
Chapter 29
Dynamical Complexity of a Ratio-Dependent
Predator-Prey Model with Strong Additive
Allee Effect

Pallav Jyoti Pal and Tapan Saha

Abstract In this paper, a predator-prey systems of two species is proposed where
prey population is subjected to a strong additive Allee effect and predator popula-
tion consumes the prey according to the ratio-dependent Holling type-II functional
response.Weuse the blow-up technique in order to explore the local structure of orbits
in the vicinity of origin. We have determined the conditions for extinction/survival
scenarios of species. Some basic dynamical results; the stability; phenomenon of
bi-stability and the existence of separatrix curves; Hopf bifurcation; saddle-node
bifurcation; homoclinic bifurcation, and Bogdanov-Takens bifurcation of the system
are studied. Numerical simulation results that complement the theoretical predic-
tions are presented. A discussion of the consequences of additive Allee effect on the
model along with the ecological implications of the analytic and numerical findings
is presented.

Keywords Predator-prey model · Allee effect · Stability and bifurcation · Hopf
bifurcation · Saddle-node bifurcation · Bogdanov-Taken bifurcation

29.1 Introduction

The modeling of predator-prey interactions incorporating Allee effect [2, 3, 11] in
prey population growth has become a broad field of research in ecology for the
understanding of population dynamics. The originator and namesake of Allee effect
was Warder Clyde Allee (1885–1955), an US zoologist and ecologist, who observed
that many animal and plant species suffer a decrease of the per capita rate of increase
as their populations reach small sizes or low densities. In particular, the population
exhibits a “critical size or density,” belowwhich the per capita growth rate is negative
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and the population declines on average, and above which the per capita growth rate is
positive and the population increases on average yielding convergence to the carrying
capacity. This ecological phenomenon is termed as strong Allee effect. The Allee
effect can be caused by difficulties in finding mating partners for sexual reproduction
at small densities, inbreeding depression, demographic stochasticity, or a reduction
in cooperative interactions.

Several algebraic forms to describe the Allee effect are available in the literature,
see Table1 of [2] or Table3.1 of [3]. In this present study, we consider the equation

dx

dt
= x

[
r(1 − x

K
) − m

x + b

]
(29.1)

which is commonly known as an additive Allee effect, where K is the carrying
capacity, r denotes the intrinsic per capita growth rate of the population, m and b are
the Allee effect constants such that K > b. The term subtracted from the logistic
growth term is proportional to m

x+b in Eq. (29.1) is to represent the reduction of the
per capita growth rate of a population due to Allee effect.

We have considered the ratio-dependent functional response where the consump-
tion rate of the predator is a function of the prey-to-predator ratio, not on the absolute
numbers of prey only or both species. There are growing explicit biological and
physiological evidence (cf. [1, 6]) that in many situations when predators have to
search for food (and, therefore, have to share or compete for food), a more suitable
general predator-prey theory should be based on the ratio-dependent theory. To the
best of our knowledge, the effect of additive Allee on a ratio-dependent [5–7, 12,
13] predator-prey model is entirely unaddressed in the literature to date. However,
the effect of multiplicative Allee effect (with single and multiple mechanism) on
ratio-dependent predator-prey model have recently been described in [4, 9]. In this
paper, we offer a contribution toward addressing this major research gap by estab-
lishing complete study of the dynamics including a detailed bifurcation analysis of
our proposed model.

This paper is organized as follows: The model is proposed in Sect. 29.2 along
with some basic results. Section29.3 deals with the mathematical analysis including
existence of equilibria, stability, and Hopf bifurcation analysis of the model. This
section also discusses the stability analysis of the origin (a complicated equilibrium
point). In Sect. 29.4, we prove the existence of a Bogdanov-Takens bifurcation of co-
dimension 2 including a series of other bifurcations, such as saddle-node bifurcation,
Hopf bifurcation, and Homoclinic bifurcations. In Sect. 29.5, we perform numerical
simulation in support of our analytical results anddiscuss themain results of the paper.

29.2 Model Description and Basic Results

In this paper, we consider a predator-prey model where the prey growth is damped
by the strong additive Allee effect given by Eq. (29.1) and the functional response of
predator to prey abundance is ratio-dependent given by cx

x+ϑy where c is the capturing
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rate of the predator and ϑ is the half-saturation constant of the predator functional
response.Accordingly,we are concernedwith the following ratio-dependentHolling-
type II predator-prey model

dx

dt
=

[
r
(
1 − x

K

)
− m

x + b

]
x − cxy

x + ϑy
, (29.2a)

dy

dt
= c1xy

x + ϑy
− dy. (29.2b)

such that x(0) > 0, y(0) > 0. In system (29.2), x(t) and y(t) stands for prey and
predator density at time t , and c1, d are positive constants that stand for conversion
rate of prey into predators biomass, death rate of predator, respectively.

Non-dimensionalization of this model (29.2) can be performed by using the trans-
formation x = K x̂ , y = K

ϑ
ŷ, t = t̂

r and dropping the hats for notational convenience,
we derive

dx

dt
= x(1 − x) − γ x

x + ρ
− αxy

x + y
= f (x, y), (29.3a)

dy

dt
= βxy

x + y
− δy = g(x, y), (29.3b)

where α = c
rϑ

, β = c1
r , γ = m

r , ρ = b
K and δ = d

r are the dimensionless parameters
with the following initial conditions

x(0) = x0 > 0, y(0) = y0 > 0.

The model system (29.3) is not well-defined at the origin and for this we define
f (0, 0) = g(0, 0) = 0. To illustrate the types of Allee effect (cf. [10]) on the
prey population in the absence of predator, we present Fig. 29.1. In this study, we
only consider strong Allee effect on the prey population and we aim to discuss the
complex interplay between the strong additive Allee effect and the predation on the
deterministic population dynamics in continuous time. For strong Allee effect, we
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Fig. 29.1 Blue curve Strong Allee effect for γ > ρ, ρ < 1 and (ρ + 1)2 > 4γ . The parameter
values are α = 0.3, γ = 0.25, δ = 0.5, ρ = 0.2. Red curve Weak Allee effect for γ < ρ. Parameter
values are α = 0.3, γ = 0.25, δ = 0.5, ρ = 0.3
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have γ > ρ, ρ < 1 and (ρ + 1)2 > 4γ . Based on the standard methods we shall
present some preliminary results like positivity and the boundedness of solutions of
the system (29.3) for the case of a strong Allee effect without proof.

Lemma 29.1 Solutions of model (29.3) corresponding to initial conditions (29.4)
are defined on [0,+∞) and remain positive for all t ≥ 0.

Theorem 29.1 All the solutions of system (29.3) that initiate in R2+ are uniformly
bounded with an ultimate bound.

29.3 Stability and Hopf Bifurcation Results

We now find all biological feasible equilibria admitted by system (29.3). For all
parameter values, (0, 0) is an equilibrium point (controversial equilibrium point) of
the system. The equilibria on the positive x-axis are E1(x1, 0) and E2(x2, 0) where

x1 = 1 − ρ − √
D1

2
and x2 = 1 − ρ + √

D1

2

such that D1 = (1+ρ)2−4γ > 0. If γ = 1
4 (1+ρ)2, both the axial equilibria collides

to
( 1
2 (1 − ρ), 0

)
and if γ > 1

4 (1+ρ)2, there exists no axial equilibria on the positive
x-axis. The other equilibria, if exists, are the interior equilibrium point(s). Assume
A = (1−ρ)β− (β − δ)α, B = αρ (β − δ)+β (γ − ρ) > 0 and D2 = A2 − 4βB,
then we have the following three cases:

1. If D2 > 0, then there exists two interior equilibrium points namely, E∗
i ≡

(x∗
i , y∗

i ), where x∗
1 = A−√

D2
2β , x∗

2 = A+√
D2

2β , y∗
i = x∗

i (β−δ)

δ
, i = 1, 2 provided

A > 0 and β > δ.
2. If D2 = 0, β > δ and A > 0 then the two positive equilibrium points E∗

1 and E∗
2

coincide to an unique interior equilibrium point E∗(x∗, y∗) =
(

A
2β ,

A(β−δ)
2δβ

)
.

3. If either D2 < 0, or A < 0, the system (29.3) has no interior equilibrium point
(Fig. 29.2).

29.3.1 Qualitative Property of Solutions Near (0, 0)

We note that system (29.3) is not well defined at E0 ≡ (0, 0). Thus system (29.3)
cannot be linearized at (0, 0) and the standard linear stability analysis method for
(0, 0) is not applicable. In Jost et al. [6] have studied the analytical behavior at (0, 0)
for a common ratio-dependent model by blow-up method. Following [14], we have
studied crucially all possible topological structures of a small neighborhood of (0, 0)
where the trajectories approach the origin along characteristic directions.We redefine
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Fig. 29.2 Graphical illustration of nullclines. Here, the red (blue) curves represent the preda-
tor(prey) nontrivial nullclines. Equilibria are represented by small red circles. The black lines rep-
resent the vertical asymptotes that exists when the nontrivial prey nullcline become an unbounded
curve. Top panel α = 0.3, γ = 0.25, δ = 0.5, ρ = 0.2, β = 0.9 (black), 1.5 (red) and 2.5
(magenta). Middle panel α = 0.1, β = 0.9, γ = 0.25, δ = 0.5, ρ = 0.2. Lower panel α = 0.2,
β = 0.9, γ = 0.25, δ = 0.5, ρ = 0.2

the derivative as dx
dt = dy

dt = 0 when (x, y) = (0, 0). To be compatible with ecolog-
ical significance, we analyze the behavior of trajectories near E0(0, 0) in presence
of all other critical points. Through time rescaling dt → (x + ρ) (x + y) dτ , we
obtain a polynomial differential equations system topologically equivalent to origi-
nal one in the interior of first quadrant. We introduce polar coordinates (r, θ), setting
x = r cos θ , y = r sin θ , and the polynomial differential equations system reduces
to:

dr

dt
= r2 (H(θ) + o(1)) , (29.4a)

dθ

dt
= r (G(θ) + o(1)) , (29.4b)

where H and G are homogeneous trigonometric polynomials in the variables cos θ

and sin θ such that
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H(θ) = −ρ δ sin3 θ − cos θ sin θ(−ρ (β − δ) sin θ

+ (γ − ρ + α ρ) cos θ) + (ρ − γ ) cos3 θ,

G(θ) = cos θ sin θ((α ρ − ρ δ − ρ + γ ) sin θ

+ (ρ β − ρ δ + γ − ρ) cos θ).

Then, the characteristic equation is given by G(θ) = 0, i.e.,

cos θ sin θ ((α ρ − ρ δ − ρ + γ ) sin θ + (ρ β − ρ δ + γ − ρ) cos θ) = 0. (29.5)

By [14], any trajectory that will tends to origin must tend to it either spirally or along
a fixed direction. This can be characterized from the characteristic equation. Clearly,
ρ (β − δ) + γ − ρ > 0. Then, the following three cases arise:

29.3.1.1 Case 1: α ρ − ρ δ − ρ + γ > 0

In this case, the characteristic equation (29.5) has two roots in 0 ≤ θ ≤ π
2 , namely

θ1 = 0 and θ2 = π
2 .

Theorem 29.2 Suppose that (α ρ − ρ δ − ρ + γ ) > 0. Then

1. there exists ε1 > 0 and r1 > 0 such that there exists a unique orbit of the system
in {(θ, r) : 0 ≤ θ < ε1, 0 < r < r1} tends to (0, 0) along θ1 = 0 as t → +∞,

2. there exists ε2 > 0 and r2 > 0 such that all orbits of the system in{
(θ, r) : 0 ≤ π

2 − θ < ε2, 0 < r < r2
}

that tend to (0, 0) along θ2 = π
2 as

t → +∞.

29.3.1.2 Case 2: α ρ − ρ δ − ρ + γ = 0

In this case Eq. (29.5) has two roots in 0 ≤ θ ≤ π
2 , namely θ1 = 0 and θ2 = π

2 with
θ2 being a real multiple root of multiplicity two of G(θ) = 0.

Theorem 29.3 Suppose that (α ρ − ρ δ − ρ + γ ) = 0. Then

1. there exists ε3 > 0 and r3 > 0 such that there exists a unique orbit of the system
in {(θ, r) : 0 ≤ θ < ε3, 0 < r < r3} tends to (0, 0) along θ1 = 0 as t → +∞,

2. there exists ε4 > 0 and r4 > 0 such that all orbits of the system in{
(θ, r) : 0 ≤ π

2 − θ < ε4, 0 < r < r4
}

that tend to (0, 0) along θ2 = π
2 as

t → +∞.

29.3.1.3 Case 3: α ρ − ρ δ − ρ + γ < 0

In this case, (29.5) has three simple roots, namely θ1 = 0, θ2 = π
2 and θ3 =

arctan −(ρ β−ρ δ+γ−ρ)
α ρ−ρ δ−ρ+γ

. We have exactly the same results as stated in the above theo-
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rems for characteristic directions θ1 and θ2 and we have to study for the other char-
acteristic direction θ3 only. We apply Briot-Bouquet transformation [14] to prove the
following theorem.

Theorem 29.4 Suppose (α ρ − ρ δ − ρ + γ ) < 0. Then there exist ε5 > 0 and
r5 > 0, such that all orbits of the system in {(θ, r) : 0 ≤ |θ − θ3| < ε5, 0 < r < r5}
that tends to (0, 0) along θ3 as t → ∞.

29.3.2 Local Stability of Equilibria and Bifurcation Results

In this section,we focus on investigating the local asymptotic stability of the boundary
equilibria E1 and E2 and interior equilibria E∗

i , i = 1, 2, whenever they exists, by
studying the eigenvalues of the Jacobian matrix evaluated at each equilibrium points.
Furthermore, we also study the existence of Hopf bifurcation around the interior
equilibrium point E∗

2 with α as bifurcation parameter arising when E∗
2 looses its

stability.
E1(x1, 0) is a saddle point having the x-axis as an unstable manifold if interior

equilibria does not exits, otherwise it is an unstable node provide β 	= δ. If β = δ,
the system (29.3) is reduced to the following system by suitable transformation

ż1 = λ11z1 + ||z||2, ż2 = − β

x1
z2

2 + ||z||3,

where λ11 = x1
√

D1
x1+ρ

> 0. It indicates that E1(x1, 0) is a saddle-node (repelling).
E2(x2, 0) is stable if interior equilibria does not exits, otherwise it is a saddle

having stable manifold along x-axis provided β 	= δ. If β = δ, E2 ≡ (x2, 0) of
system (29.3) is a saddle-node (attracting).

The trace and determinant of the Jacobian matrix J ∗
i of the system (29.3) at E∗

i
are given by

T r(J ∗
i )|(x∗

i ,y∗
i ) = − x∗

i

√
D2

β
(
x∗

i + ρ
) − x∗

i y∗
i (β − α)(

x∗
i + y∗

i

)2 and

det J ∗
i |(x∗

i ,y∗
i ) =

(
2βx∗

i − A
)

x∗
i
2 y∗

i(
x∗

i + ρ
) (

x∗
i + y∗

i

)2 = (−1)i√D2x∗
i
2 y∗

i(
x∗

i + ρ
) (

x∗
i + y∗

i

)2 .

It clearly shows that, the critical point (x∗
1 , y∗

1 ) is always a saddle point, where as,
the locally asymptotic stability of the critical point (x∗

2 , y∗
2 ) is determined by sign of

trace of J ∗
2 |(x∗

2 ,y∗
2 ). For α < β, T r(J ∗

2 )|(x∗
2 ,y∗

2 ) < 0. Therefore, the system (29.3) will
be locally asymptotically stable around the interior equilibrium point E∗

2 (x∗
2 , y∗

2 ) if
α < β.
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29.3.2.1 Hopf Bifurcation and Its Degeneracy

Consider that ∃ α = α∗ such that T r(J ∗
2 )|(x∗

2 ,y∗
2 ) = 0. Consequently, since

det J ∗
2 |(x∗

2 ,y∗
2 ) > 0, both the eigenvalues of J ∗

2 at (x∗
2 , y∗

2 ) are purely imaginary

given by ±i
√
det J ∗

2 |(x∗
2 ,y∗

2 ,α∗). It has been observed that the transversality condition

for Hopf bifurcation holds, therefore, the system experiences a Hopf bifurcation at
the critical value α = α∗. Further, E∗

2 (x∗
2 , y∗

2 ) is unstable if T r(J ∗
2 )|(x∗

2 ,y∗
2 ) > 0. It

is to be noted that the computation of explicit expression for α∗ in terms of system
parameters other than α is a very cumbersome task and is not carried out here. How-
ever, it may be observed that, whenever α < α∗, the positive interior equilibrium
E∗
2 of system (29.3) is a locally asymptotically stable node and for α > α∗, E∗

2 is
an unstable focus through a Hopf bifurcation that occurs around E∗

2 due to the sta-
bility changes from stable to unstable at the critical value α = α∗. We will employ
a numerical example to illustrate the fact discussed above.

Degeneracy of Hopf bifurcation point can be determined by computing Lyapunov
coefficients or by deriving normal form with the help of central manifold argument.
If it is nondegenerate then we have only one limit cycle around E∗

2 in the vicinity of
α = α∗ and if it is degenerate then we have to compute the multiplicity of the focus
E∗
2 at α = α∗. We have observed numerically that the first Lyapunov coefficient is

positive.

29.3.2.2 Saddle-Node Bifurcation

Theorem 29.5 The system (29.3) undergoes a saddle-node bifurcation around E∗ ≡
(x∗, y∗) when ρ = ρ∗ where ρ∗ = −β+α β−α δ+2 β

√
γ

β
and A = (1−ρ)β − (β −δ)α

provided A > 0, α (β − δ) + 2 β
√

γ > β and β > α.

Proof Oneof the eigenvalues of the Jacobianmatrix (J ∗, say) evaluated at E∗(x∗, y∗)
will be zero iff det J ∗|(x∗,y∗) = 0, which gives ρ = −β+α β−α δ+2 β

√
γ

β
= ρ∗, say.

The other eigenvalue is given by T r (J ∗) = − x∗
1 y∗

1 (β−α)

(x∗
1+y∗

1)
2 which will be negative

in order to ensure a saddle-node bifurcation implying β > α. The eigenvectors of

J ∗ and (J ∗)T associated to the eigenvalue 0 is given by Λ21 =
(

δ
α−δ

, 1
)T

and

Λ22 =
(
−β (β−δ)

α δ
, 1

)T
, respectively. Now, ΛT

22[Fρ(E∗, ρ∗)] = −2 (β−δ)γ Aβ2

α δ (A+2 ρ∗ β)2
	= 0

and ΛT
22[D2F(E∗, ρ∗)(Λ21,Λ21)] 	= 0. Thus by using Sotomayor’s theorem, we

conclude that, the system experiences a saddle-node bifurcation around E∗ at the
bifurcation value ρ = ρ∗. This means that, there are no equilibria for ρ < ρ∗ and
there are two equilibria namely E∗

i ≡ (x∗
i , y∗

i ), i = 1, 2 for ρ > ρ∗, one of which is
saddle point and the other is a node.
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29.4 Bogdanov-Takens Bifurcation

In this section, we discuss the Bogdanov-Takens bifurcation of the model system
(29.3) by using the methods in [8]. We assume that the conditions β > δ, A >

0, A2 = 4βB hold for which the two interior equilibria E∗
1 and E∗

2 merge into

the nonhyperbolic critical point E∗
(

A
2β ,

A(β−δ)
2βδ

)
. Under these conditions it can be

shown that E∗ is a saddle node whenever α 	= β; attracting if β > α and repelling
if β < α. We assume α = β = α∗. In this case, the Jacobian matrix corresponding
to the linearization of (29.3) at E∗ has two zero eigenvalues. Our first task is to
investigate the nature of the critical point E∗ under the conditions α = β = α∗ and
δ = δ∗.

Using the following transformation x1 = x − x∗, y1 = y − y∗, x∗ = A/2β, and
y∗ = A(β − δ)/2βδ, we get

ẋ1 = p̄10x1 + p̄01x2 + p̄20x21 + p̄11x1x2 + p̄02x22 + O(||x ||3) (29.6)

ẋ2 = q̄10x1 + q̄01x2 + q̄20x21 + q̄11x1x2 + q̄02x22 + O(||x ||3) (29.7)

where p̄i j = 1
i ! j !

∂ i+ j f

∂xi
1∂x j

2

, q̄i j = 1
i ! j !

∂ i+ j g

∂xi
1∂x j

2

at E∗ and 1 ≤ i + j ≤ 2. Using a series of

transformations, we reduce the system (29.3) to

dω1

dt
= ω2, (29.8)

dω2

dt
= ρ1ω

2
1 + ρ2ω1ω2 + O(||ω||3), (29.9)

where ρ1 = p̄01q̄20+ p̄10 ( p̄20 − q̄11)− p̄210( p̄11−q̄02)
b1

+ p̄02 p̄310
p̄201

and ρ2 = − p̄10
p̄01

( p̄11+
2q̄02) + 2 p̄20 + q̄11 when ρ1ρ2 	= 0. Hence, the critical point E∗ is a cusp of co-
dimension 2, i.e., a Bogdanov-Takens singularity. This shows that for parameters
(α, δ) in a neighborhood of (α∗, δ∗), the model system (29.3) undergoes BT bifur-
cation at E∗.

Now our task is to derive the generic normal unfolding of BT singularity. Consider
α = β = α∗ + λ1, δ = δ∗ + λ2 where λ1 and λ2 is very small. Then in a sufficiently
small neighborhood of (x∗, y∗, λ∗), there exists a parameter dependent nonlinear
smooth invertible variable transformations, smooth invertible parameter changes,
and a direction preserving time reparametrization, which together reduce the system
(29.3) to the following normal form

dξ1

dτ
= ξ2, (29.10)

dξ2

dτ
= μ1 + μ2ξ1 + ξ21 + sξ1ξ2, (29.11)
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where s = ±1. The expressions of μ1, μ2 and the transversality condition of a
Bogdanov-Takens bifurcation are not presented here for the lack of space.

Assume that s = −1. There exists a neighborhood of (μ1, μ2) = (0, 0) in R2 so
that the bifurcation plane is divided into four regions by the following curves

1. SN+ = {
(μ1, μ2) : μ2

2 = 4μ1, μ2 < 0
}
,

2. SN− = {
(μ1, μ2) : μ2

2 = 4μ1, μ2 > 0
}
,

3. H = {
(μ1, μ2) : μ1 = 0, μ2 < 0

}
,

4. H L = {
(μ1, μ2) : μ1 = − 6

25μ
2
2 + O(μ2

2), μ2 < 0
}
,

where SN represents a saddle-node bifurcation curve having two branches SN+ and
SN− corresponding to μ2 < 0 and μ2 > 0 respectively, H is the Hopf bifurcation
curve and H L is theHomoclinic bifurcation curve. For the case s = +1, the local rep-
resentations of bifurcation curves in a small neighborhood of (μ1, μ2) = (0, 0) will
be obtained by using the linear transformation of coordinates (ξ1, ξ2, t, μ1, μ2) →
(ξ1,−ξ2,−t, μ1,−μ2).

29.5 Conclusion

The Allee effect has been shown to be very common in population dynamics. In
this paper we have proposed a ratio-dependent predator-prey model with a strong
additive Allee effect in prey population growth. We have shown that the trajectories
approach the origin along characteristic directions divide a neighborhood of the
origin into a finite number sectors. We have observed that the origin is always a
point of attraction (cf. Fig. 29.3). For a certain set of parameters, the total extinction,
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Fig. 29.3 Top panel Origin is an attractor for α = 0.3 ((α ρ − ρ δ − ρ + γ ) > 0), α = 0.25
((α ρ − ρ δ − ρ + γ ) = 0) and α = 0.2 ((α ρ − ρ δ − ρ + γ ) < 0) with other parameter values
β = 0.9, γ = 0.25, δ = 0.5, ρ = 0.2. Lower panel For α = 0.3, β = 2.5, γ = 0.25, δ = 0.5,
ρ = 0.2, origin is a global attractor
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Fig. 29.4 Phase portraits in the (x, y) plane. Top panel When λ1 = 0, λ2 = 0, the unique
degenerate interior equilibrium point E∗ is a cusp of codimension 2. Middle panel When
λ1 = 0.190685425, λ2 = −0.151314575, there exists a limit cycle. Lower panel When λ1 =
0.200385425, λ2 = −0.0164314575, there is a homoclinic orbit (shown by red solid curve). The
parameter values are α = 1.009314575 = β, γ = 0.08, δ = 0.505, ρ = 0.07

population coexistence or the oscillating coexistence of population are observed. The
bi-stability scenario is detected. Two singularities (0, 0) and E∗

2 can be local attractor
at the first quadrant, or a limit cycle coexists around E∗

2 with a locally asymptotically
stable point (0, 0). Both the basins of attractions are separated by a separatrix and the
trajectories near the separatrix curve are extremely sensitive to the choice of initial
condition. We have shown that the model exhibit codimension two bifurcations near
a Bogdanov-Takens singularity, which produces a series of bifurcation like Hopf
bifurcation, saddle-node bifurcation, Homoclinic curve when two parameters vary
near the interior equilibrium point for some specific parameter values (cf. Fig. 29.4).
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