
Chapter 2
The Globalisation of Applied Mathematics

Peter Leach

Abstract Applied mathematics has a history going back several thousands of years
at least to the time of the Babylonians. In a sense, (pure) mathematics evolved from
applied mathematics. Over the centuries, applied mathematics became closely asso-
ciated with mechanics and new developments were called applicable mathematics.
This terminology has faded in recent decades due to the widespread use ofmathemat-
ics in the solution of problems in any fields which can be treated quantitatively. One
recent field is that of financial mathematics, and we illustrate a few of the problems
which have been solved using the techniques of applied mathematics.

Keywords Mathematical modelling · Financial mathematics · Lie algebra · Lie
point symmetry

2.1 Background

Wecommencewith a storymotivatedby anobservationofProfessorKMTamizhmani
concerning modelling. It concerns a beautiful young woman and two suitors, both of
them handsome youngmen named Krishnakumar and Sinuvasan. The young woman
takes a pile of pebbles and puts one to the left for each ewe owned by Krishnakumar
and one to the right for each ewe owned by Sinuvasan. When all of the ewes have
been counted, there are 15 pebbles to the left and 10 to the right. Which suit will the
woman accept?

Themodelling behind this question is to use a pebble to represent an ewe, but there
is a further consideration. What criterion does the woman use to reach her decision?
Is it the number of ewes or is it the social convention as to who does the milking?

Here we have a very simple instance of mathematical modelling in application.
All that was required for such a model to be considered is the social value of goats.
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A more sophisticated application of mathematics can be found in the times of the
Babylonians who used linear interpolation to approximate the sine function as an aid
to the determination of the position of the Moon which was an important matter for
a society which used the lunar month. A millennium or so later Pythagoras travelled
to the Land of Egypt and observed that the surveyors were making use of the 3-4-5
rule to ensure that the farmers’ fields were quite rectangular. He returned to his native
Samos and did what philosophers do best which is to take something practical and
construct a Theorem from it.

Another example of applied mathematics from ancient times is found in the work
of Claudios Ptolemaios who devised a method for the calculation of orbits by the
simple expedient of having circles move on circles. Ptolemaios made a mistake in
his modelling in two respects. Firstly he assumed that the Earth was the centre of the
Universe and secondly that the basic component of an orbit was a circle. Nevertheless
his method provided accurate predictions for roughly one and a half millennia until
after the physically acceptable model was introduced in the seventeenth century. This
illustrates an interesting point about modelling and applied mathematics. The model
may be physically incorrect and yet provide correct answers.

With the advent of the seventeenth century mathematical modelling developed
remarkably well in the various branches of Mechanics. As the years turned into
centuries, Mechanics became subdivided into specific areas—Classical, Continuum,
Quantum, Relativistic—to such an extent that Applied Mathematics became syn-
onymous with Mechanics. When other areas of application and modelling were
developed, it was fashionable to call these areas Applicable Mathematics to avoid
the obvious taint of Mechanics. Fortunately such a distinction appears to have faded
in recent decades.

One of the reasons for the loss of the distinction can be found in the universality of
differential equations. The same equation appears in various diverse applications. An
example of the proliferation of models can be seen in a recent paper [17] devoted to
solutions of the Fisher Equation and some of its generalisations. Some of the fields of
application mentioned are logistic models of population growth, flame propagation,
neurophysiology, autocatalytic chemical reactions and branching processes based on
Brownian motion. According to [26], the original problemmodelled the propagation
of a gene in a population. The classical Fisher Equation

ut = buxx + au(1 − u), ab �= 0, (2.1)

first appeared seventy-five years ago in [12]. It is remarkable how disparate processes
can be modelled by what is essentially the same equation. Only the names of the
labels and possibly boundary/initial conditions have been changed.

In 1828, Robert Brown [4] reported his observations of 1827 concerning the
motion of particles, such as small pieces of broken pollen, suspended in a fluid.
The irregular motion subsequently became called Brownian motion and became an
important concept in the modelling of a wide variety of phenomena ranging from
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Statistical Physics to Financial Mathematics with quite a few stops in between. The
essential point is that the mechanisms in each of these phenomena are based on some
form of random, or stochastic, motion. Our particular interest today comprises some
equations which have arisen in the field of Financial Mathematics. The literature is
quite vast, but the seminal papers can be counted on the fingers of one hand.

2.2 An Algebraic Diversion

Before we begin our examination of some of the equations which arise in finance,
we should recall a little of the algebraic theory of differential equations.

A differential equation,

E (x, u, ux , uxx , . . .) = 0, (2.2)

in which all symbols can be multisymbols, is invariant under the infinitesimal trans-
formation generated by the operator

Γ = ξ∂x + η∂u (2.3)

if
Γ [n]E|E=0 = 0, (2.4)

where Γ [n] is the extension of Γ to account for all of the derivatives occurring in
E . The invariance contained in (2.4) occurs when the Eq. (2.2) is taken into account.
Usually the coefficient functions, ξ and η, are taken to be functions of x and u only,
i.e., the infinitesimal transformation is a point transformation, but it is also possible
to include derivatives.

The number of symmetries, (2.3), can range from zero to infinity, depending upon
the equation being studied. Under the operation of taking the Lie Bracket

[
Γi , Γ j

]
L B = ΓiΓ j − Γ jΓi (2.5)

one obtains a Lie algebra. Different equations can have the same algebra even if their
provenances are quite disparate.

The symmetries, if sufficient in number and type, can be used to reduce the
equation and even find its solution. The calculation of the symmetries is usually an
exercise in advanced tedium and is best left to a computer algebra code on some
computer. Various packages are available and they are of variable quality. We use
Sym [1, 7–9] which operates in Mathematica. For the identification of the algebra,
we make use of the classification scheme of Mubarakzyanov [20–23].
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2.3 The Black–Scholes Equation

The Black–Scholes–Merton equation [2, 3, 19],

ut + 1
2σ

2x2uxx + r xux − ru = 0, (2.6)

is the precursor of the many evolution partial differential equations which have been
derived in the modelling of various financial processes. Basically it has to do with the
pricing of options, but anything vaguely connected such as corporate debt is equally
grist for its mill. The symmetry analysis of (2.6) was first undertaken by Gasizov
and Ibragimov [13]. After determining the symmetries they obtained of the solution
for the initial condition being a delta function which is a typical initial condition for
the heat equation.1 A more typical problem is the solution of (2.6) subject to what is
known as a terminal condition, i.e. u(T, x) = U when t = T , and it is this problem
which we solve to give a demonstration of the methodology.

The Lie point symmetries of (2.6) are

Γ1 = x∂x

Γ2 = 2t x∂x +
{

t − 2

σ 2 (r t − log x)

}
u∂u

Γ3 = u∂u

Γ4 = ∂t

Γ5 = 8t∂t + 4x log x∂x +
{
4tr + σ 2t + 2 log x + 4r

σ 2 (r t − log x)

}
u∂u

Γ6 = 8t2∂t + 8t x log x∂x +
{
−4t + 4t2r + σ 2t2 + 4t log x + 4

σ 2 (r t − log x)2
}

u∂u

Γ∞ = f (t, x)∂u ,

where Γ∞ is the infinite subset of solutions to (2.6). The algebra of the finite subset
is sl(2, R) ⊕s W3, where W3 is the three-dimensional Heisenberg-Weyl algebra.

To solve the problem of the terminal condition we take a linear combination of the
finite set of symmetries, Γ = ∑i=6

i=1 αiΓi , and apply it to the two conditions given
above.2 In the case of t = T we obtain

α4 + 8T α5 + 8T 2α6 = 0 (2.7)

1One would hope that this initial condition would not apply in financial matters! Unfortunately
there are some instances of financial instability in which such an initial condition is far too accurate
a model. Note that the paper [16] with more realistic conditions appeared earlier, but the content of
[13] had already been presented at a seminar in the Department of Physics, The University of the
Witwatersrand, in 1996.
2The solution symmetries, Γ∞, can play no role in this as their action on u(T, x) = U produces a
linear combination of linearly independent solutions.
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in which we have replaced t by its specified value. When we turn to the condition
u(T, x) = U and make the appropriate substitutions, we obtain

α2

{
T − 2

σ 2 (rT − log x)

}
U + α3U

+α5

{
4T r + σ 2T + 2 log x + 4r

σ 2 (T r − log x)

}
U

+α6

{
−4T + 4T 2r + σ 2t2 + 4T log x + 4

σ 2 (rT − log x)2
}

U = 0. (2.8)

The coefficient of (log x)2 in (2.8) means that α6 = 0 and hence from (2.7)
that α4 = −8T α5. Returning to (2.8) the coefficient of log x leads to α2σ

2U/2 −
4rUα5/σ

2 = 0 and the remaining terms give α2(1− rσ 2/2)U + α3U + α5(4T r +
σ 2T + 4r2T )U = 0. Consequently we have

α1 is arbitrary

α2 = (2r − σ 2)α5

α3 = −8rT α5

α4 = −8T α5. (2.9)

As is common with (1 + 1) evolution partial differential equations of maximal
symmetry, there are two symmetries which are compatible with the terminal condi-
tion. They are

Λ1 = x∂x and

Λ2 = 8(t − T )∂t + (4r t − 2σ 2t + 4 log x)x∂x + 8r(t − T )u∂u

with the Lie Bracket [Λ1, Λ2]L B = 4Λ1 so that reduction by the normal subgroup,
represented by Λ1, is to be preferred. The invariants of the associated Lagrange’s
system,

dt

0
= dx

x
= du

0
,

are t and u so that we introduce the change of variables y = t and v = u into (2.6)
to obtain the ordinary differential equation

v′ − rv = 0

with solution
v = K er y .
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In terms of the original variables the solution obtained using Λ1 is

u = K er t

and on the substitution of the terminal conditions to evaluate the constant of integra-
tion, we find that the solution of the terminal problem for (2.6) is

u(t, x) = U exp[r(t − T )]. (2.10)

As the solution of this problem is unique, there is no need to make use of the second
symmetry.

2.4 The Cox–Ingersoll–Ross equation

The Cox–Ingersoll–Ross equation [6] (see also [5, 11, 14, 25] for studies of similar
equations),

ut + 1
2σ

2xuxx − (κ − λx)ux − xu = 0, (2.11)

is an example of an equation for which the number of Lie point symmetries depends
upon a relationship between the parameters in the equation.

For unconstrained values of the parameters (2.11) possesses the symmetries [10]

Γ1 = u∂u

Γ2± = exp[±βt]
{
±∂t + βx∂x − 1

σ 2 (−β ± λ)(κ ± βx)u∂u

}

Γ3 = ∂t

Γ∞ = f (t, x)∂u,

where, as above,Γ∞ represents the solution symmetries of the linear evolution partial
differential equation. The finite subalgebra is sl(2, R) ⊕ A1. Although there does
not exist a point transformation which takes (2.11) to the classical heat equation, the
algebraic structure is that of a heat equation with a source/sink term proportional to
U/X2 in the transformed variables [10, 18].

Despite the diminution in the number of symmetries compared to (2.6), we can
still investigate to see if there are sufficient symmetries to solve the problem with a
terminal condition. As we did above, we take a linear combination of the elements
of the finite subalgebra and apply it to the conditions u(T, x) = U when t = T . The
latter gives

α2+ exp[βT ] − α2− exp[−βT ] + α3 = 0
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and the former

α1U − α2+ exp[βT ] 1

σ 2 (−β + λ)(κ + βx)U

− α2− exp[−βT ] 1

σ 2 (−β − λ)(κ − βx)U = 0.

It is necessary to separate the coefficient of x from the constant term. This gives a
relationship between α2+ and α2−. When this is substituted into the remaining terms,
we obtain the relationships

α1 = −2κ(β − λ)

σ 2 exp[βT ]α2+,

α2− = β − λ

β + λ
exp[2βT ]α2+,

α3 = − 2λλ

β + λ
exp[βT ]α2+. (2.12)

Evenwith the reduced number of symmetrieswe have been able to obtain a symmetry
which is compatible with the terminal condition and thismay be used to reduce (2.11)
to an ordinary differential equation to be solved.

2.5 The Heath Equation

The evolution partial differential equations which arise in Financial Mathematics
are not confined to linear equations. As a simple example we consider the equation
treated in Heath [15], namely

2ut + 2aux + b2uxx − u2
x + 2ν(x) = 0. (2.13)

For a general function ν(x) (2.13) possesses the Lie point symmetries [24]

Γ1 = ∂t ,

Γ2 = ∂u,

Γ∞ = b2 f (t, x) exp[u/b2]∂u,

where f (t, x) is any solution of the linear equation

2ut + 2aux + b2uxx + 2ν(x)u = 0. (2.14)

Due to the presence of the arbitrary function ν(x) in (2.13) one would not expect
any symmetries apart from the obvious Γ1 and Γ2. Due to the nonlinearity of (2.13)
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one would certainly not expect the presence of Γ∞ as this is a characteristic of
linear equations. As Γ∞ is present, it is evident that a linearising transformation
exists and it is easily inferred from the other terms in the symmetry to be given
by U (t, x, u) = − exp[−u/b2]. The transformation is of the same form as the
Cole-Hopf transformation well-known from its linearising effect upon the Burgers
equation.

It is known (cf. [24]) that (2.13) possesses additional symmetries if ν(x) has
certain specific forms. In the symmetry analysis of the equivalent equation, (2.14),
using SY M two special cases arise naturally. They are

ν1(x) = a1 + a2x + a3x2 and

ν2(x) = a1 + a2x + a3x2 + a4
(a2 + 2a3x)2

.

In the case of ν1(x) the number of symmetries and their algebra are the same as
for the classical heat equation and consequently there exists a point transformation
connecting (2.14), hence (2.13), to the heat equation. This is not the case with ν2(x).
The number of symmetries corresponds to the heat equation with a source/sink term
proportional to u/x2. Obviously the algebra is {sl(2, R) ⊕ A1} ⊕s ∞ which is
characteristic of evolution equations derived from the Ermakov–Pinney equation
[18].

2.6 A Really Nonlinear One!

What is essentially a variant of the Black–Scholes equation

2Vt + 2(r − q)SVS + Σ2S2VSS − 2r V = 0

and readily reducible to the heat equation is renderedmore thanmoderately nonlinear
if Σ is assumed to be proportional to VSS to become the differential equation,

2Vt + 2(r − q)SVS + σ 2S2 (VSS)3 − 2r V = 0, (2.15)

which possesses five Lie point symmetries, namely

Γ1 = exp[r t]∂V ,

Γ2 = S exp[qt]∂V ,

Γ3 = ∂t ,

Γ4 = exp[(2r − 4q)t] {∂t + (r − q)S∂S + r V ∂V } ,

Γ5 = S∂S + 2V ∂V .

The five-dimensional algebra is {A1 ⊕ A2} ⊕s 2A1.
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The symmetries Γ1 and Γ2 satisfy (2.15) and as solution symmetries are of no use
in giving a symmetry which is compatible with any other conditions. Fortunately the
remaining three symmetries are sufficient for the purpose of satisfying the require-
ment that V (T, S) = G(S) when t = T provided that G(S) takes a specific form.
The application of Γ = α3Γ3 + α4Γ4 + α5Γ5 to the terminal condition above leads
to the conditions

α3 = −α4 exp[(2r − 4q)T ] and

α4 exp[(2r − 4q)T ](rG(S) − (r − q)SG ′(S)) + α5(2G(S) − SG ′(S)) = 0.

One possibility for the second condition is that r = 2q in which case the conditions
become

α3 = −α4 and

(qα4 + α5)(2G − SG ′) = 0

so that either α5 = −qα4 or G(S) = K S2 for some constant, K . In the case of the
former possibility Γ is zero. In the case of the latter α4 and α5 are arbitrary, but we
have only the single symmetry

Γ = S∂S + 2V ∂V (2.16)

for which the invariants are t and V S−2. We substitute V = S2 f (t) into (2.15) and
easily find that

V = S2
√
8σ 2(t + c)

, (2.17)

where c is the constant of integration. The value of this constant is determined by
imposing the terminal condition which gives

c = 1

8σ 2K 2 − T .

If r �= 2q, the second condition gives two possibilities. If G(S) is still given by
K S2, α4 = 0 and so α3 is also zero. The solution (2.17) still applies. On the other
hand α4 is arbitrary and α5 = 0 if G(S) = K Sr/(r−q). Now

Γ = {exp[(2r − 4q)t] − exp[(2r − 4q)T ]} ∂t + exp[(2r − 4q)t] {(r − q)S∂S + r V ∂V } .

(2.18)

For other functions GS all the αi are zero and so there is no symmetry compatible
with the terminal condition.
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2.7 Conclusion

Given the constraints of timewe have been able only to explore one aspect of Applied
Mathematics. This is the quite recent application of Lie’s Theory of Continuous
Groups to problems which arise in Financial Mathematics. We noted a recent paper
which mentioned a few applications of the Fisher Equation—originally formulated
in a biological context—to divers fields. The mechanisms of the various problems
have a certain similarity and so we find the same equations, maybe mutatis mutandis,
recurring. One of the important features is that methods developed in one field can
find application in many other fields.

As the decades progress, the quantification of all manner of phenomena increases
in number and diversity. The quantification is the gist of Applied Mathematics and
so we have Globalisation.
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