
Chapter 18
An Improved Adomian Decomposition
Method for Nonlinear ODEs

Prakash Kumar Das and M.M. Panja

Abstract This work deals with getting approximate solution of boundary value
problem consists of nonlinear ordinary differential equations in a series of exponen-
tial instead of power of independent variable in traditional Adomian decomposition
method (TADM). As a consequence: (i) in contrast to TADM the vanishing bound-
ary condition for localized solution can be implemented in a straightforward way,
(ii) the convergence of the series obtained through the modification proposed here
found to be faster than the same obtained by employing TADM, and (iii) for most
of the problems, the sum of the series converges to the exact analytic solution to the
equation involved. The efficiency of the modification of TADM has been illustrated
for physical problems with varied nonlinearities.

Keywords Nonlinear ordinary differential equation · Boundary value problem ·
Improved Adomian decomposition method

18.1 Introduction

In many branches of applied mathematics, physical, biological, and engineering sci-
ences, evolution of physical processes are found to be described by nonlinear ordinary
or partial differential equations (ODEs/PDEs). The solution of such equations helps
one to understand the nature of evolution of the process. But in most of the cases,
it is not possible to find the exact solution to the equation used as the mathemati-
cal model for the description of the physical process of interest. A few analytical
methods such as symmetry method based on Lie theory [1, 2], Prelle-Singer method
[3], method based on Jacobi last multiplier [4], etc., analytical methods for approxi-
mate solution such as tanh method [5, 6], homotopy analysis method (HAM) [7, 8],
Adomian decomposition method (ADM) [9–21], etc., numerical methods, viz., finite
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difference/element methods are used to find the solution of this problems. Among
the approximation methods mentioned above, ADM is found to be the simplest one.
Using ADM, Adomian and his collaborators [9–14], Wazwaz [15–21] as well as
other researchers obtained the approximate solutions as the sum of finite number of
terms with the leading term as the polynomial in independent variable involved in
the problem. But in their approach, the boundary condition in case of infinite domain
cannot be implemented in a straight forward way. Instead, it is desirable to express
the successive terms in their approximate solution as a rational function with the
help of Padé approximant to accommodate boundary conditions. Naturally, question
arises whether straightforward method can be developed which is able to provide a
rapidly convergent series approximation of the solution to the differential equation
involving the physical processes that incorporate boundary conditions at ±∞ in a
straightforward way in both cases of finite as well as infinite domain.

In this paper, we have addressed this problem and developed an recursive scheme
for solving two-point nonlinear boundary value problems through a modification
of the conventional ADM. Here we have introduced an operator associated with the
linear part of the differential equation andderived a straightforward formula involving
such operator for correction terms associated to the nonlinear part of the equation.
We designate thismethod as the improvedAdomian decompositionmethod (IADM),
provides the solution in a series of exponentials instead of power of independent
variable, appears in case of conventional ADM. Expansion in series of exponential
perhaps is the source of accelerated convergence of the method proposed here.

The organization of this paper is as follows. The improved Adomian decompo-
sition method (IADM) within finite domain has been discussed in Sect. 18.2. Its
extension to infinite domain has been presented in Sect. 18.3. Our findings on utility
of the proposed IADM developed in previous two sections have been illustrated in
Sect. 18.4.

18.2 IADM in Finite Domain [a, b]

We consider here a two-point boundary value problem of the form

y′′(x) − λ2y(x) = N [y](x) + g(x), a ≤ x ≤ b (18.1)

within finite domain [a, b] subject to the Dirichlet boundary condition

y(a) = α, y(b) = β (18.2)

where N [y] is an nonlinear term in y, and g(x) is the inhomogeneous or source
term, continuous over [a, b]. Instead of shifting the linear term λ2y(x) of (18.1) into
R.H.S in conventional ADM, we incorporate it into the operator Ô[·] ≡ d2

dx2
− λ2,

so that (18.1) can now be recast into the form
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Ô[y](x) = N [y](x) + g(x), a ≤ x ≤ b. (18.3)

It is important to mention here that the linear operator Ô[·] can be written in the form

Ô[·](x) = eλx d

dx

(
e−2λx

) d

dx

(
eλx [·]) (18.4)

which plays the fundamental role in expressing the solution in terms of rapidly
convergent series of exponentials. One may reinterpret the inverse operator Ô−1 as
a twofold integral operator given by

Ô−1[·](x) = e−λx
∫ x

a
e2λx ′

∫ x ′

a
e−λx ′′ [·](x ′′)dx ′′dx ′. (18.5)

Note that representing inverse operator by integrals for a linear operator with
variable coefficient is also possible whenever it is factorizable. Application of Ô−1

given in (18.5) to y′′(x) − λ2y(x), one gets

Ô−1
[

y′′(x) − λ2y(x)
]

= e−λx
∫ x

a
e2λx ′

∫ x ′

a
e−λx ′′ (

y′′(x ′′) − λ2y(x ′′)
)
dx ′′dx ′

= e−λx
∫ x

a
e2λx ′

(
eλx ′

y′(x ′) − e−λa y′(a) + λe−λx ′
y(x ′) − λeλa y(a)

)
dx ′

= y(x) − y(a)e−λ(a−x) − e−λa (
y′(a) + λy(a)

)
(
eλx − e−λx

2λ

)
.

(18.6)

Operating Ô−1 on both sides of (18.3) followed by using (18.6) one gets

y(x) = y(a)e−λ(a−x) + e−λa (
y′(a) + λy(a)

) (
eλx − e−λx

2λ

)

+ Ô−1[N [y]](x) + Ô−1[g](x), (18.7)

which involve an unknown term y′(a). To eliminate y′(a), we substitute x = b in
Eq. (18.7) and solve for e−λa

(
y′(a) + λy(a)

)
to get

eλa (
y′(a) + λy(a)

) =
2λ

(
y(b) − y(a)e−λ(a−b) − Ô−1[N [y]](b) − Ô−1[g](b)

)

eλb − e−λb
.

(18.8)

Eliminating e−λa
(
y′(a) + λy(a)

)
from (18.7) with the help of (18.8) gives the

expression for y(x) involving inverse operator
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y(x) = y0(x) − Ô−1[N [y]](b)
eλx − e−λx

eλb − e−λb
+ Ô−1[N [y]](x). (18.9)

One can now apply the relevant steps of ADM for evaluating terms involving
nonlinear operator N [y](x) where leading term y0(x) is given by

y0(x) = y(a)e−λ(a−x) + y(b) − y(a)e−λ(a−b) − Ô−1[g](b)

eλb − e−λb

{
eλx − e−λx

}
+ Ô−1[g](x).

(18.10)

The successive corrections can be obtained recursively using the formula

yn+1(x) = Ô−1 [An] (x) − Ô−1 [An] (b)(
eλb − e−λb

) (
eλx − e−λx) , n ≤ 0, (18.11)

where An(x), n ≥ 0 are Adomain polynomial for nonlinear term given by the
formula

Am(x) = 1

m!

[
dm

dεm
N

( ∞∑
k=0

ykε
k

)]

ε=0

, m ≥ 0. (18.12)

18.3 IADM in Infinite Domain

Whenever the domain of independent variable become infinite, we write the inverse
operator Ô−1 as a twofold integral operator without limit given by

Ô−1[·](x) = e−λx
∫

e2λx
∫

e−λx [·](x) dx dx . (18.13)

In this case, operation of Ô−1 on y′′(x) − λ2y(x) gives

Ô−1
(

y′′(x) − λ2(x)
)

= e−λx
∫

e2λx
∫

e−λx
(

y′′(x) − λ2y(x)
)
dx dx

= e−λx
∫

e2λx (
e−λx y′(x) + λe−λx y(x) + c

)
dx

= y(x) + c

2λ
eλx − de−λx . (18.14)

involving two arbitrary constants c and d. Operating Ô−1 on both sides of Ô−1[y]
(x) = N [y](x) + g(x) and use of (18.14), leads to

y(x) = − c

2λ
eλx + de−λx + Ô−1[N [y]](x) + Ô−1[g](x). (18.15)
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Assuming λ > 0 and using the vanishing boundary condition y(∞) = 0 for
localized solution of (18.1) within [0,∞), we can obtain c = 0. Thus

y(x) = de−λx + Ô−1[N [y]](x) + Ô−1[g](x), x ∈ [0,∞). (18.16)

The correction to the leading order due to presence of nonlinearities are obtained
by executing steps followed in conventional ADM with

yn+1(x) = Ô−1 [An] (x), n ≥ 0 (18.17)

with
y0(x) = de−λx + Ô−1[g](x), (18.18)

where An(x), n ≥ 0 are Adomain polynomial for nonlinear term can be obtained
using the formula (18.12). It is important to note that whenever the domain becomes
(−∞, 0], instead of using vanishing boundary condition y(∞) = 0, for localized
solution (18.15) we use y(−∞) = 0 and get

y(x) = − c

2λ
eλx + Ô−1[N [y]](x) + Ô−1[g](x), x ∈ (−∞, 0] (18.19)

so that higher order corrections over leading order approximation

y0(x) = − c

2λ
eλx + Ô−1[g](x) (18.20)

can obtained recursively form

yn+1(x) = Ô−1[A ]n(x), n ≥ 0. (18.21)

In case of λ < 0, one has to proceed in the same way by retaining the term
involving eλx .

18.4 Illustrative Example

Our findings on getting approximate solution for nonlinear ODEs within finite and
infinite domain by using IADM proposed here have been summarized in Tables18.1
and 18.2, respectively.
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18.5 Conclusions

In this work, an improvement over conventional ADM has been proposed. The con-
sequence is to get an approximate solution of nonlinear ODE in the series of expo-
nential. As a result, the approximate solution become rapidly convergent and found
to converges to the exact analytic solution for both kind of problems defined over
bounded and unbounded domains. From this study, it also appears that conventional
ADM can further be improved for problem consists of variable coefficient in their
linear part in order to get rapidly convergent approximate solution of nonlinear ODEs
used as mathematical models for physical processes.
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