
Chapter 4
Stability Theory

Stability of solutions is an important qualitative property in linear as well as non-
linear systems. The objective of this chapter is to introduce various methods for
analyzing stability of a system. In fact, stability of a system plays a crucial role in
the dynamics of the system. In the context of differential equations rigorous
mathematical definitions are often too restrictive in analyzing the stability of
solutions. Different kinds of methods on stability were developed in the theory of
differential equations. We begin with the stability analysis of linear systems.
Stability theory originates from the classical mechanics, the laws of statics and
dynamics. The ideas in mechanics had been enriched by many mathematicians and
physicists like Evangelista Torricelli (1608–1647), Christiaan Huygens (1629–
1695), Joseph-Louis Lagrange (1736–1813), Henri Poincaré (1854–1912), and
others. In the beginning of the twentieth century the principles of stability in
mechanics were generalized by the Russian mathematician A.M. Lyapunov (1857–
1918). There are many stability theories in the literature but we will discuss a few of
them in this chapter which are practically the most useful.

4.1 Stability of Linear Systems

This section describes the stability analysis of a linear system of homogeneous
first-order differential equations. The systems with constant coefficients can be
written as

_xi ¼
Xn
j¼1

aijxj; i ¼ 1; 2; . . .; n ð4:1Þ

where aijði; j ¼ 1; 2; . . .; nÞ are constants. In matrix notation, (4.1) can be written as

_x�¼ Ax� ð4:2Þ
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where A is an n × n matrix and x� ¼ x1; x2; . . .; xnð Þt is a column vector. The char-

acteristic equation of (4.2) is det A� kIð Þ ¼ 0. Depending upon the roots of the
characteristic equation the following cases may arise for stability of solutions of (4.2):

(i) If all the roots of the characteristic equation of (4.2) have negative real part,
then all solutions of (4.2) are asymptotically stable. Moreover, the solutions
tend to the equilibrium point origin as t ! 1;

(ii) If at least one root of the characteristic equation has a positive real part, then
all solutions are unstable;

(iii) If the characteristic equation has simple roots, purely imaginary or zero and
the other roots exist and have a negative real part, then all solutions of the
system are stable, but not asymptotically.

In case of nonhomogeneous linear systems we prove the following theorem for
stability.

Theorem 4.1 The solutions of the nonhomogeneous linear system _xi ¼Pn
j¼1 aijðtÞxj þ biðtÞ; i ¼ 1; 2; . . .; n are all simultaneously either stable or unstable.

Proof Let f
�
ðtÞ ¼ f1ðtÞ; f2ðtÞ; . . .; fnðtÞð Þ be any particular solution of the nonho-

mogeneous linear system

_xi ¼
Xn
j¼1

aijðtÞxj þ biðtÞ; i ¼ 1; 2; . . .; n ð4:3Þ

Consider the transformation yiðtÞ ¼ xiðtÞ � fiðtÞ; i ¼ 1; 2; . . .; n, which trans-
forms the particular solution f

�
ðtÞ of (4.3) into a trivial solution. Applying this

transformation to (4.3), we get the homogeneous linear system

_yi ¼
Xn
j¼1

aijðtÞyjðtÞ; i ¼ 1; 2; . . .; n ð4:4Þ

Thus any particular solution of (4.3) has the same stability behavior as that of the
trivial solution of (4.4). Suppose that the trivial solution of (4.4) is stable. Then by
definition of stability, for any e[ 0 there is a d ¼ dðeÞ[ 0 such that for every other
solution yi; i ¼ 1; 2; . . .; n of (4.4),

yiðt0Þ � 0j j\d ) yiðtÞ � 0j j\e 8t� t0:

Substituting yiðtÞ ¼ xiðtÞ � fiðtÞ; i ¼ 1; 2; . . .; n, we see that for every solution
xiðtÞ; i ¼ 1; 2; . . .; n of (4.3),
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xiðt0Þ � fiðt0Þj j\d ) xiðtÞ � fiðtÞj j\e 8t� t0:

This implies that the particular solution fiðtÞ; i ¼ 1; 2; . . .; n of (4.3) is stable.
One can prove the instability of the particular solution similarly. This completes the
proof.

4.2 Methods for Stability Analysis

There does not exist a single method which will suffice for stability analysis of a
system. We begin with the Lyapunov stability analysis.

(I) Lyapunov method

First, we shall explain Lyapunov method with respect to equilibrium points of a
system. Let x�

� be the equilibrium point of a nonlinear system x�
� ¼ f

�
ðx� Þ; x� 2 R

n.

If any orbit that passes close to the equilibrium point stays close to it for all time, then
we say that the equilibrium point x�

� is Lyapunov stable. Mathematically, it is defined

as follows:
An equilibrium point x�

� of a system _x� ¼ f
�
ðx� Þ; x� 2 R

n is said to be Lyapunov

stable if and only if for any e[ 0 there exists a dðeÞ[ 0 such that the orbit

/
�

t; x�

� �
of the system satisfies the following relation:

kx� � x�
�k\d ) k/

�
ðt; x� Þ � x�

�k\e; 8t� 0:

ðStarts near x� �Þ ðStayed nearby orbitÞ

The equilibrium point x�
� is said to be asymptotically stable if

(i) it is stable, and
(ii) the orbit /

�
ðt; x� Þ approaches to x�

� as t ! 1.

Thus, for asymptotically stable equilibrium point we can find a d[ 0 such that

kx� � x�
�k\d ) k/

�
ðt; x� Þ � x�

�k ! 0 as t ! 1:

For an asymptotic stable equilibrium point x�
�, the set Dðx� �Þ ¼ fx� 2 R

nj lim
t!1

k/
�
ðt; x� Þ � x�

�k ¼ 0g is called the domain of asymptotic stability of x�
�. If

D ¼ R
n, then x�

� is globally stable (asymptotically).

4.1 Stability of Linear Systems 131



An equilibrium point x�
� which satisfies only the condition (ii) of the definition

of asymptotic stability is called quasi-asymptotically stable. An equilibrium point
which is not stable is said to be unstable. The diagrammatic representations of
Lyapunov, asymptotic, and quasi-asymptotic stabilities about the equilibrium point
are shown in Fig. 4.1a–c.

The solution uðtÞ of a system is said to be uniformly stable if there exists a
dðeÞ[ 0 for all e[ 0 such that for any other solution vðtÞ, the inequality
uðt0Þ � vðt0Þj j\d implies uðtÞ � vðtÞj j\e for all t� t0. The solution uðtÞ is said to
be unstable when no such δ exists. Again, a stable solution uðtÞ is said to be
asymptotically stable if uðtÞ � vðtÞj j ! 0 as t ! 1. From this stability criterion we
see that the Lyapunov stability condition is quite restrictive. The two neighboring
solutions remain close to each other at the same time. We now discuss few less
restrictive stability methods below.

(II) Poincaré method

This stability criterion is related with different time scales, say t′ and t. Let Γ′ and Γ be
two orbits represented by x� ðtÞ and y

�
ðtÞ, respectively, for all t. The orbit Γ is orbitally

stable if for any e[ 0, there exists dðeÞ[ 0 such that if kx� ð0Þ � y
�
ðsÞk\d for some

time τ, then there exists t0ðtÞ such that kx� tð Þ � y
�

t0ð Þk\e; 8t[ 0. The orbit is said to

be asymptotically stable if the orbit Γ′ tends toward Γ as t ! 1. This is the most
significant test for stability analysis but it is very difficult to establish mathematically.

(III) Lagrange method

This is a simple criterion for stability analysis. The solutions of the system _x� ¼
f
�
ðx� ; tÞ are said to be bounded stable if kx� ðtÞk�M\1; 8t. This is also known as

bounded stability.

Fig. 4.1 a Lyapunov stability, b asymptotic stability, and c quasi-asymptotic stability of an
equilibrium point x�

�
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(IV) Lyapunov’s direct method

The Russian mathematician A.M. Lyapunov generalized the stability conditions
which are used in analyzing the stability of a system, in particular the stability in the
neighborhood of equilibrium points of a system. This is known as Lyapunov’s
second method or direct method for stability. He nicely introduced a scalar function,
Lðx� Þ later called it the Lyapunov function, such that Lðx� �Þ ¼ 0 and Lðx� Þ[ 0 when
x� 6¼ x�

� in the neighborhood of x�
�, the equilibrium point of the system _x� ¼ f

�
ðx� Þ.

The function L � L x1; x2; . . .; xnð Þ is said to be positively (resp. negatively) definite
in a domain D � R

n if Lðx� Þ[ 0 ðresp:\0Þ for all x� 2 D; x� 6¼ 0� . Similarly, L is
called positively (resp. negatively) semi-definite in D if Lðx� Þ� 0 ðresp:� 0Þ for all
x� 2 D. When the function Lðt; x� Þ depends explicitly on time t, these definitions can
be redefined as follows:

The function Lðt; x� Þ is said to be positively (resp. negatively) definite in D if
there exists a function Gðx� Þ in D such that Gðx� Þ is continuous in D, Gð0� Þ ¼ 0 and
0\Gðx� Þ� Lðt; x� Þ ðresp: Lðt; x� Þ�Gðx� Þ\0Þ for all x� 2 Dnf0g; t� t0.
Similarly, the semi-definite functions can be defined. The total derivative or orbital
derivative of L in the direction of the vector field f

�
ðx� Þ is defined as

dL
dt

¼ f
�
	 rL ¼ f

�
ðx� Þ @L

@ x�
:

Let D
R
n be an open neighborhood of the equilibrium point x�

�. Then the

function L : D ! R, satisfying the following properties:

(i) L is continuously differentiable,

(ii) L[ 0 for all x� 2 Dnfx� �g and L x�
�

� �
¼ 0,

is called a Lyapunov function. Moreover, if dLdt � 0 in D, then x�
� is stable. This

condition implies that the point x� ðtÞ moves along a path where Lðx� Þ does not
increase. Hence, x� ðtÞ will remain close to the point x�

� and come to x�
� if dLdt ¼ 0.

There is no systematic procedure to deduct the Lyapunov function Lðx� Þ. However,
in case of conservative system it L is the energy of the system. In fact, Lyapunov
constructed this function on the basis of the principle of energy in mechanics.

Theorem 4.2 (Lyapunov theorem) Suppose that the origin is an equilibrium point
of _x� ¼ f

�
ðx� Þ; x� 2 R

n and let L ¼ Lðx1; x2; . . .; xnÞ be a Lyapunov function in a

neighborhood D of the origin. If

(i) the orbital derivative _L� 0 in D, that is, if _L is negative semi-definite in D ,
the origin is stable,

(ii) _L\0 in Dnf0g, that is, if _L negative definite in D, then the origin is
asymptotically stable,

(iii) _L[ 0, that is, positive definite in D, the origin is unstable.

4.2 Methods for Stability Analysis 133



For proof see Hartmann [1].
For an application of the theorem we illustrate the stability of pendulum

problem.
Simple undamped pendulum: Consider the simple pendulum problem gov-

erned by the equation

ml€h ¼ �mg sin h;

that is; €h ¼ � g
l

� �
sin h ð4:5Þ

in which a bob of mass m is suspended from a light string of length l, where θ
represents the angle between the string and the vertical axis at some instant t, and g
is the acceleration due to gravity. With x ¼ h and y ¼ _h, we can rewrite the
Eq. (4.5) as a system of equations

_x ¼ y

_y ¼ � g
l

� �
sin x

)
ð4:6Þ

Consider the function Lðx; yÞ ¼ 1
2ml

2y2 þmglð1� cos xÞ; ðx; yÞ 2 R
2, which is

simply the total energy of the system. Let G ¼ ðx; yÞ 2 R
2 : �2p\x\2p

� �
. We

see that Lð0; 0Þ ¼ 0 and L[ 0 in Gnfð0; 0Þg. Therefore, L is positive definite in
G. We now calculate the derivate _L of L along the trajectory of (4.6) as

_L ¼ dL
dt

¼ @L
@x

_xþ @L
@y

_y ¼ mgl sin x½ �yþml2y � g
l

� �
sin x

h i
¼ 0

Thus, conditions of Theorem 4.2 are satisfied. Hence, the fixed point origin is
stable. Note that the origin is not asymptotically stable, since _L � 0.

Damped pendulum: Consider the damped pendulum governed by the equation

ml€h ¼ �mg sin h� ll _h ð4:7Þ

which is simply obtained by taking into account the effect of damping force
(frictional force) ll _h; l[ 0 being the coefficient of friction. As previous, with x ¼ h

and y ¼ _h, we can rewrite Eq. (4.7) as

_x ¼ y
_y ¼ � g

l

� 	
sin x� l

m

� 	
y



ð4:8Þ

The origin Oð0; 0Þ is a fixed point of the system. We now determine its stability.
As earlier, consider the function
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Lðx; yÞ ¼ 1
2
ml2y2 þmglð1� cos xÞ; ðx; yÞ 2 R

2 :

Then L is positive definite in G, as defined earlier. Now calculate _L along the
trajectory of (4.8) as follows:

_L ¼ dL
dt

¼ @L
@x

_xþ @L
@y

_y ¼ ½mgl sin x�yþml2y � g
l

� �
sin x� l

m

� �
y

h i
¼ �ll2y2:

Now, in G we can find points, in particular ðx; yÞ ¼ ðp=2; 0Þ, such that _L ¼ 0.
So, _L� 0 in G. Therefore, by Theorem 4.2 the fixed point origin is stable. However,
the phase portrait near the origin gives some other picture: the origin is asymp-
totically stable (see Fig. 3.14). So, we discard this particular choice of L and
consider a more general form of L as

Lðx; yÞ ¼ 1
2
ml2 ax2 þ 2bxyþ cy2
� �þmglð1� cos xÞ

We shall now determine the values of a, b, and c for which the origin are
asymptotically stable, that is, L is positive definite and _L is negative definite in some
neighborhood of the origin. It can be shown that the first right-hand member in the
expression of L is positive definite if and only if a[ 0; c[ 0; ac� b2 [ 0. The
orbital derivative _L of the Lyapunov function L is given by

_L ¼ @L
@x

_xþ @L
@y

_y ¼ ml2 axþ byþ g
l

� �
sin x

h i
yþml2 bxþ cyð Þ � g

l

� �
sin x� l

m

� �
y

h i
¼ ml2 a� b

l
m

� �n o
xyþ g

l

� �
ð1� cÞy sin x� g

l

� �
bx sin xþ b� c

l
m

� �n o
y2

h i

The right-hand side of the above expression contains two sign indefinite terms,
xy and y sin x. We need to discard them in our problem and it leads to the following
relations:

a� b
l
m

� �
¼ 0; 1� c ¼ 0 ) b ¼ a

m
l

� �
; c ¼ 1:

With this choice, _L takes the form

_L ¼ �ml2
g
l

� � m
l

� �
ax sin xþ l

m

� �
� m

l

� �
a


 

y2

� �
:

To make _L negative definite, we must have
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l
m

� �
� m

l

� �
a[ 0 ) 0\a\

l
m

� �2
:

Then 0\b\ l
m

� 	
. Now, the term x sin x[ 0 if all x : �p\x\p with x 6¼ 0. Let

N ¼ ðx; yÞ 2 R
2 : �p\x\p

� �
. Then L is positive definite and _L is negative

definite in N. Therefore, by Theorem 4.2 the fixed point origin is asymptotically
stable, as required.

Theorem 4.3 Consider a nonautonomous system _x� ¼ f
�
ðt; x� Þ with f

�
ðt; 0� Þ ¼

0�; x� 2 D
R
n, and t� t0. The Lyapunov function Lðt; x� Þ is defined in a neigh-

borhood of the origin and positively definite for t� t0. Then

(i) if the orbital derivative is negatively semi-definite, the solution is stable;
(ii) if the orbital derivative is negative definite, the solution is asymptotically

stable; and
(iii) if the orbital derivative in positive definite, the solution is unstable.

Example 4.1 Show that the solution of the autonomous system _x ¼ y; _y ¼ �x with
xð0Þ ¼ 0; yð0Þ ¼ 0 is stable in the sense of Lyapunov.

Solution The solution of the system with xð0Þ ¼ x0; yð0Þ ¼ y0 is given as

xðtÞ ¼ x0 cos tþ y0 sin t; yðtÞ ¼ �x0 sin tþ y0 cos t

and the solution subject to the given initial condition is xðtÞ ¼ 0; yðtÞ ¼ 0.
Choose an arbitrary real e[ 0. We have to find a dðeÞ[ 0 such that for
x0 � 0j j\d and y0 � 0j j\d,

x tð Þ � 0j j ¼ x0 cos tþ y0 sin tj j\e; and yðtÞ � 0j j ¼ �x0 sin tþ y0 cos tj j\e

hold for all t� 0. We see that

x0 cos tþ y0 sin tj j � x0 cos tj j þ y0 sin tj j � x0j j þ y0j j:

Similarly, �x0 sin tþ y0 cos tj j � x0j j þ y0j j. Take d ¼ e=2. This gives

for x0j j\d and y0j j\d

) x0 cos tþ y0 sin tj j\e=2þ e=2 ¼ e; 8t� 0:

Hence, the solution xðtÞ ¼ 0; yðtÞ ¼ 0 is stable in the sense of Lyapunov but
the stability is not asymptotic.

Example 4.2 Prove that each solution of the equation _xþ x ¼ 0 is asymptotically
stable.
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Solution The general solution is given by xðtÞ ¼ Ae�t, where A is an arbitrary
constant. The solutions x1ðtÞ and x2ðtÞ of the equation that satisfy the initial con-
ditions x1 t0ð Þ ¼ x01 and x2 t0ð Þ ¼ x02 are x1ðtÞ ¼ x01e

� t�t0ð Þ and x2ðtÞ ¼ x02e
� t�t0ð Þ,

respectively. We see that

x2ðtÞ � x1ðtÞj j ¼ x02 � x01
�� ��e� t�t0ð Þ ! 0 as t ! 1:

This implies that every solution of the equation is asymptotically stable.

Example 4.3 Prove that all solutions of the system _x ¼ sin2 x are bounded on
�1; þ1ð Þ but the solution xðtÞ ¼ 0 is unstable as t ! 1.

Solution Clearly, x ¼ np; n ¼ 0;�1;�2; . . . are the obvious solutions of the
given equation. Other solutions are obtained as

cosec2x dx ¼ dt ) cot x ¼ cot x0 � t ½assuming xð0Þ ¼ x0�
) x ¼ cot�1 cot x0 � tð Þ; x0 6¼ n p:

All above solutions are bounded on �1; þ1ð Þ. The solution xðtÞ ¼ 0 is
unstable as t ! 1, because for any x0 2 ð0; pÞ we have limt!1 xðtÞ ¼ p. So,
boundedness of solution does not imply that it is stable. Similarly, stability of a
solution does not ensure that it is bounded. Thus, bounded and stability of solutions
are independent properties of a system.

Example 4.4 Using suitable Lyapunov functions, examine the stabilities for the
following systems: (i) €xþ x ¼ 0, (ii) _x ¼ x; _y ¼ �y at the origin.

Solution (i) The given system can be written as _x ¼ y; _y ¼ �x. The origin is the
equilibrium point of the system. We take Lyapunov function as Lðx; yÞ ¼ x2 þ y2,
which is positive definite in the neighborhood of the origin and Lð0; 0Þ ¼ 0. The
orbital derivative of L is given by

dL
dt

¼ @L
@x

_xþ @L
@y

_y ¼ 2xy� 2xy ¼ 0:

Hence,
dL
dt

is semi-negative definite. So, the system is stable at (0, 0). The phase

paths of the system are obtained as

dy
dx

¼ � x
y
) x2 þ y2 ¼ k2; k 6¼ 0:

which represent concentric circles with center at the origin. Hence, the system is not
asymptotically stable at the origin.
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(ii) We take Lyapunov function Lðx; yÞ ¼ x2 � y2, in the neighborhood of origin,
which is positive definite in arbitrarily close to (0, 0) (L > 0 along the straight line
y ¼ 0) and Lð0; 0Þ ¼ 0. The orbital derivative of L is

dL
dt

¼ @L
@x

_xþ @L
@y

_y ¼ 2ðx2 þ y2Þ[ 0:

So the equilibrium point origin is unstable. In this case, the origin is a saddle
point. The path of the system is xy ¼ k, k being an arbitrary constant, which is a
rectangular hyperbola.

Example 4.5 Examine different stability criteria satisfied by the linear harmonic
oscillator €xþ x ¼ 0.

Solution The harmonic oscillator can be written as a system of differential equa-
tions as

_x ¼ y; _y ¼ �x:

The solution of the system is given by

xðtÞ ¼ A cos tþB sin t; yðtÞ ¼ �A sin tþB cos t;

where A and B are constants. Let e[ 0 be given. Assume uðtÞ ¼ A1 cos tþB1 sin t
and vðtÞ ¼ A2 cos tþB2 sin t are two solutions of the equation, where A2

1 þA2
2 6¼ 0

and B2
1 þB2

2 6¼ 0. Then we get

uðtÞ � vðtÞj j ¼ ðA1 � A2Þ cos tþðB1 � B2Þ sin tj j
� A1 � A2j j cos tj j þ B1 � B2j j sin tj j
� A1 � A2j j þ B1 � B2j j\e

if A1 � A2j j\e=2 and B1 � B2j j\e=2. Take d ¼ e=2. Then, d ¼ dðeÞ[ 0 and
uð0Þ � vð0Þj j � A1 � A2j j\d. Thus, the solution is uniformly stable.
Now, take Lðx; yÞ ¼ x2 þ y2 as Lyapunov function, which is the energy of the

harmonic oscillator. Then

dL
dt

¼ 2x _xþ 3y _y ¼ 2xy� 2xy ¼ 0:

Hence, the origin of the harmonic oscillator is stable in the sense of Lyapunov
but it is not asymptotically stable. This can be shown easily that the system is
orbitally stable in the sense of Poincaré but not asymptotically stable.

The solutions of the system _x ¼ y; _y ¼ �x are given by
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xðtÞ ¼ A cos tþB sin t; yðtÞ ¼ �A sin tþB cos t;

where A;B 2 R are arbitrary constants. Then

kx� ðtÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þB2

p
\1 for all t:

Hence, the solutions of the harmonic oscillator have bounded stability in the
sense of Lagrange.

Example 4.6 Show that the system _x ¼ �yðx2 þ y2Þ1=2; _y ¼ xðx2 þ y2Þ1=2 is orbi-
tally stable but not Lyapunov stable.

Solution Convert the system into the polar coordinates ðr; hÞ using
x ¼ r cos h; y ¼ r sin h. In ðr; hÞ coordinates, the system becomes

_r ¼ 0; _h ¼ r;

which has the solution

r ¼ r0; h ¼ r0tþ h0;

where r0 ¼ rð0Þ and h0 ¼ hð0Þ, the initial condition of the system. Therefore, the
solution of the original system is given by

xðtÞ ¼ r0 cosðr0tþ h0Þ; yðtÞ ¼ r0 sinðr0tþ h0Þ:

This shows that the amplitude and frequency of the solutions depend upon r0.
Hence, the system is orbitally stable. The solutions represent concentric circles with
center at the origin. Consider two neighboring points ðr0; 0Þ and ðr0 þ e; 0Þ on the
concentric circles as two initial solutions, where ε is very small. After some time t,
these two points move to ðr0; r0tÞ and ðr0; ðr0 þ eÞtÞ. This yields the angle difference
between the solutions as

Dh ¼ ðr0 þ eÞt � r0t ¼ et:

Hence, when t ¼ ð2nþ 1Þp=e;Dh ¼ ð2nþ 1Þp, that is, the solutions are dia-
metrically opposite to one another and in this case, the distance between them is
2r0 þ e. So, there always exists a time at which the solutions move further away
from each other. Hence, the solution is not stable in the sense of Lyapunov.

Example 4.7 Investigate the stability of the system

dx
dt

¼ � x� 2yð Þ 1� x2 � 3y2
� 	

dy
dt

¼ � yþ xð Þ 1� x2 � 3y2
� 	
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at the fixed point origin.

Solution Take the Lyapunov function Lðx; yÞ ¼ x2 þ 2y2. Then L is positive definite
in the neighborhood of (0, 0) and Lð0; 0Þ ¼ 0. The orbital derivative is calculated as

dL
dt

¼ @L
@x

_xþ @L
@y

_y ¼ 2x �ðx� 2yÞð1� x2 � 3y2Þ� �þ 4y �ðyþ xÞð1� x2 � 3y2Þ� �
¼ �2ðx2 þ 2y2Þð1� x2 � 3y2Þ\0; in the neighbourhood ofð0; 0Þ

and is equal to zero only when x ¼ y ¼ 0. So, _L is negative definite, and hence the
fixed point origin is asymptotically stable.

Example 4.8 Using a suitable Lyapunov function shows that the origin is an
asymptotically stable equilibrium point of the system

_x ¼ �2yþ yz� x3

_y ¼ x� xz� y3

_z ¼ xy� z3

Solution Obviously, (0, 0, 0) is the equilibrium point of the system. We take
Lðx; y; zÞ ¼ x2 þ 2y2 þ z2 as a Lyapunov function for which we can test the stability
of the equilibrium point origin. The orbital derivative of L is given by

_L ¼ 2x_xþ 4y _yþ 2z_z

¼ 2x �2yþ yz� x3
� 	þ 4y x� xz� y3

� 	þ 2z xy� z3
� 	

¼ �4xyþ 2xyz� 2x4 þ 4xy� 4xyz� 4y4 þ 2xyz� 2z4

¼ � 2x4 þ 4y4 þ 2z4
� 	

\0; and _L ¼ 0 only at ð0; 0; 0Þ:

This implies that _L is negative definite for ðx; y; zÞ 6¼ ð0; 0; 0Þ. Hence, by
Lyapunov theorem on stability, the origin is an asymptotically stable.

4.3 Stability of Linearized Systems

Let us consider a nonlinear system represented as

_x ¼ f
�
ðx� Þ; x� 2 R

n: ð4:9Þ

Without loss of generality we assume that x� ¼ 0� is an equilibrium point of the

system. So when k x� k 
 1, we can expand f
�
ðx� Þ in the form of a Taylor series in
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a neighborhood of x� ¼ 0� . Neglecting second- and higher order terms. we get a

linear system as

_x� ¼ Ax� ð4:10Þ

where A = J(0), the Jacobian of the system evaluated at the origin. The linear system
(4.10) is known as the linearization of the nonlinear system (4.9). An equilibrium
point of a system is hyperbolic if the corresponding Jacobian matrix evaluated at the
point has eigenvalues with nonzero real part. If not, then it is said to be
non-hyperbolic. The flows in the neighborhood of hyperbolic fixed point retain the
character under sufficiently small perturbation. On the other hand, non-hyperbolic
fixed points and corresponding flows are easily changed under small perturbation.
The non-hyperbolic fixed points are weak, whereas hyperbolic fixed points are
robust in the context of flows. The phase portrait near a hyperbolic fixed point of a
nonlinear system is topologically equivalent to the phase portrait of the corre-
sponding linear system. This means that there is a homeomorphism which maps the
local phase portrait onto the other preserving directions of trajectories.
A homeomorphism is a continuous map with a continuous inverse. The flow near a
hyperbolic fixed point is structurally stable. A phase portrait is said to be struc-
turally stable if its topology does not change under an arbitrarily small perturbation
to the vector field of the system. For example, the phase portrait of a saddle point
(hyperbolic type) is structurally stable, whereas the center (non-hyperbolic type) is
not structurally stable. By adding a small amount of damping force to the undamped
pendulum equation makes, the center becomes a spiral. For hyperbolic fixed points
and their flows we discuss some important theorems.

Theorem 4.4 (Hartman–Grobman) Let x� ¼ 0� be a hyperbolic equilibrium point

of the nonlinear system (4.9) with f
�

2 C1 (continuously differentiable of order
one). Then the stability type of the equilibrium point origin for the nonlinear system
is same as that of the linear system _x� ¼ Ax� , which is the linearization of (4.9) in
the neighborhood of kx� k 
 1. Also, there exists a homeomorphism Hðx� Þ which
maps the orbits of the nonlinear system (4.9) onto the orbits of the corresponding
linear system in the neighborhood of the origin.

The Hartman–Grobman theorem gives a very important result in the local
qualitative theory of a dynamical system. This theorem shows that near a
hyperbolic-type equilibrium point, the nonlinear system has the same qualitative
behavior (locally) as the corresponding linearized system. Also, one can find the
local solution of the nonlinear system through homeomorphism.
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Example 4.9 Using Hartman–Grobman theorem discuss the local stability of the
equilibrium point for the system _x ¼ x� y2; _y ¼ �y. Also, find the homeomorphic
mapping.

Solution Clearly, the origin is the only equilibrium point of the system. At the
origin, the Jacobian matrix of the nonlinear system is given by

J ¼ 1 0
0 �1

� �
:

The matrix has nonzero real eigenvalues 1, −1. The origin is of hyperbolic type
and it is a saddle. According to Hartman–Grobman theorem, it is a saddle-type
equilibrium point of the given nonlinear system. We shall now find the homeo-
morphic mapping H. The solutions of the nonlinear system and the corresponding
linearized system with the initial conditions xð0Þ ¼ x0; yð0Þ ¼ y0 are given by

xðtÞ ¼ x0e
t þ y20

3
ðe�2t � etÞ; yðtÞ ¼ y0e

�t

and xðtÞ ¼ x0e
t; yðtÞ ¼ y0e

�t;

respectively. Therefore, the flow of the nonlinear system is

utðx; yÞ ¼ xet þ y2

3
ðe�2t � etÞ
ye�t

0
@

1
A:

and the flow of the linear system is

eAt ¼ et 0
0 e�t

� �
:

Now consider the map

Hðx; yÞ ¼ x� y2

3y

 !
:

Clearly, H is continuous, and H�1ðx; yÞ ¼ ð xþ
y2

3y
Þ exists and also continuous,

that is, the mapping H is a homeomorphism. Now, for all ðx; yÞ 2 R
2 and for all

t� 0, we see that
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H utðx; yÞð Þ ¼ H xet þ y2

3
ðe�2t � etÞ
ye�t

0
@

1
A

¼ xet þ y2

3
ðe�2t � etÞ � y2

3
e�2t

ye�t

0
@

1
A

¼ xet � y2

3
et

ye�t

0
@

1
A

¼ et 0

0 e�t

� �
x� y2

3
y

 !

¼ eAtHðx; yÞ:

Therefore, H � ut ¼ eAt � H 8t� 0. This relation shows that the two flows are
connected by the mapping H.

4.4 Topological Equivalence and Conjugacy

Two autonomous systems are said to be topologically equivalent in a neighborhood
of the origin if there exists a homeomorphism H : U ! V , where U and V are two
open sets containing the origin, such that the trajectories of nonlinear system (4.9)
in U are mapped onto the trajectories of the corresponding linear system (4.10) in V
and preserve their orientation by time in the sense that if a trajectory is directed
from x�1

to x�2
in U, then its image is directed from Hðx�1

Þ to Hðx�2
Þ in V. If the

homeomorphism H preserves the parameterization by time, then the systems (4.9)
and (4.10) are said to be topologically conjugate in a neighborhood of the origin.

The following theorem is very useful for topologically equivalent of two linear
systems.

Theorem 4.5 Two linear systems _x� ¼ Ax� and _y
�

¼ B y
�
, whose all eigenvalues

have nonzero real parts, are topologically equivalent if and only if the number of
eigenvalues with positive (and corresponding negative) real parts are the same for
both the systems (see Arnold [2]).

Example 4.10 Show that the systems _x� ¼ Ax� and _y
�

¼ B y
�

where A ¼
�2 �5
�5 �2

� �
and B ¼ 3 0

0 �7

� �
are topologically conjugate.
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Solution Consider the map Hðx� Þ ¼ Cx� , where

C ¼ 1ffiffiffi
2

p 1 �1
1 1

� �
:

Clearly, the matrix C is invertible with the inverse

C�1 ¼ 1ffiffiffi
2

p 1 1
�1 1

� �
:

Also, it is easy to verify that B ¼ CAC�1, that is, A and B are similar matrices.
Then

eBt ¼ CeAtC�1:

Let y
�

¼ Hðx� Þ ¼ Cx� . Then x� ¼ C�1 y
�

and

_y
�

¼ C _x� ¼ CAx� ¼ CAC�1 y
�

¼ B y
�
:

Let x� ðtÞ ¼ eAt x�0
be the solution of the system _x� ¼ Ax� with the initial con-

dition x� ð0Þ ¼ x�0
. Then y

�
ðtÞ ¼ Cx� ðtÞ ¼ CeAt x�0

¼ eBtCx�0
. This shows that if

x� ðtÞ ¼ eAt x�0
is a solution of the first system through x�0

, then y
�
ðtÞ ¼ eBtCx�0

is a

solution of the second system through Cx�0
. Thus the mapping H maps the tra-

jectories of the first system onto the trajectories of the second and since
CeAt ¼ eBtC, and H also preserves the parameterization. The map H is a homeo-
morphism. Therefore, the given two systems are topologically conjugate. Note that
the map Hðx� Þ ¼ Cx� is simply a rotation through 45° as shown in Fig. 4.2.

4.5 Linear Subspaces

The dynamics of a system may be restricted to manifolds which are embedded in
the phase space. We give very formal definition of manifold below.

Manifold: The concept of manifold is very important in dynamical system,
especially in stability theory, bifurcation, etc. A manifold in the n-dimensional
Euclidean space R

n is defined as an mðm� nÞ-dimensional continuous region
embedded in Rn and is represented by equations, say fjðx� Þ ¼ 0; j ¼ 1; 2; . . .; n� m

in x� ¼ ðx1; x2; . . .; xnÞ 2 R
n. In other words, an n-dimensional topological
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manifold is a Housdroff space (topological space such that any two distinct points
possess distinct neighborhoods) such that every point has an open neighborhood Ni

which is homeomorphic to an open set of En. If the functions fjðx� Þ are differen-

tiable, then the manifold is called a differentiable manifold. More specifically, let
M be a differentiable manifold. We may consider simply an open set of an
Euclidean space, or a sphere or a torous as examples. A function on a differential
manifold M is a diffeomorphism iff it is smooth, invertible, and its inverse is also
smooth. On the other hand, an endomorphism of M is a smooth function from M to
itself. A curve is an example of a one-dimensional manifold, and a surface is a
two-dimensional manifold (see the book Tu [3] for details on manifolds). Our next
target is to find the manifolds for some dynamical systems. First, consider the
simple linear harmonic oscillator represented by the equation m€x ¼ �kx. With
_x ¼ y we have the system

_x ¼ y; _y ¼ � k
m

� �
x:

This is a conservative system and its phase space is the two-dimensional Euclidean
planeR2. It is easy to show that the Hamiltonian of the harmonic oscillator is constant
and is given by Hðx; yÞ ¼ 1

2my
2 þ 1

2 kx
2 ¼ constant. The Hamiltonian represents a

one-dimensional differential manifold inR2 and all solutions of the system lie on this
manifold. Themanifold is a system of ellipses in the phase plane. All these ellipses are
topologically equivalent to the unit circle S ¼ ðx; yÞ 2 R

2 : x2 þ y2 ¼ 1
� �

under the

homeomorphism hðx; yÞ ¼ xffiffiffiffiffiffiffiffi
2H=k

p ; yffiffiffiffiffiffi
2H=

p
m

� �
. Since dH

dt ¼ 0 for all ðx; yÞ 2 R
2, the

Hamiltonian H is an integral of motion (this notion will discuss in later chapter) and
the manifold H is also known as an integral manifold. All these manifolds for dif-
ferent values of constants are topologically equivalent to the unit circle S.

Fig. 4.2 Topologically equivalent flows
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Linear Subspaces: Consider the linear system represented by (4.2), where A is a
matrix of order n × n with real entries. The subspaces spanned by the eigenvectors
of the corresponding eigenvalues of A can be categorized into three different sub-
spaces, namely, stable, unstable, and center subspaces. These subspaces are defined
as follows:

Let kj ¼ aj � ibj; i ¼
ffiffiffiffiffiffiffi�1

p
be the eigenvalues and wj ¼ uj � ivj; j ¼ 1; 2; . . .; k

be the corresponding eigenvectors of the matrix A. Depending upon the sign of aj,
the real part of kj, the three subspaces of the system (4.2) are defined as follows:

Stable subspace: The stable subspace Es is generated by the eigenvectors of kj
for which aj\0. That is, Es ¼ span uj; vjjaj\0

� �
.

Unstable subspace: The unstable subspace Eu is spanned by the eigenvectors of
kj with aj [ 0. That is,

Eu ¼ span uj; vjjaj [ 0
� �

:

Center subspace The center subspace occurs when the eigenvalues are purely
imaginary. It is defined as Ec ¼ span uj; vjjaj ¼ 0

� �
.

Example 4.11 Find the linear subspaces for the system _x� ¼ Ax� with x� ð0Þ ¼ x�0
,

where

A ¼
�3 0 0
0 3 �2
0 1 1

0
@

1
A:

Solution The characteristic equation of A has the roots k ¼ �3; 2� i. So, the
fixed points are hyperbolic type. The eigenvector corresponding to k1 ¼ �3 is
ð1; 0; 0Þt, and that for k2 ¼ 2þ i is

w2 ¼
0

1þ i
1

0
@

1
A ¼

0
1
1

0
@

1
Aþ i

0
1
0

0
@

1
A ¼ u2 þ iv2;where u2 ¼

0
1
1

0
@

1
A and v2

¼
0
1
0

0
@

1
A:

Therefore, the stable and unstable subspaces are given by

Es ¼ span uj; vjjaj\0
� �

¼ span 1; 0; 0ð Þt� � ¼ x-axis in the phase space

and
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Eu ¼ span uj; vjjaj [ 0
� � ¼ span 0; 1; 0ð Þt; 0; 1; 1ð Þt� � ¼ yz-plane:

There is no center subspace EC, since no eigenvalue is purely imaginary.

Example 4.12 Find all linear subspaces of the system _x� ¼ Ax� , where

A ¼
0 0 1
0 1 0
�1 0 0

0
@

1
A.

Solution Clearly, the origin is the unique equilibrium point of the system. The
eigenvalues of the matrix A are 1;�i. It can be easily obtained that the eigenvectors

corresponding to k1 ¼ 1 is w1 ¼
0
1
0

0
@

1
A and that for k2 ¼ i is

w2 ¼
1
0
i

0
@

1
A ¼

1
0
0

0
@

1
Aþ i

0
0
1

0
@

1
A ¼ u2 þ iv2, where u2 ¼

1
0
0

0
@

1
A and v2 ¼

0
0
1

0
@

1
A.

Since the system has positive and purely imaginary eigenvalues, it has unstable
and center subspaces, given by

Eu ¼ span uj; vjjaj [ 0
� � ¼ span 0; 1; 0ð Þt� � ¼ y-axis in the phase space

and

Ec ¼ span uj; vjjaj ¼ 0
� � ¼ span 1; 0; 0ð Þt; 0; 0; 1ð Þt� �

¼ xz-plane in the phase space

These two subspaces are presented in Fig. 4.3. Note that the system has no stable
subspace, since it has no negative eigenvalue.

Theorem 4.6 Consider a system _x� ¼ Ax� , where A is a n × n matrix with real

entries. Then phase space R
n can be decomposed as

R
n ¼ Eu � Es � Ec

where Eu;Es, and Ec are the unstable, stable, and of the system, respectively.
Furthermore, these subspaces are invariant with respect to the flow.
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4.6 Hyperbolicity and Its Persistence

The flow in the neighborhood of hyperbolic fixed point has some special charac-
teristic features. The special flow characteristic around the hyperbolic fixed point is
called hyperbolicity. There are two important theorems, namely (i) Hartman–
Grobman theorem and (ii) Stable manifold theorem for hyperbolic fixed points. The
first theorem proves that there exists a continuous invertible map in some neigh-
borhood of the hyperbolic fixed point which maps the nonlinear flow to the linear
flow preserving the sense of time and the second theorem implies that the local
structure of hyperbolic fixed points of nonlinear flows is the same as the linear
flows in terms of the existence and transversality of local stable and unstable
manifolds. We now define the local stable and unstable manifolds as follows:

Let U be some neighborhood of a hyperbolic fixed point x�
�. The local stable

manifold, denoted by Ws
locðx� �Þ, is defined as

Fig. 4.3 Unstable and center
subspaces of the given system
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Ws
locðx� �Þ ¼ x� 2 Uj/tðx� Þ ! x�

� as t ! 1;/tðx� Þ 2 U 8t� 0

 


:

Similarly, the local unstable manifold is defined as

Wu
locðx� �Þ ¼ x� 2 Uj/tðx� Þ ! x�

� as t ! �1;/tðx� Þ 2 U 8t� 0

 


:

The stable manifold theorem states that these manifolds exist and have the same
dimension as the stable and unstable manifolds of the corresponding linear system
_x� ¼ Ax� , if x�

� is a hyperbolic equilibrium point, and that they are tangential to the

manifolds of linear system at x�
�. This notion is known as hyperbolicity of a

system.
Hyperbolic flow: If all the eigenvalues of the n × n matrix A are nonzero, then

the flow eAt : Rn ! R
n is called a hyperbolic flow, and the linear system _x� ¼ Ax�

is then called a hyperbolic linear system.
Invariant manifold: An invariant set D � R

n is said to be a Cr r� 1ð Þ invariant
manifold if the set D has a structure of a Cr differentiable manifold. Similarly, the
positively and negatively invariant manifolds are defined. In other words, a sub-
space D
R

n is said to be invariant if any flow starting in this subspace will remain
within it for all future time.

The linear subspaces Es;Eu, and Ec are all invariant subspaces of the linear
system _x� ¼ Ax� with respect to the flow eAt.

Theorem 4.7 (Stable manifold theorem) Let x�
� ¼ 0 be a hyperbolic equilibrium

point of the system _x� ¼ f
�
ðx� Þ; x� 2 C1, and Es and Eu be the stable an unstable

manifolds of the corresponding linear system _x� ¼ Ax� . Then there exists local

stable and unstable manifolds Ws
locð0Þ and Wu

locð0Þ of the nonlinear system with the
same dimension as that of Es and Eu, respectively. These manifolds are tangential
to Es and Eu, respectively, at the origin and are smooth as the function f

�
.

Let x�0
be a hyperbolic fixed point of the nonlinear system. Then x�0

is called a

sink if all the eigenvalues of the linear system have strictly negative real parts, and a
source if all the eigenvalues have strictly positive real parts. Otherwise, x�0

is a

saddle. A sketch of stable and unstable manifolds is given in Fig. 4.4.

Example 4.13 Find the local stable and unstable manifolds of the system
_x ¼ x� y2; _y ¼ �y.

Solution The system has the unique equilibrium point at the origin, (0, 0). Also,
the origin is a saddle equilibrium point of the corresponding linearized system
_x ¼ x; _y ¼ �y with the invariant linear stable and unstable subspaces as
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Esð0; 0Þ ¼ ðx; yÞ : x ¼ 0f g and Euð0; 0Þ ¼ ðx; yÞ : y ¼ 0f g;

respectively. Therefore by stable manifold theorem, the system has local stable and
unstable manifolds

Ws
locð0; 0Þ ¼ ðx; yÞ : x ¼ SðyÞ; @S

@y
0ð Þ ¼ 0


 

and

Wu
locð0; 0Þ ¼ ðx; yÞ : y ¼ UðxÞ; @U

@x
0ð Þ ¼ 0


 

;

respectively. We now find these manifolds.
Stable manifold: For the local stable manifold, we expand S(y) as a power series

in the neighborhood of the origin as follows:

SðyÞ ¼
X
i� 0

siy
i ¼ s0 þ s1yþ s2y

2 þ s3y
3 þ 	 	 	 :

Since at y ¼ 0; S ¼ 0 and @S
@x ¼ 0, we have s0 ¼ s1 ¼ 0. Therefore,

x ¼ SðyÞ ¼
X
i� 2

siy
i ¼ s2y

2 þ s3y
3 þ s4y

4 þ s5y
5 þ 	 	 	 	 	 	 :

Now,

_x ¼ x� y2 ¼ s2y
2 þ s3y

3 þ s4y
4 þ s5y

5 þ 	 	 	� 	� y2

¼ ðs2 � 1Þy2 þ s3y
3 þ s4y

4 þ s5y
5 þ 	 	 	

Again,

x ¼ SðyÞ ) _x ¼ @S
@y

_y ¼ ð2s2yþ 3s3y2 þ 4s4y3 þ 5s5y4 þ 	 	 	Þð�yÞ

¼ �ð2s2y2 þ 3s3y3 þ 4s4y4 þ 5s5y5 þ 	 	 	Þ

Fig. 4.4 Stable and unstable manifolds at the origin
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Therefore, we have

ðs2 � 1Þy2 þ s3y
3 þ s4y

4 þ s5y
5 þ 	 	 	 ¼ �ð2s2y2 þ 3s3y3 þ 4s4y4 þ 5s5y5 þ 	 	 	Þ:

Equating the coefficients of like powers of y from both sides of the above
relation, we get

s2 ¼ 1=3; s3 ¼ s4 ¼ 	 	 	 ¼ 0:

Therefore, x ¼ y2

3 , and hence, the local stable manifold of the nonlinear system in
the neighborhood of the equilibrium point origin is

Ws
locð0; 0Þ ¼ ðx; yÞ : x ¼ y2

3


 

:

Unstable manifold: For the local unstable manifold we expand U(x) as

UðxÞ ¼
X
i� 0

uix
i ¼ u0 þ u1xþ u2x

2 þ u3x
3 þ 	 	 	 :

As previous, u0 ¼ u1 ¼ 0. Therefore,

y ¼ UðxÞ ¼
X
i� 2

uix
i ¼ u2x

2 þ u3x
3 þ u4x

4 þ u5x
5 þ 	 	 	 :

Now,

_y ¼ �y ¼ �ðu2x2 þ u3x
3 þ u4x

4 þ u5x
5 þ 	 	 	Þ:

But

_y ¼ @U
@x

_x ¼ ð2u2xþ 3u3x2 þ 4u4x3 þ 5u5x4 þ 	 	 	Þðx� y2Þ

¼ ð2u2xþ 3u3x2 þ 4u4x3 þ 5u5x4 þ 	 	 	Þ x� u2x
2 þ u3x

3 þ u4x
4 þ u5x

5 þ 	 	 	� 	2n o

Therefore, we must have

ðu2x2 þ u3x
3 þ u4x

4 þ u5x
5 þ 	 	 	Þ ¼ð2u2xþ 3u3x2 þ 4u4x3 þ 5u5x4 þ 	 	 	Þ

u2x
2 þ u3x

3 þ u4x
4 þ u5x

5 þ 	 	 	� 	2 � x
n o

Equating the coefficients of like powers of x from both sides of the above
relation, we get
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u2 ¼ u3 ¼ u4 ¼ 	 	 	 ¼ 0:

Therefore, y ¼ UðxÞ ¼ 0. Hence, the local unstable manifold of the nonlinear
system in the neighborhood of the origin is (Fig. 4.5)

Wu
locð0; 0Þ ¼ ðx; yÞ : y ¼ 0f g ¼ Euð0; 0Þ:

4.6.1 Persistence of Hyperbolic Fixed Points

In the previous section, we have seen important features of hyperbolic fixed points
that near a hyperbolic fixed point the nonlinear and its corresponding linear systems
have the same qualitative features locally. In this section, we study another
important feature that hyperbolic equilibrium points persist their character under
sufficiently small perturbation. Let the origin be a hyperbolic fixed point of the
linear system _x� ¼ f

�
ðx� Þ; x 2 R

n. Consider the perturbed system

_x� ¼ f
�
ðx� Þþ eg

�
ðx� Þ ð4:11Þ

where g
�

is a smooth vector field defined in R
n and ε is a sufficiently small per-

turbation quantity. The fixed points of (4.11) are given by

f
�
ðx� Þþ eg

�
ðx� Þ ¼ 0:

Expanding in Taylor series about x� ¼ 0� and using f
�
ð0� Þ ¼ 0� , we get

Fig. 4.5 Local stable and
unstable manifolds at the
equilibrium point origin
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D f
�
ð0� Þx� þ e g

�
ð0� ÞþDg

�
ð0� Þx�

� �
þO jx� j2

� �
¼ 0

) D f
�
ð0� Þþ eDg

�
ð0� Þ

� �
x� þ eg

�
ð0� ÞþO jx� j2

� �
¼ 0

Since the origin is hyperbolic, the eigenvalues of D f
�
ð0� Þ are nonzero and so the

eigenvalues of D f
�
ð0� Þþ eDg

�
ð0� Þ

� �
are nonzero for sufficiently small ε. Hence,

det D f
�
ð0� Þþ eDg

�
ð0� Þ

� �
6¼ 0, that is, D f

�
ð0� Þþ eDg

�
ð0� Þ

� ��1

exists. Therefore the

fixed points of (4.11) are given by

x�
� ¼ e D f

�
ð0� Þþ eDg

�
ð0� Þ

� ��1

g
�
ð0� ÞþO jx� j2

� �
:

We now determine whether the point is hyperbolic or not. Since ε is small, we

can find a neighborhood of e ¼ 0 in which the eigenvalues of D f
�
ðx� Þþ eDg

�
ðx� Þ

� �
have nonzero real part for sufficiently small x� . So, for sufficiently small ε, the

eigenvalues of the perturbed equation do not change. So, the equilibrium points
retain their character, that is, they are of hyperbolic type. This proves that the
character of hyperbolic fixed point remains unchanged when the system undergoes
small perturbation.

Theorem 4.8 (Center manifold theorem) Consider a nonlinear system _x� ¼ f
�
ðx� Þ

where f
�

2 CrðEÞ; r� 1, E being an open subset of Rn containing a non-hyperbolic

fixed point, say x�
� ¼ 0 of the system. Suppose that the Jacobian matrix,

J ¼ D f
�
ð0Þ, of the system at the origin has j eigenvalues with positive real parts, k

eigenvalues with negative real parts, and mð¼ n� j� kÞ eigenvalues with zero
real parts. Then there exists a j-dimensional Cr-class unstable manifold Wuð0Þ, a
k-dimensional Cr-class stable manifold Wsð0Þ, and an m-dimensional Cr-class
center manifold Wcð0Þ tangent to subspaces Eu;Es;Ec of the corresponding linear
system _x� ¼ Ax� at the origin, respectively. Furthermore, these manifolds are

invariant under the flow /t of the nonlinear system. The manifolds Wsð0Þ and
Wuð0Þ are unique but the local center manifold Wcð0Þ is not unique.
Example 4.14 Find the manifolds of the system _x ¼ x; _y ¼ y2.

Solution The system has a non-hyperbolic fixed point at the origin. The unstable
subspace Euð0; 0Þ of the linearized system at the origin is the x-axis and the center
subspace is the y-axis. No stable subspace occurs for this system. Using the
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technique of power series expansion, discussed in Example 4.13, we see that the
unstable manifold at the origin is the x-axis and its center manifold is the y-axis, that
is, the line x ¼ 0. However, there are other center manifolds of the system. From the
equations, we have

dy
dx

¼ y2

x
;

which have the solution x ¼ ke�1=y for y 6¼ 0. Thus, the center manifold of the
origin is

Wc
locð0; 0Þ ¼ ðx; yÞ 2 R

2 : x ¼ ke�1=y for y[ 0; x ¼ 0 for y� 0
n o

:

It represents a one-parameter (k) family of center manifolds of the origin. Note
that if we use the technique of power series expansion for the center manifold, we
only get x ¼ 0 as the center manifold. This example also shows that the center
manifold is not unique.

4.7 Basin of Attraction and Basin Boundary

Let x�
� be an attracting fixed point of the linear system (4.2). We define the basin of

attraction in some neighborhood of x�
� subject to some initial condition x� ð0Þ ¼ x�0

to be the set of points such that x� ðtÞ ! x�
� as t ! 1. The boundary of this

attracting set is called the basin boundary, also known as separatrix, separating the
stable and unstable regions.

We discuss the basin of attraction and basin boundary with the help of the model
for two interacting species. The well-known Lotka–Volterra model is considered
which exhibits the basin of attraction and basin boundary for some situations.
Consider the Lotka–Volterra model represented by the system of equations as

_x ¼ xð3� x� 2yÞ; _y ¼ yð3� 2x� yÞ

where xðtÞ and yðtÞ are the populations the two interacting species, say rabbits and
sheep, respectively, and x; y� 0. We shall first find the fixed points of the system,
which can be obtained by solving the equations

x 3� x� 2yð Þ ¼ 0 and y 3� 2x� yð Þ ¼ 0:

Solving we get four fixed points, ð0; 0Þ; ð0; 3Þ; ð3; 0Þ; ð1; 1Þ. The Jacobian matrix
of the system is given by
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J x; yð Þ ¼ 3� 2x� 2y �2x
�2y 3� 2x� 2y

� �
:

At the fixed point (0, 0), Jð0; 0Þ ¼ 3 0
0 3

� �
. The eigenvalues of Jð0; 0Þ are 3, 3,

which are positive. So, the fixed point origin is an unstable node. All trajectories
leave the origin parallel to the eigenvector ð0; 1ÞT for k ¼ 3 which spans the y-axis.
The phase portrait near the origin is shown in Fig. 4.6.

At the fixed point (0, 3), Jð0; 3Þ ¼ �3 0
�6 �3

� �
, which has the eigenvalues −3, −3.

So, the fixed point (0, 3) is a stable node. Trajectories approach along the eigen
direction with the eigenvalue k ¼ �3 spanning the eigenvector ð0; 1ÞT . The phase
portrait near the fixed point (0, 3) which is a stable node looks like as presented in
Fig. 4.7.

At (3, 0), we have Jð3; 0Þ ¼ �3 �6
0 �3

� �
. The eigenvalues of Jð3; 0Þ are −3, −3.

So, as previous the fixed point (3, 0) is also a stable node. Trajectories approach
along the eigen direction with the eigenvalue k ¼ �3 spanning the eigenvector
ð1; 0ÞT . The phase portrait near the fixed point (3, 0) is depicted in Fig. 4.8.

Fig. 4.6 Local phase portrait
near the fixed point origin

Fig. 4.7 Local phase portrait
near the fixed point (0, 3)

Fig. 4.8 Local phase portrait
near the fixed point (3, 0)
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At (1, 1), we calculate J 1; 1ð Þ ¼ �1 �2
�2 �1

� �
, which gives two distinct

eigenvalues, 1, −3, with opposite signs. Therefore, the fixed point (1, 1) is a saddle.
The phase portrait near (1, 1) is shown in Fig. 4.9.

The x and y axes represent the straight line trajectories because _x ¼ 0 when
x ¼ 0 and _y ¼ 0 when y ¼ 0. All trajectories of the system are presented in
Fig. 4.10. This figure also clearly depicts the attracting points and the basin
boundary of the model. The attracting points of the system are (3, 0) and (0, 3). The
basin boundary of the two attracting points is the straight line y ¼ x, which is also
the separatrix of the system.

4.8 Exercises

1. Examine Lyapunov, Poincaré, and Lagrange stability criteria for the following
equations:

(i) _x ¼ 0,
(ii) _xþ x ¼ 0,
(iii) _x ¼ y; _y ¼ 0.

Fig. 4.9 Local phase portrait
near the fixed point (1, 1)

Fig. 4.10 Phase trajectories of the given system

156 4 Stability Theory



2. Find the general solution of the nonlinear oscillator _x ¼ �y x2 þ y2ð Þ12;
_y ¼ x x2 þ y2ð Þ12. Also, examine whether it is Lyapunov or orbitally stable.

3. Define Lyapunov function and Lyanupov stability. Examine the stability in the
Lyapunov sense for the following equations:

(i) _xþ x ¼ 2; xð0Þ ¼ 1,
(ii) _x� x ¼ 2; xð0Þ ¼ �1,
(iii) _x ¼ 5; xð0Þ ¼ 0

4. Using a suitable Lyapunov function, prove that the system _x ¼ �xþ 4y; _y ¼
�x� y3 has no closed orbits.

5. Examine asymptotic stability through the construction of suitable Lyapunov
function L for the system _x ¼ 2yðz� 1Þ; _y ¼ �xðz� 1Þ; _z ¼ xy.

6. Using suitable Lyapunov functions examine the stability at the equilibrium
point origin for the following systems:

(i) _x ¼ yþ x3; _y ¼ x� y3

(ii) _x ¼ y� x g x; yð Þ; _y ¼ �x� y g x; yð Þ where the function g x; yð Þ can be
expanded in a convergent power series with g 0; 0ð Þ ¼ 0,

(iii) _x ¼ 2xyþ x3; _y ¼ x2 � y5,
(iv) _x ¼ y� x3; _y ¼ �x� y3

7. Investigate the stability of the system _x ¼ �5y� 2x3; _y ¼ 5x� 3y3 at (0, 0)
using Lyapunov direct method.

8. State Hartman–Grobmann theorem and discuss its significance. Using theorem
describe the local stability behavior near equilibrium points of the following
nonlinear systems (i) _x ¼ y2 � xþ 2; _y ¼ x2 � y2. (ii) _x ¼ �y; _y ¼ x� x5.
Also, draw the phase portrait.

9. Find the stable, unstable, and center subspaces for the linear system _x� ¼ Ax�
when the matrix A is given by

(i) A ¼ 2 0
0 �1

� �

(ii) A ¼ 1 2
4 �1

� �
;

(iii) A ¼ 3 5
�1 1

� �
;

(iv) A ¼ 2 1
1 0

� �
;

(v) A ¼ �1 1
1 �1

� �
;

(vi) A ¼ 0 1
�1 0

� �
;
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(vii) A ¼
10 �1 0
25 2 0
0 0 �3

0
@

1
A

(viii) A ¼
0 �2 0
1 2 0
0 0 �2

0
@

1
A

10. Obtain the local stable and unstable manifolds for the system _x ¼ �x; _y ¼
yþ x2 and give a rough sketch of the manifolds.

11. Obtain the stable and unstable manifolds for the system
_x ¼ �xþ rþ x2

y ; _y ¼ �yþ x2;where σ is a parameter.
12. Find the fixed point and investigate their stability for the system

_x ¼ xð3� 2x� yÞ
_y ¼ yð2� x� yÞ
Also, draw the basin of attraction and basin boundary.

13. Find the basin of attraction and basin boundary for the following systems:

(i) _x ¼ xð1� x� 2yÞ; _y ¼ yð1� 2x� yÞ
(ii) _x ¼ xð1� x� 2yÞ; _y ¼ yð1� 3x� yÞ
(iii) _x ¼ xð1� x� 3yÞ; _y ¼ yð1� 2x� yÞ
(iv) _x ¼ xð1� x� 5yÞ; _y ¼ 2yð1� 3x� yÞ
(v) _x ¼ xð3� x� 2yÞ; _y ¼ yð2� x� yÞ:
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