
Chapter 6
A Brief Introduction to Quantum
Phase Transitions

K. Sengupta

Abstract In this article, we are going to present a pedagogical review of basic
properties of Ising and Heisenberg models. Using these properties, we shall study
basic properties of the quantum phase transition in 1D Ising model and follow it
with an analogous study of the Bose-Hubbard model which is relevant to the current
experimental systems involving bosons in optical lattices.
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6.1 Introduction

The study of quantum phase transition has gained tremendous impetus in recent
advancement in the field of ultracold atoms. The theoretical development of this
subject started a long time before these experiments. In the early days, specific spin
models such as the Ising and theHeisenbergmodels served as theoretical test beds for
studying properties of these transition. In this article, we shall therefore first review,
in this section, the basic properties of several spin models. This will be followed by
discussions on quantum phase transition and ultracold atoms in subsequent sections.

A study of spin models is probably one of the oldest topics in condensed mat-
ter physics since they turn out to be low energy-effective models describing many
strongly correlated condensed matter systems. Typically, these models are aimed at
describing a set of localized spins with a given symmetry in d dimensions interacting
with themselves, possibly in the presence of magnetic field. Here we shall revisit the
physics of the simplest of these models, namely, models which has nearest neighbor
interactions and is subjected to amagnetic field. The simplest and probably the oldest
of these models is the Ising model in a transverse field whose Hamiltonian is given
by
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HIsing = J
∑

〈i j〉
Sz

i Sz
j − h

∑

i

Sx
i . (6.1)

Here h denotes the transverse magnetic field (orμB times the magnetic field to be
more accurate) and 〈i j〉 denote sum over nearest neighbors. Note that in the absence
of the magnetic field, the model has a Z2 symmetry, i.e., the Hamiltonian remains
invariant under a global spin flip Sz

i → −Sz
i . This is the simplest example of the

class of spin models with discrete symmetries.
The phases of the Ising model in a hypercubic lattice in d dimension is quite

straightforward to obtain. In the limit of infinite transverse field, the ground state
involves all the spins pointing along x . Following standard notation in the literature,
we shall call this phase “paramagnet.” In the other limit, when J � h, the nature of
the phase depends on the sign of J. With our sign convention in Eq.6.1, for J < 0,
the system gets into a ferromagnetic phase while for J > 0, the ground state is
antiferromagnetic. Note that each of these ground states breaks Z2 symmetry. This
point is illustrated in Fig. 6.1.

Starting froma large x = J/h, ifwe adiabatically decrease this ratio by increasing
the transverse field, the system undergoes a phase transition at some critical value
of x = xc. For the antiferromagnetic case (J > 0), the transition is first order.
The simplest way to see this is to note that the net magnetization m = ∑

i,a=x,z Sa
i

undergoes a discontinuous change at the transition. On the other hand, for J < 0,
the transition is continuous. We shall discuss this case in details during our study of
quantum phase transitions.

Before going to discussion of other spin models, I would like to mention that the
simplicity of the phases obtained for hypercubic lattices is more a property of the
lattices than the model. Ising model in triangular or other non-bipartite lattices can
have quite complicated phases due to a phenomenon called frustration. To see this,
consider the Ising Hamiltonian (Eq. 6.1) on a 2D triangular lattice with h = 0 and
J > 0 (antiferromagnetic interaction). Now consider a triangle in the lattice. The
two vertices of the triangle can be occupied by spins pointing in opposite directions
so as to minimize interaction between them as shown in Fig. 6.2. But there is no way
to fill the third vertex which minimizes interaction with both the spins; the spin is

Fig. 6.1 Ground states of the Ising model for J < 0 and J > 0 for |J | � h. Note that the ground
state spontaneously breaks Z2 symmetry. The two states shown in each case are degenerate and can
be reached from another by a global Z2 transformation, i.e., a simultaneous flip of all spins. Since
all spins need to be flipped simultaneously, one cannot connect these states via local perturbation
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Fig. 6.2 Frustration for antiferromagnetic Ising model in a 2D triangular lattice. It is possible to
satisfy only two of the three bonds in a triangle. The satisfied bonds are shown in blue while the
unsatisfied ones are shown in red. The two states shown are degenerate and such a degeneracy grows
exponentially with system size

therefore “frustrated.” This leads to two possible ways to fill up the third site, and
consequently to two degenerate ground states. It is easy to see that this degeneracy
grows exponentially with the system size N and it turns out that for the Ising model
in 2D triangular lattice, the number of degenerate ground state is exp(0.323N 2=3).

Such a huge degeneracy clearly complicates the problem of finding the true zero
temperature ground state of the system. In fact, we shall see an example where this
degeneracy has profound influence on phase transitions in the model.

The next class of models which will be of interest to us are the XXZmodels which
has the Hamiltonian

HXXZ = J⊥
∑

〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j

)
+ Jz

∑

〈i j〉
Sz

i Sz
j . (6.2)

Note that here, a global rotation of the spins about the z axis leaves the sys-
tem invariant, but a general rotation in 3D spin-space does not, since J⊥ �= Jz .

Consequently, the model has U (1) symmetry. In contrast to Ising model discussed
previously, this is an example of spin Hamiltonian with continuous symmetry. The
special point Jperp = J z = J is called the Heisenberg point of the model for which
the HXXZ reduces to the well-known Heisenberg model

HHeisenberg = J
∑

〈i j〉
Si S j (6.3)

which has SU(2) symmetry since the hamiltonian HHeisenberg remains invariant under
global rotation in spin-space. The reader is urged to verify this point.

For the rest of this section, we shall discuss the methods of obtaining the ground
state and the excitation spectrumof theXXZand theHeisenbergmodel. First we shall
take the ferromagnetic case, for which the ground state do not break translational
symmetry. Our main tool for doing this will be a mapping of these spin models to a
bosonmodel usingHolstein–Primakoff (HP) transformation. TheHP transformation,
which is amapping between spins and bosons can be understood as follows.We know

that quantum spins must satisfy the commutation relations
[

Si
p, S j

q

]
= i�εi jk Sk

pδpq ,

where εi jk is the antisymmetric tensor and δ denote Kronecker delta function. Now if
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we look at bosonoperators, they also satisfy commutation relations
[
b†i , b j

]
= −iδi j .

From this observation, one is led to the question as to whether it is possible to express
the spins in terms of bosons and viceversa. The answer is of course yes, as figured
out by Holstein and Primakoff in 1940. The transformation, for spin S, is given by

S+
i = √

2S

(
1 − b†i bi

2S

)1/2

bi , S−
i = (

S+
i

)†
, Sz

i = S − b†i bi , (6.4)

where S+
i = Sx

i ± i Sy
i are the spin raising and lowering operators. Note that the

factors correctly
(
1 − b†i bi/2S

)1/2
implements a finite Hilbert space for the spins,

although that for the bosons is invite. The reader is urged to check the communication
relation for the spins from Eq.6.4.

Now let us consider the Heisenberg model on a hypercubic lattice in d dimensions
with ferromagnetic interaction (J < 0). The ground state corresponds to all spins
pointing along the z axis and hence corresponds to Sz = S at every site of the lattice.
In the boson language, this means that the ground state is a vacuum for bosons since
〈b†i bi 〉gnd = 0. We now wish to study low-lying excitations over the FM ground
state. To do this, we reexpress the Heisenberg Hamiltonian (Eq. 6.3) in terms of the
bosons using Eq.6.4. This yields

Hexcitation = J S

⎡

⎣
∑

〈i j〉

(
b†i b j + h.c

)
− 2

∑

i

b†i bi

⎤

⎦ + O
(

b4
)

. (6.5)

where we have neglected all quartic terms for the bosons. The last approximation
amount to neglecting scattering among bosons. Since the ground state here corre-
sponds to boson vacuum, for low-lying excitations, such scattering events are rare
and can be neglected. The next task is to diagonalize Hexcitation by going to the Fourier
space which yields, in d dimensions,

Hexcitation = J S
∑

k

Ekb†k bk, Ek = 2|J |S (z − γk) , γk =
∑

n

eik·n. (6.6)

where z = 2d is the coordination number for the d-dimensional hypercubic lattice
and the sum over n denotes sum over nearest neighbors. E k here denotes energy
corresponding to the low-lying excitations of the spin systems which are called spin-
waves. The name originates from the fact that a finite density of the bosons at a small
wave-vector k physically represents canting of spins by π from their ground state
orientation over a length scale 2π/k. At low k, one gets Ek = 2J Sa2k2, where
a is the lattice spacing. Thus the spin-waves here have quadratic dispersion which
indicates vanishing group velocity at low momentum. For low k ∼ 1/L , the spin-
wave energy vanishes and hence a very gradual canting of spins become the lowest
lying excitations over the FM ground state.
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Finally, we come to the case of antiferromagnets for which J > 0. Here the
additional complication that arises is that the expected ground state corresponds to
spins pointing in opposite direction at neighboring lattice sites so that 〈Sz〉ground =
±S on two neighboring site. This observation leads us to the fact that if we want to
describe the low energy excitation over this ground state, one set of boson operators
is not enough. To get around this obstacle, we divide the hypercubic lattice into two
sublattices A and B such that the ground state corresponds to spins on B(A) pointing
up (down). Then the HP transformation for all spins on the B sublattice is given by
Eq.6.4 whereas those for spins on A sublattice is given by

S+
i = √

2S a†
i

(
1 − a†

i ai

2S

)
S−

i = (
S+

i

)
, Sz

i = −S + a†
i ai . (6.7)

Comparing Eqs. 6.4 and 6.7, we find that S+
i and S−

i must switch roles to ensure a
negative sign of Sz . Next, we express the Heisenberg Hamiltonian in terms of the
bosonic operators a and b. Neglecting interaction between bosons, we find

H AF
excitations = 2J S

∑

k

[
γk

(
a†

k b†k + h.c
)

+ z
(

a†
k ak + b†k bk

)]
. (6.8)

Note that H AF
excitations, though quadratic, is not quite diagonal in Fourier space due

to the presence of the off-diagonal terms. To diagonalize this, we use a Bogoliubov
transformation which amounts to first writing

αk = ukbk − vka†
k , βk = ukak − vkb†k , u2

k − v2k = 1, (6.9)

and then finding uk and vk for which H AF
excitations becomes diagonal in terms of αk and

βk . It turns out that one can write

H AF
excitations =

∑

k

Ek

(
a†

k αk + β
†
k βk + 1

)
, Ek = 2J zS

√(
1 − γ 2

k /z2
)
. (6.10)

The reader is urged to find the values of uk and vk which does the trick.
From Eq.6.10, we note that the for low momenta the spin-waves (for hypercubic

lattice) have linear dispersion: Ek = 2J zsak which implies a finite velocity of the
spin-waves at low momentum. More interestingly, we find that our starting ground
state ansatz is not the correct one. To see this, let us compute 〈SB

z 〉gnd = N S − 〈b†k bk〉.
In terms of the αk and βk operators, this is given by (Eq.6.9)

〈SB
z 〉gnd = N S −

〈 ∑

k

u2kα
†
k αk + v2kβkβ

†
k + off − diagonal terms

〉
= N S −

∑

k

v2k .

(6.11)
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Thus the sublattice magnetization deviates from its classical value due to quan-
tum fluctuations, a feature that is hallmark of quantum antiferromagnets, but not of
ferromagnets.

6.2 Quantum Phase Transitions

The subject of phase transition, i.e., transition between two states or phases of matter
due to change of external parameters such as pressure, temperature, etc., is again
an important topic in condensed matter physics. Here we shall explore only a few
aspect of this important topic; for detailed study, one can refer to standard literature
such as Refs. [2–4].

Standard finite temperature phase transitions occur as a result of competition of
internal energy (U ) and entropy (S) in the free energy of a system. Such a competition
can arise in various contexts. A simple example to understand this is to consider the
Ising model with J < 0 and h = 0, so that at low temperature the ground state
can be assumed to be ferromagnetic. Note that this is an assumption and need not
be correct in all dimensions. Now let us increase the temperature so that the spins
can flip. Typically, this will lead to the formation of domain walls. In d = 1, the
domain wall corresponds to a series of flipped spins along the chain, as demonstrated
in the upper panel of Fig. 6.3. It is easy to see that such a domain wall has an energy
cost of 2J , whereas the entropy corresponding to such a configuration is 
 ln N for
large N . Thus the free energy of the system is F 
 2J − kB T ln N < 0 for all T
in the thermodynamic limit. This situation changes in higher dimensions as d = 2
as shown in the lower panel of Fig. 6.3. Here the energy cost of forming the domain
wall is 4N J , while the entropy gain is ln

(
N22N

)
so that the free energy becomes

negative above at a critical temperature Tc 
 2J/kB ln 2. Thus dimensionality plays
a crucial role in the phase transition.

Typically, finite temperature transitions are driven by thermal fluctuation and thus
occur at a critical temperature. However, phase transitions can also occur at T = 0
(by which we mean situations where temperature is lower than all other energy

Fig. 6.3 Domain walls for
Ising model in d = 1 and
d = 2. Note that the energy
of domain wall formation
depends on system size in
d ≥ 2, but not at d = 1
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scales in the problem, and not necessarily absolute zero) where quantum fluctuations
leads to a change of phase. In this case, the phase transition occurs due to competition
between different terms in its Hamiltonian (such as−J

∑
i j Sz

i Sz
j and h

∑
i Sx

i terms
in the Ising Hamiltonian defined earlier) and entropy do not play any role. One of key
ingredients in understanding the behavior of a system near such a transition is the
Landau–Ginzburg–Wilson paradigm. According to this paradigm, the Lagrangian
density of the system in the ordered phase near the critical point for a order–disorder
transition can be written in terms of the order parameter Δ of the ordered phase as

fLGW = Δ∗ (
ω2 − k2z + r

)
Δ + u|Δ|4 + · · · (6.12)

where ellipsis denotes all higher order terms, r = 0 at the second-order transition
point and z is called the dynamical critical exponentwhich determines relative scaling
between space and time (z = 1 implies relativistic invariance).Herewehave assumed
that the termswhich are odd inΔ are zero. This assumption, of course, neednot be true
in the general case. The basic point that one needs to take care of in constructing such
a free energy is that it is consistent with all the basic symmetries of the microscopic
Hamiltonian. Actually, in principle, such a free energy can be systematically derived
from the microscopic Hamiltonian describing the system. However, except for very
simple cases, this is in general impossible in practise. The key point to be emphasized
here is that our failure to derive such a free energy from the microscopic Hamiltonian
does not mean that wewill not be able to guess its form. It onlymeans that wewill not
be able to determine the precise values coefficients r, u, etc. However, the different
possibilities of the physics near the phase transition can be captured without them
which makes this method very powerful. For a detailed account, see Ref. [5]. For
the rest of this lecture, we are going to consider a subclass of such phase transition,
namely, second-order transitions.

Next, we shall introduce the concept of universality class. As is well-known [2,
4, 5], all physically important quantities (such as equal time correlation functions
of the order parameter, or energy gap) of a system exhibits power law behavior
close to a second-order phase transition. This is a manifestation of the fact that
phase transitions are usually accompanied by divergent length and time scales. The
divergence of the time scale comes from the vanishing of the energy gap of the
system δE ∼ |J − Jc|zν .The divergent length ζ comes, for example for Isingmodel,
since the characteristics decay length of the spin–spin correlator diverges as ζ−1 ∼
Λ |J − Jc|ν , where Λ is some unimportant cutoff scale. Such a power law behavior
means thatwe can specify the behavior of the systemnear a phase transition by a set of
exponents ν, z . . . The physics near the transition is completely determined by these
exponents; two transitions with same set of exponents will therefore have exactly
same physics near the transition. The set of these exponents therefore determines the
universality class of a transition. Thus the chief assertion of the universality is that the
physics is independent of microscopic parameter values of the Hamiltonian which
can be seen as a consequence of the presence of diverging length and time scales. In
most phase transitions, the universality class of the transition can be guessed from
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the symmetries of the underlying Hamiltonian. However, more recent theories, have
found exceptions to this rule.

We are going to see an example of such an exception in this lecture. We are now
going to consider two specific examples of phase transitions. The main intention
would be bringing out few key general points. First, let us consider the Ising model
in d = 1 at T = 0 and for J < 0. As discussed before, there are two distinct phases
of this system. The first corresponds to h � |J | which is a quantum paramagnet
with all spins pointing along x . The second is |J | � h for which the ground state is
a ferromagnet with all spins pointing wither along z or −z. Now as we change h/J,

the systemmust go from one phase to another. The first question to ask is whether the
change will occur as a transition or a smooth crossover. The answer to this question
in the present model is easy to see from symmetry. We know that the system breaks
Z2 (discrete) symmetry in the ferromagnetic phase while there is no such broken
symmetry in the paramagnet. This allows us to conclude that these two ground states
cannot be smoothly connected—to go from one to the another one needs to have a
transition.

To find out at what value of h/J this transition occurs, we consider the following.
Imagine that the system is in the paramagnetic phase with the ground state corre-
sponding to all the spins pointing along x . The basic excitation above this ground
state corresponds to flipping a spin on-site i leading to an excited state |i〉. Such a
process costs an on-site energy of 2h. But now the flipped spin can move around
between different sites. It is easy to see that all such states | j〉 have same energy. To
compute the energy gain from such a move, consider the matrix element between
states |i〉 and | j〉 are given 〈 j |HIsing|i〉 = Jδi, j±1. Thus, one is faced with a degener-
ate perturbation theory problemwhich is trivial to solve in momentum space, leading
to the excitation energy E(k)

E(k) = 2h − 2J cos(k), Emin = E(k = 0) = 2(h − J ), (6.13)

where Emin is the minimum energy of the excited state. Note that this energy touches
0 (ground state energy) for h/J = 1.At this point, it becomes energetically favorable
to flip spins spontaneously and the ground state is destabilized. One can carry out a
similar exercise staring from the ferromagnetic side and arrive at an identical answer
for the critical h and E(k). It is also possible to obtain an exact result for the single
particle excitations of this model for all J and h as shown in Ref. [4]:

Eexact(k) = 2
√

J 2 + h2 − 2h J cos(ka) (6.14)

which conforms to the perturbative results. All exponents of this transition can be
found; the transition belongs to Ising universality class.

Finally, we shall consider the anisotropic Isingmodel with Ji,i+x , Ji,i+y = J > 0
and Ji,i+z = J ′ < 0 in 3D and finite temperature but in the absence of a transverse
field and in a slightly different geometry. Our aim is to show that the effect of the
frustration can change the universality class of a transition. The geometry we want
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to consider is that of a stacked 2D triangular lattices. At high temperature, such a
model must show a paramagnetic or disordered phase. At T = 0, the state should
clearly order. This can be seen by trying to create domain wall over an ordered state.
It can be easily seen that such a domain wall creation is energetically costly. Hence
we expect the ordered state to hold till some finite temperature Tc. The question is
what is the nature of this ordered phase.

The answer to this question, for the considered geometry, is quite subtle. Since
we are dealing with antiferromagnetic Ising model in a triangular lattice, the system
is frustrated. It can be shown that the degeneracy corresponding to possible ground
states grows exponentially with system size. Thus, although we are sure that there
will be some ordered phase, it is not easy to guess this ordering. The aim of the rest
of the section is to show that in the present case, the possible ordering comes out
naturally from a proper theory of the phase transition.

To see how phase transition takes place in this model, let us rewrite the Ising
model in a stacked triangular lattice in momentum space

H3D
Ising =

∑

k

J (k)Sz
k Sz

−k,

J (k) = K
(
cos (kx a) + 2 cos (kx a/2) cos

(√
3kya/2

))
− J ′ cos (kza) . (6.15)

When J > 0, the minima of the dispersion occurs at Q± = (±4π/3, 0, 0). Since
the fluctuations about these minima are most important for destabilizing the ordered
phase, we find that we need two fluctuating fields for describing this phase transition:
ψ± = S(Q± + q) = m exp(±iφ), where |q|/|Q±| � 1. It can be shown that the
presence of two low-energy fluctuating fields (instead of one as will be the case in
absence of frustration when J < 0) changes the universality class of the transition
from Ising to XY type. The next task is to write down the effective Landau–Ginzburg
free energy functional in terms of the low-energy fluctuating fields that we have
identified. The thing to keep in mind while doing this is that such a functional has
to be invariant under all symmetries operations of the underlying stacked triangular
lattice. Following Ref. [6], one can find that such a functional can be written as

F =
∑

q

(
r + q2

)
m(q)m(−q) + u4

∑

4

m4 + u6m6 + v
∑

6

m6 cos(6φ) (6.16)

where
∑

n ≡ ∑
q1,q2,...,qn

δ (q + 1 + q2 + · · · + qn). The parameters r, u4, u6, and
v can be computed from microscopic theory, but their precise form will not interest
us for the moment. The transition to the ordered phase takes place when r = 0.
We note that at the transition point, v, is zero since it is irrelevant in the RG sense.
Therefore, the relative phase φ between the fields ψ± is not fixed at the transition. It
turns out that as we go inside the ordered phase, the magnitude of v grows and pins
the relative phase to 0 (if v < 0) or π/6 (if v > 0). These lead to two possible ordered
phases as shown in Fig. 6.4 [6]. Thus the fate of the ordered phase is determined by
a variable which is (dangerously) irrelevant. The quantum counterpart of such phase
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Fig. 6.4 Two possible three
by three ordering for the
stacked triangular lattice for
v > 0 and v < 0.
M1; M2; M3 represents the
value of the magnetization
on the three sublattices

transition has recently been identified in extended Bose–Hubbard models and spin
systems [7, 8].

6.3 Bose–Hubbard Model

The physics of bosons has the fascinating theoretical aspect called Bose–Einstein
condensation (BEC), i.e., occupation of a single quantum state by macroscopic num-
ber of bosons at low enough temperature leading to fascinating phenomenon such as
superfluidity. Moreover, there has been renewed interest in physics of these systems
due to their recent experimental realizations in trapped atoms [9]. Such experiments
can manipulate BECs with incredible precision. In particular, it has been possible to
form an optical lattice in a system of these trapped bosons, which, when deep enough,
may result in Mott localization of Bosons leading to destruction of the BEC state.
Such a destruction is a result of a phase transition in the bosonic system. The physical
temperatures relevant in these experiments are of the order of tens of nanokelvins
(which makes these systems the coldest known place in the universe) and is at least
2–3 order of magnitudes lower than all other energy scales. Thus such a transition
is an example of a quantum phase transition. In this section, we shall give a brief
account of the physics associated with such a transition, by considering the simplest
possible BECs, i.e., BECs formed from spin-less bosonic atoms such as 87Rb.

The optical lattice is formed by applying six counter-propagating laser beams of
fixed wavelengths to the condensed Bose atoms in a trap (which can be magnetic or
optical). These lasers have a electric field E and form standing waves of light in all
three directions. The atoms have a polarizibility α (ω;ω0), where ω is the applied
lasers frequency and ω0 is some characteristic frequency of the atoms. As a result,
the atoms feel a potential V = −α (ω;ω0) |E |2. By tuning the frequency of the
applied laser, one can now make α positive, so that the atoms have a tendency to sit
at the bottom of the potential which acts as lattice sites as shown in right panel of
Fig. 6.5. Once they do that, the kinetic energy of the atoms makes them hop from
one site to the next. As the lattice becomes deeper, this process is exponentially
suppressed since it can be shown that the hopping amplitude t ∼ exp

(−√
V/ER

)
,
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(a) (b)

Fig. 6.5 a Sketch of absorption imaging of bosons from a free flight. b Schematic representation
of bosons in a one dimensional optical lattice. The present figure is obtained from Ref. [9]

where ER = �
2/2mλ2, called the recoil energy, is the basic energy scale created out

of the mass (m) of the atoms and the wavelength (λ) of the laser. The bosons which
form the condensate is neutral and so the interaction between them is shortrange Van
der Walls type. In the presence of a lattice, the interaction between the boson is most
significant when they are on the same lattice site which we shall call U. Interaction
between the atoms in the neighboring site can be neglected as a first approximation.
The key point to recognize is that this interactions, unlike the hopping strength t, do
not depend exponentially on the strength of the lattice potential V .

Now consider an optical lattice with one boson per site. If the kinetic energy is
large compared to the on-site interaction (t � U ), the bosons are free to hop around
and therefore the ground state of the system is clearly the one in which a major
number of bosons sit in the k = 0 state. Thus the bosons form a BEC. However, if
we now increase the depth of the lattice t/U becomes small, and hence a stage comes
when the bosons do not find it convenient to hop around since they have to pay too
much interaction energy cost to do so. In this limit all the bosons become localized.
Since this localization is induced by interaction, its called a Mott insulating state.

How do we see this transition experimentally? It turns out the easiest way to
look at this bosons is to switch at the lattice and the trap at the same time and let
the bosons fly out. After some time of such free flight, the position distribution of
these bosons can be measured by absorption imaging of the bosons in a free flight as
shown in left panel of Fig. 6.5. Since the position of the bosons after a time t of such
a flight depends on their starting velocity or equivalently momentum, the position
distribution of these bosons actually reflect their momentum distribution inside the
trap. Now if there were no lattice, all the bosons would be in the k = 0 state (the
condensate) and hence their momentum distribution will be localized around k = 0.
On the other hand, if the bosons were in the Mott state, they are localized in real
space which means their momentum can take all possible values. Thus the Mott
state momentum distribution should reflect a featureless blur. As the strength of the
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optical lattice is increased, it is therefore expected that the momentum distribution
of the bosons will crossover from a central peaked to a featureless blurred one. This
is precisely what is seen in experiments as shown in Fig. 6.6. The phase transition
occurs somewhere around V0 
 14ER where the central bright spot disappears.

Fig. 6.6 Measurement of momentum distribution of the bosons. The lattice potential is ramped
over a time period of 80ms to its maximum value V0 as shown in the top panel. The system is
allowed to equilibrate for 20ms and after that both the lattice and the trap potential is switched off.
The position distribution of the bosons is measured after 10ms of free flight. Note that the central
peak which is the signature of superfluidity disappears at V0 
 14ER signifying the onset of the
Mott state. The present figure is obtained from Ref. [9]

How do we develop a theory for this transition? Well, we could try doing what
we did for the Ising model. Let us first look at the Mott state when t � U and there
is an integer number of bosons per site. Neglecting the effect of hopping of bosons
here, we can see that the Hamiltonian is

HMott = U
∑

i

1

2
ni (ni − 1) − μ

U
ni . (6.17)

Since the Hamiltonian is on-site, one could easily find out the ground state wave
function and energy. This state is given by

Ψground =
∏

i

|ni = n0〉 E [n0]

U
= 1

2
n0 (n0 − 1) − μ

U
n0, (6.18)

where n0 ≡ (μ/U ) is the integer which minimizes E [n0]. One can easily check that
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n0 = 0 for μ ≤ 0

= 1 for 0 ≤ μ ≤ 0

= 2 for U ≤ μ ≤ 2U . . . . (6.19)

The Mott state is the stable ground state when t/U � 1. The next question to ask
is what happens when we increase t. From the experiments, we already know the
answer; the ground state becomes unstable when a critical t is reached. Now to find
when the ground state is destabilized, we need to find out what are the possible
excited states of the system over the ground state and when can they destabilize the
ground state. Note that this line of thinking operates on the same basic principle as
in study of quantum phase transition in Ising model, i.e., to find out the lowest lying
excitations over the ground state of the ordered phase and check when their energy
touches the ground state energy.

At finite t, let us now consider the excited state which corresponds to addition
of an extra particle/hole over the Mott ground state with n0 particles per site. The
minimum excitation energy of such states are

δE p = −μ + Un0 − zt (n0 + 1) δEn = μ − U (n0 − 1) − ztn0 (6.20)

which destabilizes the Mott ground state at

t p
c = −μ + Un0

z (n0 + 1)
th
c = μ − U (n0 − 1)

zn0
(6.21)

leading to a critical hopping of tc = Min
[
t p
c , th

c

]
. The plot of the superfluid insulator

boundary using this simple theory captures some essential features of the transition.
First, we note that at the boundary between the Mott phases with n0 and n0 + (−)1
particles, μ = Un0(n0 − 1) so that tc vanishes. At these points, the excited state
energies δE p(δEh) vanishes for t p

c
(
th
c

) 
 0 and there is no Mott state. Second at

Fig. 6.7 Mott-Superfluid phase boundary for d = 3 and n0 = 1. The red curve shows the mean-
field phase boundary while the blue curve and the black dots denotes the phase boundary where
fluctuation effects are taken into account. The Mott phase is in the shape of a lobe and has particle-
hole symmetry at its tip
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the tip of the Mott lobe (see Fig. 6.7), where t p
c = th

c = (2n0 + 1) /z and μ =
2m0 (n0 + 1) /z (2n0 + 1), it becomes equally costly to add a particle or a hole to
the system. In other words, the system possess particle-hole symmetry at this special
point. This property has profound consequence on the universality class of this phase
transition which we shall not dig into in details in the present article. More refined
calculations such as a mean-field analysis and even those which keep track of higher
order fluctuations can be done and the corresponding phase diagram is shown in
Fig. 6.7. The qualitative symmetry issues that we have discussed above, however, do
not change.

In conclusion, we have presented a brief pedagogical introduction to the subject
of quantum phase transition in the context of spin and boson models. Such transition
of course occurs in many other different systems and a detailed discussion of them
is beyond the scope of the current article. However, it turns out that in many cases
the insights gathered from simple models described above, provides us with pow-
erful tools for understanding the properties of such transitions in more complicated
settings. It is therefore expected that this pedagogical review is going to provide a
basic introduction to the subject.
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