Chapter 2
Linear Systems

This chapter deals with linear systems of ordinary differential equations (ODEs),
both homogeneous and nonhomogeneous equations. Linear systems are extremely
useful for analyzing nonlinear systems. The main emphasis is given for finding
solutions of linear systems with constant coefficients so that the solution methods
could be extended to higher dimensional systems easily. The well-known methods
such as eigenvalue—eigenvector method and the fundamental matrix method have
been described in detail. The properties of fundamental matrix, the fundamental
theorem, and important properties of exponential matrix function are given in this
chapter. It is important to note that the set of all solutions of a linear system forms a
vector space. The eigenvectors constitute the solution space of the linear system.
The general solution procedure for linear systems using fundamental matrix, the
concept of generalized eigenvector, solutions of multiple eigenvalues, both real and
complex, are discussed.

2.1 Linear Systems

Consider a linear system of ordinary differential equations as follows:

dxp .
o — S =anxtanxt o+ ank +b
de .
o 2= aan +anx;+ - +ayx,+b
t (2.1)
dx, .
E = Xp = An1X1 + QX2 + -+ AunXy +bn
where a;,b;(i,j =1,2,...,n) are all given constants. The system (2.1) can be

written in matrix notation as

© Springer India 2015 37
G.C. Layek, An Introduction to Dynamical Systems and Chaos,
DOI 10.1007/978-81-322-2556-0_2
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i =Ax +b (2.2)

~ ~

where x (1) = (x1(1),x2(2), ..., x(1))", b = (b1,b2, ..., b,)" are the column vectors
and A = [a;j],~, is the square matrix of order n, known as the coefficient matrix of
the system. The system (2.2) is said to be homogeneous if b = 0, that is, if all b;’s
are identically zero. On the other hand, if b #* 0, that is, if at least one b; is
nonzero, then the system is called nonhomogeneous. We consider first linear
homogeneous system as

i =Ax (2.3)

~

A differentiable function x(7) is said to be a solution of (2.3) if it satisfies the
equation X = Ax . Let x(z) and x(¢) be two solutions of (2.3). Then any linear
combination x (1) = ¢1x(t) +cax2(t) of x1(¢) and x,(z) is also a solution of (2.3).

This can be shown very easily as below.

X =c1Xx1+cx0

~

and so

Ax =A(c1x1 +x2) = ClAX 1+ AXy = c1X 1 + Xy = X .

The solution x = c¢1x1 + ¢2x> is known as general solution of the system (2.3).

Thus the general solution of a system is the linear combination of the set of all
solutions of that system (superposition principle). Since the system is linear, we
may consider a nontrivial solution of (2.3) as

x()=ua e (2.4)

. . t .
where o is a column vector with components ¢ = (o1,00,...,0,) and A is a

number. Substituting (2.4) into (2.3) we obtain
/1% e/lt —A % eit

or,(A—il)o =0 (2.5)

where I is the identity matrix of order n. Equation (2.5) gives a nontrivial solution if
and only if

det(A — A1) =0 (2.6)
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On expansion, Eq. (2.6) gives a polynomial equation of degree n in 4, known as
the characteristic equation of matrix A. The roots of the characteristic equation
(2.6) are called the characteristic roots or eigenvalues or latent roots of A. The
vector o, which is a nontrivial solution of (2.5), is known as an eigenvector of
A corresponding to the eigenvalue A. If « is an eigenvector of a matrix
A corresponding to an eigenvalue 4, then x (1) = e"’g is a solution of the system

X = Ax . The set of linearly independent eigenvectors constitutes a solution space

of the linear homogeneous ordinary differential equations which is a vector space.
All properties of vector space hold good for the solution space. We now discuss the
general solution of a linear system below.

2.2 Eigenvalue-Eigenvector Method

As we know, the solution of a linear system constitutes a linear space and the
solution is formed by the eigenvectors of the matrix. There may have four possi-
bilities according to the eigenvalues and corresponding eigenvectors of matrix
A. We proceed now case-wise as follows.

Case I: Eigenvalues of A are real and distinct
If the coefficient matrix A has real distinct eigenvalues, then it has linearly inde-
pendent (L.L) eigenvectors. Let a1, %2, . . ., &, be the eigenvectors corresponding to

the eigenvalues A1, A, ... A, of matrix A. Then each x ;(1) = gjeif’,j =1,2,...,nis
a solution of x = Ax . The general solution is a linear combination of the solutions

x ;(t) and is given by

(=Y i)

where ¢y, ¢, .. .,c, are arbitrary constants. In R2, the solution can be written as

2
x (1) =) qaje’ =g e +cange
J=1

j.zf

Case II: Eigenvalues of A are real but repeated
In this case matrix A may have either n linearly independent eigenvectors or only
one or many (<n) linearly independent eigenvectors corresponding to the repeated
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eigenvalues. The generalized eigenvectors have been used for linearly independent
eigenvectors. We discuss this case in the following two sub-cases.

Sub-case 1: Matrix A has linearly independent eigenvectors
Let a1, %2,...,%, be n linearly independent eigenvectors corresponding to the

repeated real eigenvalue A of matrix A. In this case the general solution of the linear
system is given by

n
x (1) = E cio e
i=1

Sub-case 2. Matrix A has only one or many (<n) linearly independent
eigenvectors

First, we give the definition of generalized eigenvector of A. Let A be an eigenvalue of
the n x n matrix A of multiplicity m < n. Then for k=1, 2, ..., m, any nonzero solution
of the equation (A — A/ )k v =0 is called a generalized eigenvector of A. For sim-
plicity consider a two dimensional system. Let the eigenvalues be repeated but only
one eigenvector, say o | be linearly independent. Let o ; be a generalized eigenvector
of the 2 x 2 matrix A. Then o, can be obtained from the relation
(A- M)g 2=a = Ay = Ao+ a . So the general solution of the system is

given by
x (1) =ca e’ +cz(tac e —|—oc e ).
~ 2
Similarly, for an n x n matrix A, the general solution may be written as

x (1) = Y0 cix (1), where

xo(t) =t 1M + o 2",

2 9 )
%%le‘)’t+t%2€At—|—g3e"[,

=
w
~—
~
=
Il
)

_ ! it [ it At it
Xa(1) = Grp 1€ o g% aae e et

Case III: Matrix A has non-repeated complex eigenvalues

Suppose the real n x n matrix A has m- pairs of complex eigenvalues
a; £ibj,j=1,2,...,m. Let % + lﬂ ,J=1,2,...,m denote the corresponding
eigenvectors. Then the solutlon of the system X ( ) = Ax (1) for these complex
eigenvalues is given by
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x()=> cuj+dy,
=1

where  u ; = exp(a;t){ 2, cos(bjt) — ﬁj sin(bjt)}, v ;= exp(ajt){x;sin(b;t) + /)’j

cos(b;t)} and ¢;,d;(j = 1,2, ...,m) are arbitrary constants. We discuss each of the
above cases through specific examples below.

Example 2.1 Find the general solution of the following linear homogeneous system
using eigenvalue-eigenvector method:

X =5x+4y

y=x-+2y.

Solution In matrix notation, the system can be written as 5 = Ag, where x =

(i) and A = (? 3) The eigenvalues of A satisfy the equation

dettA—AI) =0
N ‘5 - 4 ' 0
| 2—2
= 5-4H2-1)—-4=0
= 2-7.+6=0.
The roots of the characteristic equation 2> —74+6 =0 are A = 1, 6. So the

eigenvalues of A are real and distinct. We shall now find the eigenvectors corre-
sponding to these eigenvalues.

e . . .
Let e = (;) be the eigenvector corresponding to the eigenvalue 4; = 1.
~ 2

Then

(A-Te =0

= 0 0)E) ()
de; +4de 0
(are)-(0)

= de;+4ey =0, e +e, =0.
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We can choose e, =1, e, = —1. So, the eigenvector corresponding to the

(1)

) be the eigenvector corresponding to the eigenvalue

eigenvalue 4, =

O~ =~

lise
Again, let e’ = (z
> = 6. Then
(A—6l)e'=0
N 5-6 4 e (0
1 2-6/\¢/) \0O
N —e| +4é) _ (0
e\ — 4e) 0
= —€ +4e, =06, —4e, =0.
We can choose ¢ = 4,¢, = 1. So, the eigenvector corresponding to theeigen-

value o =6 is ¢ = (?) The eigenvectors e, e’ are linearly independent.

Hence the general solution of the system is given as
1 4
x(t)=cie e +cre'e® =c <1>et—|—cz(1)e6’

x(t) = cré' + 4cped! .
or, yEt; lc e_|’——|—c2 1 where ¢y, ¢, are arbitrary constants.
= —C| 2

Example 2.2 Find the general solution of the linear system

a(2)=(3)C)

Solution The characteristic equation of matrix A is

det(A — AI) = 0
3—-2 0
or, =0
0 3-1
or, (3—7)’=0
or, A=3,3.

So, the eigenvalues of A are 3, 3, which are real and repeated. Clearly, e | =

( (1)) and e, = (?) are two linearly independent eigenvectors corresponding to

the repeated eigenvalue 4 = 3. Thus, the general solution of the system is
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x (1) =cre1e" + ¢ 2™

- o) ( Joveli)e = (00)
¥(¢) 1 Cop
cre

x(1) y(t) = c2¢* , where ¢|, ¢y are arbitrary constants.

Example 2.3 Find the general solution of the system

x=3x—4y
y=x—y

using eigenvalue-eigenvector method.

Solution The characteristic equation of matrix A is

det(A — AI) =0
3—-4. —4
= ‘ 1 11‘:0
= 1P-2.+41=0
= =11

So matrix A has repeated real eigenvalues 1 = 1, 1.

Lete = (51 ) be the eigenvector corresponding to the eigenvalue A = 1. Then
~ 2
A-De = 9
3- e 0
j =
—1-1 0
261 462 O
= _
e; —2e 0
= 2e1—4e;=0,e; —2e0 =0
We can choose e; = 2, e, = 1. Therefore, ¢ = (%)

Let g = (il > be the generalized eigenvector corresponding to the eigenvalue
~ 2

A = 1. Then
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31 -4 \/a 2
= =
1 —1-1)\ g 1
(281 —4gz> B (2>
g1 —2g 1
= 2g1—4g=2,g1— 28 =1

We can choose g, = 1, g, = 3. Therefore g = (?)

Therefore the general solution of the system is

x (1) clge’Jrcz(g te+g e’)

o ()=o)

x(r) = {2¢1 + (2t 4 3)cz }e!

(1) = {er + (14 Dea)e!

}, where ¢; and c; are arbitrary constants.
Example 2.4 Find the general solution of the linear system

x=10x—y
y=25x+2y

Solution Given system can be written as

. 10 -1 X
X =Ax, whereA = (25 ’ >and§ = (y>

The characteristic equation of matrix A is

det(A — 1) =0
10-4 -1
= =0
‘25 2—1’
= 22-122+45=0
= Al=6%3i

Therefore, matrix A has a pair of complex conjugate eigenvalues 6 + 3i.

e . . .
Let e = (;) be the eigenvector corresponding to the eigenvalue
~ 2

A =06 + 3i. Then
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(A—(643))e =0
10 -6 —3i —1 ery) 0
25 2-6-3i)\e) \O
( (4—3i)er — e ) B (O)
25e; — (4+3i)ex ) \O
= (4—3i)e; —e; =0,25¢; — (4+3i)e; = 0.

A nontrivial solution of this system is

61:17 6224—3i.

1 1 A 0\ . (1
Therefore e = <4—3i)_ (4)+1(_3>—g1+lg2, where o) = <4)
0
and g2:<_3>.

Similarly, the eigenvector corresponding to the eigenvalue A = 6 — 3i is

el = ( 1 >g1i%2- Therefore,

44 3i

u —e‘”(glcosbt— ngiHbt) —66’{<i> cos 3t — (_03> sin3t}
Vi :e‘”<g1sinbt+gzcosbt) :e&{(i) sin 3¢ + (_03) cos3t}.

Therefore, the general solution is

and

x () =cu+dv,

o[ /1 0 ,
= cj cos3t — c1 sin 3¢
4 -3
(1N, . 0
+ e A dy sin 3t + 3 d) cos 3t

B 6t< ¢y cos 3t +d; sin 3¢ )
B (4cy — 3dy) cos 3t + (3¢; +4dy ) sin 3¢
8 (c) cos 3t +d; sin 3t),

= x(t)=¢
y(t) = €%[(4c) — 3d,) cos 3t + (3¢ + 4d, ) sin 31]

where ¢; and d; are arbitrary constants.



46 2 Linear Systems
Example 2.5 Find the solution of the system
x=x—5y,y=x—13y

satisfying the initial condition x(0) = 1, y(0) = 1. Describe the behavior of the
solution as ¢ — ©o0,

Solution The characteristic equation of matrix A is

det(A — 1) =0
1-4 =5
1 —3-2
= 2P242.+2=0
= A=-1+i

= | o

So, matrix A has a pair of complex conjugate eigenvalues (—1 =+ i).

e . . .

Let e = <el) be the eigenvector corresponding to the -eigenvalue
~ 2

= —1 +i. Then

= (2—i)€1—582:0761—( +i)62:0.
A nontrivial solution of this system is

e1 =2+i,ep = 1.

Therefore e = (2—;1): <%>+i(é):g1+igz, where o) = (?) and
1
== (o)

Similarly, the eigenvector corresponding to the eigenvalue 4 = —1 — i is

e = 2-i =0 —ia
e’ = | )= iz
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, . (2 1\ .
| =€ ajcosbt — aysinbt | =e | cost — 0 sint p and
at . —t 2 . 1
1 =¢""| aysinbt+asrcosbt | =e 1 sint + 0 cost

Therefore, the solution of the system is

U=

<

x (1) =x(0)u 1 +y(0)v 1
= (P)eos— () sne) e (s (o)
= e’{(?)(cosﬂr sinr) + (é)(cost— sint)}.

When t — 0, ¢=' — 0. So, in this case x (1) — 0, that is, the solution of the
system is stable in the usual sense.

Example 2.6 Find the solution of the system x = Ax , where

-1 2 3
A= 0 -2 1
0o 3 0

Solution The characteristic equation of A is

det(A—AI) =0
—-1-2 2 3
= 0 —2—-1 11]=0
0 3 -
= (U+DA-1)(1+3)=0
= Ji=-1,1,-3
Therefore the eigenvalues of matrix A are A = —1, 1, —3.
We shall now find the eigenvector corresponding to each of the eigenvalues.
e
Let ¢ = | e; | be the eigenvector corresponding to the eigenvalue 4 = —1.
e3
Then
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(A+1l)e =0
—1+4+1 2 3 el
= 0 —2+1 1 (4] =
0 3 1 e3 0

= 2ey+3e3=0, —ey+e3=0, 3¢, +e3=0
= ep = e3 = 0ande;is arbitrary.

We choose e; = 1. Therefore, the eigenvector corresponding to the eigenvalue

1
A=—lise = | 0 |.Similarly, the eigenvectors corresponding to A =1 and A = —3
0
11/2 1/2
are, respectively, g = 1 and o = 1 | . Therefore the general solution
h 3 -1

is

x()=ciee' +erge +c3u e

1 11/2 1/2
=c;| 0 le"+e 1 d+e| 1 e
0 3 -1

where cy,c, and c3 are arbitrary constants.

Example 2.7 Solve the system x = Ax , where

1 -3 3
A=|3 -5 3
6 —6 4

Solution The characteristic equation of matrix A is

det(A — A1) =0
1—-4 -3 3
= 3 —5-4 3 |=0
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So (—2) is a repeated eigenvalue of A. The eigenvector for the eigenvalue 4, = 4

1

is given as | 1 |. The eigenvector corresponding to the repeated eigenvalue
2

=13 =-21s (61 e €3 )T such that

3 -3 3 el
3 -3 3 e | =
6 —6 6 e

S OO

which is equivalent to
3e; —3er+3e3 =0, 3e; —3ex+3e3 =0, 6e —6ey+6e3 =0,

that is, e; — ey +e3 = 0.
We can choose ¢; = 1, e; = 1 and e3 = 0, and so we can take one eigenvector

1
as | 1 |.Again, we can choose e; = 0, e; = 1 and e3 = 1. Then we obtain another
0
0
eigenvector | 1 |. Clearly, these two eigenvectors are linearly independent. Thus,
1

we have two linearly independent eigenvectors corresponding to the repeated
eigenvalue —2. Hence, the general solution of the system is given by

1 1
x()=c |1 Mt 1 e +es| 1 ]e™

where cj, ¢; and c¢3 are arbitrary constants.

Example 2.8 Solve the system x = Ax where

-1 -1 0 O
1 -1 0 O
A= 0o 0 0 -2
o 0 1 2
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Solution Here matrix A has two pair of complex conjugate eigenvalues A; =
—1=+iand A, = 1+ i. The corresponding pair of eigenvectors is

+i 0 1

L"l:g]ilgl: (l) = (1) +i 8 and
0 0 0

0 0 0

wa=g2kifa= —loii - —01 =i (1)

1 1 0

Therefore, the general solution of the system is expressed as

sint p + cre' . cost — sin ¢

cost

0
1
0
0
+d1€7t (

+dye' ( . sinz+ cost
0
e

~(dy cost — ¢y sint)

— o o0 © o = _
—_ |
o —~ © ©

—_

e '(cicost+dsint)
e'{(dy — cz) cost — (dr + c3) sint}
é'(cycost+dy sint)

where c;,d;(j = 1,2) are arbitrary constants.
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2.3 Fundamental Matrix

A set {x (1), x2(t),...,x 4(t)} of solutions of a linear homogeneous system X =
Ax is said to be a fundamental set of solutions of that system if it satisfies the
following two conditions:
(i) The set {x ((¢),x2(t),...,x ,(¢)} is linearly independent, that is, for ¢, cs,
ca ER x1F+oxt o Faxa=0 =0 =--=¢=0.
(ii) For any solution x (¢) of the system % = Ax, there exist ci,c2,...,c, €R
such that x (1) = ¢1x ((t) +c2x2(t) + -+ +cpx u(1), Ve €R.
The solution, expressed as a linear combination of a fundamental set of solutions

of a system, is called a general solution of the system.
Let {x 1(¢), x2(?),...,x 4(t)} be a fundamental set of solutions of the system

% =Ax fortel=a,b]; a,b € R. Then the matrix

00) = (110,520 ,0)

is called a fundamental matrix of the system ¥ =Ax, x € R". Since the set
{x1(2),x2(t),...,x 4(2)} is linearly independent, the fundamental matrix ®(z) is

nonsingular. Now the general solution of the system is

x(t) = cix1(t) +cax2(t) + -+ +cpxn(t)

x (0) = x o, then
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Thus the solution of the initial value problem x = Ax with the initial conditions

X (0) = X o can be expressed in terms of the fundamental matrix ®(z) as
x (1) = ®()9(0) x (2.7)

Note that two different homogeneous systems cannot have the same fundamental
matrix. Again, if ®(¢) is a fundamental matrix of g =Ax, then for any constant C,

C®(z) is also a fundamental matrix of the system.

Example 2.9 Find the fundamental matrix of the system x = Ax, where

A= (_13 _22 ) Hence find its solution.

Solution The characteristic equation of matrix A is

|A— 1 =0

1—-1 =2
'S
= (1-)2-2)-6=0
= 2-3,-4=0

= l=-1,4.

So, the eigenvalues of matrix A are —1, 4, which are real and distinct.

= =0

Let e = (Zl ) be the eigenvector corresponding to the eigenvalue 4, = —1.
~ 2
Then

(A+De =0

~ ~

( 2+1)<61):(8)

= 2e; —2e; =0,—-3e;+3e; =0.

A nontrivial solution of this system is e; = 1,e; = 1.

Again, let g = <§1> be the eigenvector corresponding to the eigenvalue
~ 2
Ao = 4. Then



2.3 Fundamental Matrix 53

(A—-4h)g =0

1-4 =2 81 0
= =
-3 2-4)\g& 0
= 3g1+2¢ =0
2
Choose g, = 2, g» = —3. Therefore, g = <3>

Therefore the eigenvectors corresponding to the eigenvalues A = —1, 4 are

respectively (i) and (23>, which are linearly independent. So two funda-

mental solutions of the system are

and a fundamental matrix of the system is

D(r) = ({1(0 {2(1)) = (ei 2" )

e —3e

(1 2 iy 1 (3 2
NowCD(O)—<1 _3> and so @ (O)—§<1 _1>.
Therefore the general solution of the system is given by

0 =owo 0= (7 2
x(t) = Xo=r< X
X S | 1 )%

1 (36" 426 et — 2e4’>
_ Xo.

T 5\ 3et — 36t Qe + 3¢

2.3.1 General Solution of Linear Systems

Consider a simple linear equation
X =ax (2.8)

with initial condition x(0) = xy, where a and x, are certain constants. The solution
of this initial value problem (IVP) is given as x(f) = xpe?’. Then we may expect that
the solution of the initial value problem for n x n system
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X =Ax with x (0) = x (2.9)

can be expressed in term of exponential matrix function as
_ At
x(1)=¢e"x9 (2.10)

where A is an n x n matrix. Comparing (2.10) with the solution obtained by the
fundamental matrix, we have the relation

M =017 (0) (2.11)

Thus we see that if ®(r) is a fundamental matrix of the system ¥ = Ax , then ®(0)

is invertible and e’ = ®(¢)® ' (0). Note that if ®(0) = I, then ®'(0) = I and so,
A =0(1) = O(1).

2¢f  —e™

Example 2.10 Does ®(r) = <_4e’ 2¢73

> a fundamental matrix for a system

x =Ax?

~

Solution We know that if ®(¢) is a fundamental matrix, then ®(0) is invertible.

2ef  —e 2 -1
Here ®(¢) = (_46, 23t ) So, ®(0) = (_4 2 )

Since det(®(0)) = 4 — 4 = 0, ®(0) is not invertible and hence the given matrix
is not a fundamental matrix for the system & = Ax.

Example 2.11 Find ¢ for the system X =Ax, where A = (‘1‘ } >

Solution The characteristic equation of A is

|A— 1 =0
1-4 1
4 1=
= (A-1"—4=0
= 1=3,-1

So, the eigenvalue of A are 4 = 3, —1. The eigenvector corresponding to the

= ‘ =0

eigenvalues A = 3, —1 are, respectively, (;) and (12

independent. So, two fundamental solutions of the system are

x1(t) (1)e3t7£2(t) = ( 12>e’. Therefore a fundamental matrix of the

system is

>, which are linearly
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2 - 1ol
Now,q;(o):(; _12> and(l)l(o):_i<_§ 11>:<§ _4%>.

Therefore,

M =01 (0)
B ( e3t e! ) % i B %(eBz_i_e—t) i(e& _ e—t)
- 263 D¢t % _% - (631 _ e—t) %(63’4—6_’) :

2.3.2 Fundamental Matrix Method

The fundamental matrix can be used to obtain the general solution of a linear
system. The fundamental theorem gives the existence and uniqueness of solution of
a linear system X =Ax, x € R" subject to the initial conditions x o € R". We

now present the fundamental theorem.

Theorem 2.1 (Fundamental theorem) Let A be an n X n matrix. Then for given any
initial condition x o € R”, the initial value problem X =Ax with x 0) = X o has

the unique solution x (1) = e*'x .
Proof The initial value problem is

X =Ax, x(0)=uxo (2.12)

~

We have

A2t2 A3t3
eA’=1+At+7+7+-~- (2.13)

Differentiating (2.13) w.r.to #,

d d A2 AP
iy 4 (a0 AF
a @) =g Irar =+

d d d (A*? d (AP
=D+ —A)+ — (= )+ (=) + -
dt()+dt( )ert<2!>+dt(3!)Jr
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The term by term differentiation is valid because the series of e*’ is convergent
for all ¢ under the operator.
AP AYP

d t 2
or, a(eA)ZQDJrAJrAZJrTJrTﬂL

A’ AP
—A<I+Al—|—2!+3!+ )
= A
Therefore,

% () = A (2.14)

This shows that the matrix x = ¢! is a solution of the matrix differential
equation x = Ax . The matrix ¢ is known as the fundamental matrix of the system
(2.12). Now using (2.14)

d d
dt<€At§0> Z&(eAt){()ZAeAtgo

d

= X =—
~ o de

(x)=Ax,
where x = eA’g 0-

Also, x (0) = {e’”{ 0} =[e"],_ox0 =Ix0=xo. Thus x (f) = e*x ¢ is a
=0
solution of (2.12). We prove the uniqueness of solution as follows. Let x (¢) be a

solution of (2.12) and y (r) = e *'x (1) be its another solution. Then

§ (1) = —Ae

(1) +e ™k (1)

~

2=

=—AeYx () +Aex (1) = 0.

2=

This implies y(z) is constant. At t = 0, for # € R, it shows that y(r) = xo.
Therefore any solution of the IVP (2.12) is given as x(r) = ¢*y(r) = ¢*'x ¢. This
completes the proof.

2.3.3 Matrix Exponential Function

From the fundamental theorem, the general solution of a linear system can be
obtained using the exponential matrix function. The exponential matrix function has
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some interesting properties in which the general solution can be obtained easily. For
an n X n matrix A, the matrix exponential function e of A is defined as

> A" A2
Z—'_I+A+—+ (2.15)
n=0 2!

Note that the infinite series (2.15) converges for all n x n matrix A. If A = [a], a
1 x 1 matrix, then e = [e“] (see the book by L. Perko [1]). We now discuss some of
the important properties of matrix exponential function e”.

Property 1 If A = o, the null matrix, then ¢* = I.
Proof By definition

A’2 AP
N =1+At+ o + T

22 3
B @t q’t
—I+(/)I+T+T+

=1
So, eA' =1 for A = ¢.
Property 2 Let A = I, the identity matrix. Then

!
M= [% 2] =1

Proof We know that e’ = I + At + A2’2 + A3’3 + - --. Therefore

Il r’e P
e = +l+?+?+
2 Il3

=1+l oy oy +

2 '%
1 ol ..
it g g )

R

Note If A = al, a being a scalar, then

ot
e 0
eAt eodt Ieat |: 0 . :| .
e
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Property 3 Suppose D = {/61 /? } , a diagonal matrix. Then
2

Dt e/L[l 0
€ - 0 e/lzt

D D3
—I+Dt+7+?+

1 o]+{ﬂl O}H[xl 0]2,2+
1o 1 0 A 0 J) 2!
1

Proof By definition

2 Linear Systems

U0 A 0, fA o2
1o 1 0 A 0 22!
1+A1t+2—’+--~ 0

0 L4+t + 22 4.

[ent 0
- 0 e/lzl :

Property 4 Let P"'AP = D, D being a diagonal matrix. Then

At
At _ p,Dip—1 _ e 0 71 B 0
= Pe”'P —P{ 0 eizt]P , where D = {O )vz]'
Proof We have
. AKE
At 1 AT
¢ = nll»r{olo kl
PDP
= lim Z D = PilAP, SO A = PDP—l]
(Pkafl)tk (PDP?l)k: (PDPil)(PDP’l) ... (PDPfl)
:;}i—%lo — k! = PD(P~'P)D(P~'P)---(P~'P)DP!
o = PD*P!
. n Dktk ,
= P(nll»nolc;—k! )p
= Pl p!

et 0
=P p!
0 ™
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Property 5 Let N be a nilpotent matrix of order k. Then €' is a series containing
finite terms only.

Proof A matrix N is said to be a nilpotent matrix of order or index k if k is the least
positive integer such that N¥ = ¢ but N*~! £ ¢, ¢ being the null matrix.

Since N is a nilpotent matrix of order k, N*=! £ ¢ but N* = ¢.
Therefore

2.2 3.3 k—1k—1 k +k
eN’:[+Nt+N_t+N_t+...+u+N_t+...
2! 3! (k—1)! k!
N2t2 N3t3 Nk— 1 lk_ 1
Ny oy
LR Y YR b

which is a series of finite terms only.

b _ab}’ then &' = ¢*!'[Icos(bt) + J sin(br)], where I =

1 0 0 -1
{O l]and]—[l 0].
Proof We have
a —b 1 0 0 —1 1 0
A= =a +b =al+bJ, where [ = ,
b a 0 1 1 0 0 1

-[1 ]

Therefore

Property 6 If A =

eAt — eaItJtht

(bJt)*  (bJt)’
I+th-‘r—2! + 30

:ea“|:1<l—¥+¥+“'> +J<bt—%+---)}
'...12: {O —1]{0 —1} T
1 0 1 0
-1 0
= eI cos(bt) + I sin(br)] | [ 0 —1} T
PB=RI=(-DJ=-J

F=Pl=(-N]=-]=1I

Letc....

ealz . eth _ ealt 4o

~
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Property 7 At 8 = 4¢P, provided AB = BA.
Proof Suppose AB = BA. Then by Binomial theorem,

(A+m"§:G:3%Eﬁ"ﬁ#ny§:

Therefore

z—”z > A

Val
11:0j+k:n]' :

It is true that ¢* T8 = ¢ if AB = BA. But in general eA+8 £ ¢4ef.
Property 8 For any n X n matrix A, i (M) = Aet.

Proof By definition

A2 A3
eA =1+At+ T + ?
A2 AP
t
M) O+m+2,+3,+~>

d d d (A2 d (AP
=2 (D+=(A 2= (==
m”+m(”+m<ﬂ>+m<m>+

The term by term differentiation is valid because the series of e*’ is convergent
for all ¢ under the operator.

3 [2 A4 t3

d t 2
or,g(eA)Z(p—l-A—FA +T+ 31

A% A3
[+At+ =+ + -

21 31
= A,

Therefore, & ()= AeM.
We now establish the important result below.
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d
Result Multiplying both sides of o (¢") = Ae™ by ®(0) in right, we have

% (M) D(0) = A D(0)

- %(eA’(D(O)) = A" ®(0)

= £ (@00 0)0(0)) = 40D (0)0(0) [since ¥ = D)D" (0)
= (@) = o) = Ad(0)

This shows that the fundamental matrix ®() must satisfy the system ¥ = Ax .

This is true for all #. So, it is true for ¢ = 0. Putting # = 0 in ®(r) = AD(r), we get
®(0) = AD(0) = A = ®(0)D 1(0).

This gives that the coefficient matrix A can be expressed in terms of the fun-
damental matrix ®(z).

et 6721‘
2¢ 3e ¥
X = Ax ?1If so, then find the matrix A.

Example 2.12 Does ®(r) = ( ) a fundamental matrix for the system

Solution We know that if ®(¢) is a fundamental matrix, then ®(0) is invertible.

e e 1 1
Here ®(z) = <2e’ 362,). So, ®(0) = <2 3).
Since det(®(0)) =3 — 2 =1 # 0, ®(0) is invertible. Hence the given matrix is
a fundamental matrix for the system X = Ax. We shall now find the coefficient

matrix A.

Wehave(I)(O)(; §>.So<bl(0)<_32 11)

. ! _ —2t . _
Also ®(1) = ( iy _§Z2f>’ and ®(0) = ( ; _2).

Therefore the matrix A is

Ada(O)cbl(o)G _é)(fz 11>(178 —é)

3.1

Example 2.13 Find ¢ for the matrix A = < | 3

) . Hence find the solution of the

system ¥ = Ax.
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Solution We see that the eigenvectors corresponding to the eigenvalues A = 2, 4 of

A are respectively e = (_11) and g = <}) which are linearly independent.

Therefore, two fundamental solutions of the system are x (7) = ( _11 )eZ’ and

1 . .
xo(t) = ( )e‘“ . So a fundamental matrix of the system is

o) = (110 x:0)= (<, <),

—e e

We find ®(0) = <11 i > and @ '(0) =1 (1 _11 ) Therefore

B 1 eZt e4t 1 —1 1 ez: + e4t e4t _ eZt
eA’:CD(t)(I) 1(0)2(—62’ oM 1 1 :5 A e SR

By fundamental theorem, the solution of the system x = Ax is
o _ 1 e2z_|_e4z e4t _ eZt c
x(t)=e Lo=g\ 4 _ ey ¢

cr . .
where x o = (Cl ) is an arbitrary constant column vector.
~ 2

2.4 Solution Procedure of Linear Systems

The general solution of a linear homogeneous system can be easily deduced from
the fundamental theorem. According to this theorem the solution of ¥ = Ax with

x (0) = x o is given as x (1) = ¢*'x o and this solution is unique.
For a simple change of coordinates x = Py where P is an invertible matrix, the
equation ¥ = Ax is transformed as

x =Ax

= Py = APy
= y =P 'APy

= j =Cy, whereC = P"'AP.
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The initial conditions x (0) = x ¢ become y (0) =P 'x (0) =P 'xo=y,.
So, the new system isy = Cy with y (0) =y, where C = P~'AP.

It has the solution

Hence the solution of the original system is

x (1) =Py (1) =Peyo=Pe“Plx,.

~

We see that ¢!’ = Pe€’P~!. The matrix P is chosen in such a way that matrix
C takes a simple form. We now discuss three cases.

(i) Matrix A has distinct real eigenvalues

Let P = <g1,g2,...,gn) so that, P! exists. The matrix C is obtained as

C = P 'AP which is a diagonal matrix. Hence the exponential function of
C becomes

/lltye/lzt s f)

e = diag(e o).

Therefore we can write the solution of ¥ = Ax with x (0) = x¢ as x (¢) =

eA’go = PeC’P‘lzg 0- So
x (1) = Pdiag(eM?, ™. . e;‘”t)P_lz 0

t . .
where x o = (c1,¢2,...,¢,)" is an arbitrary constant.

(i) Matrix A has real repeated eigenvalues

In this case the following theorems are relevant (proofs are available in the book
Hirsch and Smale [2]) for finding general solution of a linear system when matrix
A has repeated eigenvalues.

Theorem 2.2 Let the n X n matrix A have real eigenvalues 11, 15, ..., A, repeated
according to their multiplicity. Then there exists a basis of generalized eigenvectors
{a1,00,...,00,} such that the matrix P = (o1, %2,...,%,) is invertible and

A =S8+ N, where P~'SP = diag(/y, A1, ..., 4,) and N(=A — S) is nilpotent of order
k< n, and S and N commute.
Using the theorem the linear system subject to the initial conditions x (0) = x ¢

has the solution
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Nk_llk_l
x (1) = Pdiag(e” )P~ I+ Nt + -+ + = X o

(iii) Matrix A has complex eigenvalues

Theorem 2.3 Let A be a 2n % 2n matrix with complex eigenvalues a; £ ib;, j =1, 2,
..., . Then there exists generalized complex eigenvectors (o.; +if;),j =1,2...,n

such that the matrix P = (1, 1, f2,%2,..., n, &) is invertible and A = S + N,

a;

where P~'SP = diag[b: :f,} , and N(=A — S) is a nilpotent matrix of order
i G

k < 2n, and S and N commute.

Using the theorem the linear system of equations subject to the initial conditions
x (0) = x o has the solution

k tk

k!

cos(bjt) —sin(b;t

x (t) = Pdiag(e"") [ sin(by) Cos(bjt))}r‘ {I—i—Nt—k R X 0.

For a 2 x 2 matrix A with complex eigenvalues (o & if§) the solution is given by

x (1) = Pe%l(cosﬁt _smﬂt>P1§0.

sin it cos fit

Example 2.14 Solve the initial value problem

X=x+y,y=4x—2y

with initial condition x (0) = (23 )

Solution The characteristic equation of matrix A is

A= =0
1—-2 1
=
4 22
= (A-1)(A+2)—4=0
= 4+1-6=0
= 1=2,-3

So the eigenvalues of matrix A are 2, —3, which are real and distinct.

=0
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Let ¢ = <Zl> be the eigenvector corresponding to the eigenvalue A; = 2.
~ 2
Then
(A=2Ie =0
1-2 1 el 0
= =
4 -2-2 e 0
= —e1t+e=0,4¢; —4e; =0

A nontrivial solution of this system is e; = 1,e; = 1.

()

Again let g = <§1> be the eigenvector corresponding to the eigenvalue
~ 2
A» = —3. Then

(A+3I)

- (3 2)(@)-6)

= 4g1+g=0,4g,+g =0

=0

209

A nontrivial solution of this system is g; = 1,8, = —4.
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Therefore by the fundamental theorem, the solution of the system is
x (t) =e"xo=Pe“"P'x,
1 1 e 0 1/4 1
= - X
1 —4)\o e*)5\1 —-1)~°

1/ 4e¥ 4¢3 o2t _ o3t
-3 <4e2’ 4 Y +4e‘3’>£

N x(t) B %621 + %6_31 %eQr _ %6—31 2 B eZt + 6—31
y(t) - %621 _ %e—3t ée2t + %6731 -3 - e — 43
= x(t) = +e Y y(t) = ¥ — de .

Example 2.15 Solve the system

5(1 = —X1 — 3)62,)'62 = 2)62.
Also sketch the phase portrait.

Solution The characteristic equation of matrix A is

[A—AIl =0
—-1-4 =3
=0
0 2—-4

= (A-+)A-2)=0

= A=-12
The eigenvalues of matrix A are —1, 2, which are real and distinct.
Let ¢ = (Zl ) be the eigenvector corresponding to the eigenvalue 4, = —1.

~ 2
Then
(A+I)e =0

(—1+1 —3><e1>_(0)
0 2+1/)\e/ \O
= —3e, =0,3¢, =0

= e, = 0and e is arbitrary.

Choose e; =1 so that ¢ = ((1))
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Again, let g = < ?) be the eigenvector corresponding to the eigenvalue
S 2
A» = 2. Then

(A—21)g =0

- <_10_2 2_—32> (2) B (8>

= g1+g=0

-1

3 (11 (11
Letp_(g,§>_(0 _1>.Thenp _(0 _1)

Therefore
. 1 1 -1 -3 1 1
C=P AP =
0 -1 0 2 0 -1
_<—1 —1)(1 1>_<—1 O>
~\o0o —2J)J\o -1/ \o 2

—t
and so e = (eo e%z).

Therefore by fundamental theorem, the solution of the system is

Choose gy = 1,82 = —1. Then g = ( 1 )

x (t) =e"xo=Pe“P 'x,

1 1 et 0 1 1
:<0 —1)(0 e2'>(o —1>)~“’
et el —e¥\ [c
(% “a)@)
x1(7) e et — e ca\ (c14c)e™ — cre
(xz(t)> a < 0 e ><62) - ( e )
= x(t)=ce'+c (eft — ezt),xz(t) = cye?

where ¢y, ¢, are arbitrary constants. The phase diagram is presented in Fig. 2.1.

Example 2.16 Solve the following system using the fundamental theorem.

X =5x+4y
y=—x+y
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Fig. 2.1 A typical phase
portrait of the system \

Solution The characteristic equation of matrix A is

|A— 21| =0
5-1 4
’—1 11—
= (A-1)(A-5+4=0
= 2—-6l+9=0

= 1=33.

This shows that matrix A has an eigenvalue 4 = 3 of multiplicity 2. Then

= =0

S = {(3; g} andN=A—S= [_21 _42} . Clearly, matrix N is a nilpotent matrix

of order 2. So, the general solution of the system is given by

3t
e
f(t) ZeAt)~Co=e<S+N)t{0:eS[eN’)~C(): {O

el 0 1+2¢ 4t
X0-
0 e —t 1—2¢~

Example 2.17 Find the general solution of the system of linear equations

e3t:| [I—FNI}% 0

X=4x—2y
y=>5x+2y
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Solution The characteristic equation of matrix A is

A= =0

4-, =2

5 2-

= (A—4)(4-2)+10=0

= 12-6,+18=0

6+36—72
2

:>’ =0

So matrix A has a pair of complex conjugate eigenvalues 3 + 3i
Lete = <Zl ) be the eigenvector corresponding to the eigenvalue 1; = 3 + 3i.
~ 2
Then

(A-G+300e =0

(75 ) ()= ()
- (1_531 _1__231-)(2;):(8)
= (1-3i)e; —2es = 0,5¢; + (1 +3i)er = 0

A nontrivial solution of this system is e; =2, e; =1 — 3i.

qe_ 2
LT \1-3i )

Similarly, the eigenvector corresponding to the eigenvalue A, =3 —3i is

B 2
§ = \1+3i)
(0 2 R A )
LetP(_3 1>.ThenP 6<3 0>.
1/1 =2 4 -2 0o 2
_ p-1 _ p-1 _ 4 _
Lo c=ran, e c=ran=(1 2)(4 2)(Y 2)
3 -3
3 3 )

So,

cr 3 cos3t —sin3¢
e'=e . .
sin3¢r  cos3t
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Therefore, the solution of the system is

x (1) = €' xo = Pe“P ' xg
15,/0 2 cos3t —sin3t 1 -2
= _¢° . X0.
6 -3 1 sin3¢  cos 3t 3 0/~
Example 2.18 Solve the initial value problem ’ﬁ =Ax, with X (0) = ( é), where

A= (12 _é)ﬂg = (;) Also sketch the solution curve in the phase plane
R?.

Solution The characteristic equation of matrix A is

|A—AIl=0
—2-1 -1
= =0
1 —2—-7
= (14+2)7%+1=0
= 2P4+41+5=0
—4++/16—-20
= A= — 6 =241
So matrix A has a pair of complex conjugate eigenvalues —2 + i
Lete = <Zl > be the eigenvector corresponding to the eigenvalue 1; = —2 + 1.
~ 2
Then

(A= (=2+i))e =0

- T L L))
—i -1 el 0

- (1 —i><e2>:(0)

= —ieg—e;=0,e; —ie; =0

A nontrivial solution of this system is e; = 1,e; = —i.

e <1i>' Similarly, the eigenvector corresponding to the eigenvalue 1, =

.. (1 (0 1 (0 -1
—2—11s§—(i).LetP—<_1 0).ThenP _(1 O)and

I A Y -2 -1 0 1\ _ (-2 -1

c=rar=(1 (T D)0 0)- (T )
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So,
o e_z,<cgst - smt)
sint  cost
Hence the solution of the system is
x(t)=e"xo=Pe“P 'x,
(0 1 cost —sint 0 -1
=e . X 0.
-1 0 sint  cost 1 0/~
_2t( sint cost) (O —1>
=e . X0
—cost sint 1 0/~
_ cost —sint 1
sint  cost 0
_ cost?
sint
~.x(t) = e H cost,y(t) = e sint.
Phase Portrait The phase portrait of the solution curve is shown in Fig. 2.2.
Example  2.19 Solve the system X =Ax with x(0)=2xo, where
2 1 3 -1
0 2 2 -1
A= 00 2 -5
00 0 2
Fig. 2.2 Phase portrait of the Yy
solution curve
o\ 5

N,
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Solution Clearly, matrix A has the eigenvalue 1 = 2 with multiplicity 4. Therefore,

20 0 0 01 3 —1
020 0 00 2 —1
5=10 0 2 o|™MN=A4=5=145 0 ¢ _s
000 2 000 0

It is easy to check that the matrix N is nilpotent of order 4. Therefore, the
solution of the system is

N} N3P
%(l) :eSt(I'FNZ-FT"‘T){o.

2.5 Nonhomogeneous Linear Systems

The most general form of a nonhomogeneous linear system is given as

() =A0x (1) +5 (1) (2.16)

where A(?) is an n x n matrix, usually depends on time and b (7) is a time dependent

column vector. Here we consider matrix A(¢) to be time independent, that is, A
(1) = A. Then (2.16) becomes

$(0)=Ax()+5 () (2.17)

The corresponding homogeneous system is given as

X (1) =Ax (1) (2.18)

~

We have described solution techniques for homogeneous system (2.18). We now
find the solution of the nonhomogeneous system (2.17), subject to initial conditions
x(0) = xo.

As discussed earlier if ®(#) be the fundamental matrix of (2.18) with x (0) = x o,

then the solution of (2.18) is given by

We assume that

x (1) = DD (0)x o+ DD (0) (1 (2.19)
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be the solution of the nonhomogeneous linear system (2.17). Then the initial
conditions are obtained as # (0) = 0. Differentiating (2.19) with respect to 7, we get

5 (1) = DO (0)x 0 + OO (0)u () + OO O)i (1) (2.20)

Substituting (2.20) and (2.19) into (2.17),

DD (0)x o+ DD (0)u (1) + D(H) D (0) i
= AD()D ' (0)x o +AD(t)® ' (O)u (1) + b (1) (2.21)

14
—
~
—

Since ®(7) is a fundamental matrix solution of (2.18),
(1) = AD(z).

Using this in (2.21), we get

u (0 = [ ©0)0 (05 (ar.

Hence the general solution of the nonhomogeneous system (2.17) subject to
x (0) = x ¢ is given by

x (1) = O(t)® ' (0)x o + D(t /(D : (2.22)
0

Example 2.20 Find the solution of the nonhomogeneous system x = x+y+1¢, y =
—y+ 1 with the initial conditions x(0) = 1, y(0) =

Solution In matrix notation, the system takes the form i (1) = Ax (¢) + b (¢),

1 1 t
where A = (O _1> and b (1) = (1>



74 2 Linear Systems

The initial conditions become x (0) = x ¢, where x ¢ = (é) Matrix A has

eigenvalues 1; = 1, 4; = —1 with corresponding eigenvectors ( é) and ( _12)

Therefore

This gives

qr'(;):%(zgl i;,),fb(o):<(l) _12)and®_1(0):%((2) _11>

Therefore the required solution is

1

x (1) = D)0 (0)x o+ D(r) / 1 (a)b (o)dox
0

el (2 (! +/ 2 e ()
) 0o -1)\o0 0 - )\1)”
0
1 2 3—(2t+3)e”’
=-®(z
2201 fo) (05 )
1 e 5—(2t+3)e™"\ 1[5 —2t—4+e’
S 2\0 -2 1—¢ S22 2—2e7% '
Example 2.21 Prove that the flow evolution operator ¢,(x ) = M x satisfies the
following properties:
(i) do(x)=x,
(i) ¢_rod(x)=x,
(111) ¢t © qsv({ ) = ¢t+s(£ )
forall s, € Rand x € R". Is ¢, 0 p; = ¢ 0 ¢,?

Solution We have

(i) ¢o(x)=e*"x

=X.
(i) ¢ od(x)=¢ (y)=e™
(i) ¢, 0y (x)=(y)=eVy =eVebx =Ty =g, (x).

= e’A’eA’g = x, where y = eA’g.

U<
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Now,
$odi(x)=(y) ="y =My =My = ¢ (2) = do0dy(x)

forall x € R", where z = e““g.

Hence ¢, o ¢, = ¢, o ¢,. This indicates that the given flow evolution operator is
commutative.

2.6 Exercises

1. Prove that for a square matrix 4 of order 7, the set of solutions of the linear
homogeneous system % = Ax in R” forms an » -dimensional vector space.

2. Find the eigenvalues and the corresponding eigenvectors of the following matrices:

11
12 2 (12 (2 7)Y . (o B 13
Oy 7 @ [_1 2] (i) [5 _10) (i) [0 yj ) {ﬁ 3&}
2 2
1 2 5
Vi) |0 6 -1
3 2 1

0
3. (a) Consider the matrix 4 :(117 1]. Find the value(s) of p for which the matrix 4 has
repeated eigenvalues.
(b) Find the 2 x 2 matrix 4 whose eigenvalues are 1, 4 and the corresponding eigenvectors
1 2
are and .
-1 1
(c) Find all 2x 2 matrices 4 whose eigenvalues are 0 and 1.
4.  Consider the linear homogeneous system
X=—4x+y,y=-2x-y.
(a) Write the system as x = 4x.

(b) Show that the characteristic polynomial is A2 +5A+6
(c) Find the eigenvalues and the corresponding eigenvectors of the matrix 4.

(d) Find the general solution of the system.

1
(e) Solve the system subject to the initial condition x(0) = [2 ]
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Find the general solution to each of the following system of homogeneous linear

equations:

(i) x=x+3y,y=x—-y

o [ )

. -4 2
(i) x=Ax where 4= -

(iv)  X(t) = Ax(¢t)where 4= (_51 gj

31
(v)  x=Ax,where 4=
-7 -2 1

(vi) x=-5x,y=-5y

b
(vil) x= [a ])f , where bc>0.

c a
(viil) — =
dt| y(t) 0 Ay

1
(ix) x=Axwhere4=|0
0

(=
W N~

4 x(2) 1 2 —1)(x()
X —|y@®) |=[0 1 1 ¥
z(1) 0 -1 1 J|z@®

xi) X=yy=zi=x+y-z
(xil)) X=x+2y-z,y=y+z,i==y+z

(xiii) x=x,y=2y—-3z,z2=x+3y+2z

x(1) 0 1 1)(x(0)
&iv) | 3@ [=|1 0 1 »®
z(t) 1 1 0|z
1 -1 0 0
. 1 1 0 0
(xv) x=Ax,where 4=
-7 0 0 3 =2
0 0 1 1
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6.  Solve the following initial value problems:

(i) $=9x+5y,7=—6x—2y;x(0)=13(0)=0.

. (31 o[
(i) =, ,)5()—2.
. (10 o[
(iii) =0 , x(0)= 1l

. . 1 -3 2
(iv) x=Ax,x(0)= (_2} where 4 = [ ]

1=

1=

-1 -1

i) (-3 -1)(x0) (0

o Lol 200} ===()
1 2 -1 -1
o) #0=/1 0 1 |x), x(©0)=| 0
4 -4 5 0

2
7.  Find the solution of the IVP = Ax subject to the initial condition 5(0):[4} where

3 9 t
A :[ | 3) andx(¢) = [xzt; J Also draw the diagram for the solution set.
-1 = y

8.  Convert the second order differential equation¥+ax+bx=0to a system of two first
order differential equations. Find all values ofa andb for which the system has real,
distinct eigenvalues. Also find the general solution of the system. Find the solution of the

system that satisfies the initial condition [1 J Draw the diagram for the solution set.

. . x(1) a b\(x@)
9. Find the general solution of the system| = , where a+d #0and
y@0 ) \e d){(¥®

ad —bc=0. Also sketch the diagram.

0 1
10. Consider the system X = [ b}g , whereb>20,k>0.

a) For what values of k and b does the system has
(i) Complex conjugate eigenvalues?
(ii) Repeated real eigenvalues?
(iii) Real and distinct eigenvalues?

b) Find the general solution of the system in each case.
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11.

12.

13.

14.

15.

2 Linear Systems

Solve the following second order differential equation after reducing them into a system
of two first order differential equations:

(i) ¥+x=0withx(0)=1,x(0)=0
(i) ¥ +3x+5x =0with x(0)=1,x(0)=-1.

Find the general solution of the system below and determine the possible values of a3 so

that the initial value problem has a solution that tends to zero as¢ —

. 5 -1 0)= o
&—[7 3}5,5()—[3}

(a) What do you mean by a fundamental matrix of a homogeneous system of linear
equations?

(b) Show that two different homogeneous systems cannot have the same fundamental
matrix.

(c) Let ®(¢) be a fundamental matrix of the system x = Ax. Show that for any non-zero

constant k, k®(¢) is also a fundamental matrix of the system.

Find the fundamental matrix of the following systems and hence find the solution of each
system:

o [1 —2]
»H x= X

-3 2
(XY (3 1)(«x
& v lo 2]y
Lo (1
(1) x= 41 X
w3} 20

dt\ y -6 -2 )\y

. 3 —1J
(V) x=Ax,where A=

1 5

(Vi) X=x+y,y=-5x-3y

L. (5 4
i) = 7l

Find the fundamental matrix of the system

. 2 -1
X= X
Y24 o P

1
and use it to find the solution of the system satisfying the initial condition x(0) =( 3 ]
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16.

17.

18.

19.

20.

21.

22.

23.

24.
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Find a fundamental matrix of the system

X=2x—y,y=3x-2y.
Also, find the fundamental matrix @(¢) satisfying ®(0)=/. Find the solution of the
system satisfying the initial condition x(0) =-1,y(0)=1.

203t Q2

Does @(¢)= a fundamental matrix of the system x= Ax? If yes, then
33t 502t = ~

find the coefficient matrix 4.
2e4 -2 . .

Does ®(¢) = a0 a fundamental solution of a system x = Ax ?

Find e4! and then solve the linear system X = Ax for

NN (13 () (1
WA=, 5 a=s 4= 5 ¢ WA=y

Compute the exponentials of the following matrices:

.)01 (..)ab b]R("'aO be R (_20
(100 110a,a,e 111)0b,a,e 1V)32

w2
v
3 4
a -b cosb —sinb
If 4= then prove that e4 = e
b a sinb  cosb

If AB = BA, then show that

()edeB =eBed (i) AeB = Be4 (iii) e(4+B) = oAt Bt |

Ifa is an eigenvector of the matrix A corresponding to the eigenvalue A, then show that
0 is also an eigenvector of the matrix e corresponding to the eigenvalue e’ .

11
Consider the matrix 4 = [0 ) ]

(i) Compute e directly from the expression.

(ii) Compute e4 by diagonalizing the matrix 4.
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25. Find the solution of the following systems using fundamental theorem:

. (01
(1)16—1 o ¥

L 5 3
(i) x= Ax, where 4 = 3

-1
(20
i) =) °

0
(iv) X = Ax,where A=|0 0
10 2 0
2 0 0
(v) x=4x,where A=|{0 0 -2
02 0
[0 -2 -1 -1
) 1 2 1 1
(vi) x=Ax, where 4=
- 0 1 0
10 0 0 1
0 -2 -1 -1
. -2 1 1
(vii) x = Ax, where 4=
- 0 1 0
0 0 0 1

26. Solve the following system and sketch its phase portrait

d(x@) (-1 =1)(x@®
dt\yy) |1 =1y )



2.6

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
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-2 -1 1
Solve the initial value problem X :( L ))5 x(0)= [OJ and sketch the solution curve

in the phase plane R2 .

Find the solution of the problem
Xt+ax+px=f(@), x(0)=1Lx0)=0

where ¢, >0 are constants and f'(¢) is a function of .
Find the solution curve of the system x=x+y+1, y=x+y subject to the initial

condition x(0) =a, y(0)=b, where a,bare some constants.

Consider the non-homogeneous linear system
X(1) = Ax(D) +b(1)

Now apply the co-ordinate transformation x =Py, x,ye R”, where P is a nXn non-
singular matrix. Find the transformed system. Hence show that every non-homogeneous

system in R? can be transformed into a non-homogeneous system with a Jordan matrix.

Does the translation property always hold for non-autonomous system of equations?
Justify your answer.

Show that if the coefficient matrix 4 of a non-homogeneous system x(¢) = Ax(¢)+b(t)

in R? has two real distinct eigenvalues, then the system can be decomposed.

Show that x(#) = x,e' is a trajectory passing through the point x, of a linear vector field

X = Ax where A4 is a constant matrix.

Show that x(t+7)=x,e"*”,¢,7€ R is also a solution of %= Ax subject to the initial
condition x(0) = x,. Does it violate the uniqueness of solution? Justify.

Define a flow in R’. Write the properties of flow ¢(z,x). Show that @(t,x)=e"x

satisfies all properties of flow.
Find the flow evolution operator ¢(z, x) for the following systems:

(i x=-x,y=-2y,
(i)  x=xp,y=y,
(i) rF=r(-r),0=1,
(iv) ¥+x+x=0,

(v)  x=py=@x-y).
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