of the Hamilton–Jacobi equation, the solution of the

Hamilton’s equation is obtained as follows

@A
@a

¼ b ) b ¼
ffiffiffiffiffiffi
m
2E

r
q� t ) q ¼

ffiffiffiffiffiffi
2E
m

r
ðtþ bÞ

andp ¼ @A
@q

¼
ffiffiffiffiffiffiffiffiffi
2mE

p

The constant b can be obtained when the initial condition for the trajectories are
prescribed.

Example 7.31 Find the trajectories of the simple harmonic oscillator using
Hamilton–Jacobi equation.

Solution For harmonic oscillator, the Hamiltonian function H ¼ 1
2m p2 þm2x2q2ð Þ.
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Now, p ¼ @A
@q gives the Hamilton–Jacobi equation 1

2m
@A
@q

� �2
þm2x2q2


 �
þ

@A
@t ¼ 0

Let us try to solve this using method of separation of variables. Suppose
Aðq; a; tÞ ¼ Wðq; aÞ � at, a is a non-additive constant.

We have from Hamilton-Jacobi equation, 1
2m

@W
@q

� �2
þm2x2q2


 �
¼ a )

W ¼ ffiffiffiffiffiffiffiffiffi
2ma

p R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2x2q2

2a

q
dq.

Thus the solution of the Hamilton–Jacobi equation is obtained as

Aðq; a; tÞ ¼
ffiffiffiffiffiffiffiffiffi
2ma

p Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2x2q2

2a

r
dq� at

Now using the above solution of Hamilton–Jacobi equation, the solution of
Hamilton’s canonical equation can be obtained as follows b ¼ @A

@a

gives b¼ ffiffiffiffi
m
2a

p R dqffiffiffiffiffiffiffiffiffiffiffiffi
1�mx2q2

2a

p � t which on integration gives tþ b ¼ 1
x sin�1 q

ffiffiffiffiffiffiffi
mx2

2a

q
.

Thus we have,

q ¼
ffiffiffiffiffiffiffiffiffi
2a
mx2

r
sin xðtþ bÞ; p ¼ @S

@q
¼ @W

@q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma� m2x2q2

p
¼

ffiffiffiffiffiffiffiffiffi
2ma

p
cos xðtþ bÞ

Remarks Consider the time independent Hamilton–Jacobi equation given by

H q;
@G2

@q

� �
þ @G2

@t
¼ 0 ð7:78Þ

To solve this let us use the method of separation of variables and take

G2ðq; tÞ ¼ WðqÞþ TðtÞ ð7:79Þ

Thus we have,

H q;
@W
@q

� �
¼ E;

@T
@t

¼ �E ð7:80Þ

The first Eq. (7.80) is known as time independent Hamilton–Jacobi equation and
E represents the total constant energy. We then write

G2 ¼ Wðq1; q2; . . .; qn; a1; a2; . . .; anÞ � Eða1; a2; . . .; anÞt
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with the canonical transformation

p ¼ @Wðq; aÞ
@q

; b ¼ @Wðq; aÞ
@a

� @EðaÞ
@a

t: ð7:81Þ

This may be interpreted as a transformation from ðq; pÞ ! ðQ;PÞwhere
Q ¼ bþ @E

@a t;P ¼ a. The transformed Hamiltonian is E(P) since E ¼ Eða1; a2;
. . .; anÞ ¼ EðaÞ ¼ EðPÞ.

7.12 Exercises

1. Prove that for a scleronomous system the kinetic energy T is a homogeneous quadratic function of  

, 1,2,...,kq k n=  and hence
1

2
n

k
kk

T
T q

q=

= ∑
2. Find the Lagrangian and Lagrange’s equation of motion for a simple harmonic oscillator of mass m and 

spring constant k freely moving in a plane. Show that this system gives two independent integrals.
3. Find the energy integral for the simple pendulum and hence show that it is constant on trajectories.
4. Formulate Lagrange’s equations of motion for the double pendulum. 
5. Find Hamiltonian and Hamilton’s equations of motion for a particle of mass m moving in the xy-plane 

under the influence of a central force depending on the distance from the origin. 

6. Find the Hamiltonian function ( , )H x y for the system 2,  ( )x xx y y e eμ − −= = − − .
7. Prove that node and focus types fixed points cannot exists for Hamiltonian systems.  

8. Prove that 
dH H

dt t
= where H is the Hamiltonian.

9. State and prove the theorem for conservation of linear momentum. 

10. Prove the theorem for conservation of angular momentum. 

11. State and prove the theorem for conservation of energy.

12. A particle of mass m moves in a plane. Find Hamilton’s equations of motion. 

13. Find the Hamilton’s equations of motion for a compound pendulum oscillating in a vertical plane about a
fixed horizontal axis. 

14. A bead is sliding on a uniformly rotating wire in a force-free space. Obtain the equations of motion in 
terms of Hamiltonian. 

15. Construct the Hamiltonian and find the Hamilton’s equations of motion of a coplanar double pendulum 
placed in a uniform gravitational field. 

16. A particle of mass m is attracted to a fixed point O by an inverse square law of force 
2rF r

μ= − where 

( 0)μ > is a constant. Using Hamiltonian, obtain the equations of motion of the particle. 
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17. Use Hamiltonian to obtain the Hamilton’s equations of motion of a projectile in space.

18. The Hamiltonian of a dynamical system is given by 2H qp qp bp= − + where b is a constant. Obtain the 
equations of motion. 

19. Using cylindrical coordinates obtain the Hamilton’s equations of motion for a particle of mass m moving 

inside the frictionless cone 2 2 2 2tanx y z α+ = .

20. If the kinetic energy 21

2
T mr= and the potential energy 

2

2

1
1

r
V

r c

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
, find the Hamiltonian. 

Determine whether (i) H T V= + and (ii) 0
dH

dt
= .

21. For the Hamiltonian 2 2
1 1 2 2 1 2 ,H q p q p aq bq= − − −  solve the Hamilton’s equations of motion and prove 

that 2 2

1

constant
p bq

q

− = and 1 2 constantq q = , a,b are constants and 1 2 1 2, , ,q q p p are generalized 

coordinates. 

22. The Lagrangian of a system of one degree of freedom can be written as 

( )2 2 2sin sin 2
2

m
L q t qq t qω ω ω ω= + + . Determine the corresponding Hamiltonian. Is it  

conserved? 
23. Define first integral of a system. When a system is conservative? What can you say about the dynamics of 

conservative system?
24. Find the first integrals of the following system and also check whether the systems are conservative or not

(i) 2,   1x y y x= = + (ii) ( 1),   ( 1)x x y y y x= + = − + (iii) (1 ) ,  (1 )x y x y x y= − − = − −
(iv) 3 2,x x y x y= − = − (v) 2 2 32 ,  x x xy y x y= − + = −

25. Find the Hamiltonian H of the following system
(i) 4 ,  2x p p x= = − (ii) 2 ,  2x p p x= − = − (iii) sin ,  cosx x p p x (iv) 2 4,  2 2x p p x= − + = −
(v) 2 2 2,  2 2 2x x y p x y= − − − = − + −
Also sketch the phase portraits and level curves.

26. Show that the system  
2 2

11 12

2 2
21 11

2

2

x a x a y Ax Bxy Cy

y a x a y Dx Axy By

= + + − +

= + + − +
is a Hamiltonian system with one degree of freedom.

27. For each of the following Hamiltonian functions sketch the phase portraits for the Hamiltonian system 
and the gradient system. Also draw both the phase portraits on the same phase plane.

(i) 2 2( , ) 2H x y x y= + (ii) 2 2( , )H x y x y= − (iii)
2 2

( , )
2 2

x y
H x y

λ= + (iv)
2 4 2

( , )
2 4 2

x x y
H x y = − +

(iv)
2 2

3( , )
2 3 2

x y
H x y x

β= − +

28. Prove that the transformation 2 2:U is symplectic iff it is both area and orientation preserving.

29. Prove that the matrix S satisfies the properties (i) 1Ts s s−= − = (ii) det( ) 1s =  . 

30. For a symplectic differentiation 2 2: n nh , prove that   

(i) the mapping h preserves volumes in 2n  , 

(ii) 1h− is symplectic.

(iii) [ ] [ ]1
( ) ( )

TTDh x S Dh x S
− =

31. Prove that the composition of two symplectic transformation is a symplectic transformation. 
32. Show that two dimensional volume preserving vector fields are Hamiltonian. 
33. Prove that the Poisson bracket is anti-symmetric.  
34. Show that Poisson bracket satisfies the Jacobi identity { ,{ , }} { ,{ , }} { ,{ , }} 0F G H G H F H F G+ + = .

35. Using Poisson bracket show that if time t is explicitly absent in the Hamiltonian of a system, then the
energy of the system is conserved.
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