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In memory of
Sir Asutosh Mookerjee,
S.N. Bose,
M.N. Saha
and N.R. Sen



Preface

The year 2014 is the 150th birth anniversary year of the great personality Sir
Asutosh Mookerjee who designed the University of Calcutta as a premier seat of
education and research. Under the initiative of Sir Asutosh Mookerjee, in 1914,
different postgraduate departments were opened in the University of Calcutta for
carrying on advanced level teaching and research and the University of Calcutta
then achieved a new dimension. The University College of Science, at 92, Upper
Circular Road, was established in 1914 from the generous funding of Sir Taraknath
Palit and Sir Rashbehary Ghose. The postgraduate departments in applied sciences
including applied mathematics were started there in 1914. At that time, this Applied
Mathematics Department was named Mixed Mathematics Department.

Professor Satyendranath Bose, Professor Meghnad Saha, and Professor Nikhil
Ranjan Sen were students at the Mixed Mathematics Department during the session
1913–1915. The great visionary Sir Asutosh Mookerjee identified these budding
scientists and appointed them as teachers immediately after their passing. Apart
from these three legendary scientists, last 100 years of this department were also
enriched by many other applied mathematicians like Prof. Ganesh Prasad (first Sir
Rashbehary Ghose Professor of the University of Calcutta), Prof. B.B. Dutta, Prof.
S. Banerjee, Prof. N.N. Sen, Prof. B.S. Roy, Prof. S.K. Chakraborty, and others for
their illustrious contributions in different fields of Applied Mathematics.

Department of Applied Mathematics, University of Calcutta, has organized an
international conference on “Emerging Trends in Applied Mathematics: Dedicated
to the Memory of Sir Asutosh Mookerjee and Contributions of S.N. Bose, M.N.
Saha and N.R. Sen” in collaboration with Saha Institute of Nuclear Physics,
Kolkata, and Indian Association for the Cultivation of Science, Kolkata, during
February 12–14, 2014, to commemorate these glorious events. This international
conference was also financially supported by the National Board for Higher
Mathematics (NBHM), Government of India and Department of Higher Education,
Government of West Bengal.

This international conference was started with the song “subho karmo pathe
dharo nirbhayo gaan” which is the theme song of the University of Calcutta written
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by Kabiguru Rabindranath Tagore. The program was inaugurated by Justice
Chittatosh Mookerjee, former chief justice of the Bombay High Court and grandson
of Sir Asutosh Mookerjee.

The keynote address was delivered by Professor Ralph Abraham, emeritus
professor of mathematics, University of California, Santa Cruz, USA. The whole
program was divided into sessions dedicated to Sir Asutosh Mookerjee, Prof.
Satyendranath Bose, Prof. Meghnad Saha, and Prof. Nikhil Ranjan Sen. Eminent
scientists from all over the world delivered lectures at different sessions. Both oral
and poster sessions were arranged for contributed papers.

“Sounds of Space”, harmony with the audio visual raga melodies of Indian
classical music was presented by Prof. Chanchal Uberoi, former professor of
mathematics, Indian Institute of Science, Bangalore.

A cultural program with violin recital followed by conference dinner was
arranged in the evening of 13th February. This heritage conference was ended with
the National Anthem.

The lectures of the invited speakers and the contributed papers is being pub-
lished in this proceedings. All papers have been refereed by national and interna-
tional referees. We are grateful to all the authors, referees, and the publisher for
their kind cooperation for successful completion of this book.

We also express our grateful thanks to Prof. Dilip Kumar Sinha, former Sir
Rashbehary Ghose Professor of the Department of Applied Mathematics,
University of Calcutta and former Vice-Chancellor of Viswabharati for his advice
and assistance in the preparation of the writeup entitled “Bedrock of Applied
Mathematics in Realms of Calcutta University.”

Susmita Sarkar
Uma Basu

Soumen De
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Bedrock1 of Applied Mathematics in Realms
of Calcutta University

As indicated earlier, the chief raison d’ etre of the international conference is to
recapture, in terms of contemporary times, the moorings of Applied (Mixed)
Mathematics and its closely allied discipline Pure/Theoretical Physics. This hap-
pens date back to the early decades of the twentieth century. A simple hindsight
shows that the relevant bedrock of such pursuits would not have been a reality, had
not one of the oldest universities, University of Calcutta, developed a new trajec-
tory, uniquely of its own. As history says, that could happen because of Sir Asutosh
Mookerjee was the vice-chancellor of the University of Calcutta. Sir Asutosh
Mookerjee, factually speaking, was a student and an avid researcher in
Mathematics. He had his schooling in South Calcutta but, later on, moved over to
the then Presidency College, Calcutta. It was mainly because of his passionate
attachment to Geometry, he could make his debut through a paper published in
Cambridge, the UK. He was a contemporary of many leading figures in Calcutta
who played important roles in what is often called Renaissance in Bengal. He could
show off his brilliance in Mathematics in both postgraduate and undergraduate
examinations at the University of Calcutta. Sir Asutosh Mookerjee carried on his
researches mainly on Differential Equations of Geometrical Curves, being inspired
by the French Geometer G. Monge. Sir Asutosh built up linkages at the intellectual
level with individual and organizations in the global level.

1Sir Asutosh Mookerjee, Satyendranath Bose, Meghnad Saha and Nikhil Ranjan Sen form the
foundation of Applied Mathematics in Calcutta University.
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The leadership of Sir Asutosh Mookerjee at the University of Calcutta was
highly innovative in that he transformed the whole university into an academically
vibrant institution. It is to be noted that Sir Asutosh Mookerjee, as a researcher, did
not fully opt out for Geometry. Indeed, he had two papers on Hydrokinetics. Also,
prior to that, he went through another postgraduate examination at the university on
Physical Sciences. The Indian Association for Cultivation of Science (IACS) at
Bowbazar, Calcutta, provided Sir Asutosh Mookerjee opportunities for his lectures
on Mathematics and Physical Sciences. The Asiatic Society of Bengal, of course,
witnessed his presentations and lectures on a variety of research and educational
areas.

Sir Asutosh Mookerjee in the first row (third from the left). Source Meghnad Saha Archives
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Sir Asutosh could build up, by then, a yearning for developing something
abiding in the premises of the University of Calcutta. Some departments, reflecting
his thought processes, were very much in the air of his times. Obviously, Albert
Einstein’s Special Theory of Relativity, in 1905, prevailed on him so much as to
initiate the creation of departments and faculties, unfolding confluences of both
Mathematics and Physics that accounted for his recruiting young scholars like
Satyendra Nath Bose, Meghnad Saha, and Nikhil Ranjan Sen at the Department of
Applied Mathematics, in close alliance with the Department of Physics. Later on,
this could become all the more refueled through his encouragement of the publi-
cation, through Calcutta University Press, the translation of Einstein’s classic paper
on Relativity from German into English, by S.N. Bose, M.N. Saha with a preface by
Prasanta Chandra Mahalanobis. It looks that Prof. N.R. Sen might have been
inspired to proceed for researches in Germany and, later on, in particular after his
return for further pursuits on Relativity.

Seated left to right Meghnad Saha, Jagdish Chandra Bose, J.C. Ghosh. Standing left to right
Snehamoy Dutta, Satyendranath Bose, D.M. Bose, N.R. Sen, J.N. Mukherjee and N.C. Nag.
Source Meghnad Saha Archives
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It is fairly known that Sir Asutosh did not have an entry as a faculty in
Mathematics, even though he aspired very much. Yet, the quintessence of mathe-
matical studies had their reflections in his agenda for restructuring the academic
facets at the University of Calcutta as its vice-chancellor. Sir Asutosh had the firm
conviction that postgraduate studies should necessarily include a coupling of
teaching and research. As such, he was on the lookout of younger scholars, keen to
engage themselves not only in respect of updated teaching but actively receptive to
research pursuits. That was why Sir Asutosh did not have any ilk of hesitation in
appointing S.N. Bose and M.N. Saha as lecturers in Applied (Mixed) Mathematics
at the University of Calcutta. Sir Asutosh was even questioned as to using Bose and
Saha for teaching as well at the Department of Physics, he could find a rebuttal in
that a revolution could be much on the anvil in realms of theoretical physics
because of the Special Theory of Relativity. Thus, how S.N. Bose, M.N. Saha, and
N.R. Sen could be reared up in ambiences congenial to the unfolding of potential
theoreticians in young researchers.

Satyendranath Bose (right) with Albert Einstein. Source Meghnad Saha Archives
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It is a matter of reality and certainly, a coincidence, that all of S.N. Bose,
M.N. Saha and N.R. Sen studied together at the Department of Mathematics in the
erstwhile Presidency College, Calcutta. They had their master’s degrees in Mixed
Mathematics, S.N. Bose topping the list and M.N. Saha coming next. One should
mention that the trio—S.N. Bose, M.N. Saha, and N.R. Sen—had their honors
degree in Mathematics, one following the other. Both Bose and Saha stayed on
together in the M.Sc. course. As history says, both of them engaged themselves
initially in teaching classical areas like Elasticity, Geodesy, and Geophysics. But,
later on, they reached out to the Department of Pure Physics in some of the the-
oretical aspects. For this, they kept on apprising themselves of ideas and methods in
new domains of Mathematics and Theoretical Physics. With the founding of the
Dacca University in the early twenties in the last century, S.N. Bose was invited to
take over the reins of the combined Department of Mathematics and Physics at
Dacca University. One finds that, prior to his joining Dacca University, he did some
research work in Mathematics, jointly with M.N. Saha, and only a few alone. His
simmerings with Theoretical Physics, particularly those relating to the Special
Theory of Relativity kept on having somewhat unflinching attempts to seek alter-
natively ab initio approach to the Special Theory of Relativity. Professor S.N. Bose
initially not being able to prevail upon the journals for publishing his paper, had to
turn to Albert Einstein who could immediately appreciate Bose’s efforts and hence,
his basic paper on Planck’s law could have its genesis. Professor S.N. Bose could
directly bring about conceptually what is known as the “genre of Bose–Einstein
statistics”. Bose also felt the necessity of a wider interactive mode abroad.

Satyendranath Bose as a stu-
dent (1910–1911). Source
Meghnad Saha Archives
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Nikhil Ranjan Sen joined the University of Calcutta in 1917 and had his initial
research in areas of Newtonian potential, Elasticity and Hydrodynamics. Papers on
these topics were published in Philosophical Magazine abroad and, later on, a few
others in the Bulletin of Calcutta Mathematical Society. N.R. Sen’s identification of
elastic materials was remarkable and so, about his work on hydrodynamical
waves, especially on geometries of relevant shapes. N.R. Sen, having obtained his
D.Sc. degree at the University of Calcutta in 1921, could not afford to be immune
from the emerging influences in Mathematical Physics. Accordingly, he sought his
interactive mode in Berlin, Germany, and worked with Von Laue for another
doctorate degree. His work with Von Laue was about De Sitter Universe. Prof. N.R.
Sen plunged himself later in the realms of the General Theory of Relativity and
Cosmology. Such investigations led to his fundamental papers that came out in
Zeitschrift fur Physik and Proceedings of the Royal Society of London. Needless to
add that Prof. Sen came in contact with celebrities like Max Planck, Albert Einstein,
Arnold Sommerfield, and Louis de Broglie.

Satyendranath Bose delivering a speech. Source Meghnad Saha Archives

Professor Nikhil Ranjan Sen.
Source Meghnad Saha
Archives
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The foregoing lines ought to give an impression that S.N. Bose, M.N. Saha, and
N.R. Sen, since their younger days, were keen to establish, mostly in theoretical
terms, some hallmarks providing a better understanding and fruitful insight into
problems of reality. True, physical reality drew their attention. None of them,
appeared to be vying with one another in respect of themes of research pursuits but
a common thread was strikingly discernible. While Prof. Saha could provide the
prequel before leaving for Allahabad, Dacca University proved to be congenial to
Bose’s thought processes.

Satyendranath Bose inspect-
ing a telescope. Source
Meghnad Saha Archives
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Prof. S.N. Bose did not allow any opportunity, for example, through dialogues,
letters, lectures, etc., to go unattended. Bose’s area of contention was to look for
variants aiming at ab initio formulation and development of the concepts embedded
in the well-known Planck’s law. Indeed, Prof. S.N. Bose stepped in for the
development of Quantum Statistical Mechanics, essentially as a conceptual
breakthrough to what could be indicated by Albert Einstein. Bose’s statistics was
superbly distinctive in a sense that the conceptual framework could find a place in a
wide diversity of statistics, founded by distinguished physicists like Maxwell,
Boltzmann, Einstein, Fermi, and Dirac.

It looks to be a congenial turn of events that Prof. S.N. Bose and Prof. M.N.
Saha returned to the University of Calcutta, holding the chairs of Khaira Professor
and Palit Professor of Physics, respectively, in the middle of the 1940s and late
1930s. Professor N.R. Sen was continuing as the Sir Rash Behary Ghose Professor

Meghnad Saha at the Department of Physics, Allahabad University. Source Meghnad Saha
Archives

Satyendranath Bose with
P.A.M. Dirac (left). Source
Meghnad Saha Archives
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of Applied Mathematics at the University of Calcutta. But the trio—S.N. Bose,
M.N. Saha, and N.R. Sen—kept on relentlessly on dimensionalizing their areas of
academic engagements. Professor M.N. Saha strove hard to establish studies on
Nuclear Science, Bio-Physics, and the like at the Institute of Nuclear Physics under
the aegis of the University of Calcutta.

History says that Calcutta would not have the heydays of nuclear studies, had not
there been any active support from the then Vice-Chancellor Dr. Syama Prasad
Mookerjee (son of Sir Asutosh Mookerjee) at the University of Calcutta.
Professor S.N. Bose became a national professor and could rally around him a good
number of mathematicians, physicists, chemists, and others. As already mentioned,
his interest and involvement in the General Theory of Relativity did not suffer any
sort of withering away. Remarkably, Prof. N.R. Sen never shied away from any
frontier area of Applied Mathematics vis-à-vis Theoretical Physics.

In front of the Magnet of the Cyclotron, Institute of Nuclear Physics, Kolkata, 1948–49; front row
(left to right): Dr. A.P. Patro, Dr. B.D. Nagchowdhury, Mr. B.M. Banerjee (only part of his face
visible), and Prof. Meghnad Saha. Source Meghnad Saha Archives
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A.N. Whitehead’s commentary on Sen’s work on Relativity still continues to be
cited. Under his leadership, the Department of Applied Mathematics rose to
remarkable heights so that the first report of the newly established University Grant
Commission was highly effusive about the department’s activities and programmes.
The report went to the extent of situating the first Centre of Advanced Study in
Applied Mathematics at this Department, in the independent India. Prof. N.R. Sen’s
close linkages with higher seats of learning and laboratories used to be a talk of the
day in all academic circles relating to the development of Applied Mathematics.
Indeed, any specter of Applied Mathematics could hardly go unheeded, if it did not
come within Prof. N.R. Sen’s mindset.

One may be failing in the total appraisal of Bose, Saha, and Sen, if their roles,
standing and programmes in shaping few professional organizations are not con-
sidered. All of them happened to be Presidents of Calcutta Mathematical Society in
its different phases. Their linkages with Indian Science Congress Association were
highly exemplary. In particular, Saha and Bose’s general presidential addresses
need to be focussed, even now. Also, one cannot miss Prof. M.N. Saha building up,
on the eve of his return to Calcutta University, Indian Science News Association
with Sir P.C. Ray as its president, Prof. N.R. Sen, treasurer and himself as secretary.
Its journal Science and Culture had some valuable issues in its early days, dealing
with wider concerns and obligations to sciences and culturally-minded scientific

Satyendranath Bose (extreme right) chairing the meeting of the executive council of the National
Physical Laboratory, New Delhi. Source Meghnad Saha Archives
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communities. Professor S.N. Bose established, with some of its close cohorts,
Bangiya Bijnan Parishad (Bengal Science Society) as a part of his unstinted
conviction on dissemination of science through mother tongue. Jnan and Bijnan
(knowledge and science), the organ of the parishad continues to be a torchbearer of
science, technology, and literature with their growing ambits.

Any simple account of all the trends described above show, in no way mistaken
terms, that some establishments should have been in the anvil so that relevant
pursuits assume rigor and vitality. It is, therefore, a part of history to be reckoned
with that Saha Institute of Nuclear Physics and S.N. Bose Institute of Physical
Sciences, could be brought into existence, both being in the precincts of the
University College of Science (at 92, APC Road Kolkata 700009). The auditorium
of the Saha Institute of Nuclear Physics has since then kept on witnessing a rich
variety of programmes of Applied Mathematics and Mathematical/Theoretical
Sciences. Saha Institute of Nuclear Physics could move out for an identity of its
own elsewhere but intellectual kinships could hardly disappear.

One can say the simmerings within what used to happen under the auspices of
S.N. Bose Institute of Physical Sciences seldom confined themselves wholly with
the walls of the erstwhile sitting room of Prof. S.N. Bose. There used to be
unfettered and consistent efforts through interdisciplinary, if not, multidisciplinary
exposures and dialogues through lectures, seminars, etc., in various
institutions/departments with the collaboration of S.N. Bose Institute of Physical
Sciences. Truly, S.N. Bose National Centre for Basic Sciences could be established
as upshots of earlier adventures, the culture and the temper continue, even now
through a plethora of collaborative activities and programmes under the auspices
of the Department of Applied Mathematics, University of Calcutta.

The International Conference on Emerging Trends in Applied Mathematics
stands as a positive accrual of a long array of events having similar but distinctive
complexions and flavors, too. In sum, this conference stands out as an exemplar of
connectivities, in mathematically agile terms, between forward looking researchers
belonging to institutions with distinct genres.

Susmita Sarkar
Uma Basu

Soumen De
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Some Unforgettable Pictures

Meghnad Saha elected FRS. Source Meghnad Saha Archives

Satyendranath Bose (left) with J.V. Narlikar. Source Meghnad Saha Archives

Satyendranath Bose with Niels Bohr. Source Meghnad Saha Archives

xxiv Bedrock of Applied Mathematics in Realms of Calcutta University



Satyendranath Bose with K.N. Kolmogorov, P.C. Mahalanobis, attending the convocation at
Indian Statistical Institute, Kolkata. Source Meghnad Saha Archives

Satyendranath Bose, as the vice-chancellor of Viswabharati. Source Meghnad Saha Archives
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Satyendranath Bose receiving D.Sc. (Hon.) from Dr. Zakir Hussain, the then President of India, at
the University of Delhi in 1964. Source Meghnad Saha Archives

Satyendranath Bose with R.A. Fisher (left) and P.C. Mahalanabis (right). Source Meghnad Saha
Archives
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Satyendranath Bose as upacharya with Jawaharlal Nehru and with staffs and students at
Viswabharati. Source Meghnad Saha Archives

Sitting (left to right): P.B. Sarkar, Amaresh Chakravarti, Acharya P.C. Ray, T.S. Muttu,
Satyendranath Bose. Source Meghnad Saha Archives
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Satyendranath Bose delivering the Meghnad Saha Memorial Lecture at SINP, Kolkata. Source
Meghnad Saha Archives

Prof. Satyendranath Bose (third from left) at a seminar (29 December 1973) with Prof. S.N. Sen
(second from left), the then vice-chancellor of the University of Calcutta and Prof. J.N. Kapur
(third from right), the then vice-chancellor of Meerut University. Source Meghnad Saha Archives
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Satyendranath Bose with his family members. Source Meghnad Saha Archives

On the 70th birth celebration of Satyendranath Bose. Source Meghnad Saha Archives
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Satyendranath Bose playing Esraj. Source Meghnad Saha Archives

Satyendranath Bose married
with Ushabati Devi in 1914 at
the age of 20. Source
Meghnad Saha Archives
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Satyendranath Bose and
Ushabati Devi in older days.
Source Meghnad Saha
Archives

Source Meghnad Saha Archives
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Chapter 1
Emergent Periodicity in a Field of Chaos

Ralph Abraham and Michael Nivala

Abstract The synchronization of nonlinear oscillators is well-known and is a
traditional topic in complex dynamical system theory. The synchronization of chaotic
attractors is less well-known, but is of obvious interest in many applications to the
sciences: physical, biological, and social. In a recent experimental study of coupled
lattices of Rössler attractors, we were surprised to discover global periodic behavior
in large regimes of the parameter space. This emergent periodicity in a field of chaos
may be of significance in the origin of life and in many life processes. In this talk,
we will explore the emergence of global periodicity and also the periodic windows
in the bifurcation diagram of the Rössler attractor, which may be the local cause of
this global behavior.

Keywords Nonlinear oscillator · Rössler attractor · Emergent periodicity · Syn-
chronization

1.1 Introduction: Periodicity and Life

Living organisms are complex systems and have been modeled by complex dynam-
ical systems. A biological organ, for example, may be simplified as a two- or three-
dimensional lattice of cells or nodes, each modeled by identical dynamical schemes,
with each node coupled mutually to its nearest neighbors.1 Lattices of oscillators,
for example, abound in the literature of biological modeling.

However, biological cells frequently exhibit chaotic behavior, so we have been
motivated to explore two-dimensional lattices of Rössler schemes. An amazing nat-
ural phenomenon, crucial to life, is the emergence of global periodicity in such a

1A dynamical scheme is a family of dynamical systems (in this case, flows) parameterized by
control variables.

R. Abraham (B) · M. Nivala
Mathematics Department, University of California, Santa Cruz, CA 95064, USA
e-mail: rha@ucsc.edu

© Springer India 2015
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2 R. Abraham and M. Nivala

complex system that we call a field of chaos. For instance, we may cite swimming
bacteria, respiration, the beating heart, and the regular rhythms of the brain.

In this talk, I will demonstrate the ubiquity of periodic behavior in three-related
contexts.

1.2 One Rössler

This system is known as the simplest chaotic flow (continuous dynamical system)
and exhibits an oscillation in the plane, together with spiking behavior in a third
dimension.

1.2.1 The Basic Scheme

The scheme is defined by the equations,

x ′ = −y − z

y′ = x + Ay (1.1)

z′ = B − Cz + Mxz

The usual values of the control parameters are A = B = 0.2,C = 5.7, and M = 1.0.
The attractor is shown in Fig. 1.1, in which the speed along the trajectory is indicated
by the colors, from blue (slowest) to red (fastest).

Note the simple rotation in the (x, y) plane, and the spike in the z direction.

1.2.2 Bifurcations and Periodic Windows

As one of the four control parameters is varied,while the other three are held constant,
the behavior of the attractor changes through slightly different chaotic states, with
occasional windows of periodic behavior. These are shown in abbreviated form in
Fig. 1.2. All four exhibit periodicwindows, but note that they aremost conspicuous in
the B plot. There, as B is decreased from the right, a unit periodic attractor undergoes
a period doubling bifurcation, and then another and another, as in the familiar route
to chaos of the logistic family.

1.3 Two Rösslers

There are several ways of coupling two identical dynamical systems. We will be
mostly interested in the direct coupling method, due to a geometric theory of syn-
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Fig. 1.1 The usual Rössler

chronization. In this method, a proportion of the z-value of each trajectory is added
to the z-component of the other vectorfield. This is expressed precisely in these equa-
tions, in which we have assumed identical values of the four control parameters in
each of the coupled systems.

1.3.1 Synchronization

The 0-system now includes a z1-dependent perturbation in the third component of
its vectorfield, with coupling coefficient, D0,

x ′
0 = −y0 − z0

y′
0 = x0 + Ay0 (1.2)

z′
0 = (B + D0z1) − Cz0 + Mx0z0.
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Fig. 1.2 The four bifurcation plots: Poincaré-z versus A, B, C, M

Similarly, the 1-system now includes a z0-dependent perturbation in the third
component of its vectorfield, with coupling coefficient, D1,

x ′
1 = −y1 − z1

y′
1 = 1x + Ay1 (1.3)

z′
1 = (B + D1z0) − Cz1 + Mx1z1

Note the addition of two additional control parameters, D0 and D1, the coupling
coefficients. Also, we have grouped together the terms (B + D0z1) and (B + D1z0)
to foreground the fact that the forcing terms effectively modify the B coefficients
of each system. We call these terms effective B0 and effective B1 for the coupled
Rössler systems.

We are interested in two special cases.
In the case D0 = 0, the 0-system is called the master, and the 1-system is the

slave. The master system forces the slave, while the master behaves as if the slave
did not exist.

In the case D0 = D1 ≥ 0, we say the two systems aremutually and symmetrically
coupled.

In both of these special cases, increasing the coupling coefficients produces syn-
chronization of the z-spikes, even though these spikes occur chaotically in time and
in strength as well, as shown in Fig. 1.3, for the master and slave.
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Fig. 1.3 The master (black) and slave (red) z’s versus time

1.3.2 Bifurcations and Periodic Windows

We now consider the double Rössler system in the second case of symmetrical
coupling. A simulation with NetLogo 3D, showing the two trajectories side-by-side,
one green, the other blue, reveals the chaotic synchronization. The trajectories may
be clarified by indicating a Poincaré cross-section. For this, we have chosen the
positive half of the X–Z plane. When the green trajectory pierces this half-plane, it
leaves a red drop. And when the blue transits the section, it leaves a yellow drop.
A bifurcation movie of this system, as D = D0 = D1 increases from 0.0 to 4.0,
reveals an extensive periodic window around D = 2.0. This emergent periodicity,
seen from the positive Y -axis, is illustrated in Fig. 1.4.

1.4 Many Rösslers

Finally we consider a regular lattice of 160,000 usual Rösslers, in a 400 by 400
square grid, on a two-dimensional torus. Each node is mutually and symmetrically
coupled to each of its four nearest neighbors. Thus, at each node, we have,
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Fig. 1.4 Visualizing the Poincaré cross-section

x ′ = −y − z

y′ = x + Ay (1.4)

z′ = (B + Dzs) − Cz + Mxz

where D is the common coupling constant and zs denotes the sumof the z-coordinates
of the four neighbors.

1.4.1 Synchronization

Extensive simulations of this system, the 2D-toral Rössler lattice, byMichael Nivala
of the UCLA have been recorded as movies, with each frame representing an instan-
taneous state revealing the z of each node as a color, from blue (0) to red (25).
Three frames of such a movie2 are shown in Fig. 1.5. The colors, especially in the
third frame, reveal islands of z-synchronization, which move around with advancing
simulation time.

2Nivala’s a14.
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Fig. 1.5 Three frames of the Rössler lattice

Fig. 1.6 Periodic temporal fluctuations in the z average

1.4.2 Global Periodicity

A surprising feature of these simulations is a robust global periodicity. This may be
observed by averaging the z-values of all the nodes and plotting as a function of time.
As we see in Fig. 1.6, there is a periodic fluctuation in this average value.

1.5 Conclusion: Future Work

Our interest in the emergence of global periodicity in a field of chaos is heightened
by the crucial role of periodicity in life processes, and we feel justified in thinking
that nature has selected for attractors with shapes that facilitate synchronization
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and bifurcation diagrams with periodic windows. And yet, these periodic windows
are quite surprising from the point of view of pure mathematics. We began our
investigation with the idea of observing patterns of chaotic synchronization and
were astonished to discover global periodicity by accident.

We have by now a large number of related simulations and will be filing more
progress reports as time goes on. But at this point, we may say that global periodicity
is ubiquitous for Rössler lattices. In the future, we plan to explore other fields of
chaos, such as Lorenz and Ueda lattices, to discover their secrets as well.



Chapter 2
The Globalisation of Applied Mathematics

Peter Leach

Abstract Applied mathematics has a history going back several thousands of years
at least to the time of the Babylonians. In a sense, (pure) mathematics evolved from
applied mathematics. Over the centuries, applied mathematics became closely asso-
ciated with mechanics and new developments were called applicable mathematics.
This terminology has faded in recent decades due to the widespread use ofmathemat-
ics in the solution of problems in any fields which can be treated quantitatively. One
recent field is that of financial mathematics, and we illustrate a few of the problems
which have been solved using the techniques of applied mathematics.

Keywords Mathematical modelling · Financial mathematics · Lie algebra · Lie
point symmetry

2.1 Background

Wecommencewith a storymotivatedby anobservationofProfessorKMTamizhmani
concerning modelling. It concerns a beautiful young woman and two suitors, both of
them handsome youngmen named Krishnakumar and Sinuvasan. The young woman
takes a pile of pebbles and puts one to the left for each ewe owned by Krishnakumar
and one to the right for each ewe owned by Sinuvasan. When all of the ewes have
been counted, there are 15 pebbles to the left and 10 to the right. Which suit will the
woman accept?

Themodelling behind this question is to use a pebble to represent an ewe, but there
is a further consideration. What criterion does the woman use to reach her decision?
Is it the number of ewes or is it the social convention as to who does the milking?

Here we have a very simple instance of mathematical modelling in application.
All that was required for such a model to be considered is the social value of goats.

P. Leach (B)

School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal, Private Bag X54001,
Durban 4000, Republic of South Africa
e-mail: leach@ucy.ac.cy

© Springer India 2015
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A more sophisticated application of mathematics can be found in the times of the
Babylonians who used linear interpolation to approximate the sine function as an aid
to the determination of the position of the Moon which was an important matter for
a society which used the lunar month. A millennium or so later Pythagoras travelled
to the Land of Egypt and observed that the surveyors were making use of the 3-4-5
rule to ensure that the farmers’ fields were quite rectangular. He returned to his native
Samos and did what philosophers do best which is to take something practical and
construct a Theorem from it.

Another example of applied mathematics from ancient times is found in the work
of Claudios Ptolemaios who devised a method for the calculation of orbits by the
simple expedient of having circles move on circles. Ptolemaios made a mistake in
his modelling in two respects. Firstly he assumed that the Earth was the centre of the
Universe and secondly that the basic component of an orbit was a circle. Nevertheless
his method provided accurate predictions for roughly one and a half millennia until
after the physically acceptable model was introduced in the seventeenth century. This
illustrates an interesting point about modelling and applied mathematics. The model
may be physically incorrect and yet provide correct answers.

With the advent of the seventeenth century mathematical modelling developed
remarkably well in the various branches of Mechanics. As the years turned into
centuries, Mechanics became subdivided into specific areas—Classical, Continuum,
Quantum, Relativistic—to such an extent that Applied Mathematics became syn-
onymous with Mechanics. When other areas of application and modelling were
developed, it was fashionable to call these areas Applicable Mathematics to avoid
the obvious taint of Mechanics. Fortunately such a distinction appears to have faded
in recent decades.

One of the reasons for the loss of the distinction can be found in the universality of
differential equations. The same equation appears in various diverse applications. An
example of the proliferation of models can be seen in a recent paper [17] devoted to
solutions of the Fisher Equation and some of its generalisations. Some of the fields of
application mentioned are logistic models of population growth, flame propagation,
neurophysiology, autocatalytic chemical reactions and branching processes based on
Brownian motion. According to [26], the original problemmodelled the propagation
of a gene in a population. The classical Fisher Equation

ut = buxx + au(1 − u), ab �= 0, (2.1)

first appeared seventy-five years ago in [12]. It is remarkable how disparate processes
can be modelled by what is essentially the same equation. Only the names of the
labels and possibly boundary/initial conditions have been changed.

In 1828, Robert Brown [4] reported his observations of 1827 concerning the
motion of particles, such as small pieces of broken pollen, suspended in a fluid.
The irregular motion subsequently became called Brownian motion and became an
important concept in the modelling of a wide variety of phenomena ranging from
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Statistical Physics to Financial Mathematics with quite a few stops in between. The
essential point is that the mechanisms in each of these phenomena are based on some
form of random, or stochastic, motion. Our particular interest today comprises some
equations which have arisen in the field of Financial Mathematics. The literature is
quite vast, but the seminal papers can be counted on the fingers of one hand.

2.2 An Algebraic Diversion

Before we begin our examination of some of the equations which arise in finance,
we should recall a little of the algebraic theory of differential equations.

A differential equation,

E (x, u, ux , uxx , . . .) = 0, (2.2)

in which all symbols can be multisymbols, is invariant under the infinitesimal trans-
formation generated by the operator

Γ = ξ∂x + η∂u (2.3)

if
Γ [n]E|E=0 = 0, (2.4)

where Γ [n] is the extension of Γ to account for all of the derivatives occurring in
E . The invariance contained in (2.4) occurs when the Eq. (2.2) is taken into account.
Usually the coefficient functions, ξ and η, are taken to be functions of x and u only,
i.e., the infinitesimal transformation is a point transformation, but it is also possible
to include derivatives.

The number of symmetries, (2.3), can range from zero to infinity, depending upon
the equation being studied. Under the operation of taking the Lie Bracket

[
Γi , Γ j

]
L B = ΓiΓ j − Γ jΓi (2.5)

one obtains a Lie algebra. Different equations can have the same algebra even if their
provenances are quite disparate.

The symmetries, if sufficient in number and type, can be used to reduce the
equation and even find its solution. The calculation of the symmetries is usually an
exercise in advanced tedium and is best left to a computer algebra code on some
computer. Various packages are available and they are of variable quality. We use
Sym [1, 7–9] which operates in Mathematica. For the identification of the algebra,
we make use of the classification scheme of Mubarakzyanov [20–23].
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2.3 The Black–Scholes Equation

The Black–Scholes–Merton equation [2, 3, 19],

ut + 1
2σ

2x2uxx + r xux − ru = 0, (2.6)

is the precursor of the many evolution partial differential equations which have been
derived in the modelling of various financial processes. Basically it has to do with the
pricing of options, but anything vaguely connected such as corporate debt is equally
grist for its mill. The symmetry analysis of (2.6) was first undertaken by Gasizov
and Ibragimov [13]. After determining the symmetries they obtained of the solution
for the initial condition being a delta function which is a typical initial condition for
the heat equation.1 A more typical problem is the solution of (2.6) subject to what is
known as a terminal condition, i.e. u(T, x) = U when t = T , and it is this problem
which we solve to give a demonstration of the methodology.

The Lie point symmetries of (2.6) are

Γ1 = x∂x

Γ2 = 2t x∂x +
{

t − 2

σ 2 (r t − log x)

}
u∂u

Γ3 = u∂u

Γ4 = ∂t

Γ5 = 8t∂t + 4x log x∂x +
{
4tr + σ 2t + 2 log x + 4r

σ 2 (r t − log x)

}
u∂u

Γ6 = 8t2∂t + 8t x log x∂x +
{
−4t + 4t2r + σ 2t2 + 4t log x + 4

σ 2 (r t − log x)2
}

u∂u

Γ∞ = f (t, x)∂u ,

where Γ∞ is the infinite subset of solutions to (2.6). The algebra of the finite subset
is sl(2, R) ⊕s W3, where W3 is the three-dimensional Heisenberg-Weyl algebra.

To solve the problem of the terminal condition we take a linear combination of the
finite set of symmetries, Γ = ∑i=6

i=1 αiΓi , and apply it to the two conditions given
above.2 In the case of t = T we obtain

α4 + 8T α5 + 8T 2α6 = 0 (2.7)

1One would hope that this initial condition would not apply in financial matters! Unfortunately
there are some instances of financial instability in which such an initial condition is far too accurate
a model. Note that the paper [16] with more realistic conditions appeared earlier, but the content of
[13] had already been presented at a seminar in the Department of Physics, The University of the
Witwatersrand, in 1996.
2The solution symmetries, Γ∞, can play no role in this as their action on u(T, x) = U produces a
linear combination of linearly independent solutions.
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in which we have replaced t by its specified value. When we turn to the condition
u(T, x) = U and make the appropriate substitutions, we obtain

α2

{
T − 2

σ 2 (rT − log x)

}
U + α3U

+α5

{
4T r + σ 2T + 2 log x + 4r

σ 2 (T r − log x)

}
U

+α6

{
−4T + 4T 2r + σ 2t2 + 4T log x + 4

σ 2 (rT − log x)2
}

U = 0. (2.8)

The coefficient of (log x)2 in (2.8) means that α6 = 0 and hence from (2.7)
that α4 = −8T α5. Returning to (2.8) the coefficient of log x leads to α2σ

2U/2 −
4rUα5/σ

2 = 0 and the remaining terms give α2(1− rσ 2/2)U + α3U + α5(4T r +
σ 2T + 4r2T )U = 0. Consequently we have

α1 is arbitrary

α2 = (2r − σ 2)α5

α3 = −8rT α5

α4 = −8T α5. (2.9)

As is common with (1 + 1) evolution partial differential equations of maximal
symmetry, there are two symmetries which are compatible with the terminal condi-
tion. They are

Λ1 = x∂x and

Λ2 = 8(t − T )∂t + (4r t − 2σ 2t + 4 log x)x∂x + 8r(t − T )u∂u

with the Lie Bracket [Λ1, Λ2]L B = 4Λ1 so that reduction by the normal subgroup,
represented by Λ1, is to be preferred. The invariants of the associated Lagrange’s
system,

dt

0
= dx

x
= du

0
,

are t and u so that we introduce the change of variables y = t and v = u into (2.6)
to obtain the ordinary differential equation

v′ − rv = 0

with solution
v = K er y .
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In terms of the original variables the solution obtained using Λ1 is

u = K er t

and on the substitution of the terminal conditions to evaluate the constant of integra-
tion, we find that the solution of the terminal problem for (2.6) is

u(t, x) = U exp[r(t − T )]. (2.10)

As the solution of this problem is unique, there is no need to make use of the second
symmetry.

2.4 The Cox–Ingersoll–Ross equation

The Cox–Ingersoll–Ross equation [6] (see also [5, 11, 14, 25] for studies of similar
equations),

ut + 1
2σ

2xuxx − (κ − λx)ux − xu = 0, (2.11)

is an example of an equation for which the number of Lie point symmetries depends
upon a relationship between the parameters in the equation.

For unconstrained values of the parameters (2.11) possesses the symmetries [10]

Γ1 = u∂u

Γ2± = exp[±βt]
{
±∂t + βx∂x − 1

σ 2 (−β ± λ)(κ ± βx)u∂u

}

Γ3 = ∂t

Γ∞ = f (t, x)∂u,

where, as above,Γ∞ represents the solution symmetries of the linear evolution partial
differential equation. The finite subalgebra is sl(2, R) ⊕ A1. Although there does
not exist a point transformation which takes (2.11) to the classical heat equation, the
algebraic structure is that of a heat equation with a source/sink term proportional to
U/X2 in the transformed variables [10, 18].

Despite the diminution in the number of symmetries compared to (2.6), we can
still investigate to see if there are sufficient symmetries to solve the problem with a
terminal condition. As we did above, we take a linear combination of the elements
of the finite subalgebra and apply it to the conditions u(T, x) = U when t = T . The
latter gives

α2+ exp[βT ] − α2− exp[−βT ] + α3 = 0
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and the former

α1U − α2+ exp[βT ] 1

σ 2 (−β + λ)(κ + βx)U

− α2− exp[−βT ] 1

σ 2 (−β − λ)(κ − βx)U = 0.

It is necessary to separate the coefficient of x from the constant term. This gives a
relationship between α2+ and α2−. When this is substituted into the remaining terms,
we obtain the relationships

α1 = −2κ(β − λ)

σ 2 exp[βT ]α2+,

α2− = β − λ

β + λ
exp[2βT ]α2+,

α3 = − 2λλ

β + λ
exp[βT ]α2+. (2.12)

Evenwith the reduced number of symmetrieswe have been able to obtain a symmetry
which is compatible with the terminal condition and thismay be used to reduce (2.11)
to an ordinary differential equation to be solved.

2.5 The Heath Equation

The evolution partial differential equations which arise in Financial Mathematics
are not confined to linear equations. As a simple example we consider the equation
treated in Heath [15], namely

2ut + 2aux + b2uxx − u2
x + 2ν(x) = 0. (2.13)

For a general function ν(x) (2.13) possesses the Lie point symmetries [24]

Γ1 = ∂t ,

Γ2 = ∂u,

Γ∞ = b2 f (t, x) exp[u/b2]∂u,

where f (t, x) is any solution of the linear equation

2ut + 2aux + b2uxx + 2ν(x)u = 0. (2.14)

Due to the presence of the arbitrary function ν(x) in (2.13) one would not expect
any symmetries apart from the obvious Γ1 and Γ2. Due to the nonlinearity of (2.13)
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one would certainly not expect the presence of Γ∞ as this is a characteristic of
linear equations. As Γ∞ is present, it is evident that a linearising transformation
exists and it is easily inferred from the other terms in the symmetry to be given
by U (t, x, u) = − exp[−u/b2]. The transformation is of the same form as the
Cole-Hopf transformation well-known from its linearising effect upon the Burgers
equation.

It is known (cf. [24]) that (2.13) possesses additional symmetries if ν(x) has
certain specific forms. In the symmetry analysis of the equivalent equation, (2.14),
using SY M two special cases arise naturally. They are

ν1(x) = a1 + a2x + a3x2 and

ν2(x) = a1 + a2x + a3x2 + a4
(a2 + 2a3x)2

.

In the case of ν1(x) the number of symmetries and their algebra are the same as
for the classical heat equation and consequently there exists a point transformation
connecting (2.14), hence (2.13), to the heat equation. This is not the case with ν2(x).
The number of symmetries corresponds to the heat equation with a source/sink term
proportional to u/x2. Obviously the algebra is {sl(2, R) ⊕ A1} ⊕s ∞ which is
characteristic of evolution equations derived from the Ermakov–Pinney equation
[18].

2.6 A Really Nonlinear One!

What is essentially a variant of the Black–Scholes equation

2Vt + 2(r − q)SVS + Σ2S2VSS − 2r V = 0

and readily reducible to the heat equation is renderedmore thanmoderately nonlinear
if Σ is assumed to be proportional to VSS to become the differential equation,

2Vt + 2(r − q)SVS + σ 2S2 (VSS)3 − 2r V = 0, (2.15)

which possesses five Lie point symmetries, namely

Γ1 = exp[r t]∂V ,

Γ2 = S exp[qt]∂V ,

Γ3 = ∂t ,

Γ4 = exp[(2r − 4q)t] {∂t + (r − q)S∂S + r V ∂V } ,

Γ5 = S∂S + 2V ∂V .

The five-dimensional algebra is {A1 ⊕ A2} ⊕s 2A1.
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The symmetries Γ1 and Γ2 satisfy (2.15) and as solution symmetries are of no use
in giving a symmetry which is compatible with any other conditions. Fortunately the
remaining three symmetries are sufficient for the purpose of satisfying the require-
ment that V (T, S) = G(S) when t = T provided that G(S) takes a specific form.
The application of Γ = α3Γ3 + α4Γ4 + α5Γ5 to the terminal condition above leads
to the conditions

α3 = −α4 exp[(2r − 4q)T ] and

α4 exp[(2r − 4q)T ](rG(S) − (r − q)SG ′(S)) + α5(2G(S) − SG ′(S)) = 0.

One possibility for the second condition is that r = 2q in which case the conditions
become

α3 = −α4 and

(qα4 + α5)(2G − SG ′) = 0

so that either α5 = −qα4 or G(S) = K S2 for some constant, K . In the case of the
former possibility Γ is zero. In the case of the latter α4 and α5 are arbitrary, but we
have only the single symmetry

Γ = S∂S + 2V ∂V (2.16)

for which the invariants are t and V S−2. We substitute V = S2 f (t) into (2.15) and
easily find that

V = S2
√
8σ 2(t + c)

, (2.17)

where c is the constant of integration. The value of this constant is determined by
imposing the terminal condition which gives

c = 1

8σ 2K 2 − T .

If r �= 2q, the second condition gives two possibilities. If G(S) is still given by
K S2, α4 = 0 and so α3 is also zero. The solution (2.17) still applies. On the other
hand α4 is arbitrary and α5 = 0 if G(S) = K Sr/(r−q). Now

Γ = {exp[(2r − 4q)t] − exp[(2r − 4q)T ]} ∂t + exp[(2r − 4q)t] {(r − q)S∂S + r V ∂V } .

(2.18)

For other functions GS all the αi are zero and so there is no symmetry compatible
with the terminal condition.
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2.7 Conclusion

Given the constraints of timewe have been able only to explore one aspect of Applied
Mathematics. This is the quite recent application of Lie’s Theory of Continuous
Groups to problems which arise in Financial Mathematics. We noted a recent paper
which mentioned a few applications of the Fisher Equation—originally formulated
in a biological context—to divers fields. The mechanisms of the various problems
have a certain similarity and so we find the same equations, maybe mutatis mutandis,
recurring. One of the important features is that methods developed in one field can
find application in many other fields.

As the decades progress, the quantification of all manner of phenomena increases
in number and diversity. The quantification is the gist of Applied Mathematics and
so we have Globalisation.
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Rates and Risk Management (Cambridge University Press, Cambridge, 2001), pp. 509–537

16. N.H. Ibragimov, C. Wafo Soh, Solution of the Cauchy Problem for the Black-Scholes Equation
Using Its SymmetriesModern GroupAnalysis, ed. by N.H. Ibragimov, K.R. Naqvi, E. Straume.
International Conference at the Sophus Lie Conference Centre (MARS Publishers, Norway,
1997)

17. R. Jiwari, A. Verma, Analytic, Power series and numerical solutions of nonlinear diffusion
equations via symmetry reductions, preprint school of mathematics and computer applications,
Thapar University, Patiala—147004, India (2014)

18. R.L. Lemmer, P.G.L. Leach, A classical viewpoint on quantum chaos. Arab. J. Math. Sci. 5,
1–17 (1999)

19. R.C. Merton, On the pricing of corporate data: the risk structure of interest rates. J. Financ. 29,
449–470 (1974)

20. V.V. Morozov, Classification of six-dimensional nilpotent Lie algebras. Izv. Vyssh. Uchebn.
Zavad. Mat. 5, 161–171 (1958)

21. G.M.Mubarakzyanov, On solvable Lie algebras. Izv. Vyssh. Uchebn. Zavad.Mat. 32, 114–123
(1963)

22. G.M. Mubarakzyanov, Classification of real structures of five-dimensional Lie algebras. Izv.
Vyssh. Uchebn. Zavad. Mat. 34, 99–106 (1963)

23. G.M. Mubarakzyanov, Classification of solvable six-dimensional Lie algebras with one nilpo-
tent base element. Izv. Vyssh. Uchebn. Zavad. Mat. 35, 104–116 (1963)

24. V. Naicker, K. Andriopoulos, P.G.L. Leach, Symmetry reductions of a Hamilton-Jacobi-
Bellman equation arising in financial mathematics. J. Nonlinear Math. Phys. 12, 268–283
(2005)

25. C.A. Pooe, F.M. Mahomed, S.C. Wafo, Fundamental solutions for zero-coupon bond-pricing
models. Nonlinear Dyn. 36, 69–76 (2004)

26. O.O. Vaneeva, R.O. Popovych, C. Sophocleous, Group Classification of the Fisher Equation
with Time-dependent Coefficients, ed. byO.O.Vaneeva,C. Sophocleous,R.O. Popovych, P.G.L.
Leach, V.M. Boyko, P.A. Damianou. Group Analysis of Differential Equations and Integrable
Systems VI (University of Cyprus, Lefkosia, 2013), pp. 225–236



Chapter 3
The Ricci Flow Equation and Poincaré
Conjecture

Amiya Mukherjee

Abstract The Poincaré conjecture was formulated by the French mathematician
Henri Poincaré more than hundred years ago. The conjecture states, when reformu-
lated in modern language, that any simply connected closed 3-manifold is diffeo-
morphic to the standard 3-sphere S3. This was the most famous open problem, and
its solution turned out to be extraordinarily difficult. It had eluded all attempts at
solution for more than hundred years. During 2002 and 2003, Grigoriy Perelman
posted a proof of the conjecture on the Internet in three instalments, completing a
program initiated in the 1980s by Richard Hamilton to solve a more general con-
jecture, called the geometrization conjecture of William Thurston. The key tool of
Hamilton’s program is the Ricci flow, a differential equation on the space of Rie-
mannian metrics of a 3-manifold. The equation is designed after the mathematical
model for heat flow. As heat gradually flows from hotter to cooler parts of a metallic
body until a uniform temperature is achieved throughout the body, it was expected
that in Ricci flow, regions of higher curvaturewill tend to diffuse into regions of lower
curvature to produce an equilibrium geometry for the 3-manifold for which Ricci
curvature is uniform over the entire manifold. Thus in principle, a 3-manifold when
subject to Ricci flow will produce a kind of normal form which will ultimately solve
the geometrization conjecture. Although Hamilton established a number of beau-
tiful geometric results using the Ricci flow equation, the progress in applying this
program to the conjecture eventually came to a standstill mainly because of the for-
mation of singularities, which defied solution of the problem. In his proof, Perelman
constructed a program for getting around to these obstacles. He modified the Ricci
flow used by Hamilton with “Ricci flow with surgery”. This expunges the singular
regions as they develop in a controlled way and eventually solves the geometrization
conjecture.

Keywords Poincaré conjecture · Ricci curvature
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Perelman. This research is the completion of a program initiated in the 1980s by
Richard Hamilton to solve a more general conjecture, called the geometrization con-
jecture, by William Thurston. The main tool of this program is the Ricci flow, a dif-
ferential equation on the space of Riemannian metrics. The present lecture provides
a brief description of the Ricci flow program for the solution of the geometrization
conjecture.

During 2002–2003, Perelman posted a proof of the conjecture on the Internet in
three instalments [15, 16] and [17]. The proof was unconventional, having no direct
mention of the Poincaré or the Thurston conjecture. It was extremely brief at crucial
points which could have been elaborated to many pages, and it contained many
elegant results which were irrelevant to the central argument. The proof was really a
challenge, and only a fewmathematicians had the expertise necessary to evaluate and
defend it. At least two groups of experts examined the proof for four years and found
no significant errors or gaps. It had also been scrutinized in various seminars around
the world. By 2006, detailed exposition of Perelman’s work had appeared in three
separate manuscripts [1, 13], and [14], each more than 300 pages in length. In 2007,
a committee of prominent mathematicians of the International Mathematical Union
nominated Perelman for a Fields Medal, traditionally considered the highest honour
in mathematics. But Perelman had declined the prize, even after long persuasion by
the President Sir John Ball of the Union. The reclusive mathematician said that if
everybody understood the correctness of his proof, then no other recognition was
necessary. In 2010, the Clay Mathematical Institute announced that Dr. Grigoriy
Perelman was the recipient of the First Millennium Prize for resolution of Poincaré
conjecture. Perelman also turned down the prize saying that his contribution is no
greater than that of Richard Hamilton who introduced the theory of Ricci flow for
solving the conjecture.

The conjecturewas formulated by a FrenchmathematicianHenri Poincaré in 1904
at the end of a sixty-five-page research paper [18]. Poincaré is regarded as one of the
most creative mathematicians of the nineteenth century, and he was the founder of
the subject topology. The version stated by Poincaré is equivalent to the following.

3.1 Poincaré Conjecture

Any closed simply connected 3-manifold is diffeomorphic to the standard 3-dimen-
sional sphere S3.

Note that a manifold is closed if it is compact and without boundary, and that
a manifold is simply connected if every simple closed curve in the manifold can
be deformed continuously to a point without leaving the manifold, that is, if the
fundamental group of the manifold is trivial.

The confirmation of the conjecture has important implications, not only in mathe-
matics but also in astrophysics, for example, in the formation of black hole (seeWitten
[23]). However, proving it mathematically was far from easy. To the astonishment of
most mathematicians, it turned out that the manifolds of the fourth, fifth, and higher
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dimensionsweremore tractable than those of the third. By 1980s Poincaré conjecture
had been proved in all dimensions except the third by Smale [20] and Freedman [5]
(also Donaldson [4]).

The problem may be reduced to a more tractable form. Recall that a Riemannian
metric g on a manifold M is a smooth assignment to each point x ∈ M a positive
definite inner product gx : Tx (M) × Tx (M) −→ R on the tangent space Tx (M).
The metric tensor g induces a distance function on M making it a metric space,
where the distance between a pair of points is the infimum of the length of rectifiable
curves joining them. The sectional curvature of M assigns to each 2-dimensional
plane P ⊂ Tx (M) a real number K (P). It is a smooth real-valued function on the
Grassmann bundle of 2-planes over M . A model space Mn

K is a complete simply
connected Riemannian n-manifold of constant sectional curvature K . Following
special cases are important: Mn

0 is the Euclidean n-space R
n , Mn

1 is the standard
n-sphere Sn and Mn−1 is the hyperbolic n-space H

n . Each model spaces Mn
K , for

K �= 0, can be obtained from one of the special cases Sn , H
n by scaling the metric.

Explicitly, if K > 0, Mn
K is obtained from Sn by multiplying the distance function

by 1/
√

K , and if K < 0, Mn
K is obtained from H

n by multiplying the distance
function by 1/

√−K . A classical result says that if (M, g) is a complete connected
Riemannian n-manifold of constant sectional curvature K , and M is endowed with
the distance function induced by g, then M is isometric to the quotient space Γ \Mn

K ,
where Γ is a subgroup of the group of isometries of Mn

K , naturally isomorphic to
the fundamental group of M . In fact, the universal covering M̃ is isometric to Mn

K .
Therefore the Poincaré conjecture is a consequence of the following conjecture.

3.2 Positive Scalar Curvature Conjecture

Any closed simply connected 3-manifold admits a Riemannian metric of strictly
positive constant sectional curvature.

Again, the last conjecture is a particular case of the geometrization conjecture of
William Thurston. Note that a Riemannian manifold is homogeneous if the group of
isometries acts transitively on themanifold. A complete Riemannianmanifold M is a
geometric structure modelled on a given homogeneous manifold if every point of M
has a neighbourhood isometric to an open set of the homogeneous manifold. Then M
may be described as the quotient Γ \G/H , where G is the isometry group of the uni-
versal covering M̃ , andΓ and H are discrete and compact subgroups of the Lie group
G, respectively. In 1982, Thurston established that there are only eight such simply
connected geometries G/H in dimension 3 which admit compact quotients. Five of
these geometries are R

3, S3, H
3, S2 × R, and H

2 × R. The remaining three are (1)
nontrivial S1 bundle over the torus T 2 (Nil geometry), (2) nontrivial T 2 bundle over

S1 (Sol geometry), and (3) nontrivial S1 bundle over a surface of genus > 1 (S̃L2R

geometry) (good references are [19] and [22]). Thurston’s geometrization conjecture
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is a far-reaching generalization of the Poincaré conjecture. A simple minded version
of the conjecture says that the above eight geometries are the building blocks of any
3-manifold.

3.3 Geometrization Conjecture

Any closed orientable 3-manifold can be canonically cut along embedded 2-spheres
and 2-tori so as to decompose into the above eight geometric pieces.

If this is confirmed, the Poincaré conjecture would be too. Thurston proved his
conjecture in many important cases, the most celebrated one being for a Haken
manifold, i.e. for a manifold which contains an incompressible surface of genus ≥ 1
[21].

In 1982, Hamilton wrote a paper [6], in which he crafted a well-developed pro-
gram in the hope of resolving the Thurston conjecture. His strategy was to take an
arbitrary 3-manifold M with a Riemannian metric g0 and to deform g0 in the space
of Riemannian metrics on M by some regularizing process to a uniform metric with
strictly positive sectional curvature. To guide the deformation, Hamilton [6] intro-
duced a geometric evolution equation for metrics designed after the heat equation,
which is themathematicalmodel for heat flow, and named it Ricci flow equation, after
an early geometer Gregorio Ricci-Curbastro (1853–1925). Hamilton was motivated
by the harmonic heat flow introduced by Eells and Sampson in 1964.

A one-parameter family g(t) of Riemannian metrics on M is called a Ricci-flow if

∂g

∂t
= −2Ricg(t).

Here Ricg(t) is the Ricci curvature of the metric g(t), which is, like the metric itself,
a symmetric bilinear form on each tangent space Tx (M). Roughly speaking, the
Ricci curvature is a measure of volume distortion, that is, it measures the degree to
which 3-dimensional volumes in coordinate neighbourhoods of M differ from the
volumes of corresponding neighbourhoods inR

3. In dimension 3, the Ricci curvature
completely determines the local geometry of themetric g on M . Under the Ricci flow,
the Ricci curvature spreads around M . As heat gradually flows from hotter to cooler
parts of a metallic body until the body reaches an equilibrium constant temperature,
it was the intuition of Hamilton that in Ricci flow, regions of higher curvature will
tend to diffuse into regions of lower curvature to produce an equilibrium geometry
for M for which Ricci curvature is constant. Note that if the Ricci curvature is
constant, i.e. Ricg = l · g for some l ∈ R (and in this case the metric g is called
Einstein metric), then the sectional curvature is also constant. However, there is
one significant difference between the two situations. The Ricci flow equation is
nonlinear, unlike the heat equation which is linear. The equation involves a conflict
between the diffusion (or linear) term, which tends to disperse the concentration of
curvature uniformly on M , and the reaction (or nonlinear) term, which tends to build
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up the concentration of curvature. If the nonlinearity dominates, the curvature may
explode to +∞ developing singularity in finite time. The fact is that for any smooth
initial metric on a compact M there is a maximal time interval [0, T ) on which a
unique smooth solution (M, g(t)) of the Ricci flow exists, where either T = +∞ or
else the sectional curvature is unbounded as t → T . In this case, the solution is said
to become singular at time T (and T is called a singular time), because the solution
cannot be extended further beyond T .

The most striking result of Hamilton [6] is the following theorem, which is the
first step on way to the Poincaré conjecture, via the positive sectional curvature
conjecture.

3.4 Positive Ricci Curvature Theorem

If a connected closed 3-manifold M admits a Riemannian metric of strictly positive
Ricci curvature, then M also admits a Riemannian metric of constant strictly positive
sectional curvature.

To get the proof of the theorem, one runs Ricci flow, starting with an initial metric
g(0) with positive Ricci curvature. This will cause the manifold shrink to a point at
a singular time T , getting rounder and rounder as it shrinks. As t approaches T , if
one continually rescales the flow so as to have constant volume, then the rescaled
sectional curvatures become closer and closer to being a constant. Finally, one obtains
in the limit a Riemannian metric on M with constant positive sectional curvature.

In general, the Ricci flow may behave wildly outside the class of positive Ricci
curvatures. Also, the flow can go singular before it can shrink to a point. An example
of this type singularity is the standard neckpinch, in which a cross-section {0} × S2

in a topological neck (−1, 1)× S2 ⊂ M shrinks to a point in a finite time. In the case
of neckpinch singularity, Hamilton’s idea was to perform surgery on the neckpinch.
The operation of surgery consists of removing a neighbourhood (−ε, ε) × S2 of the
shrinking 2-sphere and glueing 3-dimensional balls onto the resulting boundary 2-
spheres {−ε}×S2 and {−ε}×S2. The surgery operation changes the topology and the
geometry of the manifold, but they are controlled, because the original manifold can
be recovered from the ensuingmanifolds by connected sums (recall that the connected
sumof twomanifolds is obtained by removing a small 3-ball from each summand and
then glueing the boundaries together). One then lets the ensuing manifolds evolve
by the Ricci flow again. If one encounters another neckpinch, then one performs a
new surgery, lets the new manifolds evolve, and so it goes.

It follows that if all the singularities were actually caused by neckpinches, then
the Thurston conjecture would have been proved following the above method of
Hamilton. Thus the major steps in the proof of the Thurston conjecture involved
examining what sort of singularities develop when a manifold undergoes the Ricci
flow, determining whether this surgery process can be completed, and wondering
whether the surgery might be needed to be repeated infinitely many times. These
problems were completely solved by Perelman, as we shall glimpse in a moment
little later.
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Over the years, Hamilton and others obtained profound results about Ricci flow.
Some of these results are the Hamilton-DeTurek work on the short-time existence
and uniqueness of Ricci flow solution [3, 6], Hamilton’s maximal principle for Ricci
flow solution [7], the Hamilton-Chow work on Ricci flow on surfaces [2, 8], Hamil-
ton’s work onHarnack inequality for Ricci flow solutions with nonnegative curvature
operator [9], Hamilton’s compactness theorem for Ricci flow solutions [10] and the
Hamilton-Ivey curvature pinching estimate for three-dimensional Ricci flow solu-
tions [11, 12]. Another landmark result of Hamilton is the following theorem.

3.5 Normalized Flow Theorem

If a volume normalized Ricci flow (which is a variant of the Ricci flow in which
the volume remains constant) on a closed connected orientable 3-manifold M has a
smooth solution that exists for all positive time, then the geometrization conjecture
holds for M .

In spite of these great deal of pioneering research on Ricci flow, Hamilton could
not tame the singularities. For example, he encountered a troublesome possibility
that might occur in a blowup limit as an ancient solution R × (cigar soliton). Here
an ancient solution is a solution that exists on a maximal time interval (−∞, T ),
T < ∞ and a cigar (the terminology is due to Hamilton) is a complete Riemannian
surface (R2, gΣ), where gΣ is a Kähler metric gΣ = dz · dz/(1+ |z|2) on C ≈ R

2.
This surface is also known in the physics literature as Witten’s black hole [23]. As
r = |z| → ∞, the cigar metric gΣ becomes asymptotic to a cylinder of radius 1. This
particular solution is undesirable, because there might not be 2-spheres along which
to do surgery, and it would be impossible to achieve uniform geometry. Hamilton
conjectured in [11, §26] that this type of solution could be avoided by means of a
suitable generalization of his “Little Loop Lemma” [11, §15].

In his paper [15], Perelman realized that in addition to the properties that Hamil-
ton had established there was one more crucial integral quantity that Hamilton had
not considered. This quantity is a functional W : M −→ R, M being the space of
Riemannian metrics on M , and Perelman obtained this by enhancing the Einstein-
Hilbert functional

∫
M R(g), where R(g) is the scalar curvature of g, the trace of

the Ricci curvature Ricg , so that the gradient of W is the Ricci flow. By analogy
with statistical mechanics (the mathematical model for the laws of thermodynam-
ics), Perelman called the functional W “entropy”. The entropy always increases
along the Ricci flow. Using this concept, and another monotonic quantity he called
“reduced volume”, which is closely related to an eigenvalue of a certain “elliptic
equation”, Perelman proved his first ground breaking result, the No Local Collaps-
ing Theorem [15].
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3.6 No Local Collapsing Theorem

Let M be a closed n-manifold. If (M, g(·)) is a given Ricci flow solution that exists
on a time interval [0, T ), T < ∞, then for any ρ > 0, there is a number κ > 0 with
the following property. Suppose that r ∈ (0, ρ) and let Bt (x, r) be a metric r-ball in
a time-t slice. If the sectional curvatures on Bt (x, r) are bounded in absolute value
by 1/r2, then the volume of Bt (x, r) is bounded below by κrn .

This theorem rules out the possibility of R × (cigar soliton) solution that had
worried Hamilton.

The main achievement of the first paper [15] of Perelman is the following. For the
classification of the singularities, Hamilton’s techniquewas to rescale the flow, obtain
Ricci flowswith bounded curvatures, and then try to take limit of these rescaled flows.
Then one would classify the limits and obtain a description of g(t) near points of
high curvature. An important problem in this strategy is the existence of these limits,
and this involved controlling the injective radius of the metric. Perelman used his No
Local Theorem to give a complete classification of these limits, called κ-solutions.
Finally he used his Canonical Neighbourhood Theorem (Theorem 12.1) to show that
the points with large curvature have neighbourhoods closed to κ-solutions, thus with
canonical geometry. Perelman concluded his first paper by proving the following
theorem.

3.7 Smooth Flow Theorem

If the Ricci flow on a closed orientable 3-manifold has a smooth solution that exists
for all positive time, then M satisfies the geometrization conjecture.

In the second paper [16], Perelman constructed a surgery algorithm to deal with
Ricci flow with singularities. Consider a 3-dimensional Ricci flow (M, g(t)), 0 ≤
t < T , going singular at time T < ∞, Perelman extended the flow past time T
by constructing a Ricci flow with surgery. He deduced that at the singular time T
there is a limiting metric (possibly not complete) defined on an open submanifold
Ω ⊂ M . The ends of Ω are diffeomorphic to S2 ×[0, 1) with metrics at any point as
the product metric of a rescaled version of a round metric on S2 with the Euclidean
metric on the interval [0, 1] and with curvature tending to +∞ as one approaches
the ends of these tubes. The surgery consists of cutting off the ends of these tubes
along one of the 2-spheres in the product structure where the curvature explodes and
sewing in 3-balls to construct a new compact Riemannian 3-manifold (M ′, g(T )).
This is called time slice of the Ricci flowwith surgery at time T . One then restarts the
Ricci flow at time T with (M ′, g(T )) as the initial metric. This flow will go singular
at some time T ′ > T . The point is that as we cross a singular time both the topology
and the geometry of the time-slice change, but in a controlled way.

Perelman showed in [16] that starting with any compact Riemannian 3-manifold,
this process can be repeated forever to construct a Ricci flow with surgery defined
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for all positive times. Moreover, the singular times are discrete, and the topology
of the manifold before surgery can be deduced from the topology of the manifold
after surgery. In particular, it can be shown from the description of the topological
change as one crosses a singular time, that if the manifold after a surgery satisfies
the geometrization conjecture, then the manifold just before surgery also satisfies the
geometrization conjecture. Then arguing by induction, one sees that if any time-slice
of the Ricci flow with surgery satisfies the geometrization conjecture, then so does
the initial manifold.

The proof of the Poincaré conjecture is now straightforward. Start with a closed
simply connected 3-manifold M with a Riemannian metric g(0). Construct a Ricci
flow with surgery defined for all time with (M, g(0)) as the 0 time-slice. As noted
above, if any time-slice of this Ricci flow satisfies the geometrization conjecture, then
so does M . So the proof of the Poincaré conjecture may be completed by showing
that the time-slices of this Ricci flow with surgery at all sufficiently large times are
empty, that is, the Ricci flow with surgery becomes extinct at some finite time. This
was done in [17].
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Chapter 4
An Introduction to Data Assimilation

Amit Apte

Abstract This talk will introduce the audience to the main features of the problem
of data assimilation, give some of the mathematical formulations of this problem and
present a specific example of application of these ideas in the context of Burgers’
equation.

Keywords Data Assimilation · Burgers’ equation · Kalman filter

The availability of ever increasing amounts of observational data in most fields of
sciences, in particular in earth sciences, and the exponentially increasing computing
resources have together lead to completely new approaches to resolving many of the
questions in these sciences, and indeed to formulation of new questions that could
not be asked or answered without the use of these data or the computations. In the
context of earth sciences, the temporal as well as spatial variability is an important
and essential feature of data about the oceans and the atmosphere, capturing the
inherent dynamical, multiscale, chaotic nature of the systems being observed. This
has led to development of mathematical methods that blend such data with compu-
tational models of the atmospheric and oceanic dynamics—in a process called data
assimilation—with the aim of providing accurate state estimates and uncertainties
associated with these estimates.

This expository talk (and this short article) aims to introduce the audience (and
the reader) to the main ideas behind the problem of data assimilation, specifically
in the context of earth sciences. I will begin by giving a brief, but not a complete
or exhaustive, historical overview of the problem of numerical weather prediction,
mainly to emphasise the necessity for data assimilation. This discussion will lead
to a definition of this problem. In Sect. 4.2, I will introduce the “least squares” or
variational approach, relating it to the Kalman filter and the full-fledged Bayesian
approach. In the final section, I will introduce the Burgers’ equation for which I will
present some results and ongoing research on variational and Bayesian approaches
to data assimilation.
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4.1 Data Assimilation in the Context of Earth Sciences

In order to highlight the need for incorporating observational data into numerical
models of the atmosphere and the oceans, I will give a brief historical account of
numerical weather prediction, using it to drive towards a definition of data assimila-
tion that I findmost convenient to keep inmind. Extensive descriptions of this history
are available from various sources such as [12, 14–16] and the account below is far
from complete, serving only to set the context for data assimilation.

It was Vilhelm Bjerknes who was the first one to develop, in 1904, the idea of
predicting weather using the hydrodynamic and thermodynamic equations for the
atmosphere. Note that this was around 90 years after Laplace discussed [13], the
concept of what is now commonly known as Laplace’s deamon: “Given for one
instant an intelligence which could comprehend all the forces by which nature is
animated and the respective situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it would embrace in the same
formula the movements of the greatest bodies of the universe and those of the lightest
atom; for it, nothing would be uncertain and the future, as the past, would be present
to its eyes”. This is one of the first but still most complete statements of determinism,
ironically in an essay on probabilities! Bjerknes’ program was also formulated (i)
around 80–60 years after the formulation of Navier–Stokes equations for viscous
flow and the equations of thermodynamics, (ii) around the same time as Poincaré’s
explorations of chaotic motion in celestial dynamics, but (iii) at least 60 years before
the implications of chaos came to be appreciated widely by the scientific community.

The first actual attempt at executing Bjerknes’ idea was made by Lewis Fry
Richardson about a decade later. He basically attempted to solve the partial dif-
ferential equations for the atmosphere by dividing Europe into 200Km by 200 km
blocks. The actual calculation for a six-hour forecast took him weeks of calculation
by hand! And at the end of it all, his prediction for the change in pressure in six-hour
period was larger by around 100 times than the actually observed change in pressure.
Some of Richardson’s comments that are of relevance to us were as follows [17]:

(1) “It is claimed that the above [predictions] form a fairly correct deduction from
a somewhat unnatural initial distribution”—I would interpret this as pointing out the
need for accurate and smooth initial condition for a good weather forecast.

(2) “... 64,000 computers would be needed to race the weather for the whole
globe. ... Imagine a large hall like a theatre ... The walls are painted to form a map
of the globe. ... A myriad computers are at work upon the weather of the part of
the map where each sits ... The work is coordinated by an official of higher rank
...”—essentially he was foreseeing the use of supercomputers and parallelization of
computational tasks in attempting to solve this problem.

There is also another reason for the failure of Richardson’s attempt: the sparsity
and non-smoothness of the observational data available to him.When his experiment
was reproduced [15]with smoothed version of the same data, the predictionwas quite
accurate. In the context of data assimilation, the so-called “background” or the prior
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that we will discuss in detail later in Sect. 4.2 provides a systematic way of achieving
this “smoothing”.

Over decades, several new advances have been made in addressing the problem
of weather prediction. The most notable of these are: (i) the realisation by Charney
and others of the importance of quasi-geostrophy and the subsequent development
of models based on these ideas; (ii) the use of electronic computers, pioneered by
von Neumann in the 1950s, leading to ever increasing resolution for these models;
(iii) improved observations, including explosion in the number of observations from
satellites; and last but the most relevant to us (iv) improved mathematical methods
for incorporating these observations into the models—this is the domain of data
assimilation.

One of the fundamental characteristics of the atmospheric and oceanic dynamics
is its chaotic nature, which is manifested in the sensitivity to the initial conditions and
puts severe restrictions on the predictability of these systems. Chaotic systems have
been studies extensively for a little over a hundred years, beginning with Poincaré’s
work on Hamiltonian chaos, and continuing with the work of Cartwright and Little-
wood, Ed Lorenz’s famous study of the “Lorenz system” and many, many others.
One important implication of the presence of chaotic solutions is that for predict-
ing the state of systems such as the atmosphere, it is necessary to continually use
observational data in order to “correct” the model state and bring it closer to reality.

4.1.1 Incomplete Models; Inaccurate, Insufficient Data

Models of the atmosphere and the oceans, or I would argue, of any physical system
in general, are necessarily incomplete, in the sense that they do not represent all the
physical processes in the system, even though the models are based on sound and
well-tested physical theories of nature. For example, it is well-known that processes
associated with convection and cloud formation are not captured well bymodels, and
even with the highest foreseeable resolution, there will be features of these processes
that cannot be captured. Arguably, such inadequacies also apply to models of even
“simple, low-dimensional” chaotic systems such as nonlinear electronic circuits, but
I will not delve into this point further.

Additionally, even if we have an atmospheric model which is “perfect” (without
precisely defining what I mean by “perfect”), if we do not use observational data,
we will only be able to make qualitative and quantitative statements about “generic”
states on the chaotic attractor of the model, or statistical statements about averages
of quantities. Without observational data, we will be unable to make predictions of
states of the atmosphere, or compare the time series of a specific variable such as
temperature with observational time series. In this sense, data provide a crucial link
to reality. More specifically, we hope that the data will help us make statements about
one specific trajectory of the atmosphere; out of the infinitely many trajectories that
comprise the chaotic attractor of the system. It is important to keep in mind that it is
entirely unclearwhether a single trajectory, or even a large ensemble of trajectories, of
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an incomplete and imperfect model of a chaotic system can provide useful predictive
information about the real state of such a system, but again I will not dwell on this
point further.

The problem of how the data can be used quantitatively is far from trivial since the
data themselves are (i) inaccurate, in the sense that they contain inherentmeasurement
errors and noise, and (ii) insufficient, in the sense that they do not completely specify
the state of the system by themselves. For example, most atmospheric and oceanic
data are not uniformlydistributed in space or time and are quite sparse compared to the
resolution of the numerical models being used. Additionally, there are inaccuracies in
the relation of these observational datawith themodel of the system,which Iwill refer
to as imperfections in the observational model. Thus the problem of determining the
state of the atmosphere from the data alone is an under-determined, ill-posed inverse
problem.

4.1.2 A Definition of Data Assimilation

The above discussion has hopefully made it clear that models and data must be
brought together in order to attack the problems such as weather prediction. This is
precisely the main idea behind data assimilation. Thus we could define data assimi-
lation to be the art of

(1) optimally incorporating
(2) partial and noisy observational data of a
(3) chaotic and thus necessarily nonlinear (and most often, complex, multiscale)

dynamical system, with an
(4) imperfect model of the system dynamics and of the observations, in order to

obtain
(5) predictions of and the associated uncertainty for the state of the system, repeti-

tively in time.

A caricature of this definition is captured in a schematic shown in Fig. 4.1. To
recap, a few of the characteristics of data assimilation problem are as follows:

(1) We have good physical theories to describe the systems but the models based on
these theories are incomplete and imperfect.

(2) The systems are described by nonlinear, chaotic, but usually deterministic
dynamical models.

(3) The dynamics contain interactions across multiple temporal and spatial scales
and occur on very high or infinite dimensional state space.

(4) The observational data of the system are

(a) very high dimensional,
(b) noisy and inaccurate,
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Fig. 4.1 A schematic representation of data assimilation process

(c) partial and usually sparse, and
(d) discrete in time.

I will now discuss some of the mathematical formulations that are used frequently
to resolve this problem. It will become clear that each of these formulations takes
into account only some, but not all, of the above characteristics. Thus formulating
an overarching mathematical framework for data assimilation that addresses all the
features above is a formidable and interesting modelling problem.

4.2 Least Squares Approach, Kalman Filter,
and the Bayesian Formulation

Consider the problem of estimating n quantities x = (x1 . . . , xn) ∈ R
n usingm noisy

observations y = (y1, . . . , ym) ∈ R
m , which are related to the unknowns x through

observation function (or matrix, in case of linear relation): h (or H ):Rn → R
m . That

is, in the absence of noise, the observations ŷ of unknowns x would be y = h(x) (or
= H x). We assume that m < n (and typically m � n). Thus even in the linear case,
H will not be an invertible matrix.

For example, x could be the velocity field on a model grid whereas y could be
the velocity measurement at locations which may or may not be on the same grid.
In this case, H will be the matrix for projection or interpolation between model grid
and measurement grid.

The “least squares” formulation of this problem is to find the minimum xa of the
following cost function:

J̃ (x) = 1

2
‖y − H x‖2R, (4.1)

where the norm ‖z‖2R = zT R−1z simply gives different weights to different
observations. Of course, since H is not invertible, we immediately see that
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∇ J̃ = −H T R−1(y − H xa) = 0 cannot be solved for xa, we need to “regularise”
this problem. This can be achieved by, e.g. modifying the cost function to

J (x) = J̃ (x) + 1

2
‖x − xb‖2Pb , (4.2)

where xb is some “background” (or a priori) information about x , and the norm
‖·‖Pb again gives different weights to different components of this background state
xb. This cost function is minimised by solving ∇ J = (H T R−1H + (Pb)−1)xa −
(H T R−1y + (Pb)−1xb) = 0 and the solution is given by

xa = xb + [H T R−1H + (Pb)−1]−1H T R−1(y − H xb). (4.3)

Here I := (y−H xb) is called the innovation vector and the prefactor of innovation

K = [H T R−1H + (Pb)−1]−1H T R−1 = Pb H T (H Pb H T + R)−1 (4.4)

is called the “Kalman gain matrix”. Equation (4.3) may also be rewritten as xa =
xb + K (y − H xb) to make it clear the analysis xa is a linear combination of the
background xb and the innovation I. (Note that the final equality in Eq. (4.4) is
obtained using the Sherman–Morrison–Woodbury identity.)

This calculation can be extended to the case when the unknown x is the initial
condition of a dynamical system, whereas the observations are spread over time. We
will now see that such a setup leads to the Kalman filter.

4.2.1 Observations over Time—Kalman Filter

Consider a linear dynamical model, xi+1 = m(xi ) = Mxi on R
n . The initial con-

dition x+
0 is unknown and we wish to determine it based on some observations

yi = hi (x+
i ) (plus noise) for i = 1, . . . , N . Here x+

i is the trajectory starting with
the initial condition x+

0 , i.e. x+
i = Mi x+

0 . In parallel with our approach above, we
can now consider a cost function

J (x0) =
N∑

i=1

1

2
‖yi − Hi Mi x0‖2Ri

+ 1

2
‖x0 − xb‖2Pb , (4.5)

where the last term is the “background” term that regularises the minimisation prob-
lem. This is a quadratic function of x0 and thus has a unique minimum which can be
obtained by setting ∇x0 J = 0. But we will now consider the following interactive
way of calculating this minimum, defined by a two stage process:

(1) The “forecast” step gives the dynamical evolution of the state from step k − 1
to next step k:
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x f
k = Mxa

k−1 and P f
k = M Pa

k−1MT . (4.6)

(2) The “update” step gives the “analysis” xa
k as a linear combination of the

observation yk at step k with the forecast x f
k :

xa
k = x f

k + Kk Ik and Pa
k = (I − Kk Hk)P f

k , (4.7)

where Ik = yk − Hk x f
k is the innovation and Kk = P f

k H T
k (Hk P f

k H T
k + Rk)

−1 is
the Kalman gain. This iteration is begun with xa

0 = xb and Pa
0 = Pb at k = 1 and

continues until k = N . At the end of these N steps, we get the final “analysis” given
by (xa

N ; Pa
N ). This two-step process is known as the Kalman filter.

Themain relation of the result of this two-step process to the least squares problem
of minimization of the cost function is as follows: suppose xm

0 is the minimum of
the cost function J (x0) from Eq. (4.5), and Pm

0 be its Hessian. Then the dynamical
evolution of this minimum and the Hessian from step 0 to step N given by the
following equations,

xm
N = M N xm

0 and Pm
N = M N Pm

0 (M N )T (4.8)

is exactly the sameas the analysis of theKalmanfilter: xm
N = xa

N and Pm
N = Pa

N .Thus,
Kalman filter provides a way of solving the minimization problem. It is important to
note that this equivalence of Kalman filter and the variational approach holds only
in the case when the dynamical model is linear and the observations depend linearly
on the state.

In practical problems in earth sciences, there are twomain reasonswhy theKalman
filter is not usable. First, the size of the system n is quite large, usually n = 106 or
more. In these cases, it is impossible to solve the above equations for Kalman filter,
since they involve the n × n covariance matrices P f

k which are impossible to store
and manipulate for such large system sizes. The second equally serious reason is that
these systems are nonlinear and chaotic as we saw in the previous section. Thus the
above equations need to be modified appropriately.

I will only mention the two main modifications that address these two issues
separately. The extended Kalman filter (EKF) is designed to work with nonlinear
systems which are close to being linear. The ensemble Kalman filter (EnKF) is a set
of methods designed to work with an ensemble of states, but without the explicit
construction of the covariance matrices P f

k . The EnKF and the variational methods
are two of the most commonly used methods in the earth sciences, but there are
several theoretical and practical problems that are still being investigated.

Before moving on to describing the variational and Bayesian approaches to data
assimilation in the context of Burgers’ equation, I will very briefly introduce the
Bayesian framework in the next paragraph.
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4.2.2 Bayesian Formulation

Let us consider a deterministic, discrete time dynamical model for x ∈ R
n :

xn+1 = m(xn) or equivalently xn = Φ(x0; n). (4.9)

The initial condition x0 is the unknown, but we will assume that we know a prior
distribution for it, given by a density ζ(x0). We will consider the case when noisy
observations yk at time k depend on the state xk at that time and contain additive
noise ηk :

yk = h(xk) + ηk = h(Φ(x0, k)) + ηk, k = 1, . . . , N . (4.10)

I will only talk about the so-called smoothing problem which is to assimilate all
these observations to get an estimate of the initial condition x0. For this purpose, the
observations are concatenated:

y = {yk}y
k=1 = H(x0) + η, (4.11)

where
H(x0) = {h(Φ(x0, k))}N

k=1 and η = {ηk}N
k=1. (4.12)

We will assume that the noise η has a density. Then this density indeed gives
the conditional probability of the observation y given the initial condition x0, i.e.
p(y|x0). For example, if y ∈ Rm and η ∼ N (0,Σ) (Gaussian observational errors),
then

p(y|x0) ∝ exp
(
− Ĵ (x0, y)

)
, where Ĵ (x0, y) = 1

2
‖y − H(x0)‖2Σ. (4.13)

But we are really interested in the probability density for the initial condition x0.
This will be obtained as the posterior probability density as given by the Bayes’ rule:

p(x0|y) = p(y|x0)p(x0)

p(y)
, where p(y) =

∫
p(y|x0)p(x0)dx0 is a constant.

(4.14)
In the context of data assimilation,

p(x0|y) ∝ ζ(x0) exp
(
− Ĵ (x0, y)

)
. (4.15)

For uncorrelated erros ηk (Σ is block diagonal with blocks Rk), this becomes

p(x0|y) ∝ ζ(x0)
K∏

k=1

exp

(
−1

2
‖yk − h(Φ(x0, k))‖2Rk

)
. (4.16)
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Now, we see that if the prior is Gaussian, e.g. ζ(x0) ∝ exp
(
−‖x0 − xb

0‖2Pb/2
)

,

then the cost function introduced in Eq. (4.5) is exactly the logarithm of this density,
if the dynamics and the observation function are both linear: m(x) = Mx and
h(x) = H x . In this case, the minimum of the cost function of Eq. (4.5) is the
maximum a posteriori estimate. Thus we see a close relation between the Bayesian
framework, the least squares or the variational approach, and the Kalman filter.

All of thematerial in this section is discussed extensively inmany existing reviews
on various aspects of these problems. A fairly incomplete list of references is [3, 5,
6, 8, 11, 12] and references therein. In particular, the last two reference contain
an excellent introduction to the relation of estimation theory to data assimilation,
explaining in detail the various relations between the mean of the posterior distrib-
ution (conditional mean), the minimum variance estimator which in the linear case
leads to the best unbiased linear estimator (BLUE) and the Kalman filter. There
are several other topics that have a direct bearing on the data assimilation problem:
stability and convergence of nonlinear filters and particle filtering, observability of
nonlinear dynamical systems, probability measures and Bayes’ theorem on infinite
dimensional spaces that arise from partial differential equation models, etc. But a
short introduction such as this certainly fails to provide a reasonable glimpse to these
important relations, many of which are currently active topics of research.

Having introduced some of the main approaches to the data assimilation problem
and their interrelations, I will now talk about a specific application in the case of
Burgers’ equation.

4.3 Data Assimilation for Burgers’ Equation

We will work with the viscous Burgers’ equation

∂v

∂t
+ v

∂v

∂z
= ν

∂2v

∂z2
with v(t = 0, z) = u(z) and v(t, 0) = 0 = v(t, 1) (4.17)

on the domain (z, t) ∈ Ω × (0, T ) with Ω = (0, 1). This is a nonlinear evolution
equation which has unique solution: for u ∈ H1

0 (Ω), there exist a unique v ∈
L2(0, T ; H1

0 (Ω)) ∩ C(0, T ; H1
0 (Ω)) and I will indicate this map by v(t) = Φ(u, t).

If fact, using Cole-Hopf transform, the exact solution can be written down, though I
will not explicitly use this fact in this lecture.

There are several motivations for studying data assimilation problems for the
Burgers’ equation model. The dynamical models in earth sciences are based on the
partial differential equations (PDE) of fluid dynamics of the air and water. These
can be considered as infinite dimensional dynamical systems, of which the Burgers’
equation is an example. It is also a nonlinear PDE whose solutions can be written
analytically. Even though Burgers’ equation does not exhibit the dynamical com-
plexity of the atmospheric or oceanic flows, it acts as a toy model that is amenable
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to mathematical analysis whose qualitative features are still relevant to the more
complicated scenarios in realistic applications.

For data assimilation problem in the context of Burgers’ equation, I will now
describe some of the known results as well as some of the ongoing research for three
types of noisy observations. In all these cases, the problem will be determining the
initial condition u given some observations, written as y = H(u)+ η, with H being
the observation operator. These three types of problems are as follows.

4.3.1 Observations Continuous in Space at a Specific Time

In this case, we will observe v for all z ∈ Ω at time T : thus H(u) = Φ(u; T ) and η is
a Gaussian measure on the Hilbert space L2(Ω) supported on some appropriate sub-
space, e.g. H1

0 (Ω). Some of the questions of interest in this case are as follows. Sup-
pose we consider a sequence of problems with observational noise ηn = (1/n)η0—
we have more accurate measurements as n increases. In the limit of n → ∞, this
reduces to a classical inverse problem of determining initial condition u from the
solution at time T .The study of qualitative and quantitative behaviour of the posterior
distribution for the initial condition u which is conditioned on the observations y, and
in particular the limit n → ∞, are some of the open problems, known as the problem
of “posterior consistency” in the statistical literature. Some related results in context
of linear models such as the heat equations and other related results are contained in,
for example, [1, 2, 9, 10, 19]. A general overview of Bayesian approach to inverse
problems, including extensive discussion of data assimilation is contained in [18].

4.3.2 Observations Continuous in Time

Here, we observe some function of v at all times t ∈ (0, T ). Thus at any given time,
we assume a continuous map C : H1

0 (Ω) → Z into some Hilbert space Z (the
observation space). Thus, if Zd(t) are the actual observations, then in terms of this
map, the cost function for a variational formulation can be written as

J (u) = 1

2

∫ T

0
‖C(Φ(u, t)) − Zd(t)‖2

Z
dt + 1

2
‖u − ub‖2Pb . (4.18)

The question of uniqueness of minimum of this cost function has been studied for
the cases of small enough observational time horizon T and for large time horizon T
in [7, 20], respectively. The probabilistic formulation of this problem and the study
of the corresponding posterior distribution is a possible direction for future research.
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4.3.3 Observations Which Are Discrete in Space and Time

For this case, we take the observations of v at discrete space locations {zi } for i =
1, . . . , K at discrete times {t j } for j = 1, . . . , N : Here, H(u) = {Φ(u, t j )(zi )}i=K , j=N

i=1, j=1

and η is a probability distribution onRN K .We do not yet have any theoretical results
either about the minimum of a cost function in the variational formulation or about
the behaviour of the posterior density in the Bayesian framework, e.g. in the case
when the observational noise decreases. Some of the numerical results, possibly
indicating presence of multiple minima, are presented in [4].

4.4 Concluding Remarks

The main aim of this lecture was to provide a short introduction to the topic of data
assimilation, beginningwith attempts to predict weather phenomena using numerical
solutions of relevant partial differential equations. I discussed some of the most
common approaches including variational methods, the variants of Kalman filter
and the Bayesian framework providing interrelations between these. I also discussed
some of these in the context of Burgers’ equation which provides an example of a
nonlinear partial differential equations where these techniques can be studies in great
detail. All along, I tried to point out some of the open questions, emphasising the
interdisciplinary nature of data assimilation research.
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Chapter 5
Bose Einstein Condensation, Geometry
of Local Scale Invariance, and Turbulence

Siddhartha Sen

Abstract Turbulent excitations have been observed in superfluid liquid helium,
a Bose Einstein system, that obeys the Kolmogoroc 5

3 scaling law for its energy
spectrum. In recent joint work with Kouskik Ray of IACSwe show how by regarding
superfluid helium as a Bose Einstein quantum field theory with local 3 dimensional
scale invariance leads to the Kolmogorov scaling law observed. In order to get local 3
dimensional scale invariancegeometricalmethods are needed,while in order to derive
the observed turbulence scaling law the Bose Einstein condensation description of
superfluid helium and Zakharov’s weak wave turbulence method are used.

Keywords Bose Einstein condensate · Quasi-particle spectrum · Turbulence ·
Kolmogorov’s scaling law

5.1 Introduction

I am happy to be participate in this special conference organised to celebrate the
centenary of the Calcutta University, Department of Applied Mathematics and the
150th birth anniversary of the great patron of higher education and mathematics,
Ashutosh Mukherjee. It is also an occasion where the great scientists S.N. Bose,
M.N. Saha and N.R. Sen associated with the department are remembered. The work
that I will describe today [1] uses the idea of Bose Einstein condensation and differ-
ential geometry, both topics of interest to Professor S.N. Bose. It also uses ideas of
hydrodynamics, a topic of interest to Professor N.R. Sen.

Almost immediately after receiving Bose’s paper on a new derivation of Planck’s
law of radiationwhere the idea of Bose statistics was first introduced Einstein applied
these ideas to explain the then puzzling temperature dependence of the specific heat
of molecules. Soon afterwards Einstein went on to suggest that the new statistics of
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Bose could also explain the low temperature superfluidity of helium He4. Einstein’s
idea was that Bose statistics allowed a large number of heliummolecules to condense
to their ground state which would lead to the novel properties of liquid helium at low
temperature that were observed. This idea that a large assembly of molecules can all
settling down to the ground state of the system is called Bose Einstein condensation.
It holds for integer spin molecules such as He4 for which Bose statistics hold. Spin
half objects, such as electrons, do not have this property however even for electrons
the idea Of Bose Einstein condensation has been used to explain low temperature
superconductivity by an ingenious method of creating zero spin objects from a pair
of spin half electrons. The electrons being the carrier of current. In a series of experi-
mental works [6] it was shown that if superfluid helium is heated filament excitations
appear. The energy spectrum E(k), where k is the wavenumber, of these filaments

obey the scaling law E(k) ≈ k
5
3 first predicted for ordinary turbulent liquid flows

by Kolmogorov. An intuitive understanding of this law can be given as follows. For
turbulent flows energy is pumped into the system at some large wavelength scale in
the form of a circulatingwave or large eddies. According to ideas of Richardson these
large eddies break up into smaller eddies and this process continues. The dissipation
of energy is supposed to happen for very small eddies. According to this picture there
is thus a rather large region of wavelength where there is no dissipation but simply a
progression of large eddies breaking up into smaller eddies. This is the Richardson
cascade picture for the structure of turbulent flow in liquids. Let us show how this
picture leads to Kolmogorov’s law.

Suppose we have an eddy of size ln , and circulating speed of vn . Then there is a
natural time scale of circulation τn ≈ ln

vn
. The energy of the eddy is εn ≈ (vn)2. A

natural rate of transfer of energy from one scale to another can be taken to be rn is

≈ (vn)2

τn
. The intuitive idea used by Kolmogorov was that rn = r0 is independent of

the length scale index n. Then

r0 ≈ (vn)2

τn
≈ (vn)3

ln

Thus (vn)2 ≈ (r0)
2
3 (ln)

2
3 . Changing to thewave number description by takingFourier

Transforms gives the Kolmogorov law. The key physically motivated input was the
scale invariance of the energy transfer function rn . A rigorous mathematical proof
establishing this simple result starting from the basic equations of hydrodynamics
remains an unsolved challenging problem.

Let us now turn to our system of interest which is, superfluid He4, regarded
as a Bose Einstein condensate and explain how such a system, described by a
Schroedinger quantum field theory, can lead to Kolmogorv’s scaling law. A quantum
field theory is a standard way used to describe an assembly of helium molecules
which also allows us to incorporate the idea of Bose Einstein condensation. As
Kolmogorv scaling observed is a three dimensional property we ask the question:
What structure is needed in order to make a free Schrodinger quantum field theory
into one that has local 3 dimensional scale invariance? We find that we need to use
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the geometrical idea of gauge invariance to construct such a theory and that these
geometrical ideas lead to the introduction of new fields and they completely fix the
nature of the interactions between the helium molecules. It is these interactions that
are responsible, as we show, for the emergence of scale invariance for the excitation
energy spectrum. They lead to Kolmogorov’s scaling law.

Thus we proceed to a construct an action for a 1 + 3-dimensional Schroedinger
field theory which is invariant under local scaling in the three spatial dimensions.
This is effected by introducing, following ideas of Weyl [2], a gauge field and a
spatial metric. The gauge fields and spatial metric have kinetic energy terms that are
also fixed by the requirement of three dimensional scale invariance. The invariance
allows a Chern Simons term in the action but forbids a Maxwell term. The locally
scale invariant action is unique in the sense that it contains all possible terms having
polynomial interaction among the Schroedinger field, the gauge field and the metric.
Moreover, gauge invariance for this system is rather novel due to the presence of the
metric.

Historically, local scale invariance, was introduced by [2] in an attempt to unify
the theories of gravitation and electromagnetism. Stipulating local scale invariance
of the theory of General Relativity in four dimensions led to the extremely novel
idea of introducing a gauge field with an additional term in the action resembling
Maxwell’s theory. Identifying this term as electromagnetism a unification of the
theories of gravitation and electromagnetism was deemed to be have been achieved
through purely geometric means. This approach was criticised, however, as being
incompatible with the observed discrete spectra of atoms [3]. The idea was thus given
up as a means to producing a unified field theory only to be revived later on with
the local scaling of lengths replaced by a local change of phase of a quantum wave
function [4]. This construction is now known as “gauge theory” although it is no
longer related to length scales. What is retained, however, is the idea of introducing
a gauge field in order to make a system invariant under a local symmetry.

In this article we construct a spatially scale invariant generalization of the
Schroedinger field theory action followingWeyl. Unlike the original approach, how-
ever, gauge variations, that is local changes of scale, thatwe consider are compensated
for by a Ricci term rather than by a Maxwell term.

Since turbulence in superfluid liquid Helium [5] exhibits Kolmogorov scaling [6]
and does not have any associated discrete spectrum it avoids Einstein’s criticism
of the idea and is thus could be system for testing Weyl’s idea. The usual theoreti-
cal approaches to describe superfluid turbulence uses the non-linear Gross-Pitaevski
(GP) equation [7, 8] where the nonlinearity present in the theory reflects the inter-
action between helium atoms in the field theory description of the system taking a
superfluid condensate into account.

When energy is injected into the system, say by heating, excitations in the form of
filaments appear. In this approach the observed filament excitations are understood
with their location given by the zeros of the GP wave function. The filament excita-
tions can also be modelled more directly with their dynamics described in analogy
with interaction of wires carrying currents obeying the Biot-Savart law [9].
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Distribution functions in superfluid turbulence are different from those arising for
classical fluids. For instance, the velocity distribution function is not Gaussian but has
a power law tail [10].Wefind that the unique locally scale invariant theory constructed
here contains the appropriate degrees of freedom for describing superfluid turbulence
namely, a condensate and the filament excitations. But our main focus here is to
show how the theory gives the Kolmogorov 5/3 law observed in a certain range of
momenta of the quasi-particle excitations of the theory. While numerical studies of
the GP equation yield similar results [11], the present analysis is completely analytic.

Let us point out that the present approach examines the consequences of the
idea of local scale invariance but does not seek to furnish a physical picture for the
emergence of Kolmogorov scaling microscopically, for instance, by vortex tangles
andKelvin-wave turbulence caused byKelvinwaves on a single vortex. It provides an
effective theory for a locally scale invariant system, superfluidity being an interesting
example.

5.2 Scale Invariant Action

In this section we construct an action invariant under spatial scaling starting from
the action for a free Schroedinger field. The gauge group is R�, the group of non-
zero reals, which is non-compact. The free Schroedinger equation, in operator form,
allows Bose-Einstein condensation and is thus an appropriate starting point for a
theory of quantum turbulence. First, the free system is made invariant under global
scaling by introducing a time-independent metric for the three spatial directions. It
is then made invariant under local scaling by introducing a gauge field.

The action of the Schroedinger field ψ in R1 × R3, with the first factor des-
ignating time, t , and the second one corresponding to the spatial coordinates
x = (x1, x2, x3) = (x, y, z) is

S (ψ, g) = i
∫

ψ�∂tψ
√

g dt d3x − 1

2m

∫
gi j∂iψ

�∂ jψ
√

g dt d3x, (5.1)

where we have introduced ametric g onR3 and ∂i denotes the derivative with respect
to xi and an asterisk designates complex conjugation. The second term of the action
is invariant under the global scaling transformation of the field ψ and the metric

ψ �−→ e−Λ/4ψ,

gi j �−→ eΛgi j , (5.2)

where Λ is a constant. Let us note that the scale invariance could not be effected
without the metric. Moreover, as mentioned before, we do not impose scale invari-
ance on the first term involving temporal derivative of the Schroedinger field.
We now promote this global scaling symmetry to a local symmetry by allowing



5 Bose Einstein Condensation, Geometry of Local Scale … 47

spatial dependence of Λ [12] and introducing a gauge field Ai and define covariant
derivatives of the field ψ and the metric g as [13]

Diψ = ∂iψ − αAiψ,

Di gkm = ∂i gkm + 4αAi gkm, (5.3)

where α is a real parameter. It appears from (5.3) that the parameter α may be
dispensed with by a redefinition of the gauge field. However, the sign of α is of
import in obtaining field configurations and will be fixed later. Then under the gauge
transformation

ψ �−→ e−Λ(x)/4ψ,

gi j �−→ eΛ(x)gi j ,

Ai �−→ Ai − 1

4α
∂iΛ(x), (5.4)

with space-dependentΛ, the covariant derivatives of the scalar fieldψ and the metric
transform as

Diψ �−→ e−Λ(x)/4Diψ,

Di g jk �−→ eΛ(x)Di g jk . (5.5)

Hence replacing the derivatives with respect to the spatial coordinates in the second
term of (5.1) by covariant derivatives we obtain the action

S (ψ, A, g) = i
∫

ψ�∂tψ
√

g dt d3x − 1

2m

∫
gi j Diψ

� D jψ
√

g dt d3x, (5.6)

which is invariant under the gauge transformations (5.4). One can add one more
gauge-invariant term to the above action involving the curvature and the gauge field
[14]. To this end let us define Christoffel symbols [13] as

Γ̃ i
jk = 1

2
gim(D j gmk + Dk gmj − Dm g jk). (5.7)

By (5.5), the Christoffel symbol is invariant under the local scaling transformations
(5.4). Then the Ricci tensor ensuing from this Christoffel symbol defined as

R̃i
jkl = ∂l Γ̃

i
jk − ∂k Γ̃

i
jl + Γ̃ i

ml Γ̃
m
jk − Γ̃ i

mk Γ̃
m
jl (5.8)

is also invariant under the gauge transformation (5.4). The resulting scalar curvature
defined as

R̃ = g jl R̃i
j il (5.9)
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then transforms as R̃ �−→ e−Λ R̃ under (5.4). Hence,

∫
|ψ |2 R̃

√
g dt d3x (5.10)

is invariant under the gauge transformation. It can be checked that no other term
involving curvature tensors or derivatives of A or their combinations can be made
gauge invariant in this fashion to yield a local polynomial action. In particular, the
term F2

i j constructed from the gaugefield Ai is not scale invariant in three dimensions,
nor can it be made gauge invariant in a polynomial action.

The Ricci scalar R̃ defined above can be related to the Ricci scalar corresponding
to the metric g by expanding Γ̃ I

jk using (5.3) [13], resulting into

R̃ = R + 8α∇i Ai + 8α2A2,

= R + 8α√
g
∂i (

√
g Ai ) + 8α2A2, (5.11)

where we used A2 = gi j Ai A j = Ai Ai , ∇i and R denote, respectively, the covariant
derivative with respect to xi and the scalar curvature corresponding to the metric g.

Putting (5.11) in (5.10) and adding to (5.6) alongwith a Chern Simons term for the
gauge field we obtain the unique spatially scale-invariant action in 1+ 3 dimensions
given by

S (ψ, A, g) =
∫ √

g dt d3x

(
iψ�∂tψ − 1

2m
gi j (∂i ψ

�∂ j ψ − αAi ∂ j |ψ |2 + α2Ai A j |ψ |2)
)

+ β

∫
dt d3x |ψ |2

(√
gR + 8α∂i (

√
g Ai ) + 8α2√g A2

)

+ γ

∫
dt d3xεi jk Ai ∂ j Ak , (5.12)

where εi jk denotes the rank three antisymmetric tensor, β and γ are real parameters.
The Chern-Simons term being independent of the metric is locally scale invariant.
From the four-dimensional perspective, this term is to be thought of as the unique
potential term for the gauge field which has local three-dimensional scale invariance.
Furthermore, while it does not contribute to the equations of motion, this term plays
a crucial role, as we shall see below, in determining the interaction between filaments
modelled by the gauge field. We now proceed to study the properties of this unique
locally scale invariant three-dimensional system.

In view of this in the next section we proceed to construct an effective action for
the system in terms of the wave function by integrating out the gauge field and in
terms of the gauge field by integrating out the wave function.
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5.3 The Condensate and Quasi-particle Spectrum

First let us integrate out the gauge field from the action (5.12) with a flat metric to
obtain the effective action for the condensate ψ defined by the path integral

ei Seff(ψ) = 1√
π

∫
D Aei S(ψ,A,η). (5.13)

Setting gi j = ηi j in (5.12), we obtain, up to boundary terms

S(ψ, A, η) = i
∫

ψ�∂tψ − 1

2m

∫
∂iψ

�∂iψ − ĝ

4

∫ (
∂i log |ψ |2

)2 |ψ |2

+ ĝ
∫ (

Ai − 1

2
∂i log |ψ |2

)2

|ψ |2 + γ

∫
εi jk Ai∂ j Ak . (5.14)

where we defined ĝ = 8αβ − 1
2m and suppressed the measure dtd3x in the integrals.

We now redefine the gauge field with a shift, namely,

Ãi = Ai − 1

2
∂i log |ψ |2. (5.15)

Then in the Chern-Simons term
∫

εi jk Ai∂ j Ak =
∫

εi jk Ãi∂ j Ãk, (5.16)

up to boundary terms. Integrating out with respect to the new filed Ã we obtain the
effective action

Seff(ψ) = i
∫

ψ�∂tψ − 1

2m

∫
∂i ψ

�∂i ψ − ĝ

4

∫ (
∂i log |ψ |2

)2 |ψ |2 + γ

∫
εi jk Ãi ∂ j Ãk + Γ.

(5.17)

where the effective potential

Γ = −1

2

L∫

0

dξ

ξ

∫
d3xe−ξ ĝ|ψ |2 . (5.18)

Expanding the exponential and performing the integration with respect to ξ , the
effective potential becomes

Γ = −1

2

∞∑

n=1

(−1)n

n!
(ĝL)n

n

∫
|ψ |2n, (5.19)
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where we have neglected an infinite constant term ensuing from the unit term in the
exponential.

Let us now consider the quasi-particle spectrum of this theory [15, 16]. Consid-
ering stationary configurations we expand ψ in Fourier modes

ψ(x) = 1√
V

∑

k

akeik·x, ψ�(x) = 1√
V

∑

k

a†
ke−ik·x, (5.20)

where a†
k and ak are, respectively, creation and annihilation operators for the bosonic

modes satisfying the commutation relation

[a†
k, ak′ ] = δkk′ . (5.21)

The sum is over allmomentummodes. For eachmomentummodewedefine a number
operator n̂(k) = a†

kak, depending only on the magnitude of the momentum, thanks
to the rotational symmetry. The states diagonalizing these number operators satisfy

n̂(k)|n(k)〉 = n(k)|n(k)〉,
ak|n(k)〉 = √

n(k)|n(k) − 1〉, (5.22)

a†
k|n(k)〉 = √

n(k) + 1|n(k) + 1〉.

For the zero momentum mode we also assume the existence of a state |ψ0〉 = |n(0)〉
with

a0|ψ0〉 = a†
0 |ψ0〉 = √

N |ψ0〉, (5.23)

where we denoted n(0) = N and assumed N to be sufficiently large so that
√

N ∼√
N + 1. This state corresponds to the condensate over which the non-zero modes

are taken to be fluctuations. Substituting (5.20) in (5.19) we obtain

Γ = −1

2

∑

k′
1,k′

2 ...,k′
n

k1,k2 ...,kn

∞∑

n=1

(−1)n

n!
gn

n
a†

k′
1
a†

k′
2
. . . a†

k′
n
ak1ak2 . . . akn

δ(k′
1 + k′

2 + · · · + k′
n − k1 − k2 − · · · − kn), (5.24)

where we denoted g = ĝL/V . So far we have not fixed the parameters. We now
assume that g = 1/N . Then in Γ the quadratic terms a†

kak, a−kak and a†
−ka†

k arise
with N n−1 in the n-th term, while all other terms are lower order in N . The effective
potential becomes

Γ = −1

2

∑

k

∞∑

n=1

(−1)n

n!
g

n

(
n2a†

kak +
(

n

2

)
a−kak +

(
n

2

)
a†
−ka†

k

)
+ O(1/N )

× quartic terms. (5.25)
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The coefficients of the quadratic terms are determined by the number of ways of
satisfying the momentum conservation constraint

k′
1 + k′

2 + · · · + k′
n = k1 + k2 + · · · + kn . (5.26)

For example, the term a†
kak is obtained as one chooses any one k′ as well as any

single k to be non-zero, which can be chosen in n × n ways. The term a−kak is
obtained by choosing all k′ to be zero and two of the n k’s to be non-zero. The third
term is obtained similarly.

Now, along with the kinetic term, the Hamiltonian reads, upon performing the
sum over n,

H =
∑

k �=0

(
2�1a†

kak − �2(a−kak + a†
−ka†

k)
)

, (5.27)

where we defined

�1 = 1

2

(
k2

2m
+ g

2e

)
, �2 = g

2e
(

e

2
− 1). (5.28)

Let us note that the third term involving the derivative of ln |ψ |2 comes with the
coupling constant ĝ = gV/L , which can be ignored compared with g. In order to
obtain the quasi-particle spectrum we need to diagonalize the Hamiltonian. To this
end we change basis as

ak = uαk + vα†
−k (5.29)

a†
k = uα

†
k + vα−k, (5.30)

where u and v are taken to be real parameters. Requiring the commutations relations

[α†
k, αk′ ] = δkk′ , (5.31)

in addition to (5.21) for any momentum k, we obtain the constraint u2 − v2 = 1, so
that the two bases are related by a Bogoliubov transformation

ak = αk cosh θ + α
†
−k sinh θ (5.32)

a†
k = α

†
k cosh θ + α−k sinh θ, (5.33)

where θ is a real parameter. Then expressing the Hamiltonian in terms of the new
oscillators α and demanding that the off-diagonal terms vanish, we obtain a relation
among θ , �1 and �2, namely

�1 cosh 2θ − �2 sinh 2θ = 1

2
ε(k) (5.34)
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�1 sinh 2θ − �2 cosh 2θ = 0, (5.35)

where ε(k) is the dispersion depending on the magnitude k of the quasi-particle
momentum k due to the rotational symmetry. Solving for the hyperbolic functions
in terms of �1, �2 and ε(k), and using the identity cosh2 2θ − sinh2 2θ = 1, yields
an expression of ε(k) in terms of �1 and �2, which in turn relates it to the g,

ε(k) = 2(�21 − �22)
1/2

=
((

k2

2m
+ g

2e

)2

−
(g

e

)2 ( e

2
− 1

)2
)1/2

, (5.36)

and the Hamiltonian is
H =

∑

k �=0

ε(k) n(k), (5.37)

where n(k) = α
†
kαk is the occupation number of the quasi-particle state with energy

ε and momentum k, depending on the magnitude of k again thanks to the rotational
symmetry.

5.3.1 Kolmogorov Scaling

From our locally scale invariant model we have seen that in order to describe the
superfluid state a quasiparticle with energy that scales linearly with momentum in a
certain range of momentum values emerges. Unlike the standard Bogoliubov quasi-
particle result the second sound value is not fixed by the theory but has to be taken
from experiment but the linear relationship between energy andmomentum is present
in both approaches in the small momentum region. This result was obtained, as in the
Bogoliubov approach, by putting in details of the superfluid helium state in terms of
a condensate. For this calculation to be valid the interaction between quasiparticles
must be small. This is essential for the idea of quasiparticle to be useful. These two
features, both present in our effective model, allow us to use the method of weak
wave turbulence to determine the turbulent properties of superfluid helium. Essen-
tially this means determining the way energy for momentum k scale with momentum
and to check if the scaling exponent of energy calculated agrees with the observed
Kolmogorov exponent.

We have already found the scaling exponent for quasiparticles. We now need to
find if the occupation number for momentum k scales with k and to determine this
exponent. The key calculation to do this, in weak turbulence, involves setting up
a Boltzmann type of equation for the occupation number of quasiparticles with a
given momentum and checking to see if it has a time independent scaling solution
i.e. a solution where the occupation number scales with the momentum exists. The
procedure outlined is a standard step of weak wave turbulence. The calculation for
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a quartic interaction term has been done and we can simply use the known results to
write down scaling exponent for occupation number for our case. Once this exponent
is determined the Kolmogorov exponent is fixed.

For our quasiparticle system with a weak quartic interaction term the Boltzmann
time evolution equation for the quasiparticle excitation number of momentum k is
obtained from the system Hamiltonian. Time independent solutions to this evolution
equation with a scaling law behaviour have energy [16–19]

E(k) = n(k)ε(k)

∼ k−γ /3, (5.38)

where the exponentγ is expressed asγ = 3d+2β
α

− 4 in termsof the spatial dimension
d and the exponents of scaling of the coefficient of the quartic term and the energy
dispersion, namely

T (k) ∼ kβ (5.39)

ε(k) ∼ kα. (5.40)

We have so far discussed the terms quadratic in the raising and lowering operators in
the Hamiltonian. The coefficient of the quartic term, which goes as 1/N in the large
N limit that we are considering, is independent of k, leading to β = 0. As can be
seen from (5.36) if the momenta are in the range

k2

2m
<

g

e
k2

2m

(
k2

2m
+ g

e

)
>

g

e

(
e − e2

4
− 3

4

)
(5.41)

= 0.12
(g

e

)2
,

then the dispersion is linear in momentum and thus gives α = 1. Hence, γ = 5,
leading, according to (5.38), to the Kolmogorov scaling law, E(k) ∼ k−5/3, within
this range of momentum. Thus, in an appropriate range of momentum we obtain
linear dispersion relation and thus weak turbulence and Kolmogorov scaling law
from the four wave resonance.

We thus conclude that an effective theory based on Weyl’s original idea of gauge
invariance as local scale invariance is compatible with the existing descriptions used
to understand superfluid turbulence. Local scale invariance leads to correctly iden-
tifying the degrees of freedom and leads to the dynamics of the excitations in the
superfluid turbulent phase. It is satisfying that the effective theory links filament
locations, postulated to be filament currents which couple to scale gauge fields, with
the zeros of the GP-like equation. The approach described to construct locally scale
invariant systems is also of theoretical interest as it is a very general method for
constructing locally scale invariant effective theories.
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Chapter 6
A Brief Introduction to Quantum
Phase Transitions

K. Sengupta

Abstract In this article, we are going to present a pedagogical review of basic
properties of Ising and Heisenberg models. Using these properties, we shall study
basic properties of the quantum phase transition in 1D Ising model and follow it
with an analogous study of the Bose-Hubbard model which is relevant to the current
experimental systems involving bosons in optical lattices.

Keywords Quantum phase transition · Ultracold atoms · Bose–Hubbard Model

6.1 Introduction

The study of quantum phase transition has gained tremendous impetus in recent
advancement in the field of ultracold atoms. The theoretical development of this
subject started a long time before these experiments. In the early days, specific spin
models such as the Ising and theHeisenbergmodels served as theoretical test beds for
studying properties of these transition. In this article, we shall therefore first review,
in this section, the basic properties of several spin models. This will be followed by
discussions on quantum phase transition and ultracold atoms in subsequent sections.

A study of spin models is probably one of the oldest topics in condensed mat-
ter physics since they turn out to be low energy-effective models describing many
strongly correlated condensed matter systems. Typically, these models are aimed at
describing a set of localized spins with a given symmetry in d dimensions interacting
with themselves, possibly in the presence of magnetic field. Here we shall revisit the
physics of the simplest of these models, namely, models which has nearest neighbor
interactions and is subjected to amagnetic field. The simplest and probably the oldest
of these models is the Ising model in a transverse field whose Hamiltonian is given
by
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HIsing = J
∑

〈i j〉
Sz

i Sz
j − h

∑

i

Sx
i . (6.1)

Here h denotes the transverse magnetic field (orμB times the magnetic field to be
more accurate) and 〈i j〉 denote sum over nearest neighbors. Note that in the absence
of the magnetic field, the model has a Z2 symmetry, i.e., the Hamiltonian remains
invariant under a global spin flip Sz

i → −Sz
i . This is the simplest example of the

class of spin models with discrete symmetries.
The phases of the Ising model in a hypercubic lattice in d dimension is quite

straightforward to obtain. In the limit of infinite transverse field, the ground state
involves all the spins pointing along x . Following standard notation in the literature,
we shall call this phase “paramagnet.” In the other limit, when J � h, the nature of
the phase depends on the sign of J. With our sign convention in Eq.6.1, for J < 0,
the system gets into a ferromagnetic phase while for J > 0, the ground state is
antiferromagnetic. Note that each of these ground states breaks Z2 symmetry. This
point is illustrated in Fig. 6.1.

Starting froma large x = J/h, ifwe adiabatically decrease this ratio by increasing
the transverse field, the system undergoes a phase transition at some critical value
of x = xc. For the antiferromagnetic case (J > 0), the transition is first order.
The simplest way to see this is to note that the net magnetization m = ∑

i,a=x,z Sa
i

undergoes a discontinuous change at the transition. On the other hand, for J < 0,
the transition is continuous. We shall discuss this case in details during our study of
quantum phase transitions.

Before going to discussion of other spin models, I would like to mention that the
simplicity of the phases obtained for hypercubic lattices is more a property of the
lattices than the model. Ising model in triangular or other non-bipartite lattices can
have quite complicated phases due to a phenomenon called frustration. To see this,
consider the Ising Hamiltonian (Eq. 6.1) on a 2D triangular lattice with h = 0 and
J > 0 (antiferromagnetic interaction). Now consider a triangle in the lattice. The
two vertices of the triangle can be occupied by spins pointing in opposite directions
so as to minimize interaction between them as shown in Fig. 6.2. But there is no way
to fill the third vertex which minimizes interaction with both the spins; the spin is

Fig. 6.1 Ground states of the Ising model for J < 0 and J > 0 for |J | � h. Note that the ground
state spontaneously breaks Z2 symmetry. The two states shown in each case are degenerate and can
be reached from another by a global Z2 transformation, i.e., a simultaneous flip of all spins. Since
all spins need to be flipped simultaneously, one cannot connect these states via local perturbation
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Fig. 6.2 Frustration for antiferromagnetic Ising model in a 2D triangular lattice. It is possible to
satisfy only two of the three bonds in a triangle. The satisfied bonds are shown in blue while the
unsatisfied ones are shown in red. The two states shown are degenerate and such a degeneracy grows
exponentially with system size

therefore “frustrated.” This leads to two possible ways to fill up the third site, and
consequently to two degenerate ground states. It is easy to see that this degeneracy
grows exponentially with the system size N and it turns out that for the Ising model
in 2D triangular lattice, the number of degenerate ground state is exp(0.323N 2=3).

Such a huge degeneracy clearly complicates the problem of finding the true zero
temperature ground state of the system. In fact, we shall see an example where this
degeneracy has profound influence on phase transitions in the model.

The next class of models which will be of interest to us are the XXZmodels which
has the Hamiltonian

HXXZ = J⊥
∑

〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j

)
+ Jz

∑

〈i j〉
Sz

i Sz
j . (6.2)

Note that here, a global rotation of the spins about the z axis leaves the sys-
tem invariant, but a general rotation in 3D spin-space does not, since J⊥ �= Jz .

Consequently, the model has U (1) symmetry. In contrast to Ising model discussed
previously, this is an example of spin Hamiltonian with continuous symmetry. The
special point Jperp = J z = J is called the Heisenberg point of the model for which
the HXXZ reduces to the well-known Heisenberg model

HHeisenberg = J
∑

〈i j〉
Si S j (6.3)

which has SU(2) symmetry since the hamiltonian HHeisenberg remains invariant under
global rotation in spin-space. The reader is urged to verify this point.

For the rest of this section, we shall discuss the methods of obtaining the ground
state and the excitation spectrumof theXXZand theHeisenbergmodel. First we shall
take the ferromagnetic case, for which the ground state do not break translational
symmetry. Our main tool for doing this will be a mapping of these spin models to a
bosonmodel usingHolstein–Primakoff (HP) transformation. TheHP transformation,
which is amapping between spins and bosons can be understood as follows.We know

that quantum spins must satisfy the commutation relations
[

Si
p, S j

q

]
= i�εi jk Sk

pδpq ,

where εi jk is the antisymmetric tensor and δ denote Kronecker delta function. Now if
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we look at bosonoperators, they also satisfy commutation relations
[
b†i , b j

]
= −iδi j .

From this observation, one is led to the question as to whether it is possible to express
the spins in terms of bosons and viceversa. The answer is of course yes, as figured
out by Holstein and Primakoff in 1940. The transformation, for spin S, is given by

S+
i = √

2S

(

1 − b†i bi

2S

)1/2

bi , S−
i = (

S+
i

)†
, Sz

i = S − b†i bi , (6.4)

where S+
i = Sx

i ± i Sy
i are the spin raising and lowering operators. Note that the

factors correctly
(
1 − b†i bi/2S

)1/2
implements a finite Hilbert space for the spins,

although that for the bosons is invite. The reader is urged to check the communication
relation for the spins from Eq.6.4.

Now let us consider the Heisenberg model on a hypercubic lattice in d dimensions
with ferromagnetic interaction (J < 0). The ground state corresponds to all spins
pointing along the z axis and hence corresponds to Sz = S at every site of the lattice.
In the boson language, this means that the ground state is a vacuum for bosons since
〈b†i bi 〉gnd = 0. We now wish to study low-lying excitations over the FM ground
state. To do this, we reexpress the Heisenberg Hamiltonian (Eq. 6.3) in terms of the
bosons using Eq.6.4. This yields

Hexcitation = J S

⎡

⎣
∑

〈i j〉

(
b†i b j + h.c

)
− 2

∑

i

b†i bi

⎤

⎦ + O
(

b4
)

. (6.5)

where we have neglected all quartic terms for the bosons. The last approximation
amount to neglecting scattering among bosons. Since the ground state here corre-
sponds to boson vacuum, for low-lying excitations, such scattering events are rare
and can be neglected. The next task is to diagonalize Hexcitation by going to the Fourier
space which yields, in d dimensions,

Hexcitation = J S
∑

k

Ekb†k bk, Ek = 2|J |S (z − γk) , γk =
∑

n

eik·n. (6.6)

where z = 2d is the coordination number for the d-dimensional hypercubic lattice
and the sum over n denotes sum over nearest neighbors. E k here denotes energy
corresponding to the low-lying excitations of the spin systems which are called spin-
waves. The name originates from the fact that a finite density of the bosons at a small
wave-vector k physically represents canting of spins by π from their ground state
orientation over a length scale 2π/k. At low k, one gets Ek = 2J Sa2k2, where
a is the lattice spacing. Thus the spin-waves here have quadratic dispersion which
indicates vanishing group velocity at low momentum. For low k ∼ 1/L , the spin-
wave energy vanishes and hence a very gradual canting of spins become the lowest
lying excitations over the FM ground state.



6 A Brief Introduction to Quantum Phase Transitions 59

Finally, we come to the case of antiferromagnets for which J > 0. Here the
additional complication that arises is that the expected ground state corresponds to
spins pointing in opposite direction at neighboring lattice sites so that 〈Sz〉ground =
±S on two neighboring site. This observation leads us to the fact that if we want to
describe the low energy excitation over this ground state, one set of boson operators
is not enough. To get around this obstacle, we divide the hypercubic lattice into two
sublattices A and B such that the ground state corresponds to spins on B(A) pointing
up (down). Then the HP transformation for all spins on the B sublattice is given by
Eq.6.4 whereas those for spins on A sublattice is given by

S+
i = √

2S a†
i

(

1 − a†
i ai

2S

)

S−
i = (

S+
i

)
, Sz

i = −S + a†
i ai . (6.7)

Comparing Eqs. 6.4 and 6.7, we find that S+
i and S−

i must switch roles to ensure a
negative sign of Sz . Next, we express the Heisenberg Hamiltonian in terms of the
bosonic operators a and b. Neglecting interaction between bosons, we find

H AF
excitations = 2J S

∑

k

[
γk

(
a†

k b†k + h.c
)

+ z
(

a†
k ak + b†k bk

)]
. (6.8)

Note that H AF
excitations, though quadratic, is not quite diagonal in Fourier space due

to the presence of the off-diagonal terms. To diagonalize this, we use a Bogoliubov
transformation which amounts to first writing

αk = ukbk − vka†
k , βk = ukak − vkb†k , u2

k − v2k = 1, (6.9)

and then finding uk and vk for which H AF
excitations becomes diagonal in terms of αk and

βk . It turns out that one can write

H AF
excitations =

∑

k

Ek

(
a†

k αk + β
†
k βk + 1

)
, Ek = 2J zS

√(
1 − γ 2

k /z2
)
. (6.10)

The reader is urged to find the values of uk and vk which does the trick.
From Eq.6.10, we note that the for low momenta the spin-waves (for hypercubic

lattice) have linear dispersion: Ek = 2J zsak which implies a finite velocity of the
spin-waves at low momentum. More interestingly, we find that our starting ground
state ansatz is not the correct one. To see this, let us compute 〈SB

z 〉gnd = N S − 〈b†k bk〉.
In terms of the αk and βk operators, this is given by (Eq.6.9)

〈SB
z 〉gnd = N S −

〈 ∑

k

u2kα
†
k αk + v2kβkβ

†
k + off − diagonal terms

〉
= N S −

∑

k

v2k .

(6.11)
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Thus the sublattice magnetization deviates from its classical value due to quan-
tum fluctuations, a feature that is hallmark of quantum antiferromagnets, but not of
ferromagnets.

6.2 Quantum Phase Transitions

The subject of phase transition, i.e., transition between two states or phases of matter
due to change of external parameters such as pressure, temperature, etc., is again
an important topic in condensed matter physics. Here we shall explore only a few
aspect of this important topic; for detailed study, one can refer to standard literature
such as Refs. [2–4].

Standard finite temperature phase transitions occur as a result of competition of
internal energy (U ) and entropy (S) in the free energy of a system. Such a competition
can arise in various contexts. A simple example to understand this is to consider the
Ising model with J < 0 and h = 0, so that at low temperature the ground state
can be assumed to be ferromagnetic. Note that this is an assumption and need not
be correct in all dimensions. Now let us increase the temperature so that the spins
can flip. Typically, this will lead to the formation of domain walls. In d = 1, the
domain wall corresponds to a series of flipped spins along the chain, as demonstrated
in the upper panel of Fig. 6.3. It is easy to see that such a domain wall has an energy
cost of 2J , whereas the entropy corresponding to such a configuration is 
 ln N for
large N . Thus the free energy of the system is F 
 2J − kB T ln N < 0 for all T
in the thermodynamic limit. This situation changes in higher dimensions as d = 2
as shown in the lower panel of Fig. 6.3. Here the energy cost of forming the domain
wall is 4N J , while the entropy gain is ln

(
N22N

)
so that the free energy becomes

negative above at a critical temperature Tc 
 2J/kB ln 2. Thus dimensionality plays
a crucial role in the phase transition.

Typically, finite temperature transitions are driven by thermal fluctuation and thus
occur at a critical temperature. However, phase transitions can also occur at T = 0
(by which we mean situations where temperature is lower than all other energy

Fig. 6.3 Domain walls for
Ising model in d = 1 and
d = 2. Note that the energy
of domain wall formation
depends on system size in
d ≥ 2, but not at d = 1
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scales in the problem, and not necessarily absolute zero) where quantum fluctuations
leads to a change of phase. In this case, the phase transition occurs due to competition
between different terms in its Hamiltonian (such as−J

∑
i j Sz

i Sz
j and h

∑
i Sx

i terms
in the Ising Hamiltonian defined earlier) and entropy do not play any role. One of key
ingredients in understanding the behavior of a system near such a transition is the
Landau–Ginzburg–Wilson paradigm. According to this paradigm, the Lagrangian
density of the system in the ordered phase near the critical point for a order–disorder
transition can be written in terms of the order parameter Δ of the ordered phase as

fLGW = Δ∗ (
ω2 − k2z + r

)
Δ + u|Δ|4 + · · · (6.12)

where ellipsis denotes all higher order terms, r = 0 at the second-order transition
point and z is called the dynamical critical exponentwhich determines relative scaling
between space and time (z = 1 implies relativistic invariance).Herewehave assumed
that the termswhich are odd inΔ are zero. This assumption, of course, neednot be true
in the general case. The basic point that one needs to take care of in constructing such
a free energy is that it is consistent with all the basic symmetries of the microscopic
Hamiltonian. Actually, in principle, such a free energy can be systematically derived
from the microscopic Hamiltonian describing the system. However, except for very
simple cases, this is in general impossible in practise. The key point to be emphasized
here is that our failure to derive such a free energy from the microscopic Hamiltonian
does not mean that wewill not be able to guess its form. It onlymeans that wewill not
be able to determine the precise values coefficients r, u, etc. However, the different
possibilities of the physics near the phase transition can be captured without them
which makes this method very powerful. For a detailed account, see Ref. [5]. For
the rest of this lecture, we are going to consider a subclass of such phase transition,
namely, second-order transitions.

Next, we shall introduce the concept of universality class. As is well-known [2,
4, 5], all physically important quantities (such as equal time correlation functions
of the order parameter, or energy gap) of a system exhibits power law behavior
close to a second-order phase transition. This is a manifestation of the fact that
phase transitions are usually accompanied by divergent length and time scales. The
divergence of the time scale comes from the vanishing of the energy gap of the
system δE ∼ |J − Jc|zν .The divergent length ζ comes, for example for Isingmodel,
since the characteristics decay length of the spin–spin correlator diverges as ζ−1 ∼
Λ |J − Jc|ν , where Λ is some unimportant cutoff scale. Such a power law behavior
means thatwe can specify the behavior of the systemnear a phase transition by a set of
exponents ν, z . . . The physics near the transition is completely determined by these
exponents; two transitions with same set of exponents will therefore have exactly
same physics near the transition. The set of these exponents therefore determines the
universality class of a transition. Thus the chief assertion of the universality is that the
physics is independent of microscopic parameter values of the Hamiltonian which
can be seen as a consequence of the presence of diverging length and time scales. In
most phase transitions, the universality class of the transition can be guessed from
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the symmetries of the underlying Hamiltonian. However, more recent theories, have
found exceptions to this rule.

We are going to see an example of such an exception in this lecture. We are now
going to consider two specific examples of phase transitions. The main intention
would be bringing out few key general points. First, let us consider the Ising model
in d = 1 at T = 0 and for J < 0. As discussed before, there are two distinct phases
of this system. The first corresponds to h � |J | which is a quantum paramagnet
with all spins pointing along x . The second is |J | � h for which the ground state is
a ferromagnet with all spins pointing wither along z or −z. Now as we change h/J,

the systemmust go from one phase to another. The first question to ask is whether the
change will occur as a transition or a smooth crossover. The answer to this question
in the present model is easy to see from symmetry. We know that the system breaks
Z2 (discrete) symmetry in the ferromagnetic phase while there is no such broken
symmetry in the paramagnet. This allows us to conclude that these two ground states
cannot be smoothly connected—to go from one to the another one needs to have a
transition.

To find out at what value of h/J this transition occurs, we consider the following.
Imagine that the system is in the paramagnetic phase with the ground state corre-
sponding to all the spins pointing along x . The basic excitation above this ground
state corresponds to flipping a spin on-site i leading to an excited state |i〉. Such a
process costs an on-site energy of 2h. But now the flipped spin can move around
between different sites. It is easy to see that all such states | j〉 have same energy. To
compute the energy gain from such a move, consider the matrix element between
states |i〉 and | j〉 are given 〈 j |HIsing|i〉 = Jδi, j±1. Thus, one is faced with a degener-
ate perturbation theory problemwhich is trivial to solve in momentum space, leading
to the excitation energy E(k)

E(k) = 2h − 2J cos(k), Emin = E(k = 0) = 2(h − J ), (6.13)

where Emin is the minimum energy of the excited state. Note that this energy touches
0 (ground state energy) for h/J = 1.At this point, it becomes energetically favorable
to flip spins spontaneously and the ground state is destabilized. One can carry out a
similar exercise staring from the ferromagnetic side and arrive at an identical answer
for the critical h and E(k). It is also possible to obtain an exact result for the single
particle excitations of this model for all J and h as shown in Ref. [4]:

Eexact(k) = 2
√

J 2 + h2 − 2h J cos(ka) (6.14)

which conforms to the perturbative results. All exponents of this transition can be
found; the transition belongs to Ising universality class.

Finally, we shall consider the anisotropic Isingmodel with Ji,i+x , Ji,i+y = J > 0
and Ji,i+z = J ′ < 0 in 3D and finite temperature but in the absence of a transverse
field and in a slightly different geometry. Our aim is to show that the effect of the
frustration can change the universality class of a transition. The geometry we want
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to consider is that of a stacked 2D triangular lattices. At high temperature, such a
model must show a paramagnetic or disordered phase. At T = 0, the state should
clearly order. This can be seen by trying to create domain wall over an ordered state.
It can be easily seen that such a domain wall creation is energetically costly. Hence
we expect the ordered state to hold till some finite temperature Tc. The question is
what is the nature of this ordered phase.

The answer to this question, for the considered geometry, is quite subtle. Since
we are dealing with antiferromagnetic Ising model in a triangular lattice, the system
is frustrated. It can be shown that the degeneracy corresponding to possible ground
states grows exponentially with system size. Thus, although we are sure that there
will be some ordered phase, it is not easy to guess this ordering. The aim of the rest
of the section is to show that in the present case, the possible ordering comes out
naturally from a proper theory of the phase transition.

To see how phase transition takes place in this model, let us rewrite the Ising
model in a stacked triangular lattice in momentum space

H3D
Ising =

∑

k

J (k)Sz
k Sz

−k,

J (k) = K
(
cos (kx a) + 2 cos (kx a/2) cos

(√
3kya/2

))
− J ′ cos (kza) . (6.15)

When J > 0, the minima of the dispersion occurs at Q± = (±4π/3, 0, 0). Since
the fluctuations about these minima are most important for destabilizing the ordered
phase, we find that we need two fluctuating fields for describing this phase transition:
ψ± = S(Q± + q) = m exp(±iφ), where |q|/|Q±| � 1. It can be shown that the
presence of two low-energy fluctuating fields (instead of one as will be the case in
absence of frustration when J < 0) changes the universality class of the transition
from Ising to XY type. The next task is to write down the effective Landau–Ginzburg
free energy functional in terms of the low-energy fluctuating fields that we have
identified. The thing to keep in mind while doing this is that such a functional has
to be invariant under all symmetries operations of the underlying stacked triangular
lattice. Following Ref. [6], one can find that such a functional can be written as

F =
∑

q

(
r + q2

)
m(q)m(−q) + u4

∑

4

m4 + u6m6 + v
∑

6

m6 cos(6φ) (6.16)

where
∑

n ≡ ∑
q1,q2,...,qn

δ (q + 1 + q2 + · · · + qn). The parameters r, u4, u6, and
v can be computed from microscopic theory, but their precise form will not interest
us for the moment. The transition to the ordered phase takes place when r = 0.
We note that at the transition point, v, is zero since it is irrelevant in the RG sense.
Therefore, the relative phase φ between the fields ψ± is not fixed at the transition. It
turns out that as we go inside the ordered phase, the magnitude of v grows and pins
the relative phase to 0 (if v < 0) or π/6 (if v > 0). These lead to two possible ordered
phases as shown in Fig. 6.4 [6]. Thus the fate of the ordered phase is determined by
a variable which is (dangerously) irrelevant. The quantum counterpart of such phase
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Fig. 6.4 Two possible three
by three ordering for the
stacked triangular lattice for
v > 0 and v < 0.
M1; M2; M3 represents the
value of the magnetization
on the three sublattices

transition has recently been identified in extended Bose–Hubbard models and spin
systems [7, 8].

6.3 Bose–Hubbard Model

The physics of bosons has the fascinating theoretical aspect called Bose–Einstein
condensation (BEC), i.e., occupation of a single quantum state by macroscopic num-
ber of bosons at low enough temperature leading to fascinating phenomenon such as
superfluidity. Moreover, there has been renewed interest in physics of these systems
due to their recent experimental realizations in trapped atoms [9]. Such experiments
can manipulate BECs with incredible precision. In particular, it has been possible to
form an optical lattice in a system of these trapped bosons, which, when deep enough,
may result in Mott localization of Bosons leading to destruction of the BEC state.
Such a destruction is a result of a phase transition in the bosonic system. The physical
temperatures relevant in these experiments are of the order of tens of nanokelvins
(which makes these systems the coldest known place in the universe) and is at least
2–3 order of magnitudes lower than all other energy scales. Thus such a transition
is an example of a quantum phase transition. In this section, we shall give a brief
account of the physics associated with such a transition, by considering the simplest
possible BECs, i.e., BECs formed from spin-less bosonic atoms such as 87Rb.

The optical lattice is formed by applying six counter-propagating laser beams of
fixed wavelengths to the condensed Bose atoms in a trap (which can be magnetic or
optical). These lasers have a electric field E and form standing waves of light in all
three directions. The atoms have a polarizibility α (ω;ω0), where ω is the applied
lasers frequency and ω0 is some characteristic frequency of the atoms. As a result,
the atoms feel a potential V = −α (ω;ω0) |E |2. By tuning the frequency of the
applied laser, one can now make α positive, so that the atoms have a tendency to sit
at the bottom of the potential which acts as lattice sites as shown in right panel of
Fig. 6.5. Once they do that, the kinetic energy of the atoms makes them hop from
one site to the next. As the lattice becomes deeper, this process is exponentially
suppressed since it can be shown that the hopping amplitude t ∼ exp

(−√
V/ER

)
,
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(a) (b)

Fig. 6.5 a Sketch of absorption imaging of bosons from a free flight. b Schematic representation
of bosons in a one dimensional optical lattice. The present figure is obtained from Ref. [9]

where ER = �
2/2mλ2, called the recoil energy, is the basic energy scale created out

of the mass (m) of the atoms and the wavelength (λ) of the laser. The bosons which
form the condensate is neutral and so the interaction between them is shortrange Van
der Walls type. In the presence of a lattice, the interaction between the boson is most
significant when they are on the same lattice site which we shall call U. Interaction
between the atoms in the neighboring site can be neglected as a first approximation.
The key point to recognize is that this interactions, unlike the hopping strength t, do
not depend exponentially on the strength of the lattice potential V .

Now consider an optical lattice with one boson per site. If the kinetic energy is
large compared to the on-site interaction (t � U ), the bosons are free to hop around
and therefore the ground state of the system is clearly the one in which a major
number of bosons sit in the k = 0 state. Thus the bosons form a BEC. However, if
we now increase the depth of the lattice t/U becomes small, and hence a stage comes
when the bosons do not find it convenient to hop around since they have to pay too
much interaction energy cost to do so. In this limit all the bosons become localized.
Since this localization is induced by interaction, its called a Mott insulating state.

How do we see this transition experimentally? It turns out the easiest way to
look at this bosons is to switch at the lattice and the trap at the same time and let
the bosons fly out. After some time of such free flight, the position distribution of
these bosons can be measured by absorption imaging of the bosons in a free flight as
shown in left panel of Fig. 6.5. Since the position of the bosons after a time t of such
a flight depends on their starting velocity or equivalently momentum, the position
distribution of these bosons actually reflect their momentum distribution inside the
trap. Now if there were no lattice, all the bosons would be in the k = 0 state (the
condensate) and hence their momentum distribution will be localized around k = 0.
On the other hand, if the bosons were in the Mott state, they are localized in real
space which means their momentum can take all possible values. Thus the Mott
state momentum distribution should reflect a featureless blur. As the strength of the
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optical lattice is increased, it is therefore expected that the momentum distribution
of the bosons will crossover from a central peaked to a featureless blurred one. This
is precisely what is seen in experiments as shown in Fig. 6.6. The phase transition
occurs somewhere around V0 
 14ER where the central bright spot disappears.

Fig. 6.6 Measurement of momentum distribution of the bosons. The lattice potential is ramped
over a time period of 80ms to its maximum value V0 as shown in the top panel. The system is
allowed to equilibrate for 20ms and after that both the lattice and the trap potential is switched off.
The position distribution of the bosons is measured after 10ms of free flight. Note that the central
peak which is the signature of superfluidity disappears at V0 
 14ER signifying the onset of the
Mott state. The present figure is obtained from Ref. [9]

How do we develop a theory for this transition? Well, we could try doing what
we did for the Ising model. Let us first look at the Mott state when t � U and there
is an integer number of bosons per site. Neglecting the effect of hopping of bosons
here, we can see that the Hamiltonian is

HMott = U
∑

i

1

2
ni (ni − 1) − μ

U
ni . (6.17)

Since the Hamiltonian is on-site, one could easily find out the ground state wave
function and energy. This state is given by

Ψground =
∏

i

|ni = n0〉 E [n0]

U
= 1

2
n0 (n0 − 1) − μ

U
n0, (6.18)

where n0 ≡ (μ/U ) is the integer which minimizes E [n0]. One can easily check that
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n0 = 0 for μ ≤ 0

= 1 for 0 ≤ μ ≤ 0

= 2 for U ≤ μ ≤ 2U . . . . (6.19)

The Mott state is the stable ground state when t/U � 1. The next question to ask
is what happens when we increase t. From the experiments, we already know the
answer; the ground state becomes unstable when a critical t is reached. Now to find
when the ground state is destabilized, we need to find out what are the possible
excited states of the system over the ground state and when can they destabilize the
ground state. Note that this line of thinking operates on the same basic principle as
in study of quantum phase transition in Ising model, i.e., to find out the lowest lying
excitations over the ground state of the ordered phase and check when their energy
touches the ground state energy.

At finite t, let us now consider the excited state which corresponds to addition
of an extra particle/hole over the Mott ground state with n0 particles per site. The
minimum excitation energy of such states are

δE p = −μ + Un0 − zt (n0 + 1) δEn = μ − U (n0 − 1) − ztn0 (6.20)

which destabilizes the Mott ground state at

t p
c = −μ + Un0

z (n0 + 1)
th
c = μ − U (n0 − 1)

zn0
(6.21)

leading to a critical hopping of tc = Min
[
t p
c , th

c

]
. The plot of the superfluid insulator

boundary using this simple theory captures some essential features of the transition.
First, we note that at the boundary between the Mott phases with n0 and n0 + (−)1
particles, μ = Un0(n0 − 1) so that tc vanishes. At these points, the excited state
energies δE p(δEh) vanishes for t p

c
(
th
c

) 
 0 and there is no Mott state. Second at

Fig. 6.7 Mott-Superfluid phase boundary for d = 3 and n0 = 1. The red curve shows the mean-
field phase boundary while the blue curve and the black dots denotes the phase boundary where
fluctuation effects are taken into account. The Mott phase is in the shape of a lobe and has particle-
hole symmetry at its tip
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the tip of the Mott lobe (see Fig. 6.7), where t p
c = th

c = (2n0 + 1) /z and μ =
2m0 (n0 + 1) /z (2n0 + 1), it becomes equally costly to add a particle or a hole to
the system. In other words, the system possess particle-hole symmetry at this special
point. This property has profound consequence on the universality class of this phase
transition which we shall not dig into in details in the present article. More refined
calculations such as a mean-field analysis and even those which keep track of higher
order fluctuations can be done and the corresponding phase diagram is shown in
Fig. 6.7. The qualitative symmetry issues that we have discussed above, however, do
not change.

In conclusion, we have presented a brief pedagogical introduction to the subject
of quantum phase transition in the context of spin and boson models. Such transition
of course occurs in many other different systems and a detailed discussion of them
is beyond the scope of the current article. However, it turns out that in many cases
the insights gathered from simple models described above, provides us with pow-
erful tools for understanding the properties of such transitions in more complicated
settings. It is therefore expected that this pedagogical review is going to provide a
basic introduction to the subject.
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Chapter 7
Statistical Mechanics of Human Resource
Allocation: A Mathematical Modeling
of Job-Matching in Labor Markets

Jun-ichi Inoue and He Chen

Abstract We provide a mathematical model to investigate the human resource allo-
cation problem for agents, for example, university graduateswho are looking for their
positions in labor markets. The basic model is described by the so-called Potts spin
glass which is well known in the research field of statistical physics. In the model,
each Potts spin (a tiny magnet in atomic scale length) represents the action of each
student, and it takes a discrete variable corresponding to the company he/she applies
for.We construct the energy to include three distinct effects on the students’ behavior,
namely, collective effect, market history, and international ranking of companies. In
this model system, the correlations (the adjacent matrix) between students are taken
into account through the pairwise spin–spin interactions. We carry out computer
simulations to examine the efficiency of the model. We also show that some chiral
representation of the Potts spin enables us to obtain some analytical insights into our
labor markets.

Keywords Human resource allocation · Bose–Einstein condensation · Potts spin
glass model

7.1 Introduction

our society. This is because they can produce not only various products and services
in the society, but also they contribute to the society by paying their taxes. For this
reason, in each scale of society, for example, from nation to companies or much
smaller communities such as laboratory (or research group) of university, allocation
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of human resources is one of the essential problems.Needless to say, such appropriate
allocation of human resource is regarded as a “matching problem” between individ-
uals and some “groups” such as companies, and the difference among individuals in
their abilities or preference makes the problem difficult.

A typical example of the human resource allocation is found in simultaneous
recruiting of new graduates in Japan. Students who are looking for their jobs might
research several candidates of companies to enter and send the application letter
through the web site (what we call “entry sheet”). However, the students incline
to apply to well-established companies, whereas they do not like to get a job in
relatively small companies. This fact enhances the so-called “mismatch” between
labors (students) and companies. We can easily see the situation of job-searching
process in Japan. At the job fair, we find that some booths could collect a lot of
students (they are all wearing a dark suit even in midsummer!). On the other hand,
some other booths could not attract the students’ attentions. Therefore, the job-
matching itself is apparently governed by some “collective behavior” of students.
Namely, each student seems to behave by looking at their “neighbors” and adapting to
the “mood” in their community, or they sometimes can share the useful information
(of course, such information is sometimes extremely “biased”) about the market via
Internet or social networking service.

In macroeconomics, there already exist a lot of effective attempts to discuss
the macroscopic properties [1–5] including so-called search theory [6–9]. How-
ever, apparently, the macroscopic approaches lack of their microscopic view points,
namely, in their arguments, the behavior of microscopic heterogeneous agents such
as labors or companies are neglected.

To investigate the collective effects on the job-matching process from the micro-
scopic view point, we have proposed several models and carried out computer sim-
ulations [10–12] by considering some “aggregate data set” for the labor market.

In our previous successive studies [10–12], we succeeded in evaluating themacro-
scopic quantities such as unemployment rate U and labor shortage ratio Ω from the
microscopic view point. However, our studies depend on numerical (computer) simu-
lations for relatively small system size to calculate these quantities, and we definitely
need some mathematically rigorous approaches to find the universal fact underly-
ing in the job-matching process of labor markets. It is also important issue to be
considered that we should take into account correlation between agents (students)
when we consider the job-matching process in realistic labor markets. However in
our previous studies [10–12], we have neglected the correlation in our modeling.

Motivated by the above background and requirement, here we propose a mathe-
matical toy model to investigate the job-matching process in Japanese labor markets
for university graduates and investigate the behavior analytically. Here we show our
preliminary limited results for the typical behavior of the market.

This paper is organized as follows. In Sect. 7.2, we briefly review our previous
study on the urn model with disorder [13] and several remarkable properties of the
model such as Bose–Einstein condensation. We also mention that the urn model
cannot take into account the interactions between agents. In Sect. 7.3, we introduce
our toymodel, the so-called Potts model, and explain several macroscopic quantities.
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Our preliminary results for several job-searching and selection scenarios by students
and companies are shown in Sect. 7.4. The last Sect. 7.5 is summary and discussion.

7.2 Urn Models and Bose Condensation: A Short Review

As a candidate of describing the resource allocation problem, we might use the
urn models. In this model, one can show that a sort of Bose condensation takes
place. Hence, here we introduce the urn model with a disorder and explain several
macroscopic properties according to the Ref. [13].

We first introduce the Boltzmann weight for the system as

p(εi , ni ) =
{

exp[−βE(εi ,ni )]
ni ! (Each ball is distinguishable)

exp[−βE(εi , ni )] (Each ball is NOT distinguishable)
(7.1)

where β stands for the inverse temperature. The former is called Ehrenfest class,
whereas the latter is referred to as Monkey class.

E(εi , ni ) denotes the energy function for the urn i possessing a disorder εi and ni

balls. Obviously, in the system with E(εi , ni ) ∝ ni (>0), each urn (agent) is affected
by attractive forces and they attempt to gather the balls (resources), whereas in the
system of E(εi , ni ) ∝ −ni , each urn is affected by repulsive force and they refuse
to collect the balls. The job-matching process in labor market is well-described by
the former case. On the other hand, the problem of spent-nuclear-fuel reprocessing
plant in Japan is a good example to consider using the latter case, namely, balls are
“wastes” and urns are “prefectures.”

In the thermodynamic limit: N , M → ∞, M/N = ρ = O(1), the averaged
occupation probability P(k), which is a probability that an arbitrary urn possesses k
balls is given by

ρ =
〈∑∞

n=0 n φE, μ, β(ε, n)
∑∞

n=0 φE, μ, β(ε, n)

〉
, P(k) =

〈
φE, μ, β(ε, k)
∑∞

n=0 φE, μ, β

〉
, zs = exp(βμ)

where zs is a solution of the saddle point equation (S.P.E.) and we defined

φE, μ, β(ε, n) =
{ exp[−β(E(ε,n)−nμ)]

n! (Ehrenfest class)
exp[−β(E(ε, n) − nμ)] (Monkey class)

(7.2)

In following, we consider the case of Monkey class with the cost function:

E(ε, n) = εn, (7.3)

which leads to the Boltzmann weight:

φE, μ, β(ε, n) = exp[−βn(ε − μ)]. (7.4)
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Table 7.1 The possible scenario of Bose condensation controlled by the density ρ

Density of balls Solution of S.P.E. # of condensation/# of
non-condensation

ρ < ρc zs < 1 0/Nρ

ρ = ρc zs = 1 0/Nρc

ρ > ρc zs = 1 N (ρ − ρc)/Nρc

We choose the distribution of disorder: D(ε) = ε0ε
α . Then, the saddle point equation

is given by

ρ =
∫ ∞

0

ε0ε
αdε

z−1
s exp(βε) − 1

+ ρε=0 (7.5)

where we should notice that ρε=0 is negligibly small before condensation. We
increase the density ρ keeping the temperature β−1 constant. Then, the possible
scenario is shown in Table7.1. It should be noted that we defined the critical den-
sity as

ρc =
∫ ∞

0

ε0ε
αdε

exp(βε) − 1
(7.6)

After simple algebra, we have

P(k) = zk
s ε0Γ (3/2)

β3/2 k−3/2 − zk+1
s ε0Γ (3/2)

β3/2 (k + 1)−3/2 (7.7)

for α = 1/2. We show the P(k) for several values of zs in Fig. 7.1. From this
figure, we find that before condensation, namely, for zs < 1, ρ < ρc, the occupation
probability is given by

P(k) = (1 − zs)ε0

β3/2 k−3/2e−k log(1/zs ) (7.8)

On the other hand, after condensation, that is, for zs = 1, ρ ≥ ρc, we have

P(k) = 3ε0Γ (3/2)

2β3/2 k−5/2 + 1

N
δ(k − k∗) (7.9)

The important remarks here are the fact that the condensation is specified by the
power-lawbehavior of the occupation probability and for the case ofwithout disorder,
namely, for D(ε) = δ(ε − ε0), the power-law behavior disappears.

As we saw, the urn model with disorder exhibits a rich physical phenomena
such as condensation; however, there is no explicit interaction between agents (balls
and urns). Actually, when we consider the job-matching process, it is impossible to
accept the assumption that there is no correlation between urns (companies), balls
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Fig. 7.1 The occupation probability of the Monkey class urn model with disorder. This figure was
taken from our previous paper [13]

(students), or between urns and balls. Hence, we should use a different description
of the system. In the next section, we use the so-called Potts model to describe the
problem of human resource allocation.

7.3 Correlations: The Potts Model Descriptions

The basic model proposed here for this purpose is described by the so-called Potts
spin glass model which is well-known in the research field of statistical physics.
In the model, each Potts spin represents the action of each student, and it takes a
discrete value (integer) corresponding to the companyhe/she applies for. Thepairwise
interaction term in the energy function describes cross-correlations between students,
and it makes our previous model [10–12] more realistic. Obviously, labor science
deals with empirical evidence in labor markets and it is important for us to look for
the so-called “stylized facts” which have been discussed mainly in financial markets
[14, 15]. We also should reproduce the findings from data-driven models to forecast
the market’s behavior.

In following, we show the limited results. Here we consider the system of labor
market having N students and K companies. To make the problem mathematically
tractable, we construct the energy (Hamiltonian) to include three distinct effects on
the students’ behavior:

H(σ t ) = − J

N

∑

i j

ci j δ
σ

(t)
i ,σ

(t)
j

−γ

N∑

i=1

K−1∑

k=0

εk δ
k,σ

(t)
i

+
N∑

i=1

K−1∑

k=0

βk
∣∣v∗

k − vk(t − 1)
∣
∣ δ

k,σ
(t)
i

,

(7.10)
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where δa,b denotes a Kronecker’s delta and a Potts spin σ
(t)
i stands for the company

which student i post his application letter to at stage (or time) t , namely,

σ
(t)
i ∈ {0, . . . , K − 1}, i = 1, . . . , N . (7.11)

Therefore, the first term in the above Eq. (7.10) denotes a collective effect, the second
corresponds to the ranking of companies and the third term is a market history. In
order to include the cross-correlations between students, we describe the system by
using the Potts spin glass (see the “quenched” random variables ci j in (7.10)) as
a generalization of the Sherrington-Kirkpatrick model, which is well-known as an
exactly solvablemodel for spin glass so far. The overall energy function of probabilis-
tic labor market is written explicitly by (7.10). ci j is an adjacency matrix standing for
the “interpersonal relationship” of students, and one can choose an arbitrary form, say

ci j =
⎧
⎨

⎩

c (students i, j are ‘friendly’)
0 (students i, j are ‘independent’)

−c (students i, j are ‘anti-friendly’)
(7.12)

for c > 0 and the ranking of the company k is defined by εk (see e.g. [11] for the
detail).

Before investigating some specific cases below, we shall first provide a general
setup. Let us introduce a microscopic variable, which represents the decision making
of companies for a student as

ξ
(t)
i =

{
1 (student i receives an acceptance at stage t)
0 (student i is rejected at stage t)

(7.13)

Then, the conditional probability is given by

P
(
ξ

(t)
i

∣∣σ (t)
i

)
= 1 − A

(
σ

(t)
i

)
−
(
1 − 2A

(
σ

(t)
i

))
ξ

(t)
i (7.14)

with the acceptance ratio

A
(
σ

(t)
i

)
≡

K−1∑

k=0

δ
k,σ

(t)
i

Θ
(
v∗

k − vk(t)
)+

K−1∑

k=0

δ
k,σ

(t)
i

v∗
k

vk(t)
Θ
(
vk(t) − v∗

k

)
, (7.15)

where v∗
k (=1/K , for simplicity in this paper) and vk(t) denote the quota and actual

number of applicants to the company k per student at stage t , respectively. Θ (· · ·)
is a conventional step function. Hence, when we assume that selecting procedure by
companies is independent of students, we immediately have
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P
(
ξ t |σ t

) =
N∏

i=1

P
(
ξ

(t)
1 |σ (t)

1

)
· · · P

(
ξ

(t)
N |σ (t)

N

)

= exp

[
N∑

i=1

log
{
1 − A

(
σ

(t)
i

)
−
(
1 − 2A

(
σ

(t)
i

))
ξi

}]

. (7.16)

Thus, we calculate the joint probability P
(
ξ t , σ t

)
by means of P

(
ξ t |σ t

)
P (σ t ) as

P
(
ξ t , σ t

) = P
(
ξ t |σ t

)
P (σ t )

=
exp

[∑N
i=1 log

{
1 − A

(
σ

(t)
i

)
−
(
1 − 2A

(
σ

(t)
i

))
ξ
(t)
i

}
− H (σ t )

]

∑
ξ t ,σ t

exp
[∑N

i=1 log
{
1 − A

(
s(t)
i

)
−
(
1 − 2A

(
s(t)
i

))
ξ
(t)
i

}
− H(σ t )

]

(7.17)

where we assumed that the P(σ t ) obeys a Gibbs-Boltzmann distribution for the
energy function (7.10) as ∼e−H(σ t ).

Therefore, the employment rate as a macroscopic quantity:

1 − U (t) = 1

N

N∑

i=1

ξ
(t)
i (7.18)

is evaluated as an average over the joint probability P
(
ξ t , σ t

)
, and in the thermody-

namic limit N → ∞, it leads to

1 − U (t) =
∑

ξ t ,σ t
ξi exp

[∑N
i=1 log

{
1 − A

(
σ

(t)
i

)
−
(
1 − 2A

(
σ

(t)
i

))
ξ
(t)
i

}
− H (σ t )

]

∑
ξ t ,σ t

exp
[∑N

i=1 log
{
1 − A

(
σ

(t)
i

)
−
(
1 − 2A

(
σ

(t)
i

))
ξ
(t)
i

}
− H (σ t )

]

=
∑

σ t
A
(
σ

(t)
i

)
exp [−H (σ t )]

∑
σ t

exp [−H (σ t )]
≡
〈
A
(
σ

(t)
i

)〉
, (7.19)

where we defined the bracket:

〈· · · 〉 ≡
∑

σ t
(· · ·) exp[−H(σ t )]

∑
σ t
exp[−H(σ t )] . (7.20)

From the resulting expression (7.20), we are confirmed that the employment rate 1−
U (t) is given by an average of the acceptance ratio (7.15) over the Gibbs–Boltzmann
distribution for the energy function (7.10). Using the above general formula, we shall
calculate the employment rate exactly for several limited cases.
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7.4 The Results

In following, we show our several limited contributions. Before we show our main
result, we shall give a relationship between the Potts modeling and our previous
studies [10–12] which are obtained by simply setting J = 0 in (7.10).

7.4.1 For the Case of J = 0

We first consider the case of J = 0. For this case, the energy function (7.10) is
completely “decoupled” as follows.

H(σ t ) =
∑

i

Hi , (7.21)

Hi = −
K−1∑

k=0

{
γ εk − β|v∗

k − vk(t − 1)|} δ
σ

(t)
i ,k

(7.22)

where we set βk = β (∀k) for simplicity. Hence, the vk(t) is evaluated in terms of
the definition (7.20) as

vk(t) ≡ lim
N→∞

1

N

N∑

i=1

δ
σ

(t)
i ,k

=
〈
δ
σ

(t)
i ,k

〉
= exp[−γ εk + β|v∗

k − vk(t − 1)|]
∑K−1

k=0 exp[−γ εk + β|v∗
k − vk(t − 1)|]

(7.23)
and from the expression of employment rate (7.19), we have

1 − U (t) =
∑K−1

k=0

{
v∗

k
vk(t)

+
(
1 − v∗

k
vk (t)

)
Θ(v∗

k − vk(t))
}
exp[−γ εk + β|v∗

k − vk(t − 1)|]
∑K−1

k=0 exp[−γ εk + β|v∗
k − vk(t − 1)|] .

(7.24)
By solving the nonlinear equation (7.23) recursively and substituting the solution
vk(t) into (7.24), we obtain the time-dependence of the employment rate 1 − U (t).
In Fig. 7.2, we plot the time-dependence of the employment rate for the case of K = 3
(left) and the γ -dependence of the employment rate at the steady state at t = 10 for
K = 3 and K = 50 (right). We set the job offer ratio defined in [10–12] as α = 1.
The ranking factor is also selected by

εk = 1 + k

K
. (7.25)

We here assumed that each agent posts only a single application letter to the market,
namely, a = 1 in the definition of the previous studies [10–12]. It should be important
for us to remind that the above Eq. (7.23) is exactly the same as the update rule for the
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Fig. 7.2 The time-dependence of the employment rate for the case of K = 3 (left) and the γ -
dependence of the employment rate at the steady state at t = 10 for K = 3 and K = 50 (right). We
set the job offer ratio defined in [10–12] as α = 1 and assume that each agent posts only a single
application letter to the market, namely, a = 1 in the definition of the previous studies [10–12]

aggregation probability Pk(t) in the Ref. [10]. However, when we restrict ourselves
to the case of α = a = 1, one can obtain the time-dependence of the employment
rate exactly by (7.24). This is an advantage of this approach. It also should be noted
that from the relationship:

U = αΩ + 1 − α (7.26)

(see [10] for the derivation), we have U = Ω , namely, the unemployment rate is
exactly the same as the labor shortage ratio for α = 1.

It is important for us to notice that the aggregation probability of the system P(σ t )

is rewritten in terms of Pk(t) in the Refs. [10–12] as

P(σ t ) =
{

K∏

k=1

Pk(t)

}N

(7.27)

with Pk(t) = vk(t) (see (7.23)) even for α 
= 1. For this case, the system parameters
are only γ and β, and these unknown parameters are easily calibrated from the
empirical data [12]. As the result, we obtained U -Ω curve using (7.26) for the past
17 years in Japanese labor market for university graduates. We plot the resulting and
U -Ω curve in Fig. 7.3. The gap between the theoretical and empirical curves comes
from the uncertainties in the calibration of average number of application letters a.
In this figure, we simply chose the value as a = 10 in our calculations.

7.4.2 The Case of J �= 0

We next consider the case of J 
= 0. Then, we should note that some “chiral repre-
sentation” of the energy function (7.10) by means of the chiral Potts spin [16, 17]
(Note: “i” appearing in “2π i” below is an imaginary unit):
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students and companies is large. The picture was taken from our previous study [12]

λi = exp

(
2π i

K
σ

(t)
i

)
, σ

(t)
i = 0, . . . , K − 1 (7.28)

enables us to obtain some analytical insights into our labor markets.

7.4.2.1 The Case of γ = β = 0: Without Ranking and Market History

As a preliminary, we show the employment rate 1−U as a function of J (>0) for the
simplest case γ = β = 0 and ci j = 1 (∀i j ) in Fig. 7.4 (right), and the actual number
of applicants the company k obtains in Fig. 7.4 (left). We should keep in mind that
for this simplest case with local energy

Hi j ≡ −Jδσi ,σ j = − J

K

K−1∑

r=0

λr
i λ

K−r
j = − J

K

{

1 +
K−1∑

r=1

λr
i λ

K−r
j

}

(7.29)

under the transformation (7.28) leading to the total energy H(σ ) ≡ ∑
i j Hi j , by

evaluating the partition function:

Z =
∑

σ

exp

⎡

⎣ J

N K

K−1∑

r=1

∑

i j

cos
2πr(σi − σ j )

K

⎤

⎦ (7.30)
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Fig. 7.4 The actual number of applicants vk (left) and employment rate 1−U (right) as a function
of the strength of cooperation J . We find that the system undergoes a phase transition at the critical
point. The transition is the second order for K = 2, whereas it is the first order for K ≥ 3.
These critical points are given by Jc = 2 for K = 2, Jc = 2.73 for K = 3 and Jc = 3.21 for
K = 4. We should mention that the analytic results (lines) and the corresponding Monte Carlo
simulations (MCMC) with the finite number of students N = 1000 (dots) are in an excellent
agreement. We should notice that perfect employment phase is a “disordered phase,” whereas the
poor employment phase corresponds to an “ordered phase” in the literature of order-disorder phase
transition. For large strength of cooperation J , as a company occupies all applications up to the
quota, limJ→∞(1 − U ) = v∗

k = 1/K (the quota per student) is satisfied

in the limit of N → ∞, one can obtain the employment rate 1 − U = 〈A(σ )〉 (see
also Eq. (7.19)) exactly as

1 − U =
∑

σ A(σ ) exp[−H(σ)]
∑

σ exp[−H(σ )]

=
{

v∗
0

v0
+
(
1 − v∗

0
v0

)
Θ(v∗

0 − v0)
}

1 + (K − 1)e−
J x

K−1

+
(K − 1)

{
v∗

k
vk

+
(
1 − v∗

k
vk

)
Θ(v∗

k − vk)
}
e−

J x
K−1

1 + (K − 1)e−
J x

K−1

(7.31)
with

vk ≡ lim
N→∞

1

N

N∑

i=1

δσi ,k = 〈
δσ,k

〉 = δ0,k +∑K−1
σ=1 δσ,k e

− J x
K−1

1 + (K − 1) e− J x
K−1

, k = 0, . . . , K − 1,

(7.32)
where an order parameter x is determined as a solution of the following nonlinear
equation:

x = (K − 1)

(
1 − e− J

K−1 x

1 + (K − 1)e− J
K−1 x

)

. (7.33)

It should be noted that the above x is given by the extremum of the free energy
density:
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f = − J x2

K (K − 1)
+ log

K−1∑

σ=0

exp

[
J x

K (K − 1)

K−1∑

r=1

cos

(
2πr

K
σ

)]

. (7.34)

The acceptance ratio A(σ ) is now given by

A(σ ) ≡
N∑

i=1

A(σi ) =
N∑

i=1

K−1∑

k=0

δσi ,k

{
v∗

k

vk
+
(
1 − v∗

k

vk

)
Θ(v∗

k − vk)

}
, (7.35)

and we omitted the time t-dependence in the above expressions because the system
is no longer dependent on the market history, namely vk(t − 1), for the choice of
β = γ = 0 in the energy function (7.10).

In Fig. 7.4, we easily find that phase transitions take place when the strength of
“cooperation” J increases beyond the critical point Jc. Namely, for weak J regime,
“randomsearch” by students is a good strategy to realize the perfect employment state
(1 − U = 1), however, once J increases beyond the critical point, the perfect state
is no longer stable and system suddenly goes into the extremely worse employment
phase for K ≥ 3 (first order phase transition). The critical point of the second-order
phase transition for K = 2 is easily obtained by expanding (7.33) around x = 0 as

x = 1 − e−J x

1 + e−J x
� J x/2 (7.36)

and this reads Jc = 2. For the first order phase transition, we numerically obtain the
critical values, for instance, we have Jc = 2.73 for K = 3 and Jc = 3.21 for K = 4.
As the number K is quite large far beyond K = 3 in real labor markets, hence
the above finding for the discontinuous transition might be useful for discussing
a mismatch between students and companies, which is a serious issue in recent
Japanese labor markets (see the Ref. [12]).

We also carried out computer simulations to examine the efficiency of the model.
We shouldmention that the analytic results (lines) and the correspondingMonteCarlo
simulations (dots) with finite system size N = 1000 are in an excellent agreement
in the figures. This preliminary result is a justification for us to conform that one can
make a mathematically rigorous platform to investigate the labor market along this
direction.

We next consider the case of β, γ 
= 0.

7.4.2.2 Ranking Effects

For the case of γ 
= 0, βk = 0 (∀k), the saddle point equation is given by the
following two-dimensional vector form:

(xr , yr ) = 〈ur (s)〉∗ =
(〈

cos
2πr

K
s

〉

∗
,

〈
sin

2πr

K
s

〉

∗

)
, r = 0, . . . , K − 1 (7.37)
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where we defined the bracket 〈· · · 〉∗ as

〈· · · 〉∗ ≡
∑K−1

s=0 (· · ·) exp[ψr (s : {xr }, {yr })]
∑K−1

s=0 exp[ψr (s : {xr }, {yr })]
, (7.38)

ψr (s : {xr }, {yr }) ≡
K−1∑

r=0

Xr · ur (s) (7.39)

with the following two vectors:

Xr =
(

J

K
xr + γ

K

K−1∑

k=0

εk cos
2πr

K
k,

J

K
yr + γ

K

K−1∑

k=0

εk sin
2πr

K
k

)

(7.40)

ur (s) =
(
cos

2πr

K
s, sin

2πr

K
s

)
. (7.41)

From the energy function (7.10) and the above formula, we should notice that the
ranking factor εk is regarded as a “state-dependent field” affecting each spin and the
symmetry in the “perfect employment phase” for small J (see Fig. 7.4 (right)) might
be broken by these unbiased effects. We also should keep in mind that for the case
of γ = 0 or εk = ε (∀k), we find that the Eq. (7.37) possesses the solution of the
type: x0, . . . , xK−1 
= 0, y0 = · · · = yK−1 = 0. It should be also bear in mind that
K = 2 is rather a special case and the solution of the above type is obtained simply
as

x0 = 1, x ≡ x1 = 1 − e−J x+γ (ε1−ε0)

1 + e−J x+γ (ε1−ε0)
, y0 = y1 = 0. (7.42)

However, for general case, we must deal with two-dimensional vectors (xr , yy), r =
0, . . . , K − 1 with each non-zero component xr , yr 
= 0 to specify the equilibrium
properties of the system.

For the solution (xr , yr ), r = 0, . . . , K − 1, we obtain the order parameters and
employment rate as

vr = 〈δr,s〉∗ (7.43)

1 − U = 〈A(s)〉∗, r = 0, . . . , K − 1. (7.44)

In Fig. 7.5, we plot the J -dependence of the employment rate for K = 2 (left) and
K = 3 (right). From this figure, we find that the employment rate decreasesmonoton-
ically, however, within intermediate range of J , the 1− U behaves discontinuously.
We should notice that in this regime, the “ergodicity” of the system might be broken
because the realized value of 1−U byMonte Carlo simulation is strongly dependent
on the choice of initial configuration (pattern) of Potts spins.
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Fig. 7.5 The strength of cooperation J -dependence of the employment rate for the case of γ 
=
0, βk = 0 (∀k). We plot the case of K = 2 (left) and K = 3 (right). We find that the phase transition
as shown in Fig. 7.4 disappears; however, the ergodicity breaking phase appears within intermediate
range of J . We are conformed that limJ→∞(1 − U ) = 1/K is satisfied even for this case. The
simulations (MCMC) are carried out for the system of size N = 1000

To see the result more explicitly, we should draw our attention to the initial con-
dition dependence of the J -(1− U ) curve. Actually, here we carry out Monte Carlo
simulation to examine the initial configuration dependence of the 1−U numerically
and show the results in Fig. 7.6. From this figure, we confirm that the value of the
1 − U depends on the initial configuration of the Potts spins although the 1 − U is
independent of the initial condition for J < 3 and J � 1. In this plot, we chose
two distinct initial conditions so as to make the gap of order parametersO(1) object,
that is,

Δxr (≡x (a)
r − x (b)

r ),Δyr (≡y(a)
r − y(b)

r ) ∼ O(1) (7.45)

for r = 0, . . . , K − 1.
It might be important for us to investigate the basin of attraction for the matching

dynamics analytically as in the Ref. [18]; however, it is far beyond the scope of the
current paper and it should be addressed our future study.

7.4.2.3 Market History Effects

We next consider the case of βk 
= 0 (∀k). For this case, we should replace the Xr in
the saddle point equation (7.37) by

Xr =
(

J

K
xr + 1

K

K−1∑

k=0

(γ εk − βk |v∗
k − vk(t − 1)|) cos 2πr

K
k,

J

K
yr + 1

K

K−1∑

k=0

(γ εk − βk |v∗
k − vk(t − 1)|) sin 2πr

K
k

)
. (7.46)
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It should be noticed that the vk at the previous stage t − 1 is regarded as an “external
field” which affects the spin system at the current stage t . Hence, by substituting
vk(0) as an initial state into the Eq. (7.37) with (7.46), we can solve the equation
with respect to vk(1). By repeating the procedures, we obtain the “time series” as
vk(0) → vk(1) → · · · vk(t) → for all k and 1 − U (t) as a function of t . In Fig. 7.7,
we plot the time (stage) dependence of the employment rate 1 − U for the case of
K = 2, J = 1, γ = 0.1 and (β1, β0) = (1, 4) (left) and (β1, β0) = (4, 1) (right).
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Fig. 7.7 The time (stage) dependence of the employment rate 1 − U for the case of K = 2, J =
1, γ = 0.1 and (β1, β0) = (1, 4) (left) and (β1, β0) = (4, 1) (right). The “zigzag behavior” in
vk(t) is observed for (β1, β0) = (4, 1)
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From this figure, we find that the larger weight of the market history effect for the
highest ranking company β1 in comparison with β0 induces the periodical change of
the order for v1, v0 due to the negative feedback (a sort of “minority game” [19] for
the students). Namely, from the ranking gap ε1 − ε0 = 1/2 for K = 2, the company
“1” attracts a lot of applications at time t even for a relatively small strength of
the preference γ = 0.1. However, at the next stage, the ability of the aggregation
for the company “1” remarkably decreases due to the large β1. As the result, the
inequality v1 > v0 is reversed as v0 > v1, and the company “0” obtains much more
applications than the company “1” at this stage. After several time steps, the amount
of β1|v∗

1 − v1(t − 1)| becomes small enough to turn on the switch of the preference
for the high ranking company “1,” and eventually the inequality v1 > v0 should be
recovered again. The “zigzag behavior” due to the above feedback mechanism in
vk(t) is actually observed in Fig. 7.7 (right). On the other hand, when the strength
of the history effect β0 for the lower ranking company is larger than that of the
higher ranking company β1, the zigzag behavior disappears and v0, v1 converge
monotonically to the steady states reflecting the ranking ε0 < ε1.

7.5 Summary and Discussion

In this paper, we proposed amathematical toymodel, the so-called chiral Potts model
to investigate the job-matching process in Japanese labor markets for university
graduates and investigated the behavior analytically. We found several characteristic
properties in the system. Let us summarize them below. For the case without ranking
effect and market history, we observed that the system undergoes fist-order phase
transition for K ≥ 3 by changing the strength of cooperation J (>0). When we
take into account the ranking effect without market history, the ergodicity breaking
region in J appears. The market history affects on the dynamics of actual number of
applicants to each company vk(t) to exhibit “zig-zag” behavior.

We would like to stress that the situation and our modeling are applicable to the
other type of resource allocation (utilization) such as the so-called Kolkata Paise
Restaurant (KPR) problem [20].

7.5.1 Inverse Problem of the Potts Model

However, from the view point of empirical science, in this model system, the cross-
correlations (the adjacent matrix) between students and companies are unknown
and not yet specified. Hence, we should estimate these elements by using appro-
priate empirical data sets. For instance, if we obtain the “empirical correlation”
〈δσi ,σ j 〉empirical from the data, we can determine ci j so as to satisfy the following
relationship:
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〈δσi ,σ j 〉 = ∂

∂ci j
log
∑

σ

exp[−H(σ : {ci j })]

=
∑

σ δσi ,σ j exp[−H(σ : {ci j })]
∑

σ exp[−H(σ : {ci j })] = 〈δσi ,σ j 〉empirical (7.47)

where 〈δσi ,σ j 〉empirical might be evaluated empirically as a time-average by

〈δσi ,σ j 〉empirical = (1/τ)

τ+t0∑

t=t0

δ
σ

(t)
i ,σ

(t)
j

. (7.48)

We might also use the EM (Expectation and Maximization)-type algorithm [21] to
infer the interactions. Those extensive studies in this directions (the “inverse Potts
problem”) including collecting the empirical data are now working in progress.

7.5.2 Learning of Valuation Basis of Companies

In this paper, we did not take into account the details of valuation process by compa-
nies so far. In our modeling, we assumed that they randomly select suitable students
from the candidates up to their quota. This is because the valuation basis is unfortu-
nately not opened for the public and it is somewhat “black box” for students.However,
recently, several web sites [22, 23] for supporting job hunting might collect a huge
number of information about students as their “scores” of aptitude test.

Hence, we might have a N -dimensional vector, each of whose component repre-
sents a score for a given question, for each student l = 1, . . . , L as

x(l) = (x (l)
1 , x (l)

2 , . . . , x (l)
N ) (7.49)

Then, we assume that each company μ = 1, . . . , K possesses their own valuation
basis (weight) as a N -dimensional vector aμ = (aμ1, . . . , aμN ) and the score of
student l evaluated by the company μ = 1, . . . , K is given by

y(l)
μ = aμ1x (l)

1 + aμ2x (l)
2 + · · · + aμN x (l)

N , μ = 1, . . . , K . (7.50)

It is naturally accepted that the company μ selects the students who are the v∗
μ-top

score candidates. Therefore, For a given threshold θμ, the decision by companies is
given by

ŷ(l)
μ = Θ(y(l)

μ − θμ) =
{
1 (accept)
0 (reject)

(7.51)

where Θ(· · · ) is a unit step function.
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Thus, for L students and K companies, the situation is determined by the following
linear equation:

⎛

⎜⎜⎜⎜
⎝

y(l)
1·
·
·

y(l)
M

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

a11 · · · · · · · · · a1N

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

aM1 · · · · · · · · · aM N

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

x (l)
1·
·
·
·
·

x (l)
N

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

, l = 1, . . . , L (7.52)

namely,
y(l) = Ax(l), l = 1, . . . , L . (7.53)

When we have enough number of data sets ( y(l), x(l)), l = 1, . . . , L , one might
estimate the valuation base A using suitable learning algorithm. When we notice
that the above problem is described by “learning of a linear perception,” one might
introduce the following cost function:

E = 1

2L M

L∑

l=1

M∑

μ=1

δ
s(l)
μ ,1

{

y(l)
μ −

N∑

i=1

aμi x (l)
i

}2

(7.54)

where we defined δa,b as Kroneker’s delta and

s(l)
μ =

{
1 (student l sends an application letter to company μ)

0 (otherwise)
(7.55)

Then, we construct the learning equation as

daμk

dt
= −η

∂ E

∂aμk
= η

L M

L∑

l=1

δ
s(l)
μ ,1

{

y(l)
μ −

N∑

i=1

aμi x (l)
i

}

x (l)
k (7.56)

for μ = 1, . . . , M, k = 1, . . . , N .
We show an example of the learning dynamics through the error:

ε(t) = 1

N M

M∑

μ=1

N∑

k=1

(a∗
μk − aμk(t))

2, (7.57)

where a∗
μk denotes a “true weight,” for artificial data sets in Fig. 7.8.

Here we showed just an example of learning from artificial data sets for demon-
stration; however, it should be addressed as our future work to apply the learning
algorithm to realistic situation using empirical data set collected from [22, 23] or
large-scale survey.
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Finally, it would be important for us to mention that it could be treated as “dic-
tionary learning” [24] when the vector x(l), l = 1, . . . , L is “sparse” in the context
of compressive sensing [25–27].
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Chapter 8
What a Student Can Learn from the Saha
Equation

Jayant V. Narlikar

Abstract This article describes the wide applicability of Saha’s ionization equation
which really launched astrophysics as an important branch of physics and astronomy.

Keywords Saha’s ionization equation · Nucleosynthesis

I dedicate this presentation to the memory of Meghnad Saha whose association with
Calcutta University is being honoured through this symposium. Although the main
part of this work is related to Saha’s ionization equation I would like to describe an
event that shows how dedicated an academic Saha was. This event is in the form of a
quote from Kameshwar Wali’s book [1] on Chandra, that is Prof. S. Chandrasekhar
who was awarded the Nobel Prize for his work in astrophysics in 1983.

A few months later, 2–8 January 1930, Chandra attended the Indian Science
Congress Association meeting held in Allahabad.

The host and the president of the physics section of the Congress was Meghnad
Saha, the eminent Indian astrophysicist, whose theory of ionization a decade earlier
had unlocked the door to the interpretation of stellar spectra in terms of laboratory
spectra of atoms of terrestrial elements, providing information about the state of
stellar atmospheres, their chemical composition, the density distribution of various
elements, and then about the most important physical parameter, the temperature.

Chandra had learned all of this from Eddington’s book “The Internal Constitution
of the Stars” and was aware of the high esteem Eddington had accorded to Saha and
of Saha’s election to the Royal Society in 1927. But Chandra was not aware that
Saha was acquainted with his own work; so when he met Saha at the Congress and
introduced himself, he was pleasantly surprised by Saha’s compliment on his paper
in the Proceedings of the Royal Society. Saha said that it was very suggestive and
that one of his students was working on extending Chandra’s ideas.

He introduced Chandra to this student, who also seemed to know about his work,
and he invited Chandra to his home for lunch with a small group of research workers
all older than Chandra. The small lunch turned later into a dinner invitation with such
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distinguished senior Indian scientists as J.C. Ghosh, D.M. Bose and J.N. Mukherjee.
Saha persuaded Chandra to extend his stay in Allahabad so that he and his students
could discuss more with him. Chandra, so young, did not expect to be treated almost
as an equal by an internationally renowned scientist of Saha’s stature.

The above quote gives us a glimpse of the academic environment at Allahabad
when Saha was a professor there. I now turn to the main part of this presentation.

8.1 The Ionization Equation

The seminal contribution of Meghnad Saha was his ionization equation, now well
known as Saha’s ionization equation. To say that it was an important work in astro-
physics would be understating it: for, the subject of astrophysics really got going only
as a result of the Saha equation. Let us begin with an examination of this assertion.
For, to a student of physics the equation provides a menu of delicious results to be
enjoyed and appreciated.

Till the second decade of the last century the main observational handle on studies
of stars had been their luminosities and spectra. While the luminosity could give a
crude estimate of the star’s distance using the inverse square law of illumination, the
spectrum contained a lot more information.

For example, the continuum spectrum did, in the first approximation resemble the
black body spectrum which was well known in those days. If the star was generating
energy inside it and radiating it away, then itwas in a state of equilibriumand provided
the amount radiated was negligible compared to the total store of radiation being
scattered within the star one expected the equilibrium state to resemble the black
body state. This enabled the astronomer to estimate the star’s surface temperature.

With surface temperatures of the order of 3000K and above, it became clear that
the matter at the surface was not likely to be in a state of neutral gas. With large
thermal motions and the resulting frequent collisions, it would be impossible for the
typical atoms to retain all of their orbital electrons and so they would be ionized and
the matter would be in a state of plasma. How would the state of equilibrium be in
such circumstances? Naturally, we expect some of the atoms of the matter to remain
unchanged, while some would exist as ions and free electrons. But what would be
the proportions of these three ingredients?

The Saha equation answered this important question by giving the following
relation:

Ni Ne

N
=

(
meκT

2πh2

)3/2

exp

(
− B

κT

)
(8.1)

Here the number Ne, Ni , N denote the number densities of free electrons, ions
and neutral atoms at temperature T , B being the binding energy of the atom. The
ratio of the binding energy to temperature appears in the exponential form in this
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equation, thus underscoring its critical effect on the equilibrium abundances of these
three component species. Let us try to understand it qualitatively.

What does the binding energy indicate? Recall that an atom contains a positively
charged nucleus surrounded by negatively charged electrons. The latter are held close
to the nucleus by the force of electrostatic attraction. It is this force that provides the
binding and its energy denotes what work must be done to tear the electrons apart
from the nucleus. Thus the larger the binding energy B the more likely that the atom
would stay intact despite any attempt at disruption.

The disruption comes from collisions of the atom by other particles. The larger the
velocity 〈v〉 of a colliding particle the greater the chance of a break-up of the atom. As
statistical mechanics tells us, the measure of speed is through the temperature T of
the system. The larger the temperature the greater the average velocity per particle.
In fact, we know from this subject that the average kinetic energy per particle is
proportional to T .

In the above equation we thus see that the larger the value of B the smaller the
value of the ratio on the left-hand side. That is, we will expect a smaller proportion
of ions and free electrons. However, as T the temperature is raised, the right-hand
side increases and we get higher proportions of free ions and electrons. In short, with
rising temperature the matter moves towards the plasma state.

In Saha’s equation we therefore see the broad link between atomic physics, ther-
modynamics and observational astronomy. The appearance of the Boltzmann’s con-
stant κ in (8.1), the atomic binding energy and the temperature indicates this tripartite
relationship. Thiswas the beginning for astrophysics: it was here that a cluewasmade
available to interpret the spectrum of a star including the strengths of the emission
and absorption lines in it in terms of the ambient state of ionization of the stellar
envelope and its temperature.

The surface conditions of the star serve as valuable boundary conditions for stellar
models which seek to give details of the unseen stellar interior. In themodel proposed
by Eddington, the star is a spherical object, made of plasma held together under its
own gravitation. In fact, the inward force of gravitation can be so large that unless
the star has significant pressure gradients within, it cannot resist gravity.

The classic equations of Eddington [2] are differential equations which give the
march of physical quantities like density, temperature, pressure, luminous flux, etc.,
from the centre outwards. To solve them completely the boundary conditions at the
surface are required. This explains why the Saha Equation was such an important
stimulus for the early astrophysics. Saha’s paper [3] appeared in around 1920 and in
the next 4–5 years Eddington’s stellar models could be set up. That was the beginning
of astronomers using the methods of laboratory physics and applying basic theories
of physics to understand the large-scale behaviour of stars, galaxies and the whole
universe.

The purpose here is to emphasize the wide applicability of the Saha Equation to
astrophysics: for the general impression is that the equation has relevance to stellar
scenarios only. I will select two scenarios to illustrate my point, both of them far
removed from stellar astrophysics. Both are of critical importance to cosmology, the
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subject dealing with the large-scale structure of the universe. The first relates to the
popular theory of the origin of the microwave background radiation in the universe
and the second to the theory of the origin of light nuclei in the early universe.

8.2 The Microwave Background

The presently popular big bang framework of cosmology envisages the following
sequence of events since the origin of the universe in a big explosion. In the early
stages the universe was very hot, with typical particles of matter moving relativisti-
cally, i.e. as photons. Such a phasewas said to be radiation dominated. Even electrons
and protons moved with speeds close to that of light provided the universe had a tem-
perature of about ten thousand billion. As the universe expanded, it cooled and the
speeds of particles began to drop. A crude but very useful estimate tells us that the
average energy per particle is comparable to kT . Thus the speeds of the more mas-
sive particles will be lower. As the speed falls significantly below the light speed
c, the particle becomes ‘non-relativistic’. So in our case, first the protons become
non-relativistic and then the electrons.

Standard texts in cosmology, e.g. Ref. [4], give the relevant relations describing
when this happens. The later cooler epochs have the universe ‘dust dominated’. That
is, the universe is mainly made of matter that has negligible random motions with
respect to the cosmological rest frame. Denoting the scale factor of the expanding
universe by S, the simple rule is that the temperature of the radiation drops in inverse
proportion to S.

Aswe shall see in the next section, during the period 1–200s after the big bang, the
temperature of the universe dropped from about 10 billion degrees to a few hundred
million degrees. This was when the synthesis of nuclei took place.

The presence of nuclei, free protons and electrons did not, however, have much
effect on the dynamics of the universe, which was still radiation dominated. But,
these particles especially the lightest of them, the electrons, because of their electric
charge acted as scattering centres of the ambient radiation and kept it thermalized.
The universe was therefore quite opaque to start with. For, with its frequent scattering
light could not travel coherently in a straight line very far.

However, as the universe cooled, the Coulomb electrical attraction between the
electron and the proton began to assert itself. In detailed calculations performed
by P.J.E. Peebles, the mixture of electrons and protons and of hydrogen atoms was
studied at varying temperatures. Because of Coulomb attraction between the electron
and the proton, the hydrogen atom has a certain binding energy B. The problem of
determining the relative number densities of free electrons, free protons (that is,
ions), and neutral H-atoms in thermal equilibrium is therefore analogous to that we
considered earlier for stars. The only difference is that the setting is cosmological
rather than stellar. Following (8.1) we arrive at the formula relating the number
densities of electrons (Ne), protons (Np = Ne), and H-atoms (NH ) at a given
temperature T :
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N 2
e

NH
=

(
meκT

2πh2

)3/2

exp

(
− B

κT

)
, (8.2)

where me = electron mass. This equation is a particular case of Saha’s ionization
equation.

Writing NB for the total baryon number density, we may express the fraction of
ionization by the ratio

x = Ne

NB

Then, since NH = NB − Ne, we get from (8.2)

x2

1 − x
= 1

NB

(
meκT

2πh2

)3/2

exp

(
− B

κT

)
(8.3)

For the H-atom, B = 13.59eV. Substituting for various quantities on the right-hand
side of (8.3), we can solve for x as a function of T . The results show that x drops
sharply from 1 to near zero in the temperature range of ∼5000–2500K, depending
on the value of NB . For example, x = 0.003 at T = 3000K for the case where the
baryon density at present is about 2 × 10−30g cm−3.

Thus by this stage most of the free electrons were removed from the cosmolog-
ical brew, and as a result the main agent responsible for the scattering of radiation
disappeared from the scene. The universe thus became effectively transparent to
radiantion. This is called the ‘epoch of last scattering’.

Thus the Saha Equation essentially fixes the epoch when radiation decoupled
from matter. Subsequent to this epoch, the radiation cooled more or less undisturbed
by whatever process went on with the formation of large-scale structures of matter.
Since it had acquired a black body spectrum prior to the epoch of last scattering,
it retained that but with a steadily diminishing temperature. In fact the formula
T ∝ (1/S) continued to hold even when radiation decoupled from matter. The
microwave background we observe today is believed to be that relic radiation and it
should therefore carry signatures of the last scattering epoch intact. This conclusion
has remarkable observational consequences since it enables us to probe the early
universe by looking at the microwave background very minutely.

8.3 Primordial Nucleosynthesis

Let us now go further back in time to the 1–200s epoch when the universe was
hot enough for nucleosynthesis to have taken place. Here we encounter the Saha
Equation in a different setting, with atomic binding replaced by nuclear binding.
Free protons and neutrons could combine to form bigger and bigger nuclei provided
their random speeds were slow enough for them to be trapped in the nuclear potential
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wells. The calculation which was first attempted by George Gamow in the late 1940s
is described briefly as follows.

A typical nucleus Q is described by two quantities A = atomic mass and Z =
atomic number, and is written1

A
Z Q.

This nucleus has Z protons and (A − Z) neutrons. If m Q is the mass of the nucleus,
its binding energy is given by

BQ = [Zm p + (A − Z)mn − m Q]c2. (8.4)

Let us now consider a unit volume of cosmological medium containing NN nucle-
ons, bound or free. Since the masses of protons and neutrons are nearly equal, we
may denote the typical nucleon mass by m. Thus mn ≈ m P = m. If there are Nn

free neutrons and Np free protons in the mixture

Xn = Nn

NN
, X p = Np

NN
(8.5)

will denote the fractions by weight of free neutrons and free protons. If a typical
bound nucleus Q has atomic mass A and there are NQ of them in our unit volume,
we may denote the weight fraction of Q by

X Q = NQ A

NN
(8.6)

Now at very high temperatures (T � 1010 K), the nuclei are expected to be in
thermal equilibrium. However, at the temperatures around 1010 K the usual formulae
for non-relativistic thermodynamics will apply. Further, since we are now concerned
with relative number densities, we need to consider the chemical potentials. Thus

NQ = gQ

(
m QκT

2πh2

)3/2

exp

(
μQ − m Qc2

κT

)
(8.7)

where we have explicitly used the chemical potentialsμQ . Since chemical potentials
are conserved in nuclear reactions,

μQ = Zμp + (A − Z)μn (8.8)

assuming that the nuclei were built out of neutrons and protons by nuclear reactions.
The unknown chemical potentials can be eliminated between (8.7) and similar

relations for NP and Nn , with the result expressed in this form:

1Sometimes the suffix Z is suppressed.
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X Q = 1

2
gQ A5/2X Z

p X A−Z
n × ξ A−1exp

(
BQ

κT

)
(8.9)

where

ξ = 1

2
NN

(
mκT

2πh2

)−3/2

(8.10)

Note that Eq. (8.9) is a reincarnation of the Saha equation (8.1) with nuclear
binding replacing the atomic Coulomb binding!

For an appreciable build-up of complex nuclei, T must drop to a low enough value
to make exp(BQ/κT ) large enough to compensate for the smallness of ξ A−1. This
happens for nucleus Q when T has dropped down to

TQ ∼ BQ

κ(A − 1) | lnξ | . (8.11)

Let us consider what happens when we apply the above formula to the nucleus
of 4He. The binding energy of this nucleus is ∼=4.3 × 10−5 erg. If we substitute
this value in (8.11) and estimate NN from the presently observed value of nucleon
density of around 10−6 cm−3, we find that TQ is as low as ∼3 × 109 K. However,
at this low temperature the number densities of participating nucleons are so low
that four-body encounters leading to the formation of 4He are extremely rare. Thus
the underlying assumption of thermodynamic equilibrium (which requires frequent
collisions) leading to (8.11) becomes invalid. We therefore need to proceed in a less
ambitious fashion in order to describe the buildup of complex nuclei.

Hence, we try using two-body collisions (which are not so rare) to describe the
build-up of heavier nuclei. Thus deuterium (d), tritium (3H ) and helium (3He, 4He)
are formed via reactions like

p + n ↔ d + γ

d + d ↔ 3He + n ↔ 3H + p
3H + d ↔ 4He + n. (8.12)

Since formation of deuterium involves only two-body collisions, it quickly reaches
its equilibrium abundance as given by

Xd = 3√
2

X p Xnξexp

(
Bd

κT

)
. (8.13)

However, the binding energy Bd of deuterium is low so that unless T drops to less
than 109 K, Xd is not high enough to start further reactions leading to 3He, 3H and
4He. In fact the reactions given in (8.12) with the exception of the first one do not
proceed fast enough until the temperature has dropped ∼8 × 108 K.
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Although at such temperatures nucleosynthesis does proceed rapidly enough, it
cannot go beyond 4He and bigger nuclei cannot be made. This is because there are
no stable nuclei with A = 5 or 8, and so nuclei heavier than 4He cannot be made.
So the process terminates there. Detailed calculations by several authors have now
established this result quite firmly. For making heavier nuclei like C , O , Ne, etc.,
one has to study a similar process taking place in stars.

There is a fairly good agreement between these calculations and observational
estimates of the light nuclei, agreement at least good enough to generate confidence
in the big bang picture of an early hot universe. One could equally well argue that the
success of the calculation generates confidence in the thermodynamic equilibrium
picture conceived by Meghnad Saha.

8.4 Conclusion

I have illustrated these two examples from cosmology to emphasize thewide applica-
bility of Saha’s work today. The equation comes up again when we consider the
synthesis of nuclei in stars also. Indeed, Saha himself may not have imagined that
this result would have important implications for cosmology. However, work of a
fundamental nature in physics inevitably finds unexpected applications. The Saha
equation is a striking example.
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Chapter 9
Computational Fluid Dynamics
with Application to Aerospace Problems

S.K. Chakrabartty

Abstract The subject Computational Fluid Dynamics will be introduced with its
applications to compute transonic inviscid and viscous flow past two- and three-
dimensional bodies of practical interest in aerospace design and development. Devel-
opment and implementation of vertex-based finite-volume methods for Euler and
Navier–Stokes equations with an algebraic turbulence model will be discussed with
some typical examples of aerospace applications, such as (i) Analysis of transonic
flow past aerofoils including study of shock-induced separation at the foot of a
strong shock, (ii) Analysis and design of aerofoils with flap configurations (GA(W)-2
and HANSA) including Gurney flaps, (iii) Internal flows through nozzles and cas-
cades, (iv) Navier–Stokes analysis of round leading edge delta wing at high angles of
attack and (v) Design and analysis of complete SARAS aircraft with sideslip will be
presented.

Keywords Computational fluid dynamics · Transonic flow · Turbulence modelling

9.1 Introduction

Computational Fluid Dynamics (CFD), a mature discipline now, can contribute con-
siderably to the design, analysis and development of engineering systems involving
fluid flows. The main advantage lies in its ability to cut down developmental costs
by minimizing scaled model testing leading to reduction in the design cycle time
and design cost. Under the assumption of continuous media, Reynolds Averaged
Navier–Stokes (RANS) equations with a suitable turbulence model can be accepted
as valid equations governing the fluid flows in general. The basic features of the fluid
flows of aerodynamic interest can be simulated by the Euler equations, obtained
from the RANS equations under the assumption of inviscid flows. Euler equations
can handle the rotational flows although there is no mechanism to generate vorticity
(see Fig. 9.1). Computation of transonic flow field, where both subsonic and super-
sonic regions are present and significant in the determination of overall character of
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Fig. 9.1 Surface pressure distribution and streamlines, M∞ = 0.95, α = 22◦, Grid: 201×41×75

the flow, was initiated in India during early seventies of last century. Mathematical
complexities of this flow field were governed by the non-linear mixed-type partial
differential equations, characterized by the fact that subsonic and supersonic regions
exist adjacent to each other, separated by sonic line, and not known a priori and the
usual occurrence of shock waves terminating the supersonic region drew attention
of the mathematical community throughout the world, particularly after the famous
discovery of transonic controversy, Bers [1]. Early successful computations of tran-
sonic small perturbation equation representing two-dimensional inviscid flow past
aerofoils were done by Magnus and Yoshihara [2] and Murman and Cole [3] using
finite-difference methods and by Chakrabartty [4, 5] using integral equation method.
A rapid progresswas observed in next two decades to develop computationalmethods
for transonic Full Potential (FP) equation, Euler equations and Reynolds Averaged
Navier–Stokes (RANS) equations in two and three dimensions of Niyogi et al. [6]
and Chakrabartty [7]. Added gradually are different geometrical configurations and
physical complexities like viscosity, flow separation, turbulence, etc. Visualization of
flow field, surface load distribution and various aerodynamic forces andmoments are
the criteria for basic design of aerospace configurations. CFD complements experi-
mental and theoretical fluid dynamics by providing an alternative and cost effective
means to simulate real flow phenomena. One advantage of CFD is that the entire
flow field solution can be stored and the required analysis can be done later. In
experiments, analysis of flow field is difficult; each experiment serves a specific pur-
pose which makes the process expensive. To understand structure of the flow field
inside the boundary layer and at the foot of the shock, spiralling vortex structure,
vortex breakdown, three-dimensional boundary layer separation, etc. are some of the
phenomena which need CFD analysis.
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Considering the potential of the growing subject and visualizing its utility in
national projects of civil and military aircraft, National Aerospace Laboratories
(NAL) at Bangalore decided to initiate the development of a comprehensive code for
the analysis of three-dimensional viscous compressible flows past complete aircraft
and its components capable of capturing the typical flow features and predicting the
aerodynamic coefficients for design purpose with adequate accuracy. So the project
was started in 1991 continuing till today passing successfully all the critical stages
of development and delivering results of high accuracy for many applications of
aerospace interest. Along with the main solver codes, the corresponding pre- and
post-processing codes were also developed to complete CFD package consisting: (i)
pre-processing and grid generation, (ii) solution of the governing equations and (iii)
post-processing of the solution.

9.2 Transonic Flows and Mathematical Complexities

Distinguishing features of a transonic flow field are as follows:

(i) Both subsonic and supersonic regions are present and significant in determining
the overall character of the flow.

(ii) These are separated by a surface called sonic surface, where local Mach no.
M = 1, which is a part of the solution.

(iii) Weak shocks are present.
(iv) Local Mach number, M ∼ 1 throughout.

Such flow fields occur in a wide range of aerodynamic problems like flow through
nozzles, around blunt bodies moving supersonically, near airplane wings flying close
toMach number unity and around propellers and turbine blades. Guiding differential
equation for potential flow is non-linear even under the assumption of small pertur-
bation and is of mixed elliptic–hyperbolic type. Euler and Navier–Stokes (N–S)
equations are non-linear and coupled sets of equations: For three-dimensional flows,
steadyN–S equations are elliptic–hyperbolic, whereas corresponding unsteady equa-
tions are parabolic–hyperbolic. Unsteady Euler equations are hyperbolic with respect
to time. With respect to space, for both steady/unsteady supersonic flows, the char-
acteristic matrix has five real eigen values with respect to all spatial directions within
the Mach cone with axis along the velocity and apex angle cos−1(1/M), so they
are of hyperbolic type; whereas for subsonic flow, the characteristic matrix has three
equal real and two complex eigen values with respect to every spatial direction, so
they are of Hybrid type [6]. As viscosity → zero, N–S equations lose its parabolic
and elliptic nature which implies singular behaviour in limiting sense.

Apart from these, there are physical complexities like Compressibility, Viscosity,
Shocks, Transition, Turbulence, Wake, Separation, Reattachment, Shock-Induced
Separation, Vorticity, etc., and geometrical complexities likeMultielement aerofoils,
Satellite Launch Vehicles, Aircraft, Helicopter, Turbo machinery, etc.
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9.3 Governing Equations

Under the assumption of continuous media, Navier–Stokes equations are valid gov-
erning equations for fluid flows. Direct Numerical Simulation (DNS) or Large Eddy
Simulation (LES) requires enormous resources, not yet reached the maturity to be
used for practical problems. Reynolds Averaged Navier–Stokes (RANS) equations
with some turbulence model have been accepted to govern the fluid motion.

In solving a differential equation, a serious difficulty occurswhen the highest space
derivative terms of this equation are multiplied by a small parameter, such as with the
Navier–Stokes and related equations for high Reynolds number flow (1/Re → 0,
or viscosity, μ → 0). We are considering a physical theory, viz. that of inviscid flow
governed by the Euler equations, as an approximation to another physical theory,
that of viscous flow governed by the Navier–Stokes equations. The solutions of
the Euler equations admit discontinuities of different kinds, e.g. discontinuity in
velocity from one streamline to an adjacent streamline, although the pressure is
continuous. Such discontinuities, known as contact discontinuities, are consistent
with the theory of characteristics and with the integral conservation laws whose
differential forms are the Euler equations. Another form of discontinuity, known as
a shockwave, may exists in which the normal velocity, pressure, density, entropy
and absolute temperature jump across a surface. Since such discontinuities may not
occur in the Navier–Stokes equations, we expect the perturbation problem to be
singular. This implies that the Euler limit of a Navier–Stokes solution may not be
uniformly valid. The solution of the Euler equations (weak solution) for a given set
of boundary conditions is not unique. Often, it is the inherent numerical dissipation
in the solution scheme that makes the solution unique. We shall call a solution of
the Euler equation, which is the Euler limit of the Navier–Stokes solution for the
same conditions, a relevant Euler solution [6]. We emphasize again the fundamental
difference, in principle, between the cases of small viscosity and large viscosity. The
physical theory expressed by the Euler equations assumes that the viscosity is zero.
An asymptotic expansion for small μ must tend to the Euler solution in the limit
μ → 0. There is no physical theory for compressible flow in which the viscosity is
infinite. The Stokes flow is valid for incompressible flow. The governing equations
for large values of coefficient of viscosity are still the Navier–Stokes equations.

9.4 Eddy Viscosity Approach for Turbulence Modelling

• Eddy viscosity μt , related to mean strain using Prandtl’s mixing length approach.
• No additional differential equations are to be solved.
• Need minimum computer time and storage.
• Easy to implement.
• Give reasonably accurate results for attached and separated flows past simple
geometries.
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For two- and three-dimensional ReynoldsAveragedNavier–Stokes (RANS) equa-
tions, solver codes JUMBO2D and JUMBO3D, respectively, with algebraic Baldwin
Lomax type of turbulence models along with corresponding Euler versions JUEL2D
and JUEL3D have been developed. Salient features of these codes are multi-block
structured, capability of handling H-, C- or O-type grids with vertex-based finite-
volume space discretization, five-stage Runge–Kutta time stepping and second- and
fourth-order artificial dissipation with convergence acceleration schemes like grid
sequencing, local time stepping, implicit residual smoothing and enthalpy damping.
Grid generation code JUMGRID was also developed in NAL for two- and three-
dimensional multi-block grid for complex external and internal flow configurations.
The code can generate a multi-block grid for any arbitrary, geometrically complex
bodies, for both external and internal flows. The grid is structured in any particular
block but the blocks may be unstructured. The geometry data for a complex config-
uration is generally available for each component separately, sometimes in its own
coordinate system. The code JUMGRID follows the following steps to achieve the
desired multi-block grid: (1) Read geometrical data for each component. (2) Rede-
fine complete geometry in global coordinate system. (3) Form blocks suitable to
the geometry and the topology intended. (4) Define all six faces in each block. (5)
Redistribute points on each face as necessary. (6) Fill up initial internal points in
each block. (7) Establish inter-block connectivity/boundary condition. (8) Smooth
the grid by solving elliptic equations.

Details of these codes, grid generation algorithms, algebraic turbulence models
and time-stepping schemes used in the present analysis, different types of boundary
conditions, convergence acceleration schemes for Euler and Navier–Stokes equa-
tions and their implementation in the vertex-based finite-volume discretization are
available in [8–11].

9.5 Results and Discussions

These codes have been applied for analysis and design of two- and three-dimensional
aerodynamic problems like transonic flow past different aerofoils, wings, wing–body
combinations, satellite launch vehicles and complete civilian and military aircraft.
Details of these applications are available in [12–25]. Some typical cases are illus-
trated below for the sake of completeness. To illustrate the inability of Euler equations
to generate vorticity, a flow past slender body of revolution at high angle of attack has
been considered. Geometrical discontinuity and viscosity are the two major sources
of vorticity generation in the flow field. If it is generated by the kink or sharp lead-
ing edge of the body, then Euler equation can take care of its motion, but it has no
mechanism to generate it. So the smooth round leading edge body of revolution at
angle of attack, vortex roll-up phenomenon, can be obtained only through the viscous
flow solution. Surface pressure distribution and streamlines are shown in Fig. 9.1.
Inviscid flow computed using Euler code JUEL3D shows no vortex roll-up, whereas
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Fig. 9.2 a Comparison of surface pressure C p and b skin friction distribution C f with experiments

Navier–Stokes analysis at Re∞ = 6 × 106 using JUMBO3D code shows vortex
roll-up.

Transonic flow past RAE28222 Aerofoil with shock-induced separation has been
computed using two-dimensional Navier–Stokes solver JUMBO2D code at M∞ =
0.75, α = 2.81◦, Re∞ = 6.2 × 106. A C-type algebraic grid (257 × 61) where
minimum normal spacing of 10−5 with chord length as unity has been used such
that the maximum law-of-the-wall coordinate y+ value [6] at the first grid node is of
the order of four. Distributions of pressure coefficient, CP and surface skin friction
coefficient, C f are shown in Fig. 9.2. Apart from the shock position, both CP and
C f compare well with experiment [26] throughout the airfoil. Shock position can be
improved using better turbulentmodel, but then it was observed that the discrepancies
appear on the lower side of the body surface. Negative skin friction distribution shows
the point of separation and reattachment after the shock. Mach contour distribution
is shown in Fig. 9.3 showing the supersonic zone terminated with shock.

Next example shown here is flow through VKI-LS-59 Turbine Cascade for inlet
flow angle, α = 30◦, inlet total pressure and total temperature corresponding to
isentropic Mach number, M1is = 0.282, inlet Reynolds number, Re∞ = 0.8× 106

and exit static pressure corresponding to isentropic Mach numbers, M2is = 0.81
and 1.12. Figure9.4 shows the C-type periodic grid used. Proper resolution of the
boundary layer has been achieved by the minimum cell height near the boundary as
5×104− which gives an average y+ of the order of four. Figures 9.5 and 9.6 give the
Mach contour distributions and Figs. 9.7 and 9.8 show the comparison of isentropic
Mach number distributions using various grid levels and with experiential results
(NAL) for subsonic and supersonic exits, respectively [17]. In both the cases, grid
convergence of the solutions was obtained and the fine grid results show excellent
comparison with experiments. Figures 9.9 and 9.10 show the streamline distributions
near the trailing edge. Here, the typical vortex structure of the flow has been clearly
predicted.
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Fig. 9.3 Mach Contour Distribution on RAE28222 Aerofoil at M∞ = 0.75, α = 2.81◦, Re∞ =
6.2 × 106

Fig. 9.4 C-type grid
(595 × 51) for flow through
Turbine Cascade

Effectiveness of the control surface is of critical importance for any aircraft.
JUMBO2D code was used for the analysis and subsequent design of airfoil flap
geometry for better performance with interest to in-house aircraft projects. It was
observed that the existing flap on theHANSA aircraft lacks the required effectiveness
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Fig. 9.5 Mach Contour for subsonic exit

at moderate angles of incidence. JUMBO2D code was used to analyse the flow and
after several cycles of design and analysis showed a significant improvement in the
flow behaviour [18]. Figure 9.11 compares the shape of the original aerofoil flap
with that of the modified one. Figure 9.12 shows the improvement of the flow pattern

Fig. 9.6 Mach Contour for supersonic exit
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Fig. 9.7 Mis Distribution for subsonic exit

Fig. 9.8 Mis Distribution for supersonic exit

for the modified geometry at M∞ = 0.3, angle of attack, α = 10◦, flap deflection
angle, δ = 20◦ and Re∞ = 2.0 × 106. The separation free flow was achieved with
smooth behaviour having attached flow throughout with a small cove vortex in the
gap close to the trailing edge.
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Fig. 9.9 Streamlines close to trailing edge subsonic exit

Fig. 9.10 Streamlines close to trailing edge supersonic exit
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Fig. 9.11 Existing HANSA-3 and modified aerofoil-flap configurations: a Full configuration, b
Enlarged view near the gap and flap

The complicated vortex flow over a 65◦ cropped delta wing with round leading
edge at moderate to high angles of attack has been studied in detail using JUMBO3D
code [15, 16]. A typical example has been shown here for M∞ = 0.85, α = 10◦
and Re∞ = 2.38 × 106. The topology of three-dimensional separated flows can
be studied using the surface skin friction lines. Skin friction lines on the upper
surface of the wing have been shown in Fig. 9.13. Primary separation point starts
inboard and close to the apex and gradually moves towards the leading edge until it

Fig. 9.12 Streamlines and pressure contours of existing and modified flap configurations at M∞ =
0.3, α = 10◦, δ = 20◦ and Re∞ = 2.0 × 106
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Fig. 9.13 Skin friction lines
on the upper surface of the
delta wing

meets the kink. The secondary separation starts at around 35% of the root chord and
terminates at a node at around 90% of the root chord. At around 95% of the root
chord, a corresponding saddle point on the surface appears. Appearances of primary
and secondary vortices are more clearly shown in Fig. 9.14, where the streamline
patterns of the particles leaving the leading edge to form the roll-up vortex have been
plotted. The leading edge connectivity of core vortex is lost due to the cropped tip, but
the particle path remains smooth in the core and no abrupt lifting of vortex near this
junction is observed. Appearance of secondary vortex with opposite direction can

Fig. 9.14 Surface pressure
contour and streamlines
showing primary and
secondary vortices
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Fig. 9.15 C p Contours and particle traces on the upper surface and at different cross-flow planes

Fig. 9.16 Typical fuselage sections showing original and modified fuselage

also be seen here. Particle traces at different cross-flow planes are shown in Fig. 9.15.
The trajectories of the particles in these planes roll-up around what appears to be the
vortex core. Here, the primary and secondary vortices are present up to about 80%
of the chord. For complete analysis of this complex, vortex flows at different angles
of attack are available in Ref. [15].

Design of wing–fuselage junction is very critical for an aircraft to minimize the
mutual interference effect. In order to improve the aerodynamic flow pattern, the
SARAS fuselage has been modified by repeated analysis using JUMBO3D code and
modification of the wing–body configuration was obtained from the visualization
of the surface flow [19, 20]. Figure 9.16 shows some typical cross sections of the
fuselage with both original andmodified contours. Figure 9.17 shows the streamlines
on the original and modified configurations. The modified fuselage gives the smooth
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Fig. 9.17 Surface flow patterns on original and modified wing–fuselage fairings at M∞ = 0.5,
α = 0◦

Fig. 9.18 Surface flow patterns on complete SARAS aircraft at M∞ = 0.5, α = 5◦
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Fig. 9.19 C p contours on a
surface and b i-const. cross
section across wing and
Fuselage, at M∞ = 0.4,
α = 0◦ and sideslip
β = −15◦

streamlines and does not have the clustering of streamlines on the rear fuselage
as seen in the original one. This smooth behaviour of the flow is maintained with
complete aircraft and computed surface streamline patterns are shown in Fig. 9.18.
Finally, the inviscid flow past complete SARAS aircraft with sideslip was analysed
and Fig. 9.19 shows Cp contours on the surface and i-constant cross section across
wing and fuselage, at M∞ = 0.4, α = 0◦ and sideslip β = −15◦.

9.6 Conclusion

Three-dimensional Euler and Navier–Stokes codes along with grid generation and
post-processing packages reached its maturity to make the analysis of practical
aerospace vehicles with reasonable accuracy and affordable computing cost. In the
near future, CFD will make the design process faster and less expensive. As the
confidence in the analysis codes becomes more and more reliable, aircraft designers
will be more likely to use CFD-generated data, though it cannot completely replace
the traditional design and experimental methods, but CFD techniques will certainly
play a major and irreplaceable role in any future aerospace projects.

Still there is enough scope of improvements like add better turbulence models,
reformulate the codes to solve equations in non-inertial frame of reference keep-
ing in mind its application to turbo machinery and helicopter rotor blades, compute
unsteady time-accurate flow, improve capability to use unstructured grids, add com-
puter graphics and improve user-friendliness, etc.
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Chapter 10
Contact Problem in Elasticity

Arabinda Roy

Abstract We review the classical Hertz contact theory under normal load and for-
mulate a new unified method valid for the Hertz contact theory and a variety of
frictionless elliptic contact problem with an elliptic contact connection both for a
rigid punch and a conical indenter. We also give a direct way to evaluate the stress
and displacement field in the medium. As a limiting case, we derive the results for
circular connection as well as line contact problems in the two-dimensional case.
Relations of the contact stresses of the wheel of a locomotive rolling on the rails of
straight and curved railway with failure of the rail are discussed. Use of such study
in hardness testing is discussed.

Keywords Hertz contact theory · Frictionless elliptic contact problem · Rigid
punch · Conical indenter · Stresses and deflections

10.1 Introduction

The subject of contact mechanics began with the publication of Hertz in 1882. The
contact problem to be considered here goes by the name of Hertz. Hertz, basically
an electric engineering while investigating the phenomenon of Newton’s optical
interference fringes in the gap between two glass lenses, became interested in the
localized deformation and the distribution of pressure between the optical lenses.
During this investigation, he wrote his paper “on the contact of elastic solids” in
1881 at the age 24. Even after 140 years, his interest in this topic has not waned to
mechanical engineers because of its application.

Many authors (Boussinesq [1], Huber [2], Huber and Fuchs [3] and in recent years
Sneddon [4–7] and Johnson [8]) have studied the same problem in detail.

The stresses and deflections arising from the contact between two elastic bodies
have practical applications in hardness testing, wear and impact damage of engi-
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neering ceramics, the design of gear teeth, ball and roller bearings. Rolling contact
under normal loads occurs in rail wheels and under normal and tangential load in
locomotive driving wheels and braked rail wheels.

10.2 Basic Equations

Let two convex-shaped bodies be in contact initially at a point at the upper body
S1 and be pressed with a vertical pressure P. Referred to the tangential plane at the
initial point, the profile of S1 is an ellipse given by

z = 1

2R′
1

x21 + 1

R′′ 1
y21 ,

in terms of R′
1 R′′

2 , the principal radii of curvature of the surface at the origin.
There is a similar set for S2.
Due to contact pressure, the surfaces of two bodies are displaced relative to fixed

points by an amount u1
z + u2

z = δ1 + δ2 = δ − Ax2 − By2.
Outside the contact area, u1

z + u2
z > δ − Ax2 − By2.

Guided by his observation of interference fringes between two cylindrical lenses,
Hertz made the following assumptions:

(a) the contact area is in general elliptical.
(b) for local deformation, each body can be regarded as an elastic half space so that

the displacement and stresses satisfy the differential equations of equilibrium
for elastic bodies and the stresses are localized.

(c) the surfaces are assumed to be frictionless so that only normal stress is present.
(d) The normal pressure is zero outside and equal and opposite inside the contact

region.

Our interest is to determine the stress and displacement in the medium, z > 0
associated with specified displacement w1 on elliptic contact area S.

The contact problem can be described as a mixed boundary value problem of the
half space, z > 0 with the following boundary condition:

τzx (x, y, 0) = τzy(x, y, 0) = 0, ∀ (x, y).

w(x, y, 0) = w1(x, y) (x, y) ∈ S. (10.1)

τzz(x, y, 0) = 0 (x, y) /∈ S.

The displacements satisfy the elastic equilibrium equation and the displacements
u are given in terms of three harmonic potentials φ,ψ and χ as

u = ∇φ − z∇ψ(3 − 4v)kψ + ∇ × (kχ) , (10.2)
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where ∇2(φ,ψ, χ) = 0.

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

ν is the Poisson’s ratio and k is an unit vector in the positive z direction

(φ,ψ, χ) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
[P(ξ, η), Q(ξ, η), R(ξ, η)] ei(ξ x+ηy)−z

(
ξ2+η2

)1/2
dξdη.

First of the boundary condition (10.4) yields R(ξ, η) = 0.

(
ξ2 + η2

)1/2
P(ξ, η) = (1 − 2ν) Q(ξ, η). (10.3)

We introduce a new unknown B(ξ, η) related to Q(ξ, η) as

B(ξ, η) = 1

1 − 2ν

(
ξ2 + η2

)
P(ξ, η) =

(
ξ2 + η2

)1/2
Q(ξ, η).

We now take the indentation w on the elliptic contact area overlying on an
elastic half space under as w(x, y) = δ − f (ρ), where f (0) = 0 and ρ =√(

x2/a2
) + (

y2/b2
)
.

We make the following transformation in the integrand such that the ellipse is
transformed to a circular region:

x ′ = aρ′ cosφ y′ = bρ′ sin φ

ξa = k cosχ ηb = k sin χ.

so that k = (
ξ2a2 + η2b2

)1/2
, ρ = aρ′ =

(
x2 + a2

b2
y2

)1/2

.

Also,

e±ikρ′(cosχ−φ) =
∞∑

n=0

εn(±i)n Jn(kρ′) cos n(χ − φ)

where εn = 2 − δn0, δn0 is the Kronecker’s delta function and Jn(z) is the Bessel
function of order n.

We assume the Fourier expansions for the transformed quantities, namely

B(ξ, η) = B(k, χ) =
∞∑

0

Bn(k) cos nχ +
∞∑

0

Bs
n(k) sin nχ.
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On making the transformation, we obtain the surface displacement as

w1(x, y) =
(
1 − ν2

)

π E

∫ ∞

−∞

∫ ∞

−∞
B(ξ, η)

(
ξ2 + η

)−1/2
e−i(ξ x+ηy)dξdη

=
(
1 − ν2

)

π Eab

[

I00

∫ ∞

0
B0(k)J0(kρ)dk +

∞∑

n=1

∞∑

s=1

Ins Bn(k)Js(kρ) dk cos sφ

]

.

The set of integral equation on satisfying the contact conditions in (10.1) reduces
to ∫ ∞

0
I00B0(k)J0(kr) dk = π Eab

1 − ν2
[δ − f (ρ)], r < 1.

∫ ∞

0
B0(k)k J0(kr) dk = 0, r > 1 (10.4)

and Bn = 0, n �= 0, r = ρ/a, where

I00 =
∫ 2π

0

dχ
(
cos2 χ

a2 + sin2 χ

b2

)1/2 = 4b
∫ π/2

0

dk
(
1 − k20 sin

2 χ
)1/2 = 4bK (k0) .

(10.5)
The solution of the integral equation (10.4) is taken as

B0(k) = a1

∫ 1

0
φ(t) cos kt dt, (10.6)

where a1 = π Eab

I00
(
1 − ν2

) .

Substituting in the first equation, we get on using the integral

∫ ∞

0
cos (ξ t) J0(ξr) dξ = H(r − t)√

r2 − t2
,

∫ r

0

φ(t) dt√
r2 − t2

= [δ − f (r)] with r =
(

x2

a2 + y2

b2

)1/2

< 1,

which is an Abel-type integral.
On inverting

φ(t) = 2

π

[

δ = d

dt

∫ t

0

y f (y) dy
√

t2 − y2

]

= 2

π

[

δ − t
∫ t

0

f ′(y)
√

t2 − y2
dy

]

. (10.7)
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On integrating by parts and on evaluating at t = 1, the penetration δ is given by

δ =
∫ 1

0

f ′(y) dy√
1 − x2

+ π

2
φ(1). (10.8)

The normal surface stress is on inverting the second contact condition

τzz(x, y, 0) =
∫ ∞

0
B(k)k J0(kr) dk = 1

r
· d

dr
r
∫ ∞

0
B(k)J1(kr) dk.

τzz = π Ea

8
(
1 − ν2

)
K (k0)

[
φ(1)√
1 − r2

−
∫ 1

ρ

φ′(t)√
t2 − r2

dt

]
. (10.9)

We list the surface stress for various indenters:
(a) elliptic punch w = δ = constant so that, a1φ(t) = 2δ/π

B(k) = sin k

k
τzz(x, y) = P

πab
· 1
√

a2 − ρ2
H(a − ρ).

(b) Hertz contact problem

w = δ − 2C

(
x2

a2 + y2

b2

)

a1φ(t) = δ − 2Cr2 and if φ(1) = 0 so that

B(k) = sin k

k2
− cos k

k
τzz(x, y, 0) = −3

2
pm

(
1 − x2

a2 − y2

b2

)1/2

H

(
1 − x2

a2 − y2

b2

)

in terms of the mean pressure pm = P/4ab.

(c) For a conical punch, the indentation is given by

w1 = δ − f

(
x2

a2 + y2

b2

)

with f (0, 0) = 0 and

f (x, y) = a tan β

√
x2

a2 + y2

b2
,

where π − β/2 is the semi-vertical angle of the cone.
Then

φ(t) = 2

π
(δ − ta tan β).
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τzz(x, y, 0) = π Ea

8
(
1 − ν2

)
K (k0)

[
φ(1)√
a2 − τ 2

H(a − ρ)

]

for non-adhesive case, we have in addition φ(1) = 0, i.e. δ = a tan β.

Substituting the values of B(k), we obtain the stress in the medium for Hertz
problem as

τzz = μa1
2πab

∫ 2π

0

[

I1 + z

(
cos2 χ

a2 + sin2 χ

b2

)1/2

I3

]

dχ + τ ∗
zz,

where

I1 + z

(
cos2 χ

a2 + sin2 χ

b2

)1/2

and u is the positive root of

x2

a2 + u
+ y2

b2 + u
+ z2

u
− 1 = 0.

The corresponding tangential stresses are

τzx (x, y, z) + iτzy(x, y, z) = μ

2πab

(
cosφ

a
+ i

sin φ

b

)∫ 2π

0
I6dχ + τ ∗

zx (x, y, z) + iτ ∗
zy(x, y, z)

with

ζ = z

(
cos2 χ

a2 + sin2 χ

b2

)1/2

.

I6 = ζa2z
√

u
(
u2 + a2ζ 2

) ·
(
cos2 χ, sin2 χ

)

(
cos2 χ

a2 + sin2 χ

b2

)1/2 .

The starred quantities can be obtained (see [9]).
In obtaining the values of the stress and deformations for various indenters, we

observe that one needs to compute integrals of the type

Zm
n = Cm

n − i Sm
n ,

where

(
Cm

n , Sm
n

) =
∫ ∞

0
kn−2(cos k, sin k) e−kζ Jm (kρ) dk = (Re, Im)

∫ ∞

0
kn−1 e−(ζ+i)k Jm(kρ) dk,
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where ζ = z

(
cos2 χ

a2 + sin2 χ

b2

)1/2

, ρ =
(

x2

a2 + y2

b2

)1/2

.

Using the recurrence relation for theBessel function, any value of Zm
n for (m, n) >

2 can be obtained in terms of the values for (n.m) = (0, 1, 2). From the relation of
the type

Zm
n−1 = ρ

2m

[
Zm−1

n + Zm+1
n

]
.

An integration over is present for the elliptic case.
In particular,

C0
1 − i S0

1 =
∫ ∞

0

1

k
e−k(ζ1+i) J0(kρ) dk = − log

[
i + ζ +

√
(ζ + i)2 + ρ2

]
.

The integrals Cm
n , Sm

n were first evaluated by Elliot [10]. Sneddon gave the values
of the integral which has been tabulated in convenient form in Appendix 1 byMurgis
[11] in his book. Fabrikant [12, 13] gave the values in terms of elementary functions
for circle. Roy and Basu [8] listed those values for elliptic contact problem. For Hertz
problem, the values are

I1 = S0
0 − C0

1 = ζ sin−1
(

a

l2

)
− ζ√

u

I2 = −
∫

I1dz = S0−1 − C0
0 = 1

4[

−
(

l22 − a2
)1/2 + 3

ζ 2

(
l22 − a2

)1/2 −
(
2ζ 2 − ρ2 + 2

)
sin−1

(
a

l2

)]

I3 = S0
1 − C0

2 = sin−1
(

a

l2

)
−

√
u

s

I4 = S1
0 − C1

1 = −ρ

2

( √
u

a2 + u
− sin−1

(
a

l2

))

I6 = S1
1 − C1

2 = ζ√
u

· ρ

s
(
a2 + u

) ,

where I j (χ) are given by

(l1, l2) = 1

2

[(
(ρ + a)2 + ζ 2

)1/2 ∓
(
(ρ − a)2 + ζ 2

)1/2]
.

ρ =
(

x2 + a2

b2
y2

)1/2

ζ = a

(
cos2 χ + a2

b2
sin2 χ

)1/2

.
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The corresponding quantities for elliptic punch under constant indentation are L j

where
L1 = S0

2 L2 = sin−1 (l2/a)

L3 = S0
3 L4 = S1

1

L5 = S1
0 L6S1

3 .

Since
Zm

n−1 = ρ

2m

[
Zm−1

n + Zm+1
n

]

all the values of Zm
n for all successive values of n and m can be generated from

Z0
1, Z−1

1 , Z0
2, Z2

2 . The appropriate modifications in the elliptic contact problem
with constant indentation have been considered by Roy and Basu [8]. The reader is
referred to the paper for details.

We note that the starred quantities τ ∗
zz, τ ∗

zx , etc., are the effect of the contact area
being elliptic and can be easily calculated [8]. In case if a = b, i.e. if the contact area
is circular, all the starred quantities vanish. The integration over is now elementary
and we get back the stresses for the indentation by a sphere (Johnson [14]).

For b → ∞, our result agrees with that of an indentation by a line crack (see
[15]).

We have considered only normal loading. The analysis can be easily extended to
the case of tangential loading (see Roy and Basu [8]).

10.3 Discussion

We now mention some applications of the result discussed by various researchers.
The stresses beneath contact plane can be used to predict the region of failure of

the body under indentation load. The stresses and deflections arising from the contact
between two elastic bodies have practical applications in hardness testing, wear and
impact damage of engineering ceramic.

The study of the contact stresses in line contact can be used to study the failure
of the rail during the motion of a locomotive wheel on rails of straight or curved
railway. In this case, besides the weight of the locomotive acting normal to the rail,
the frictional force arising from the use of brakes applied on the wheel gives rise to
tangential load. In the case of the rail on curved track, frictional forces arise because
of wheel slippage, since the wheels are rigidly attached to the axle and the tangential
force is the thrust on the outside rail of a curve due to centrifugal forces on the train
and is larger than on straight rail. Thus the rail failures are more severe on curved
rails

Failure from contact stresses starts as a localized inelastic deformation (yielding
or distortion) and by fracture by progressive spreading of a crack.
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Two failure criterions are commonly used in literature. One is the Tresca failure
criterion, namely, the maximum value of

τmax = 1

2
|σ1 − σ2|

σ1, σ2 being the maximum and minimum principal stresses.
The other is the Von Mises criterion which depends on the deviatoric stresses

τG max = 1

3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2.

Various authors have drawn contours of principal stresses for line, punch and
spherical indentation to get information about the failure region.

Smith and Liu [16] drew the contours of principal stresses on y = 0. From a study
of the plot of the principal stresses in the xz-plane, they observed that the maximum
values of the principal stresses occur at the surface at (0.3a, 0)

σ1max = −1.39p0, σ2max = −0.72p0, σ3max = −0.53p0

so that τmax = 0.43p0 and τG max = 0.37p0.
When only normal force acts f = 0,

τmax = 0.30p0 and τG max = 0.27p0.

These values are attained on the z-axis at z = 0.78a underneath.
Thus the location and magnitude changes due to the presence of tangential stress

and moves to the surface. For f > 1/3, the maximum shear stress occurs at a point
on the surface, while if f < 1/3, this stress is underneath the surface.

Hamilton and Goodman [17] plotted the lines of constant J 1/2
2 /p for various

values of friction μ observed that for circular sliding contact that the region of
maximum yield parameter moves towards the surface less rapidly. And the most
likely region of failure is the front edge of the circle of contact.

The second type of failure is associated with repeated applications of the loads
with a fracture (fatigue) that starts as a localized crack with very little visual evidence
of inelastic evidence. The crack starts either at the surface or underneath the surface
and grows progressively as the stress is repeated until some of the metal breaks out
of the surface causing pitting, shelling or other damaging effects to the surface.

Type characterized by inelastic strain in the surface layer on top of the rail head
and shelly failures of railway rails usually occur in the outside rail on the rail-head
edge in contact with the wheel flange. After repeated movement, cracks in the rail
head appear and progress either horizontally or transversely across the rail head. The
above is also valid for shelly failures in the rims of the wheels on diesel locomotives
due to the combined action of the normal weight and tangential forces due to the
driving torque applied through these wheels.
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Poritsky [15] used the stresses in line contact problem for normal as well as
tangential loading and applied it to study contact between gear teeth and also rolling
motion of rails.

He noted that for cylinder in rolling contact, slipping takes place in part of the
contact region where the friction μ is critical so that T = μP , while for T < μP
the two surfaces are locked in b < |x | < a, where b is related to the tangential stress
T ′, given by

T ′ = μP ′
(
1 − b2

a2

)
.

Poritsky describes the method of computing the creep in the locked region result-
ing from the difference in strain between two surfaces and gave the creep rate as a
ratio of the rotation rate of the railway wheels, namely

1 + |Δexx | = 2π R × number of wheel rotations

length of track covered
.

Wenote that for punch problem, the vertical stress tends to infinity as the rim of the
circular contact is approached. For Hertzian case, the radial stress σr is compressive
inside the contact circle. Outside the circle, it is tensile with a maximum value on
the edge of the Hertz circle. For brittle material, it is responsible for the initiation of
the Hertzian cone cracks penetrating below the surface.

Acknowledgments This paper is the abridged version of a paper to be communicated soon.
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Chapter 11
Stochastic Analysis and Bounds on Noise
for a Holling Type-II Model

Gaurav Pachpute and Siddhartha P. Chakrabarty

Abstract A deterministic predator–prey model with Holling type II functional
response is modified to a stochastic one by incorporating multiplicative Gaussian
noise about the interior equilibrium point of the deterministic model. A Lyapunov
function is constructed so as to analyze the stability of the stochastic model. Bounds
on the intensities of environmental fluctuations are derived. Low fluctuations in one
population allows, up to a certain limit, for a higher fluctuation in the other population.
The bounds on fluctuation in predator density attain a maximum at an intermediate
value in the allowable range for deterministic model parameters and disappear at the
boundaries of this range, demonstrating a tradeoff between upward and downward
fluctuations in predation. The results are illustrated through simulations.

Keywords Holling type II ·Stochasticmodel ·Environmental fluctuations ·Bounds
Mathematics Subject Classification: 92D25

11.1 Introduction

The classical model of predator–prey interaction due to Lotka and Volterra [1] was
greatly advanced by the pioneering work of Holling [2–4]. Holling’s analysis of
the rate of consumption of prey by the predator was based on experimental stud-
ies. Holling [3] proposed three different kinds of functional response [1, 5, 6] to
encapsulate this rate of consumption by the predator. The type I functional response
is applicable in cases where the consumption of the prey by the predator is a lin-
ear function of the prey up to a point where the consumption rate does not change
irrespective of availability of more prey [1, 6]. The type II functional response com-
prises a hyperbolic function that saturates as a result of the time required by the
predator to handle (capture and consume) the prey [1, 6]. Finally, type III functional
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response is a sigmoidal curve and is typical of cases where the consumption rate is
low, below a certain density threshold level of the prey population. However, this
rate increases as the prey density goes above this threshold level, followed by an
eventual saturation level being attained [1, 6]. Hassell et al. [7] suggested that the
type III functional response may be more common in case of invertebrate predators
as opposed to the widely accepted notion that type II response is more common.
Crawley [1, 8] proposed a fourth kind of functional response.

The capture and consumption rate of the prey would typically be expected to
increase as the prey density increases. This rate of increase, however, is likely to
decrease with time and eventually reach a saturation level, due to several factors
such as handling time of the prey [1]. This is manifested in terms of a Holling type II
functional response of the form f (N ) = cN/(a + N ), where N is the density of the
prey population. Real [6] presents an interesting review of the ecological motivation
of the three types of functional response due to Holling as well as their mathematical
formulation.

Abrams [9] presented an adaptive variation into the disk equation.He argued about
the likelihood of violation of the assumption in the disk equation which forms the
basis of the mathematical formulation of the Holling type functional response, and
presented the variations in the functional forms as a consequence of such violations.
Oaten andMurdoch [10] examined the effects that predators can have on the stability
of the prey population in an environment. Berryman [11] in his article discussed
the origins and subsequent development of predator–prey theory, starting with the
original theoretical analysis of population dynamics due to Malthaus and Verhulst.
He dwelled upon the classical model of Lotka–Volterra, the Holling type models,
and their variations as well as the ratio-dependent model (a modification of the
Holling type II model) proposed by Arditi and Ginzburg [12]. Sugie et al. [13]
derived the necessary and sufficient condition for uniqueness of limit cycle, for a
predator–prey model with a general functional response of Holling type. Global
stability analysis for predator–prey system with Holling type functional response
was carried out by Hsu and Huang [14]. Ruan and Xiao [15] carried out the global
analysis for a predator–prey systemwith the functional response being nonmonotonic
in nature. Extensive analysis of models with Holling type functional response has
been carried out by several researchers [16–18]. Zhang and Chen [16] analyzed
a food chain model with a Holling type II functional response in the presence of
impulsive perturbations. A Holling type model with delay is investigated in [17],
whereas a reaction–diffusion predator–prey model with Holling type II functional
response is examined in [18]. Srinivasu et al. [19] considered the standard predator–
prey model with Holling type II functional response and incorporated the supply of
additional food to the predator population. They analyzed the consequences of this
addition and concluded that the handling time for the food is crucial in determining
the eventual evolution of the system. Bandyopadhyay and Chakrabarti [20] presented
a deterministic and stochastic analysis of a nonlinear predator–prey system, with the
stochastic analysis being accomplished by the method of statistical linearization.
The stochastic analysis by Maiti and Samanta [21] on a similar model involved the
method of spectral density analysis.
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The paper is organized as follows. In Sect. 11.2, we discuss the deterministic
model. In Sect. 11.3, we present the stochastic model by incorporating multiplicative
Gaussian noise. We analyze the model and obtain moving upper bounds on the noise
in the context of the stability of the system. Finally, in Sect. 11.4, we discuss the
implications on the evolution of the stochastic system.

11.2 Deterministic Model

We consider the following classical predator–prey model with a Holling type II
functional response [1]:

d N

dT
= r N

(
1 − N

K

)
− cN P

a + N
(11.1)

d P

dT
= bN P

a + N
− m P (11.2)

Here, N (T ) and P(T ) denote the prey and predator densities, respectively, at time
T . The intrinsic growth rate for the prey populations is r and the carrying capacity
is K . The capture rate of predators and the conversion rate of prey into predator
biomass are denoted by c and b, respectively, with a as the half-saturation constant.
Finally, the predator population is assumed to have a natural death rate of m. After
introducing the new variables [1, 19] x = N

a , y = cP
ar and t = rT, the system (11.1)

and (11.2) reduces to

dx

dt
= x

(
1 − x

γ

)
− xy

1 + x
(11.3)

dy

dt
= βxy

1 + x
− δy, (11.4)

where γ = K
a , β = b

r and δ = m
r . The reduced system (11.3) and (11.4) admits three

equilibrium points where the prey and predator null-isoclines intersect. They are

• E0(0, 0) (trivial).
• Ea(γ, 0) (axial).

• Ei (x∗, y∗) (interior or co-existing), where x∗ = δ

β − δ
and

y∗ =
(
1 − δ

γ (β − δ)

)
β

β − δ
.

The trivial equilibrium point E0 is a saddle point. The axial equilibrium point Ea is

stable if γ <
δ

β − δ
and a saddle point otherwise. The interior equilibrium point Ei

exists ifβ > δ andγ >
δ

β − δ
, and is stable if γ <

β + δ

β − δ
. Also, the systemexhibits a
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Hopf bifurcation at γ = δ

β − δ
(see [20, 21] for details). On the other hand, it is stable

on the right of the peak of the prey null-isocline, i.e., x∗ >
γ − 1

2
or γ <

β + δ

β − δ
.

The system has a limit cycle on the left of the peak.

11.3 Stochastic Model

The deterministic nature of the parameters and hence that of themodel is inconsistent
with most natural phenomena, which tend to fluctuate about some average value [1,
22–24]. Under realistic conditions, model parameters exhibit variations, which can-
not be captured by a deterministic model alone. One of the ways to mathematically
incorporate such variations in a system of interacting species is to vary the model
parameters about some average value. More specifically, a parameter p in a deter-
ministic model can be replaced by p0 + ζ p1(t), where p0 represents the average
value about which the parameter p fluctuates, p1(t) is the noise function, and ζ is
the intensity of noise.

The equilibrium points of the system are the combinations of model parameters
and consequently the equilibria of the system also fluctuate about some average
value. In this paper, we incorporate the environmental fluctuations by varying the
population density about an equilibrium as opposed to adding stochastic perturba-
tions to the parameters. This is accomplished by adding multiplicative noise to each
equation. It is important to note that, while deterministic equilibrium points and their
respective stabilities are invariant in time, with added fluctuations this invariance
is lost. For a stochastic system, one must study the probabilistic stability of these
points through the equilibrium probability distribution. The deterministic part of the
model is responsible for the restitution of the population densities to their average
values from the diffusion caused by the random fluctuations. Systems exhibiting this
characteristic are called stochastically stable within fluctuating environment [23].

The physical origin of stochasticity in biological and ecological models can be
attributed to a wide variety of factors. Schaffer et al. [25] study the effects of random
perturbations caused by weather fluctuations and outbreaks of epidemics. Beretta
et al. [26] incorporate the environmental fluctuations caused by epidemic result-
ing from the spread of infectious diseases in a population model system. Epidemic
induced by virulent phages on bacteria in a marine environment [27] and sponta-
neous regression and progression of a malignant tumor system [28] are modeled
and analyzed using stochastic perturbations. We introduce stochastic perturbations
about the interior equilibrium point (x∗, y∗) in the Holling type II model (11.3) and
(11.4) to incorporate environmental fluctuations. The source of these fluctuations in
our model could be the outbreak of an epidemic or a result of vagaries in weather.
These perturbations are assumed to be Gaussian white noise and proportional to the
distances of x(t) and y(t) from the equilibrium values (x∗ and y∗) [23, 27, 28].
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The deterministic model (11.3) and (11.4) is converted into a stochastic differential
equations as given below:

dx =
(

x

(
1 − x

γ

)
− xy

1 + x

)
dt + σ1(x − x∗)dξ1(t) (11.5)

dy =
(

βxy

1 + x
− δy

)
dt + σ2(y − y∗)dξ2(t), (11.6)

where ξ i (t) for i = 1, 2 represent independent Wiener processes with σ1, σ2 > 0
being the stochastic intensity. The system (11.5) and (11.6) can also be represented
in the following form:

d X (t) = F(X (t))dt + g(X (t))dξ(t), (11.7)

where

X (t) =
(

x
y

)
, F(X (t)) =

⎛

⎜⎜⎜
⎝

x

(
1 − x

γ

)
− xy

1 + x

βxy

1 + x
− δy

⎞

⎟⎟⎟
⎠

, ξ(t) =
(

ξ1(t)
ξ2(t)

)
and

g(X (t)) =
(

σ1(x − x∗) 0
0 σ2(y − y∗)

)
. (11.8)

The function F(X (t)), known as the drift coefficient, represents the continuous deter-
ministic part of the system [23]. Also, g(X (t)) represents the random component of
the system and is called the diffusionmatrix. The vector ξ(t) is themulti-dimensional
Wiener process, the components (ξ i (t) for i = 1, 2) of which are independent of
each other. Due to the dependence of the function g on the state variables X (t) in the
equation, the system (11.7) is said to have multiplicative noise. The interior equilib-
rium point Ei of the deterministic system (11.3) and (11.4) is also an equilibrium
point for the stochastic model (11.5) and (11.6). We study the local characteristics
by linearizing the deterministic part F(X (t)) around this point. Introducing new
variables, u1 = x − x∗ and u2 = y − y∗, we rewrite Eq. (11.7),

dU (t) = f (U (t))dt + g(U (t))dξ(t), (11.9)

where

U (t) =
(

u1
u2

)
, (11.10)

f (U (t)) =

⎛

⎜
⎜⎜⎜
⎝

(
1 − 2x∗

γ
− y∗

1 + x∗ + x∗y∗

(1 + x∗)2

)
u1 − x∗

1 + x∗ u2

(
βy∗

1 + x∗ − βx∗y∗

(1 + x∗)2

)
u1 +

(
βx∗

1 + x∗ − δ

)
u2

⎞

⎟
⎟⎟⎟
⎠
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=

⎛

⎜⎜⎜⎜
⎝

δ

β

(
1 − β + δ

γ (β − δ)

)
u1 − δ

β
u2

(
β − δ − δ

γ

)
u1

⎞

⎟⎟⎟⎟
⎠

(11.11)

and g(U (t)) =
(

σ1u1 0
0 σ2u2

)
. (11.12)

The trivial equilibrium U (t) = (0, 0)� of the above system corresponds to the
equilibrium Ei of the system (11.7). By defining the constants

P = δ

β

(
1 − β + δ

γ (β − δ)

)
< 0. Q = β − δ − δ

γ
> 0 and R = δ

β
> 0,

we can write the expression for f (U (t)) in the following simplified form:

f (U (t)) =
(

Pu1 − Ru2
Qu1

)
(11.13)

The following theorem from Afanas’ev et al. [29] (as in [27, 28]) enables us to study
the mean square stability of the system given in Eq. (11.9).

Theorem 11.1 Let D = (t ≥ t0) × R
2, t0 ∈ R

+ and suppose V (t, U ) ∈ C0
2 (D)

is a twice continuously differentiable function with respect to U and a continuous
function of t , satisfying the inequalities

K1|U |p ≤ V (t, U ) ≤ K2|U |p, (11.14)

LV (t, U ) ≤ −K3|U |P , (11.15)

where p > 0 and Ki > 0 for i = 1, 2, 3. Then the trivial equilibrium of the system
(11.9) is exponentially p-stable over t ≥ t0. The special case, p = 2, refers to the
exponential mean square stability of the system.

We now define the Lyapunov function

V (t, U ) = 1

2
(ω1u2

1 + 2ω2u1u2 + u2
2), (11.16)

where ω1 and ω2 are the positive constants to be defined later. The condition (11.14)
for p = 2 in Theorem 11.1 is satisfied for this Lyapunov function, provided

ω2
2 − ω1 < 0. (11.17)
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The expression for LV (t, U ) is defined by

LV (t, U ) = ∂V (t, U )

∂t
+ f �(U (t))

∂V (t, U )

∂U

+ 1

2
T r

(
g�(U (t))

∂2V (t, U )

∂U 2 g(U (t))

)
, (11.18)

where the partial derivatives of V (t, U ) with respect to U are defined as follows:

∂V (t, U )

∂U
=

⎛

⎜⎜⎜
⎝

∂V

∂u1

∂V

∂u2

⎞

⎟⎟⎟
⎠

and
∂2V (t, U )

∂U 2 =

⎛

⎜⎜⎜⎜
⎜
⎝

∂2V

∂u2
1

∂2V

∂u1u2

∂2V

∂u2u1

∂2V

∂u2
2

⎞

⎟⎟⎟⎟
⎟
⎠

(11.19)

Using Eq. (11.16), we obtain the following expressions:

∂V (t, U )

∂U
=

(
ω1u1 + ω2u2
ω2u1 + u2

)
and

∂2V (t, U )

∂U 2 =
(

ω1 ω2
ω2 1

)
. (11.20)

Substituting f (U (t)) and g(U (t)) in (11.18) and using (11.20), we get the following
expression for LV (t, U ):

LV (t, U ) =
((

P + σ 2
1
2

)

ω1 + Qω2

)

u21 + (Pω2 − Rω1 + Q)u1u2 +
(

σ 2
2
2

− Rω2

)

u22.

(11.21)

We choose ω2 = Rω1−Q
P , which is positive provided ω1 <

Q
R . Let ω1 = Q

n R > 0,
where n > 1. Under these conditions, we can rewrite LV (t, U ) as

LV (t, U ) =
((

P + σ 2
1

2

)

ω1 + Qω2

)

u2
1 +

(
σ 2
2

2
− Rω2

)

u2
2.

= −U�MU, (11.22)

where

M =

⎛

⎜⎜⎜⎜⎜
⎝

−
(

P + σ 2
1

2

)

ω1 − Qω2 0

0 −σ 2
2

2
+ Rω2

⎞

⎟⎟⎟⎟⎟
⎠

. (11.23)
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In order for the second-order square matrix M to be positive definite, it must have

positive real eigenvalues, i.e., the two eigenvalues λ1 = −
(

P + σ 2
1
2

)
ω1− Qω2 and

λ2 = −σ 2
2
2 + Rω2, both must be positive real numbers. Substituting the values of ω1

and ω2 and imposing positivity of σ 2
i for i = 1, 2, we get the following condition

on n:

1 < n < 1 + P2

Q R
. (11.24)

For this range of n and the chosen values ofω1 andω2, the condition stated in (11.17)
is satisfied. This gives us the bounds on the intensities of environmental fluctuations:

σ 2
1 < 2

[
(n − 1)Q R

P
− P

]
(> 0) and

σ 2
2 < −2(n − 1)Q R

n P
(> 0). (11.25)

If λm = min {λ1, λ2}, then for the real symmetric matrix M , we obtain the following
result:

LV (t, U ) ≤ −λm |U |2. (11.26)

This completes the proof for the stability of the system described in Eq. (11.9).
Thus, (11.24) and (11.25), alongwith the necessary condition for the local stability

of the deterministic system (11.3) and (11.4), i.e., δ
β−δ

< γ <
β+δ
β−δ

, form the set
of necessary conditions for the stochastic stability of the system. The bounds on
environmental fluctuations given in Eq. (11.25) are functions of a variable n, with a
particular domain (Eq.11.24). If the bound on one of the fluctuations is known, then
one can determine the stability of the system and the maximum bound on the other
fluctuation, i.e., the maximum bounds on σ1 and σ2, say, σ1,max and σ2,max lie on the
following curve in the first quadrant:

σ 2
1,max + 2σ 2

2,maxQ R

2Q R + σ 2
2,maxP

+ 2P = 0. (11.27)

11.4 Discussion

The analysis and biological implications of the deterministic model have been exten-
sively studied in [1, 19]. The exposition of the corresponding stochastic model is
presented in this section.



11 Stochastic Analysis and Bounds on Noise for a Holling Type-II Model 133

For the interior equilibrium point to be stable, the parameter γ in the Holling Type
II model (11.3) and (11.4) must lie between δ/(β − δ) and (β + δ)/(β − δ). For
notational convenience, we define γmin = δ/(β − δ) and γmax = (β + δ)/(β − δ).
Both γmin and γmax are functions of the ratio β/δ. We can thus write γmax in terms
of γmin as γmax = 2γmin + 1. Furthermore, there is an inverse relation between γmin
(equivalently, γmax) and the ratio β/δ.

The first bound (11.24) derived in the previous section is on the values of n. The
maximum possible value of n for stochastic stability, in terms of γmin and γmax, is

nmax = 1 + γ 2
min(γmax − γ )2

γ δ(γ − γmin)(1 + γmin)
.

For a given γ and constants γmin, γmax (consequently constant β/δ), smaller values
of δ (or, equivalently, smaller β) result in greater ranges for n. Themaximumpossible
value for n is attained as γ → γmin and symmetrically, the minimum is attained as
γ → γmax.

The upper bound on σ 2
1 can be written as

2

[
γmin(γmax − γ )

γ (1 + γmin)
− δ(γ − γmin)(n − 1)

γmin(γmax − γ )

]
.

This bound attains a maximum, for a particular value of n, as γ → γmin, with
the corresponding maximum value of 2 (i.e., σ1,max = √

2). For a fixed n, the upper
bound decreases as γ increases and reduces to 0 as γ → γmax. On the other hand, for
a particular γ , σ1,max is inversely related to n. Themaximum is realized as n → 1 and
σ1,max reduces to 0 as n reaches its maximum. The limiting nature of the maximum
of σ1,max in γ (i.e., γ → γmin) is coincident with the extinction of the predators
(y∗ = 0). An increase in γ increases the equilibrium population density (y∗) of
the predators. This, expectedly, reduces the sustainability of the prey population.
Furthermore, the maximum with respect to n is inversely related to the ratio β/δ.
This is consistent with the fact that lower predation and higher mortality in predators
lead to a higher sustainability in preys.

Likewise, the maximum bound on σ 2
2 can be written as

2δ(γ − γmin)(n − 1)

nγmin(γmax − γ )
.

Evidently, the maximum of this bound is correlated with the magnitude of n, i.e.,
a larger n leads to a larger maximum. The bound on σ 2

2 can now be restated as(
0, 2γmin(γmax−γ )

nmaxγ (1+γmin)

)
, where nmax is the maximum value of n, as given earlier in this

section. Interestingly, the maximum for the upper bound, σ2,max, is not attained
at either γmin or γmax, but at a point in between the two values. The maximum
bound becomes 0 for γ → γmin since this corresponds to extinction, whereas, when
γ → γmax, the deterministic system loses its stability and so does the stochastic
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system. The value for σ 2
2 can be written as

σ 2
2 = 2γmin(γmax − γ )(γ − γmin)δ

γ δ(γ − γmin)(1 + γmin) + γ 2
min(γmax − γ )2

.

Differentiating this with respect to γ and setting it equal to zero, we get,

(γmax + γmin − 2γ )
(
γ δ(γ − γmin)(1 + γmin) + γ 2

min(γmax − γ )2
)

=
(
(2γ − γmin)δ(1 + γmin) − 2γ 2

min(γmax − γ )
)

(γmax − γ )(γ − γmin).

Simplifying the equation and using the identity γmax = 2γmin + 1, we obtain

γ 2
min(1 + γmin)(γmax − γ )2 = γmaxδ(1 + γmin)(γ − γmin)

2

=⇒ γ0 = γmin(γmax + √
δγmax)

γmin + √
δγmax

.

Thus the maximum for the bound with respect to γ occurs at

γ = γ0 = γmin(γmax + √
δγmax)

γmin + √
δγmax

and for γ0 at

n → nmax = 1 +
√

γmax√
γmax + √

δ

Thus, we have

σ 2
2,max = 2

√
δ

2
√

γmax + √
δ
.

Thus, for a general value of n, themaximumboundσ2,max increases as γ increases.
On the contrary, σ1,max decreases as γ increases. One expects the maximum bound
for fluctuations in one population density to increase at the expense of the other
bound. However, increasing γ leads to a smaller value of nmax. As a consequence,
the expected relative behavior between the two bounds (σ1,max and σ2,max) is not
always realized. This is explored further in the discussion that follows. The preced-
ing discussion reflects that the bounds obtained, with the exception of σ2,max, are
interlinked in a way such that the maximization of one bound nullifies at least one
of the other bounds.

Two simulations for the model are presented in Figs. 11.1 and 11.2. While the for-
mer (Fig. 11.1) illustrates the trajectory of prey–predator population densities under
stable conditions, the latter (Fig. 11.2) is under unstable conditions. The parameters
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Fig. 11.1 Simulation for stable dynamics
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Fig. 11.2 Simulation for unstable dynamics

β and δ were chosen to be 0.3 and 0.2, respectively. Consequently, the stability is
preserved for γ ∈ (δ/(β − δ), (β + δ)/(β − δ)) = (2, 5), and γ0 = 4.0. For the
simulation, we chose γ = γ0. The value of n = 17/12 was chosen to be the average
of the allowed range (1, 11/6). Based on these values, the maximum bounds on σ1
and σ2 are 0.4082 and 0.3430, respectively. Accordingly, for the simulation of stable
dynamics, we chose σ1 = 0.4 and σ2 = 0.2, and for unstable dynamics simulation,
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these were σ1 = 0.8 and σ2 = 0.4. The simulations were run for a time window
of 100. In Fig. 11.1, the densities of the two populations converge toward the inte-
rior equilibrium point (x∗, y∗) = (2, 3/2). However, in case of unstable dynamics,
population densities drop to zero (i.e., extinction) due to large fluctuations in the
population densities, as seen in Fig. 11.2.

As noted before, the maximum bounds σ1,max and σ2,max lie on the curve (11.27).
The preceding discussion suggests that as γ increases from γmin to γmax, the maxi-
mum bound σ1,max decreases from

√
2 to 0. The bound σ2,max, however, increases

from 0 till γ0 and decreases to 0 thereafter. Therefore, in the range (γmin, γ0], increas-
ing one maximum bound leads to a decrease in the other. For the range [γ0, γmax),
however, an increase in one maximum bound is accompanied by an increase in the
other and vice versa. This is illustrated in Figs. 11.3 and 11.4 where we present the
bound curves (σ1,max, σ2,max) for different values of γ .

As γ increases, the equilibrium population density for predators increases. This
results in higher predation and consequently lower permissible stochastic perturba-
tions in prey density. The resulting diminished variation in stable prey density as
well as the increased stable equilibrium density of the predators enables the predator
density to withstand larger fluctuations. However, the behavior contrary to this (for
γ > γ0) is a consequence of a systemwith high predation. A high positive fluctuation
in predators drives the preys toward extinction in a high-predation environment. Thus,
the existence of such an extremum is a balance between less restricted downward
fluctuations in preys and more restricted upward fluctuations in predators.

It can be shown that increasing β leads to an increase in σ2,max, followed by
a maximum (corresponding to γ = γ0) and a decrease thereafter. This is again
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Fig. 11.3 Less dense contours of γ for (11.27). Here, blue represents γ > γ0, green represents
γ = γ0, and red represents γ < γ0
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Fig. 11.4 More dense contours of γ for (11.27). Here, blue represents γ > γ0, green represents
γ = γ0, and red represents γ < γ0

a balance between below par predation, resulting in lower conversion to predator
biomass, and above par predation, resulting in lower prey densities. Varying δ results
in a behavior opposite to that for β. Similar observations were made by Srinivasu
et al. [19] in the context of a model that incorporates additional food supply to the
predators.

11.5 Conclusion

In this paper, we present the mathematical analysis for the stochastic stability of
a Holling type II system. The choice of the Lyapunov function used is different
from other previous approaches and the stability conditions for the stochastic system
result in moving bounds on the environmental fluctuations that depend on an external
variable. This results in the bounds lying on a curve in R

2. Further scrutiny of the
bounds shows that the increase in one bound is at the expense of the other, and ideally,
they disappear on either end of the condition for deterministic stability, i.e., γmin and
γmax.

Bounds on variations in predator density disappear on both ends of the range
for γ (γmin and γmax) and have a maxima at an intermediate point γ0, as defined
in the previous section. The justification for this is a tradeoff between upward and
downward fluctuations in the predator population density. An increase in γ increases
equilibrium population density for predators allowing higher downward variation.
This is undermined by the unaltered prey density, which cannot sustain high upward
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variation in predator population. The bounds at γ0 provide the most sustainable
environment for the predators.

Wealso discuss the dependence of the stochastic stability on themodel parameters.
For each of the parameters, the bounds on the sustainable environmental fluctuations
in predator density have a peak. The bounds also substantially depend on the ratio
β/δ and its inverse relation with the sustainable variations in prey density can be
attributed to lower predation and higher mortality of predators.
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Chapter 12
Graph Theoretical Invariants of Chemical
and Biological Systems: Development
and Applications

Subhash C. Basak, Ramanathan Natarajan and Dilip K. Sinha

Abstract Chemical graph theory has been extensively applied in the character-
ization of structure in many areas of science, chemistry and biology in particular.
Numerical graph invariants of molecules or topological indices have been used in the
characterization of structure, discrimination of pathological structures like isospec-
tral graphs, prediction of property/ bioactivity of molecules for new drug discovery
and environment protection as well as quantification of intermolecular similarity.
More recently, methods of discrete mathematics have found applications in the char-
acterization of complex biological objects like DNA/ RNA/ protein sequences and
proteomics maps. This chapter reviews the latest results in applications of discrete
mathematics, graph theory in particular, to chemical and biological systems.
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matrix · Information content · Chemodescriptors · Quantitative structure prop-
erty/activity relationship (QSPR/QSAR) · Biodescriptor

12.1 Introduction

The second half of the twentieth century witnessed a tremendous upsurge in research
on applications of graph theory to various fields and this trend is continuing even
today. To name just a few, graph and network theory was applied in formulating
useful structural models in the physical sciences, social sciences, linguistics, biology,
statistics, and operational research [1–4]. Graph theory serves as the mathematical
model of representing structure in many fields. For example, the evolution of diverse
and complex systems like the World Wide Web, business, and citation networks
has been explored in terms of Bose–Einstein (BE) condensations of their respective
network models [5].

In chemistry, invariants of molecular graphs, numerical graph invariants or topo-
logical indices (TIs) in particular, are used in the characterization of molecular struc-
ture. Recently, this approach has also been extended to biological systems like DNA/
RNA sequence, proteins, and proteomics maps [6]. Such invariants encode informa-
tion about various structural aspects, viz., size, shape, cyclicity, branching pattern,
complexity, of the molecules, and biomolecules under investigation [3, 4]. TIs and
related graph invariants have been used in the prediction of physicochemical, phar-
macological, and toxicological properties of chemicals as well as quantification of
proteomics maps and pathogenicity of organisms [3, 4, 6, 7].

12.2 Graph Theoretic Characterization of Structure

12.2.1 Topological Indices: Graph Theoretic Definitions
and Calculation Methods

A graph, G, is defined as an ordered pair consisting of two sets V and R, G =
[V (G), R], where V (G) represents a finite nonempty set of points and R is a binary
relation defined on the set V (G). The elements of V (G) or V are called vertices
and the elements of R, also symbolized by E(G) or E, represent the edges. Such an
abstract graph can be visualized by representing elements of V (G) as points and by
connecting each pair (u, v) of elements of V (G) with a line if and only if (u, v) ∈ R.

Twovertices inG are called adjacent if (u, v)∈ R, i.e., they are connected by an edge.
A walk of a graph is a sequence beginning and ending with vertices in which vertices
and edges alternate and each edge is incident with vertices immediately preceding
and following it. A walk of the form v0, e1, v1, e2, . . . , vn joins vertices v0 and vn .

The length of a walk is the number of edges in the walk. A walk is closed if v0 = vn,
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Fig. 12.1 Structural formula (G0), labeled hydrogen-filled graph (G1) and labeled hydrogen-
suppressed graph (G2) of acetamide. (Reprinted from Journal of Mathematical Chemistry, 4, 1990,
S.C. Basak, G.J. Niemi, and G.D. Veith, Optimal characterization of structure for prediction of
properties, 185–205, with kind permission of Springer Science and Business Media)

otherwise it is open. A closed walk with n points is a cycle if all its points are distinct
and n ≥ 3. A path is an open walk in which all vertices are distinct. A graph G is
connected if each pair of its vertices is connected by a path. The distance d(u, v)
between vertices u and v in G is the length of the shortest path connecting u and v.
The degree of vertex v, denoted by deg v, is equal to the number of edges incident
with v. In molecular graphs, V represents the set of atoms or set of atomic nuclei and
E represents the collection of covalent bonds in the molecule. The elements of E,

however, may symbolize any type of bond, viz., covalent, ionic, or hydrogen bonds.
It was emphasized by Basak et al. [8] that weighted pseudographs constitute a very
versatile model for the representation of a wide range of chemical species.

In depicting a molecule by a connected graph G = [V (G), E(G)], the set V (G)

mayconsist of either all atomspresent in themolecule or only non-hydrogen (heavier)
atoms. Hydrogen-filled graphs are preferable to hydrogen-suppressed graphs when
hydrogen atoms are involved in chemically or physically important interactions. The
structural formulas, labeled hydrogen-filled, and the labeled hydrogen-suppressed
graphs for acetamide, are shown in Fig. 12.1.

Many topological indices can be conveniently derived from various matrices
including the adjacency matrix A(G) and the distance matrix D(G) of a molecular
graph G. These matrices are usually constructed from labeled graphs of hydrogen-
suppressed molecular skeletons. For such a graph, A(G) is defined to be the n × n
matrix (ai j ), where ai j may have only two different values as follows:
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ai j =
{
1, if vertices vi and v j are adjacent in G

0, otherwise.

The distancematrix D(G) of a nondirected graph G with n vertices is a symmetric
n × n matrix (di j ), where di j is equal to the distance between vertices vi and v j in
G. Each diagonal element dii of D(G) is equal to zero.

The adjacency matrix A(G2) and the distance matrix D(G2) for the labeled graph
G2 in Fig. 12.1 are written as

A (G2) =

⎡

⎢⎢
⎣

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎤

⎥⎥
⎦

D (G2) =

⎡

⎢⎢
⎣

0 1 2 2
1 0 1 1
2 1 0 2
2 1 2 0

⎤

⎥⎥
⎦ .

Wiener [9] was the first to put forward the idea of a structural index (topological
index) for the estimation of properties of molecules from their structure. Hosoya [10]
showed that this index, popularly known as the Wiener index, W, can be calculated
from the distance matrix D(G) of a hydrogen-suppressed graph G as the sum of
entries in the upper triangular submatrix:

W =
∑

h

h · gh = 1

2

∑

i j

di j . (12.1)

From the adjacency matrix of a graph with n vertices, it is possible to calculate
δi , the degree of the i th vertex, as the sum of all entries in the i th row:

δi =
n∑

j=1

ai j . (12.2)

The zero-order connectivity index, 0χ , is defined as [11]

0χ =
∑

j

(
δ j

)−1/2
. (12.3)

The first-order connectivity index, also known as Randić’s connectivity index
[12], 1χ, is defined as

1χ =
∑

alledges

(
δiδ j

)−1/2
. (12.4)
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Kier and Hall [11, 13] extended the connectivity approach to calculate various
types of connectivity indices and electrotopological invariants.

Information-theoretic topological indices are calculated by the application of
information theory to chemical graphs. An appropriate set A of n elements is derived
from a molecular graph G depending upon certain structural characteristics. On the
basis of an equivalence relation defined on A, the set A is partitioned into disjoint
subsets Ai of order

ni (i = 1, 2, . . . , h).

A probability distribution is then assigned to the set of equivalence classes:

A1, A2, . . . , Ah

p1, p2, . . . , ph,

where pi = ni/n is the probability that a randomly selected element of A will occur
in the i th subset.

The mean information content of an element A is defined by Shannon’s rela-
tion [14]:

I C = −
h∑

i=1

pi log2 pi . (12.5)

12.2.2 Available Computer Software for the Calculation
of Topological Indices

A large number of graph theoretic indices or topological indices and substructural
descriptors cannowbecalculatedusingvarious computer programs includingDragon
[15], Molconn-Z [16], POLLY [17], and APProbe [18]. They include simple connec-
tivity indices, valence connectivity indices electrotopological state indices, Triplet
indices, developed by Filip et al. [19], and neighborhood complexity indices [20].
When TIs are computed for small molecules, these indices were termed “chemode-
scriptors” by Basak [6].

12.3 Application of Graph Theoretic Indices

12.3.1 Comparing Pathological Graphs

One important use of graph invariants involves the characterization and discrimina-
tion of structures of closely related graphs for chemical documentation purposes. TIs
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and orthogonal parameters derived from them have been used in the discrimination
of isospectral graphs which are well-known “pathological graphs” having the same
value for many invariants [21].

12.3.2 Molecular Similarity

Molecular similarity is another area where TIs and subgraphs (substructures) have
found wide application for practical purposes like new drug discovery and hazard
assessment of chemicals. For a review of this topic, please see Basak et al. [22].

12.3.3 Quantitative Structure Property/Activity Relationship
(QSPR/QSAR)

Quantitative structure property/activity relationships (QSPRs/QSARs) are mathe-
matical models developed to predict property/bioactivity/toxicity of molecules. Ini-
tially, such techniques were formulated based on experimental data or properties
derived from them. But for many practical situations, such properties are not avail-
able for the majority of chemicals under investigation. So now QSAR scientists
routinely use computed properties which include numerical graph invariants calcu-
lated by the various programs mentioned above. For a review of the topic, please see
references [6, 11, 13, 23].

12.3.4 Biodescriptors for the Characterization of DNA
Sequence and Proteomics Maps

In the post-genomic era, catapulted by theHumanGenomeProject, a lot of interesting
biological information is being generated by the “omics” (viz., genomics, proteomics,
and metabolomics) technologies. Discrete mathematical methods, including those
from graph theory, have been used for the characterization of DNA/RNA sequences
and proteomics patterns relevant to human health and environmental protection
[24–27].
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12.3.5 Characterization of Chirality (Handedness)
Of Molecules

Chemicals with one or more chiral centers can have multiple isomeric forms which
may have different biological properties. Natarajan et al. [28] developed novel graph
invariants of chiral molecules which can discriminate among the different chiral
forms. Such invariants have found application in understanding the pharmacological
and toxicological properties of molecules.

12.4 Conclusion

Graph theoretic methods have been used extensively in the representation and char-
acterization of molecular structure as well as prediction of properties. Both weighted
and unweighted molecular graphs of different types have been used to represent
salient features of molecular structure. Such graphs may be looked upon model
objects [29]. Invariants derived from the graphs are mathematical models useful for
structure characterization. This article has given a short overview of the plethora of
applications of graph theory to chemistry, biology, and the omics sciences.

Mathematicians and chemists continue to develop new ways of characterizing
structure using graph theoretical methods. This trend of research is expected to sig-
nificantly enrich the twenty-first century landscape of molecular descriptors and
graph invariants. Hyle [30], an exclusive journal for the philosophy of chemistry,
recently dedicated two of its issues to mathematical chemistry. The journal Current
Computer-Aided Drug Design [31] also has published many papers on the develop-
ment and use of graph invariants written by distinguished authors. These publications
containmany interesting ideas, whichwill have important implications both for basic
and applied researches in mathematical chemistry.
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Chapter 13
Mathematical Modeling of Breast Cancer
Treatment

Suhrit K. Dey and S. Charlie Dey

Abstract Mathematical models to treat breast cancer both in situ, in which the
cancer does not spread to other locations, and ones which have metastasized to a
different location, have been developed and discussed in this article. The models
consist of nonlinear-coupled ordinary differential equations for in situ cancer and
partial differential equations for metastatic cancers. This model has been labeled as
theAttacker–Defendermodel andwas solvednumerically using apredictor–corrector
method. The results have been validated and the findings are very promising.

Keywords Beast cancer · Attacker–Defender model

13.1 Introduction

Cancer cells grow uncontrolled, violating the principles of homeostasis, the dynamic
equilibrium, which all normal cells of the body must maintain. Cancer cells are
abnormal, they are foreign antigens, and as a result, they trigger an immune response
by the body’s defenses. Because the p53 gene is missing from these cells, they are not
prone to apoptosis, the cellular level preprogrammed death. Cancer cells continue
growing as long as they have sufficient access to glucose and oxygen to feed on.

A simple uncontrolled growth model for any species u is represented by

du

dt
= λu, λ > 0. (13.1)

u (t0) = u0
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with a solution given by

u = u0eλt . (13.2)

If λ < 0, this represents a model of decay as t → ∞.

The common sense approach to prevent an uncontrolled growth is adding a term
v to (13.1) such that v = −μu

μ > 0, (13.3)

where μ ≥ λ, then (13.1) becomes

du

dt
= λu − μu = −(μ − λ)u (13.4)

with a solution

u = u0e−(μ−λ)t . (13.5)

If μ = λ, u = u0 will be a constant, so uncontrolled growth is prevented. But
this will also cause u to not decay instead it will remain constant.

If μ > λ, as t → ∞, then u → 0.
With this, the mathematical models have been designed in hopes of curing and

at the very least, containing the cancerous cells. These models should prove to be
a valuable asset for biochemists and other medical professionals to develop more
effective tools and procedures to help fight and prevent cancer.

According to the Cancer Prevention Charity, World Cancer Research Fund Inter-
national, the highest breast cancer rates were observed in 2012 in North America,
92 per 100,000 for the United States and 80 per 100,000 in Canada. It has also
been observed that more women are beginning to be diagnosed with breast cancer at
younger ages and that 75% of breast cancer cases are hormone related.

Earlier, a model was introduced to analyze preventive techniques, which was very
well received by oncologists, Dr. C. Wiseman [15], Dr. D. Characieju [3]; chemical
biologist, Dr. H. Majumdar [11]; and mathematician, Dr. G. Webb [14].

This newer model has taken a more simplistic and application-oriented approach
to the disease compared to the earlier models. One key difference is the parameter
λ, previously λ was thought of being a constant, but upon further evaluation, it
has been determined that λ can be time dependent. Some cancers have a very slow
growth rate, keeping itself hidden among the fatty adipose tissue, which is abundant
in breasts. When a weakness is detected, i.e., a drop in the immune system due to
aging, medications, diet, environmental factors, or a combination of any of these,
these cancerous cells begin growing and at a much more rapid pace.

The model for this in situ carcinoma is

du

dt
= −(μ(t) − λ(t))u, (13.6)
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where at any

t ≥ t0, μ(t) > λ(t) (13.7)

so the solution is then

u = u0e
− ∫ t

t0
(μ(t)−λ(t))dt

. (13.8)

With these as the guiding concepts, we can design a mathematical model for
the treatment of breast cancer in situ, i.e., staying at the point of origin and not
metastasizing through the lymphatic or cardiovascular systems including capillary
blood vessels elsewhere.

13.2 Mathematical Model for in situ Breast Cancer

Ductal carcinoma in situ, or DCIS, begins in the milk ducts and is one of the earliest
stages of breast cancer and can only be successfully treated with early detection.
Unfortunately, due to its characteristics, there may not be any noticeable lump, and
as such, is not totally detectable through self-examination. To make matters worse,
mammograms are only 20% effective in detecting these types of small-calcified dead
cancer cells.

Another type of in situ cancer is lobular carcinoma in situ, or LCIS, which appears
in themilk producing glands of the breasts. And once again, without proper detection,
this type of cancer can have dangerous consequences. But, unlike other types of breast
cancer, LCIS often occurs before menopause, and hence puts much larger percentage
of the population at risk. Although its behavior is more toward a neoplasia, early
tumor formation, than a true cancerous growth, it is still a foreign antigen and if left
untreated can become an invasive carcinoma.

The mathematical model for in situ breast cancer is as follows:
Attacker:

du

dt
= a1u − a2uv. (13.9)

Defender:

dv

dt
= b1u − b2uv, (13.10)

where

u is the foreign antigen, the cancer;
v is a combination of the immune response and the medical response;
a1 is the growth rate of each cancer cell per unit of time;
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a2 is the destruction rate of each cancer cell per unit of the defense per unit of
time;
b1 is the rate of gain of the defense for each unit of cancer cell; and
b2 is the rate of loss for the defense per unit of cancer cells per unit of time.

The fight between the attacker and defender begins at the initial condition:

t = 0, u = u0 and v = v0.

The goal is for v to overpower u. Mathematically, it means

a1 < b1
a2 > b2 (13.11)

thus

a1
b1

< 1 <
a2
b2

. (13.12)

These are the conditions required to simulate a successful treatment.

13.2.1 Solution

From (13.9) and (13.10), we get

du

dv
= a1 − a2v

b1 − b2v
(13.13)

when,

u = u0, v = v0

we get

u − u0 = α(v − v0) + β · ln
(

b1 − b2v

b1 − b2v0

)
, (13.14)

where

α = a2
b2

β = (a2b1 − a1b2)

b22
= b1

b2

(
a2
b2

− a1
b1

)
. (13.15)
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13.2.2 Critical Points

If

v = a1
a2

,

then from (13.9), we get

du

dt
= 0 giving u = u0 for all t.

If the values of the reaction coefficients a1 and a2 are chosen such that the drug
promotes a stronger immune response, the cancer cells will not proliferate.

If

v = b1
b2

,

we get

dv

dt
= 0 giving v = v0 for all t

then

v0 = b1
b2

and
du

dt
= −λu, (13.16)

where

λ =
(

1

b1

) (
a2
b2

− a1
b1

)
(13.17)

since

a2
b2

>
a1
b1

the solution of (13.16) is

u = u0e−λt (13.18)

thus, as t → ∞, u → 0.
Hence, for v = b1

b2
, in time, the in situ tumor will shrink.

It should be noted that, whereas u is a free variable that can practically take any
positive value, v does have certain restrictions. Regardless ofwhat v is representing, if
it is immunotherapy, chemotherapy, or radiation therapy, the patient can only tolerate
a certain degree of dosage.
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In this model, since

a1
b1

<
a2
b2

giving

a1
a2

<
b1
b2

, (13.19)

where a1 > 0, a2 > 0, b1 > 0, b2 > 0.
The dosage of v should be prescribed such that

a1
a2

< v <
b1
b2

. (13.20)

This should be the dosage of v that is capable of containing the cancer, u, and
cause it to atrophy. The values of b1 and b2, as well as, a1 and a2, can be adjusted
to reflect different types of cancers and different patients.

Also from (13.5) and (13.12), we find

du

dv
= −a2

b2
·
(

v − a1
a2

)

(
b1
b2

− v
) < 0. (13.21)

Thus, if the dosage of v as given by (13.21) is maintained, u will be a decreasing
function of v.

This conclusion has been validated computationally.

13.2.3 Numerical Solution

Applying the conditions (13.20) and imposing no other restrictions, the nonlinear
system (13.9) and (13.10) has been solved using Charlie’s Method [4, 9, 10], an
explicit finite difference Predictor–Corrector method where two parameters define
the convex mappings.

Predictor:

Û = U n + Δt · f
(
U n, V n)

V̂ = V n + Δt · g
(
U n, V n)

. (13.22)

Corrector:

U n+1 = (1 − γ1) Û + γ1

{
U n + Δt · f

(
Û , V̂

)}

V n+1 = (1 − γ2) V̂ + γ2

{
V n + Δt · g

(
Û , V̂

)}
, (13.23)
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where

U and V are the net functions corresponding to u and v,
U n corresponds to the value of U at time t = tn,

V n corresponds to the value of V at time t = tn,

Δt is the time step,
f (U n, V n) signifies the value of (a1U − a2U V ) at tn,

g (U n, V n) signifies the value of (b1U − b2U V ) at tn,
Û and V̂ are the predicted values of U and V at tn+1,

U n+1 and V n+1 are the corrected values of U and V at tn+1, and
γ1 and γ2 are the convex parameters such that

0 < γ1 < 1

0 < γ2 < 1. (13.24)

If γ1 = γ2 = 1
2 , this is essential the same as the second Runge–Kutta method.

13.2.4 Treatment of Invasive Breast Cancer,
A One-Dimensional Model

The cancer is considered invasive when it metastasizes and invades other organs,
and can be mathematically modeled using Reaction–Diffusion equations. A simple
one-dimensional model is

∂u

∂t
= a1u − a2uv + ν1

∂2u

∂x2
(13.25)

∂v

∂t
= b1u − b2uv + ν2

∂2v

∂x2
(13.26)

at t = 0, u = u0, v = v0.
ν1 and ν2 are the respective coefficients of dispersion.
As before, a technique similar to (13.22)will be used for the numerical experiment.
If v = v0 = a1

a2
, the tumor will begin shrinking, giving

∂u

∂t
= ν1

∂2u

∂x2
. (13.27)

The solution is of the following form, which will be further discussed later:

u = u0e−λt cos
(√

λ · x + h
)

, λ > 0. (13.28)
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As t → ∞, u → 0, this property is natural and expected. If u cannot grow and
must be dispersed, then it must be diffused.

If

v = b1
b2

then

∂v

∂t
= ∂v

∂x
= 0, (because v is a constant)

∂u

∂t
= −αu + ν1

∂2u

∂x2
, (13.29)

α = b1

(
a2
b2

− a1
b1

)
> 0. (13.30)

Let

u = X (x) · T (t), (13.31)

where X (x) is a function of x and T (t) is a function of t. Substituting (13.23) into
(13.21), we get

1

ν1

(
T ′

T
+ α

)
= 1

X
· X ′′ = λ. (13.32)

With λ > 0, solution of X ′′ + λX = 0 is X = a · cosh
(√

λ · x + b
)

if λ < 0, X = a · cos
(√

λ · x + b
)

,

where a and b are two constants.
For λ > 0, u will unbounded—but u cannot be unbounded since its growth has

been suppressed by (13.20).
Thus, from (13.28),

u = u0e−(α+λv)t a · cos
(√

λ · x + b
)

, (13.33)

which shows that as t → ∞, u → 0, hence, the tumor must shrink.
This concept has been successfully extended to a three-dimensional mode:

∂u

∂t
= a1u − a2uv + ν1∇2u (13.34)

∂v

∂t
= b1u − b2uv + ν1∇2u. (13.35)
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13.2.5 Three-Dimensional Numerical Model

Here Charlie’s method has been applied to the three-dimensional model.
Predictor:

Ûi jk = U n
i jk + Δt · fi jk

(
U n, V n)

V̂i jk = V n
i jk + Δt · gi jk

(
U n, V n)

.

Corrector:

U n+1
i jk = (1 − γ1) Ûi jk + γ1

{
U n

i jk + Δt · fi jk

(
Û , V̂

)}

V n+1
i jk = (1 − γ2) V̂i jk + γ2

{
V n

i jk + Δt · gi jk

(
Û , V̂

)}
,

where

f (U, V ) = a1Ui jk − a2(U V )i jk

+ ν1

{
Ui−1 jk − 2Ui jk + Ui+1 jk

Δx2
+ Ui j−1k − 2Ui jk + Ui j+1k

Δy2

+ Ui jk−1 − 2Ui jk + Ui jk+1

Δz2

}

g(U, V ) = b1Ui jk − b2(U V )i jk

+ ν2

{
Vi−1 jk − 2Vi jk + Vi+1 jk

Δx2
+ Vi j−1k − 2Vi jk + Vi j+1k

Δy2

+ Vi jk−1 − 2Vi jk + Vi jk+1

Δz2

}
.

U n
i jk = U

(
xi , y j , zk, tn

)

V n
i jk = V

(
xi , y j , zk, tn

)

Δt = time step
Δx, Δy, Δz = mesh size

0 < γ1 < 1

0 < γ2 < 1.

i = 1, 2, 3, . . . , I

j = 1, 2, 3, . . . , J

k = 1, 2, 3, . . . , K .

Field size = I · J · K .
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13.2.6 Results

The computational results match all the mathematical predictions very precisely.
Three different cases have been considered. Case one involves a ductal carcinoma
in situ—where the cancer stayed local; case two looks at an invasive carcinoma—
where the cancer is attempting to metastasize elsewhere; and case three looks at
a metastatic carcinoma—a case in which the cancer has already metastasized to
a different location. In each case, the inequality (13.20) plays a very critical role.
When this inequality is satisfied, the treatment is shown to be successful. Even if the
condition is violated, as long as it is not grossly violated, the computational solution
still shows a positive result, i.e., a successful treatment and a good prognosis.

Figures13.1 (in situ) and 13.2 (metastasizing) represent how the cancer is con-
tained and/or the tumor beginning to atrophy. Even in Fig. 13.3—the worst case
scenario, where the cancer has already metastasized, as long as (13.20) is satisfied,
computationally, the cancer is seen as contained.

Fig. 13.1 Tumor in situ decreasing

Fig. 13.2 Metastasizing tumor is contained
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Fig. 13.3 Metastasized tumors are contained

Fig. 13.4 Very slow shrinking of tumor in keeping with slow diffusion of immunotherapy

For the computational runs, the following conditions were used:

a1 < b1
a2 > b2
ν1 < ν2,

the cancer diffuses slower than that of the immunotherapy (Fig. 13.4).
In each case, the growth rate of the tumors was diminished. Only when these

conditions were pungently violated, the tumors did begin growing.
The second phase of this study, with the introduction of a more stringent form of

a medical response, is being looked into attempts to further contain or annihilate the
cancerous cells. A new approach is also being considered where the user may interact
with the model, changing the aspects of the cancer and the dynamics of the response
and observe the results in real time. This level of user interaction is necessary to fully
develop the computational model, as the properties of the nonlinear system cannot
be fully comprehended by the mathematical model alone.
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13.3 Conclusion

Cancer is a group of diseases that affect different patients in varying ways, and as
such, the medical response treatment needs to be tailored for the individual patient
and the individual cancer satisfying condition (13.19), else, according to this model
[1–3, 5–8, 11–15], the treatmentmay not be effective, leading to a negative prognosis
for the patient, whereas when the conditions are satisfied, the cancer is contained and,
in some cases, totally annihilated. This model is also absolutely customizable for the
patient, for the cancer, and for the individual immune and/or medical response.

Things being measured for future adaptations of this model include changing
some assumptions. For the model discussed here, it was assumed that the variables

a1, a2, b1, b2

are constants meaning that the aspects of the cancer and patient will remain the same
throughout the life of the cancer and the patient; however, they can be made to be
time dependent, and hence have a constantly evolving attacker and a defender. The
next phase of this model will be taking these ideas into consideration.
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Chapter 14
Effect of Dual Splitter Plate Attached
with a Square Cylinder Immersed
in a Uniform Flow

Bhanuman Barman and Somnath Bhattacharyya

Abstract In this paper we made a numerical study on control of vortex shedding
and drag reduction of a cylinder by attaching splitter plates. The wake structure of the
cylinder of square cross-section with attached splitter plate is analyzed for Reynolds
number, based on the incident stream and height of the cylinder, up to 150. The length
of the splitter plate, L is taken between the range 0 ≤ L ≤ 6. The Navier-Stokes
equations governing the flow is solved by the finite volume method over staggered
grid arrangement. We have used the SIMPLE (Semi-Implicit Method for Pressure-
Linked Equation) algorithm for computation. Our results show that the presence of
a splitter plate upstream of the cylinder reduces the drag but it has a small impact
on the vortex shedding frequency. It is found that an upstream splitter plate leads to
a significant reduction is drag force when the length of the plate L is 0 ≤ L ≤ 3.
However, for 3.5 ≤ L ≤ 4.75 the reduction in drag force is low and when L ≥ 5,
there is no effect of the splitter plate on the drag experienced by the cylinder. The
presence of a downstream splitter plate damps the vortex shedding frequency. The
entrainment of fluid into the inner side of the separated shear layers is obstructed
by the downstream splitter plate. Our results suggest that by attaching splitter plates
both upstream and downstream of the cylinder vortex shedding can be suppressed as
well as a reduction in drag can be obtained.Wemade a parametric study to determine
optimal length of the splitter plates attached upstream and downstreamof the cylinder
so as to achieve low drag and low vortex shedding frequency.
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14.1 Introduction

The vortex shedding and formation of Karman Vortex Street behind a cylinder has
been the object of numerous experimental and numerical studies because of the
fundamentalmechanism that this flowexhibits and its several practical relevance. The
classical view of a vortex street in cross section consists of regions of concentrated
vorticity shed into the downstream flow from alternate sides of the body (and with
alternate sense of rotation), giving the appearance of an upper rowof negative vortices
and lower row of positive vortices. This alternate shedding of vortices in the near
wake leads to large fluctuating pressure forces in a direction transverse to the flow
and may cause structural vibrations, acoustic noise or resonance.

There have been numerous investigations in the past aiming to alter or suppress
the pattern of vortex shedding. Reducing the drag is critically important in certain
engineering applications, and both active and passive control techniques have been
proposed to achieve that goal. In general, flow control techniques for reducing the
aerodynamic drag exerted on a bluff body are classified into two types: active and
passive control techniques. Active control methods control the flow by supplying
external energy through several means such as rotational oscillatory motion of the
bluff body or jet blowing. Passive control techniques control the vortex shedding
by modifying the shape of the bluff body or by attaching additional devices in the
flow stream. Therefore, the passive control technique is energy free and often easier
to implement. Among the passive control techniques, the splitter plate has been
considered as one of the most successful devices to control the vortex shedding
behind a cylinder Ali et al. [1]. Another approach of controlling the flow behind
a bluff body is to place a smaller bluff body in tandem with the main body. The
reattachment of shear layers emerging from the front bluff body with the main body
causes a substantial drag reduction and damping in oscillation.

Roshko [12] was among the first to study the control of vortex shedding behind a
circular cylinder through attaching a splitter plate along the downstream. The study
was expanded numerically by Kwon and Choi [7] for various plate lengths and at low
Reynolds numbers (Re) i.e., Re between 80 and 160. Vortex shedding from bluff
bodies with splitter plates was experimentally investigated by Nakamura [9]. The
free shear layers emerging from either sides of a bluff body roll up to form vortices,
and these vortices are shed alternately from each side of the body. Flow visualization
study due to Kawai [6] suggests that a splitter plate reduces the three-dimensionality
in the formation region by stabilizing the transverse flapping of the shear layers. Lin
and Wu [8] found that a splitter plate having a length of 2D attached to the cylinder
could suppress the vortex shedding. Tiwari et al. [14] carried out a numerical study to
understand the effect on the flow characteristics of the splitter plate mounted on the
back of the circular tube. When a geometric modification, either through attached/
detached splitter plate or placing a in-line bluff body, the flow approaches the bluff
body is subjected to a momentum loss. This causes a significant reduction in pressure
along the upstream face of the bluff body. Thus, the drag experienced by the body gets
modified. Several studies on drag reduction and control of flow by placing another
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cylinder in tandem have been reported (e.g., [2, 5, 15]). Hwang and Yang [4] studied
numerically the drag reduction by placing an attached splitter plate upstream of the
cylinder.

Flows over square cylinders are important inmany engineering applications, espe-
cially in flows around bridges, buildings, marine risers and in the context of augmen-
tation of heat transfer from PCBs. The basic difference between the flow field past a
square cylinder and a circular cylinder is that the points of separation for the former
one are fixed at the upstream corners, whereas the points of separation for the latter
case move back and forth depending on the oncoming fluid velocity. The fluid travels
downstream at a large trajectory angle from each of these points and a comparatively
larger recirculation zone is generated by Ali et al. [1]. Ozono [10] studied the effects
on vortex shedding frequency by placing splitter plate along the centreline of the
square cylinder. Ali et al. [1] investigated the effect of the length of a downstream
attached splitter plate on the wake of a square cylinder. In this paper, the control of
vortex shedding as well as drag reduction by attached splitter plates both upstream
and downstream of a square cylinder is investigated. The splitter plates are placed
along the horizontal centreline of the cylinder.

14.2 Problem Formulation

A long square cylinder of side D placed in a uniform flow (from left to right) with
velocity U∞ is considered. In the upstream of the cylinder, a splitter plate of fixed
length L1 is attached with the cylinder and in the downstream of the cylinder, another
splitter plate of length L2 attached with the cylinder. The length of the downstream
splitter plate is varied. The thickness of the splitter plate is h. A schematic diagram of
the flow configuration is presented in the Fig. 14.1. Herewe have usedU∞ as velocity
scale, D as scale for length, ρU 2∞ as scale for pressure, where ρ is the density of the
fluid and D/U∞ is considered as time scale. With these scale, the non-dimensional
Navier-Stoke’s governing the fluid flow characteristics are given by

∇ · V = 0 (14.1)

Fig. 14.1 Sketch of the test case and annotations
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∂V
∂t

+ (V · ∇)V = −∇ p + 1

Re
∇2V (14.2)

where the non-dimensional parameter Reynolds number (Re) is defined as Re =
U∞D/ν, where ν is the kinematic viscosity.

We have considered U∞ as far field (upstream) velocity. Symmetric boundary
condition is considered along the downstreamboundary. The drag and lift coefficients
(CD, CL) are obtained by considering the viscous and pressure forces acting on the
cylinder, are determined as

CD = FD

0.5ρU 2∞ D2 , CL = FL

0.5ρU 2∞ D2 (14.3)

where FD and FL are the integrated drag and lift forces experienced by the cylin-
der, respectively. The non-dimensional pressure coefficient (C p) and base pressure
coefficient (C pb) are defined by

C p = p∗

0.5ρU 2∞
, C pb = p∗

0.5ρU 2∞
(14.4)

where p∗ is the dimensional pressure on the surface of the cylinder.

14.3 Numerical Method and Validation

The governing Eqs. (14.1)–(14.2) are solved numerically by using a finite volume
over a staggered grid system. In the staggered grid arrangement, the velocity com-
ponents are stored at the midpoints of the cell sides to which they are normal. The
scalar quantity pressure is stored at the center of the cell. The discretized forms of
the governing equations are obtained by integrating over an elemental rectangular
cells using finite volume method. A pressure correction-based iterative algorithm,
SIMPLE [11] is used for solving the governing equation with boundary conditions
specified previously. A first-order implicit scheme is used for discretizing the time
derivatives. The pressure link between continuity and momentum is accomplished
by transforming the continuity equation into Poisson equation for pressure. The Pois-
son equation implements a pressure correction for a divergent velocity field. At each
time step the resulting tri-diagonal system of algebraic equations are solved through
a block elimination method. In Fig. 14.2a, it is found that the time-averaged drag
coefficient (CDav) changes 3% for the grid sizes 420× 310 compare to the grid size
471 × 352 due Ali et al. [1]. In Fig. 14.2b, the Strouhal number (St) are compared
with Ali et al. [1] to validate our established code.
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(a) (b)

Fig. 14.2 For Re = 150 with Ali et al. [1], a time-averaged total drag coefficients (CDav) and
b Strouhal number (St)

14.4 Results and Discussion

14.4.1 Upstream Splitter Plate

The effect due to the presence of an upstream splitter plate on wake and forces of a
cylinder is discussed first. The plate is attached to the cylinder placed horizontally
along the centreline.When the splitter plate is attached in front face of the cylinder, the
vortex shedding is increasing whereas the drag coefficient is decreasing significantly.
In Fig. 14.3a, b, two flow regime is found. Regime (1) 0 ≤ L1/D < 1.5, the Strouhal
number is increasing. At these moment the vortex shedding is too high and the drag
force is decreasing sufficiently. Regime (2) 1.5 ≤ L1/D ≤ 4, the Strouhal number
becoming steady and the drag force is decreasing rapidly. But when L1/D > 4,
there is no effect on the flow. The instantaneous vorticity lines for different length
of splitter plate for Re = 150 is separated shear layers of the plate reattach on
the downstream cylinder. The top and bottom shear layers of the plate have similar
vorticity distribution and do not disturb the manner of the vortex shedding from the
cylinder. The separated shear layer from the rod reattaches to the cylinder and rolls
up in a quasi-steady manner. The pattern of the vortex shedding behind the cylinder
remains unaltered due to the presence of the upstream plate. The upstream splitter
plate decreases the momentum of the fluid impinging on the cylinder due to skin
friction thereby decreasing the stagnation pressure on the surface of the cylinder
facing the flow which results in reduction of drag. In Fig. 14.3c, it is found that
the surface pressure on all faces of the cylinder is dropping down. Due to the thin
plate in the front face of the cylinder, the shear layer of the flow get separated and
diminished the pressure at the centre of the front face. As in Fig. 14.3c, it is shown
that as the length of the thin plate increases the centre pressure in decreasing. The
time average surface pressure distribution around the cylinder at Reynolds number,
Re = 150 is presented in Fig. 14.3c for different values of the upstream splitter plate
length i.e., L1/D = 0, 0.5, 1, 1.5, 2, 2.5. The pressure is positive along the front
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(a)

(c)

(b)

Fig. 14.3 a Strouhal number, b time-averaged drag coefficient and c time-averaged wall pressure
effect for different length of upstream splitter plate

face AB of the cylinder with the stagnation pressure occurs at a point on AB. Fluid
separates from the upper and lower corners A and B, where the pressure distribution
attains minima. The pressure along other sides of the cylinder is negative as the flow
separates from lower and upper corners are never reattaches with the cylinder. The
pressure distribution on the front face of the cylinder changes due to the variation of
the plate length is found. However, the surface pressure distribution along the faces
other than the front face follow the similar trend as that the case of a cylinder without
an attached plate (L1/D = 0). Since the upstream plate decreases the momentum
of the flow impinging on the cylinder the stagnation pressure is reduced.

The variation of Strouhal number (St) and average drag coefficient (CD) due to the
variation of Reynolds number at different values of the upstream splitter plate length
is presented in Fig. 14.3a, b. At lower range of Re, it is found that the upstream splitter
plate have a negligible effect on the vortex shedding frequency. At higher range of Re,
the vortex shedding frequency is enhanced due to the increase of splitter plate length.
The variation of the drag coefficient with Reynolds number at different upstream
splitter plate length shows that the average drag reduces with the introduction of
the upstream splitter plate. As the length of the plate increases the drag reduces at
any given value of the Reynolds number. It is evident from the Fig. 14.3b that the
variation ofCD with Re follow the same trend at different L1/D(=0, 0.5, 1.0, 2.0).
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This suggests that the upstream splitter plate does not influence the vortex shedding
mechanism downstream of the cylinder and the reduction in CD is only due to the
reduction of pressure at the front face of the cylinder. Hwang and Yang [4] observed
the similar trend in CD due to the presence of a detached splitter plate upstream of
the cylinder.

14.4.2 Dual Splitter plate

The influence of a downstream splitter plate on the wake of a square cylinder in the
laminar range of Reynolds number have been studied at length by Ali et al. [1]. There
they found that in presence of the downstream attached plate, the free shear layers
which are emerging from the opposite sides of the cylinder are convected further
downstream before rolling-up.When plate length is bigger, a secondary vortex forms
around the trailing edge of the plate. This secondary vortex influences the vortex
shedding behind the cylinder. The flow in which dual splitter plates are attached
with the cylinder is investigated. Figure14.4 shows the influence of dual splitter
plate on the flow around a square cylinder. We considered the flow at Reynolds
number, Re = 150 and varied the length of the downstream plate (0 ≤ L2/D ≤
4.0) when the length of the upstream splitter plate is L1/D is taken to be 1.0. The
vortex shedding behind the cylinder occurs due to the interaction of shear layers of
opposite sign emerging from either sides of the cylinder. The attached downstream
plate interfere the fluid entrainment in the shear layers and consequently, the vortex
shedding is influenced. Several authors have already reported on the influence of
downstream splitter plate on vortex shedding. A review of which is already provided
in the introduction section. It is found that with the introduction of the downstream
plate the shear layer convects further downstreamcompared to an unbounded cylinder
before being roll-up. Increase in the length of the plate causes the shear layers to
extend further downstream before they entrain into each other shows that wake
becomes steady at Re = 150 when L2/D is bigger than 2. For lower range of
the downstream plate length, a periodic vortex shedding occurs at Re=150. The
downstream splitter plate attached along the centreline produces symmetry in the
wake structure. A tip vortex at the trailing edge of the plate is clearly visible at this
Reynolds number. At steady state, the interaction between the top and bottom shear
layers is suppressed. The shear layer emerging from top and bottom faces of the
cylinder transport downstream almost horizontally without forming any vortex in
the near wake of the cylinder. It is found that any given value of Reynolds number
(Re ≤ 200), there exists a critical value of the downstream splitter plate length for
which the vortex shedding is suppressed. This critical value of L2/D depends on the
length of the upstream splitter plate (L1/D). Later in this section, on suppression
of vortex shedding by varying L2/D through computation of the Strouhal number
at different Reynolds number is discussed. The instantaneous vorticity contours for
different values of the length of the downstream plate (0 ≤ L2/D ≤ 4.0) at Reynolds
number 150 and upstream plate length L1/D = 1 is shown in Fig. 14.4. It is clear
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(a)

(b)

(c)

(d)

Fig. 14.4 Instantaneous vorticity contours for different downstream splitter plate at fixed upstream
splitter plate of length L1/D = 1 and Re = 150. a L2/D = 1.0, b L2/D = 2.0, c L2/D = 3.0,
d L2/D = 4.0
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(a) (b)

(c) (d)

Fig. 14.5 a Time-averaged total drag coefficient C D (solid lines) and time-averaged total pressure
drag C Dp (dashed lines), b time-averaged total lift coefficients (C L ), c Critical length of splitter
plate and d Strouhal number effect for double splitter plate at Re = 150

from Fig. 14.4 that the interaction of the shear layers of opposite sign occurs further
downstream of the cylinder in comparison of a cylinder without any splitter plate.

The CD and CL is presented in Fig. 14.5a, b as a function of L2/D for different
choice of L1/D when Re = 150. Drag is reduced markedly below the plain-cylinder
value by a very short splitter plate. In Fig. 14.5c, the critical length of the splitter plates
is shown and Fig. 14.5d is presented the Strouhal number effect for different length
of the splitter plates for Reynolds number 150.

14.5 Conclusion

A parametric study has been carried out in order to assess the effectiveness of dual
attached “thin” splitter plates on drag reduction of a square cylinder immersed in a
free stream. The length of front splitter plate L1/D = 1.0 is kept at constant and
the length of the back splitter plate L2/D is varying, and they are placed along the
centerline, upstream and downstream of the cylinder, respectively. The numerical
simulations have been carried out at a Reynolds number 150. The main objective
of this study is to investigate the effect of splitter plate lengths on the flow struc-
ture about a square cylinder. The study has clearly shown that a splitter plate can
fundamentally change the flow structure of the square cylinder wake via a vari-
ety of hydrodynamic interaction mechanisms. The structure of the flow is heavily
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influenced by the splitter plate length. When only the upstream splitter plate is
attached to the cylinder, it has been observed that the drag forces reduces rapidly but
the vortex shedding increases behind the cylinder, which may create a oscillation on
the body. To reduce the vorticity, we had attached a splitter plate in the downstream
of the cylinder. The effect of the back plate in this plate length range is to convect
the free shear layers further downstream before roll up occurs. When the back plate
length is further increased to L2/D = 1.5, there is an decrease in the Strouhal num-
ber. This is an indication of the transition into a new flow regime. For the plate length
range 1.5 ≤ L2/D ≤ 2.0, a secondary vortex about the splitter plate trailing edge
is clearly observed. The Strouhal number in this flow regime decreases. A sudden
drop in Strouhal number is noticed when the length of the plate is increased from
L2/D = 2.0 to L2/D = 3.0. This is an indication of the transition into the third flow
regime L2/D ≥ 3.0 at which the free layers reattach to the splitter plate. In this flow
regime, the Strouhal number is almost unchanged with increasing the plate length.
This study has also found the most suitable length scale for estimating a universal
Strouhal number.
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Chapter 15
The Possibility of the Existence
of Superluminal Neutrinos: A Theoretical
Framework

Indranath Bhattacharyya

Abstract The amazing result of the firstOPERAexperiment has explored a possibil-
ity for the existence of superluminal neutrinos. Although the successive experiments
would have negated such possibility, but in the framework of extended standard
model a mechanism is proposed to address that superluminal nature of neutrinos.
The idea is based on the assumption that the neutrinos might behave as superlumi-
nal in a particular experiment, whereas in the most of the experiments that remain
subluminal. In the proposed model, the mass matrix of Dirac as well as Majorana
neutrino field is diagonalized to obtain two eigen values; one becomes imaginary
and larger in magnitude, whereas the other one is real but smaller. The resulting
fields are found to be the mixture of left- and right-handed fields, unlike the concept
of seesaw mechanism. The mass generation of neutrinos in the left-right symmetric
model is examined. It is also proposed here that the oscillation of neutrinos is the
two-fold process consisting of mass eigenstates doublet having imaginary mass and
that with real mass; the domination of one over another results the subluminal as
well as superluminal channel of neutrino oscillation.

Keywords Superluminal neutrinos · Mass generation

The first result of the OPERA experiment [1] (OPERA+1) has brought the idea of
superluminal nature of neutrinos leading to a threat of the feasibility of special theory
of relativity (STR) [4]. In the νμ → ντ channel of neutrino oscillations OPERA+ has
measured the neutrino velocity as (v−c)/c = [2.48±0.28 (stat)±0.30 (sys)]×10−5,
contradicting the stringent limit obtained by SN1987Adata in the energy range of few
MeV [5–7]. It indicates that themuon neutrinos propagate faster than light in vacuum.
The subsequent experiment OPERA- has negated the result of OPERA+ and rescued
the special relativity. But the idea of superluminal nature of neutrinos motivated to
build a consistentmodelwithout violating the STR.Under the circumstances, one can

1Throughout the literature OPERA+ stands for the result interpreting superluminal, whereas
OPERA- [2, 3] is that in which neutrinos found to be subluminal as usual case.
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think about a model which can incorporate both of the possibilities—superluminal as
well as subluminal neutrinos. In the present article, a theoretical model is proposed
in the backdrop of that superluminal issue. The motivation comes from the OPERA+
result. According to the STR, any particle having its velocity greater than that of
light (Tachyon) must have purely imaginary mass; and therefore, it is not possible
to detect such particle. Therefore, if the neutrinos are superluminal then they must
be undetectable and should have imaginary mass contradicting the smallness of the
neutrino mass, evident from various experiments. Then one can think there must be
an underlying mechanism to have the neutrino velocity more than that of light in
the νμ → ντ channel of OPERA+ experiment. In this article, a theoretical model is
proposed to explain such mechanism.

15.1 Mechanism of the Imaginary Mass Generation
of Neutrino

According to the well-accepted conventional seesaw mechanism, the left-handed
neutrino acquires a very little mass; whereas, the right-handed counterpart have an
extremely heavy mass. To address the superluminal issue, such understanding may
be reconsidered. As the neutrino mass includes the Dirac as well as Majorana mass
terms, the Lagrangian of the neutrino field incorporates such option. The neutrino
mass matrix can be diagonalized to obtain the expression

2L = m1φ1φ1 + m2φ2φ2 (15.1)

with introducing the angle θ so that

tan 2θ = 2m D

m R − mL
(15.2)

The corresponding mass eigenvalues are calculated as

m1,2 = ε1,2

2

[
(mL + m R) ∓

√
(mL − m R)2 + 4m2

D

]
(15.3)

with |ε1,2| = 1.
The fields φ1 and φ2 take the form

φ1 = cos θ
(
νL + ε1ν

c
R

) − sin θ
(
νc

L + ε1νR
)

(15.4)

φ2 = sin θ
(
νL + ε2ν

c
R

) + cos θ
(
νc

L + ε2νR
)

(15.5)

The νL and νc
R are the spinors of the active neutrinos; whereas, νR and νc

L are
those which cannot be observed in nature. In the seesaw mechanism m R � m D and
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mL = 0; the mass eigenvalues become m1 ≈ m2
D

m R
and m2 ≈ m R . Here φ1 is evolved

as left-handed neutrino and right-handed antineutrino field, whereas φ2 becomes
right-handed neutrino and left-handed antineutrino field, which is essentially hard
to observe since the mass eigenvalue associated to it is much high. In spite of the
success in every other aspect the conventional seesaw fails to explain the superluminal
nature of neutrinos. Therefore, a new model being able to interpret the OPERA+
result is needed. The basic assumption of this model is that the field νL and νR are
symmetric in every respect; which follows the mass mL = m R = m M (say). Under
the circumstances equation (15.3) gives the mass eigenvalues as

m1,2 = ε1,2(m M ∓ m D) (15.6)

Since the theoretical framework is guided by the result of OPERA+ experiment the
possibility of the existence of imaginary mass of the neutrino, causing superluminal
effect, is to be taken into account. It is to be remembered that the neutrino is not
superluminal all the time, because OPERA+ is the sole experiment in which the
superluminal behavior has been observed. In all other instants, including OPERA-
[2, 3], the neutrinos are found to be subluminal with tiny mass. To fit the criteria that
the neutrinos may be superluminal as well as subluminal it is assumed m D and m M

are much high in magnitude, but very close to each other and therefore the absolute
value of | m D − mM |> 0 becomes very small. It results

m1 =| m D − mM |→ 0 m2 = i(m D + mM ) (15.7)

where, ε2 = i and ε1 = ∓1 accordingly m D is greater or less than mM so that the
sign of m1 must be positive.

If it is further assumed θ = −π
4 . The φ1 and φ2 fields become

φ1 = φRe = 1√
2

[
ν + νc] (15.8)

φ2 = φI m = 1√
2

[(
νc

L − νL
) + i

(
νR − νc

R

)]
(15.9)

φRe is the real neutrino field having tiny mass. This is not necessarily left handed,
the right-hand field is also included here. Such field is therefore clearly subluminal.
But, the field φI m bears imaginary mass and becomes superluminal. The neutrino
mass evolved in that sense is also seesaw in nature, although the |m2| may not be
high enough. No doubt this is a new kind of seesaw mechanism, which is essentially
different from the earlier concept of seesaw mechanisms. The framing of the model
can be generalized for three flavors with 3×3 mass matrices MD , ML and MR . That
results doublet of mass eigenstates Φk

Re (bradyonic) and Φk
I m (tachyonic).
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15.2 Discussion

Introducing right-handed neutrino in the standard model, the global B − L symmetry
becomes gaugable and the SU (2)L × SU (2)R ×U (1)B−L becomes the gauge group
of the left-right symmetric model [8, 9] and the seesaw structure of neutrino mass
[10] emerges in this left-right symmetric model. According to the model proposed
in this article, the neutrino mass generation may occur in the framework of SO(4)
model [11], by which no Majorana mass is created by the spontaneous breakdown
of SU (2)L symmetry. Such mass term, which is approximately equal to the Dirac
mass term may be incorporated by introducing dimension five Operator [12] in
the unbroken Lagrangian. According to the conventional seesaw model, the right-
handed neutrino is difficult to find in nature due to its extremely high mass. But in
the model proposed here, one wing of a neutrino flavor cannot be found, not because
of its high mass, but as it has imaginary mass resulting superluminal in nature.
The other wing exists with its extremely small mass subject to the experimental
verification of its right-handedness. In the framework of this model, both of the mass
eigenstates are mixtures of left-handed as well as right-handed states. Therefore,
unlike the earlier concept the flavor eigenstates are the mixtures of all complex mass
eigenstates. In the OPERA+ experiment, the neutrino oscillation in the νμ → ντ

has been taken into account. Here the flavor eigenstates νμ and ντ are the mixtures
of Φ1 = Φ1

Re + iΦ1
I m and Φ2 = Φ2

Re + iΦ2
I m , respectively. In the low energy

limit, only the real part of Φ1 and Φ2 are expected to take part in the oscillation
process. But in the intermediate stage one cannot exclude the possibility of the

participation of Φ1
I m and Φ2

I m assuming
(
Ek

)2 = (p)2 − |mk
1|2 (k = 1, 2), where

p � |mk
1| but Ek remains in the same energy range as that of initial νμ. Thus

the neutrino oscillation may occur in two different channels, one is conventional(
Φ1

Re, Φ
2
Re

)
occurring within our light cone and the other is

(
Φ1

I m, Φ2
I m

)
taking

place outside of it, without changing the overall energy range. If the oscillation
event in the superluminal region is dominated by that of subluminal region, then the
overall neutrino speed due to νμ → ντ oscillation crosses the luminal barrier; in
the reverse case, the neutrino speed remains subluminal. The OPERA+ experiment
found the neutrino speed greater than that of light since here superluminal event
would dominate the subluminal one. Measuring the neutrino speed less than that
of light by OPERA—experiment cannot lead to negate the revolutionary result of
OPERA+, rather one can say that most of the cases the subluminal event dominates
over the superluminal event.
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Chapter 16
Dependence of Brans–Dicke Parameter
on Scalar Field

Surajit Chattopadhyay and Sudipto Roy

Abstract For the scale factor as a(t) = Atnebt we have discussed the behavior of
the Brans–Dicke parameter ω as a function of scalar field φ(a) = φ1eαa . We have
examined viability of the scale factor and subsequently studied its impact on φ as
well as ω.

Keywords Brans–Dicke parameter

16.1 Introduction

Riess et al. [1] in the High-redshift Supernova Search Team and Perlmutter et al.
[2] in the Supernova Cosmology Project Team have independently reported that
the present universe is expanding with acceleration. Cosmological observations on
expansion history of the universe can be interpreted as evidence either for existence
of some exotic matter components or for modification of the gravitational theory. In
the first route of interpretation, one can take a mysterious cosmic fluid with suffi-
ciently large and negative pressure, dubbed dark energy. In the second route, how-
ever, one attributes the accelerating expansion to a modification of general relativity.
The representative models belonging to the second class are known as “modified
gravity” models, which include f (R) gravity, f (T ) gravity, f (G) gravity, f (R, T )

gravity, etc.
Brans–Dicke (BD) theory is a special case of scalar–tensor theories, which is

originally motivated by the search for a theory containing Machs principle. The
Brans–Dicke cosmology has beenwell studied considering differentmodels. Sheykhi
et al. [3] considered the power-law entropy corrected version of BD theory defined
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by a scalar field φ and a coupling function ω. As the simplest and best-studied
generalizations of general relativity, we have the Holographic DE (HDE) and the
new agegraphic DE (NADE) models in the framework of BD cosmology.

16.2 Choice of Scale Factor

The scale factor,which is a functionof cosmic time t , represents the relative expansion
of the universe. It relates the proper distance (which can change over time) between a
pair of objects, e.g., twogalaxy clusters,movingwith theHubble flow in an expanding
or contracting FRW universe at any arbitrary time to their distance at some reference
time. The formula for this is d(t) = d0a(t), where d(t) is the proper distance at
epoch t , d0 is the distance at the reference time t0, and a(t) is the scale factor. In the
present work, we have proposed the scale factor or the expansion factor in the from

a(t) = Atn exp[bt], (16.1)

where A, n and b are positive constants considering a(t) and ȧ(t) to be positive
quantities. The deceleration parameter q is defined as q = −aäȧ−2. For the above
choice of scale factor, the deceleration parameter comes out to be

q(t) = −1 + n

(n + bt)2
, (16.2)

We need to examine the cosmological viability of the above choice of scale factor.
If we assume that t1 is the time point, when the universe transits from decelerated to
accelerated phase of expansion, then from (16.1) it can be derived that

t1 = −n − √
n

b
, (16.3)

If a(t = t1) = a1, then we have

a(t) = a1

(
t

t1

)n

exp

[
(
√

n − n)

(
t

t1
− 1

)]
, (16.4)

and

q(t) = −1 + n

[
n + (

√
n − n)

t

t1

]−2

(16.5)

For the scale factor (16.1), the Hubble parameter is

H = ȧ

a
=

√
n − n

t1
+ n

t
(16.6)
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For the present epoch, i.e., a = 1 let us take q = q0 and H = H0. Then using
(16.1)–(16.6) it can be obtained that

H

H0
=

1 + n

{(
C+D exp[−a/ f (a1)]+1

n

)− 1
2 − n

}−1

1 + n

{(
C+D exp[−1/ f (a1)]+1

n

)− 1
2 − n

}−1 (16.7)

Finally, we have

a(t) =
(

t

t0

)n

exp

[
(H0t0 − n)

(
t

t0
− 1

)]
(16.8)

q(t) = −1 + n

[
n + (H0t0 − n)

t

t0

]−2

(16.9)

a1 =
( √

n − n

H0t0 − n

)n

exp(
√

n − H0t0) (16.10)

In Fig. 16.1, we have plotted the deceleration parameter against a, and we observed
that the signature flip is happening roughly in the range 0.5 < a < 1. This is
consistent with the present accelerated universe. For some values of n and for a = 1,

Fig. 16.1 The deceleration
parameter shows transition
from decelerated to
accelerated phase of
expansion for the scale factor
(16.1)
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we have q = 0.2. This result is consistent with the study of Giostri et al. [4], which
states that combining BAO/CMB observations with SNIa data processed with the
MLCS2k2 light-curve fitter gives q0 = −0.31 ± 0.11 at 68% confidence level.

16.3 ω as function of φ

For flat FRW universe (which corresponds to a curvature parameter k equal to zero),
the field equations in the generalized BD theory are given by

3H2 = ρ

φ
+ ω(φ)

2

(
φ̇

φ

)2

− 3H
φ̇

φ
(16.11)

2
ä

a
+ H2 = −ω(φ)

2

(
φ̇

φ

)2

− 2H
φ̇

φ
− φ̈

φ
(16.12)

where ρ represents the energy density of the matter distribution and an over-dot
indicates a derivative with respect to the cosmic time t . The issue of considering ω as
function of φ has been discussed in the work of Das and Banerjee [5] and has been
further studied in [6].

We have considered the scalar field in the form

φ(a) = φ1 exp[αa] (16.13)

and matter density as
ρ = ρ0a−3 (16.14)

In (16.13), there is no a priori physical motivation for this choice of φ. This is purely
phenomenological, which leads to the desired behavior of the deceleration parameter
q of attaining a negative value at the present epoch from a positive value during a
recent past. Subsequently, using the solutions in the previous section and taking
f0 = ρ0φ

−1
0 , we can get the following quadratic equation

α2 +
[

6 − n

H2
0 t20

]

α +
[

6 − 2n

H2
0 t20

− f0t20
H2
0 t20

]

= 0; where f0 = ρ0

φ0
(16.15)

The CMB measurements [1] put 1.05 as upper limit of the value of H0t0. For this
reason, we consider H0t0 = f1 < 1. It has been already established in the previous
section that, in order to have a signature flip, we require n < H2

0 t20 = f 21 < 1.
Hence, we can have f2 < 1 such that n = f2 f 21 . We further define the parameter
f3 = f0t20 . Hence, Eq. (16.15) takes the form
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α2 + (6 − f2)α +
(

6 − 2 f2 − f3
f 21

)

= 0 (16.16)

that leads to

α± =
f2 − 6 ±

√
f 22 − 4 f2 + 4 f3/ f 21 + 12

2
(16.17)

Let us denote:
φ+(a) = φ0 exp[α+(a − 1)] (16.18)

φ−(a) = φ0 exp[α−(a − 1)] (16.19)

Hence, from the second field equation we have the BD parameter as

ω±(φ) = (4q − 2)(α±a)−2 + (2q − 4)(α±a)−1 − 2 (16.20)

We shall now plot the BD parameter ω against the time t and G = 1/φ against the
scale factor a. In the figures, we shall consider H0t0 = 0.95. The blue and green lines
would represent φ+ and φ−, respectively. The solid line corresponds to n = 0.75 and
the dashed line corresponds to n = 0.2. We observe that, for the negative root, we
have Ġ/G > 0 and for positive root Ġ/G < 0. However, |Ġ/G| is increasing in both
cases. The rate of increasing is sharper for n = 0.60 than for n = 0.80. For the current
universe, for positiveαwehave |Ġ/G| < 4×10−10 yr−1, which iswell-documented
upper limit of |Ġ/G|. However, for negative α, |Ġ/G| > 4×10−10 yr−1, and hence
we discard the model with negative α (Figs. 16.2 and 16.3).

Fig. 16.2 Plot of the BD
parameter against t
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Fig. 16.3 Ġ/G against t

16.4 Concluding Remarks

The present paper reports a study on the dimensionless parameter ω in Brans–Dicke
theory. Based on a particular choice of scale factor a, we have investigated the
signature flip of the deceleration parameter q to see whether the transition from
decelerated to accelerated expansion of the universe is achievable under this choice
of scale factor. Restrictions on the parameters obtained for this choice of scale factor
have been subsequently used for discussing the Brans–Dicke parameter for scalar
field φ(a) = φ1 exp[αa].
Acknowledgments Surajit Chattopadhyay acknowledges financial support from DST, Govt. of
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Chapter 17
Water-Wave Scattering by a Sphere
in a Two-Layer Fluid with an Ice-Cover

Dilip Das and Nityananda Thakur

Abstract Using linearwater–wave theory,wave scattering (both heave and sway) by
a sphere submerged in a two-layer ocean consisting of a layer of fresh water of finite
depth with an ice-cover and an infinite layer of salt water. The sphere is submerged in
the lower layer of the two layers. Employing the method of multipoles, the problem
is reduced to an infinite system of linear equations which are solved numerically
by standard technique after truncation. The vertical and horizontal exciting forces
on the sphere are obtained and depicted graphically against the wave number for
various values of the submersion depths of the sphere in the lower layer in a number
of figures to show the effect of the presence of ice-cover.

Keywords Water wave scattering · Two-layer fluid · Ice-cover

17.1 Introduction

Problems on water-wave radiation and scattering by spherical objects have been
studied in the literature due to their importance in the construction of wave power
devices. Linton andMcIver [1] developed a general theory for two-dimensional wave
propagation in such a two-layer fluid with a free surface and studied wave scattering
by a long horizontal cylinder submerged in either of the two layers. Cadby and
Linton [2] extended this work to three dimensions and investigated wave radiation
and diffraction by a sphere submerged in either of the two layers. In two-layer fluid
wherein the upper layer is of finite depth and bounded above by a thin but uniform
layer of ice-cover modeled as a thin elastic sheet and the lower layer is infinitely
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deep below the interface, time-harmonic waves with given frequency can propagate
with two different wave numbers. Computations in [3] demonstrate this for the long
horizontal circular cylinder submerged in either layer of a two-layer fluid with an
ice-cover. Also Das and Mandal [4] recently studied the water-wave radiation by
submerged sphere in either layers of two-layer fluid using the method of multipoles.
The two-layer fluid water-wave problem arose from modeling an underwater pipe
bridge across Norwegian fjords consisting of a layer of fresh water on the top of a
deep layer of salt water. During winter, the fjords are covered by ice, and this has
motivated us to extend the problem of [2] to an ice-covered two-layer fluid wherein
the ice-cover is modeled as a thin elastic plate. Using linear water–wave theory, we
consider wave scattering by a sphere submerged in the lower layer of the two-layer
fluid. Employing the method of multipoles, the problem is reduced to an infinite
system of linear equations which are solved numerically by standard technique after
truncation. The vertical and horizontal forces on the sphere are obtained and depicted
graphically against the wave number for various values of the submersion depths of
the sphere in the lower layer in a number of figures to show the effect of the presence
of ice-cover.

17.2 Mathematical Formulation

ACartesian coordinate system is chosen inwhich the y-axis points vertically upwards
with the plane y = 0 denoting the undisturbed interface of a two-layer ocean with an
ice-cover. The plane y = h denotes themean position of the ice-cover, the lower fluid
extends infinitely downwards. The fluid in each layer is assumed to be inviscid and
incompressible. Under the usual assumptions of linear theory and irrotationalmotion,
a velocity potentialΦ(x, y, z, t) = Re

{
φ(x, y, z)e−iωt

}
describing the fluidmotion

exists, where φ(x, y, z) is a complex valued function and ω is the angular frequency.
The upper layer 0 < y < h, is referred to as region I , and the lower layer y < 0 as
region I I . Let the potential in the upper layer of density ρI be φm

I and that in the
lower layer of density ρI I be φm

I I (m = 0, 1, the potential functions for the heave and
sway problems being denoted by φ0 and φ1 respectively). The potential functions
φm

I , φm
I I satisfy

∇2φm
I = 0, ∇2φm

I I = 0, in appropriate layers. (17.2.1)

The ratio of the densities of the two fluids, ρI /ρI I (<1), is denoted by ρ. The
linearized boundary conditions at the interface are

φm
I y = φm

I I y on y = 0, (17.2.2)

ρ(φm
I y − Kφm

I ) = φm
I I y − Kφm

I I , on y = 0. (17.2.3)
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The linearized ice-cover condition is
(

D∇4
x,z + 1 − εK

)
φm

I y + Kφm
I = 0, on y = h, (17.2.4)

where

∇4
x,z = ∂4

∂x4
+ 2

∂2

∂x2
∂2

∂z2
+ ∂4

∂z4
, K = ω2

g
, D = L

ρI g
,

where

L = Eh3
0

12
(
1 − ν2

)

being the flexural rigidity of the elastic ice-cover, E being the Young’s modulus and
ν being the Poisson’s ratio of the material of the ice-cover and ε = ρ0

ρI
h0, ρ0 being

the density of the ice and h0 being the very small thickness of the ice-cover. The
boundary conditions (17.2.2) and (17.2.3) are obtained from the continuity of the
normal velocity and pressure at the interface, respectively. Also the condition at large
depth is

∇φm
I I → 0 as y → −∞. (17.2.5)

Now the total scattering potential can be decomposed into two parts:

φ = φinc + φs (17.2.6)

where φinc is the potential representing the incident plane wave and φs must satisfy
(17.2.1)–(17.2.5) and body boundary condition

∂φs

∂r
= −∂φinc

∂r
on r = a, (17.2.7)

and behave as an outgoing cylindrical wave far from the sphere. Without loss of
generality, we can assume that the incident wave is from x = −∞ so that αinc = 0.

17.3 Sphere in the Lower Layer

The center of the sphere is taken at (0, f, 0) ( f < 0). Spherical polar coordinates
(r, θ, α), are defined by x = r sin θ cosα, y = f + r cos θ , z = r sin θ sin α, where
θ is the angle made with the upward vertical and α is the azimuthal angle. The
multipole potentials φm

I n and φm
I I n are constructed as (cf. [4])

φm
I n = an+1

(n − m)!
∫
�

∞

0
kn V (k)Jm(k R)dk, (17.3.1)
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φm
I I n =

(a

r

)n+1
Pm

n (cos θ) + an+1

(n − m)!
∫
�

∞

0
knC(k)eky Jm(k R)dk, (17.3.2)

where R = (
x2 + z2

)1/2
, V (k) = A(k)eky + B(k)e−yk and

A(k) = K
{

k
(

Dk4 + 1 − εK
)

+ K
}
ek( f −h)/H(k), (17.3.3)

B(k) = K
{

k
(

Dk4 + 1 − εK
)

− K
}
ek( f +h)/H(k), (17.3.4)

C(k) = (K s H1(k) − ((1 − s)k + K )H2(k)) ek f /H(k), (17.3.5)

H(k) = K s H1(k) − ((1 − s)k − K )H2(k) (17.3.6)

with

H1(k) = k
(

Dk4 + 1 − εK
)
cosh kh − K sinh K h

H2(k) = k
(

Dk4 + 1 − εK
)
sinh kh − K cosh K h.

The path of integration in the integrals in (17.3.1) and (17.3.2) is indented below
the poles at k = λ j , j = 1, 2, where λ1 and λ2 (λ1 < λ2) are the only two real
positive roots of the dispersion equation H(k) = 0.

The far-field form of the multipole, in the lower layer, is given by

φm
I I n ∼ (−i)m+1an+1

(n − m)!
(
2π

R

) 1
2 (

λ
n−1/2
1 Cλ1e

iλ1R+λ1 y + λ
n−1/2
2 Cλ2e

iλ2R+λ2 y
)
e−iπ/4

(17.3.7)
as R → ∞, where Cλ1 and Cλ2 are the residues of C(k) at k = λ1 and k = λ2,
respectively, which are given by

Cλ j = (
K s H1(λ j ) − ((1 − s)λ j + K )H2(λ j )

)
eλ j f /H ′(λ j ), j = 1, 2. (17.3.8)

Using the result

e±k(y− f ) Jm(k R) = (±1)m
∞∑

q=m

(±kr)q

(q + m)! Pm
q (cos θ) (17.3.9)

where Pm
q (cos θ) are associated Legandre functions, Jm(z) is the Bessel function of

first kind, (17.3.2) can be expanded in terms of polar coordinates as

φm
I I n =

(a

r

)n+1
Pm

n (cos θ) +
∞∑

q=m

Am
nqrq Pm

q (cos θ), (17.3.10)
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where

Am
nq = 1

(n − m)!(q + m)!
∫
�

∞

0
kq+nC(k)ek f dk. (17.3.11)

Incident wave train of wave number λ1

We consider an incident plane wave of wave number λ1 and amplitude A on the ice-
covered surface y = h whosepotential canbe expanded in spherical polar coordinates
and get

φinc = − ig AK

ωλ1
eλ1yeiλ1R cosα (17.3.12)

= − ig AK

ωλ1
eλ1 f

∞∑

m=0

εmim cosmα

∞∑

q=m

(λ1r)q

(q + m)! Pm
q (cos θ), (17.3.13)

where ε0 = 1, εm = 2 for m ≥ 1. For the scattering problems considered here, the
dependence on the azimuthal angle α is unknown and so we must use a more general
multipole expansion. We write

φS = − ig AK

ωλ1

∞∑

m=0

∞∑

n=m1

cm
n φm

n cosmα, (17.3.14)

where m1 = max(m, 1) and φm
n is given (in the lower fluid layer) by (17.3.10).

If we then apply the boundary condition (17.2.7) and use the orthogonality of the
associated Legendre functions and the functions cosmα, we can derive an infinite
system of equations for the sets of coefficients cm

n , n ≥ m1 for each m ≥ 0, which
is

cm
q − q

q + 1

∞∑

n=m1

Am
ns cm

n = εmimq K a(λ1a)q−1

(q + 1)(q + m)! eλ1( f −h), q ≥ m1. (17.3.15)

These systems can be solved by truncation as before, but now there is an additional
truncation parameter, namely the number of systems that are solved. In the compu-
tations presented below, two 4 × 4 systems were solved.

The hydrodynamic force on the body in the ith mode of motion can be written
Fi (t) = Re

{
fie−iωt

}
, where fi is found by integrating the dynamic pressure times

the appropriate component of the normal over the body surface. In other words,

fi = iρ I I ω

∫

SB

φnids,

where SB is the body boundary and ni is the component of the inward normal to the
body in the ith mode of motion. The vertical and horizontal exciting forces on the
sphere, f̄ 0λ1 and f̄ 1λ1 , can be obtained as
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f̄ 0λ1 = −4

3
Πa2ρI I g A(K aeλ1( f −h) + c01 +

∞∑

n=1

A0
n1 c0n), (17.3.16)

and

f̄ 1λ1 = −4

3
Πa2ρI I g A(i K aeλ1( f −h) + c11 +

∞∑

n=1

A1
n1 c1n). (17.3.17)

These can be simplified using (17.3.18) with q = 1 giving

f 0λ1 = | f̄ 0λ1
a2ρI I g A

| = 4π |c01|, (17.3.18)

and

f 1λ1 = | f̄ 1λ1
a2ρI I g A

| = 4π |c11|. (17.3.19)

The constants c01 appearing in (17.3.18) and c11 appearing in (17.3.19) can be obtained
numerically by solving the linear system (17.3.15) after truncation. Here the linear
system (17.3.15) is truncated up to four terms.

Incident wave train of wave number λ2

Now, we consider the case of an incident plane wave of amplitude A on the interface
y = 0 and the wave number λ2 described by

φ I
inc = − ig AK

ωλ2
g2(y)eiλ2R cosα, (17.3.20)

φ I I
inc = − ig AK

ωλ2
eλ2 y+iλ2R cosα, (17.3.21)

where

g2(y) = {λ2(1 − ρ) − K }
KρH1(λ2)

[
M1e

λ2(y−h) + M2e
−λ2(y−h)

]

where M1 = λ2(Dλ42 + 1 − εK ) + K and M2 = λ2(Dλ42 + 1 − εK ) − K . The
analysis is very similar to that given above for an incident wave of wave number λ2
we use the same expansion for φs as before, Eq. (17.3.14), but denote the unknown
coefficients by dm

n , and we obtain the infinite system of equations

dm
q − q

q + 1

∞∑

n=m1

Am
ns dm

n = εmimq K a(λ2a)q−1

(q + 1)(q + m)! eλ2 f , q ≥ m1, (17.3.22)

for each m ≥ 0.
The expressions for the vertical and horizontal exciting forces are
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f 0λ2 = | f̄ 0λ2
a2ρI I g A

| = 4π |d0
1 |, (17.3.23)

and

f 1λ2 = | f̄ 1λ2
a2ρI I g A

| = 4π |d1
1 |. (17.3.24)

The constants d0
1 appearing in (17.3.23) and d1

1 appearing in (17.3.24) can be obtained
numerically by solving the linear system (17.3.22) after truncation. Here the linear
system (17.3.22) is truncated up to four terms. This provides an accuracy up to five
decimal places, because if the system is truncated up to five or six terms, there is
practically no change in the numerical results.
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Fig. 17.1 a–c Vertical force against the wave number ka for a sphere in the lower layer. d–f
Horizontal force against the wave number ka for a sphere in the lower layer
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For the sphere in the upper layer, the expressions for vertical and horizontal forces
have also been obtained but are not presented here.

17.4 Numerical Results

Figure17.1a–f show, respectively, the nondimensional vertical and horizontal excit-
ing forces on the sphere due to an incident wave of wave number λ1 for ρ = 0.95,
h/a = 2. Figure17.1a, d show fV and fH , plotted against K a for D/a4 =
0.0001, ε/a = 0.0001 and different values of f /a and similarly Fig. 17.1b, d
for D/a4 = 1.5, ε/a = 0.01 and different values of f/a and Fig. 17.1c, f for
f/a = −1.5, ε/a = 0.01 and different values of D/a4. The curves of vertical and
horizontal forces are very similar and show that, as one would expect, the forces
increase the closer the sphere is to the interface. From figures we observed that as
K a increases, vertical and horizontal forces increase, attain a maximum value and
then decrease as K a increases. The vertical and horizontal forces are somewhat
larger in comparison to that of [2]. This is due to the presence of ice-cover. When the
flexural rigidity is taken to be very small, the numerical results for these quantities
almost coincide with those for a two-layer ocean with a free surface (cf. [2]).

The vertical and horizontal exciting forces for the case of an incident wave ofwave
number λ2 are not shown here. They can of course be determined. The forces are an
order of magnitude smaller than the corresponding forces due to an incident wave of
wave number λ1 and display the same qualitative effects as the sphere approaches
the interface.

17.5 Conclusion

In this paper, we have studied the problem of water-wave scattering by a sphere
submerged in the lower layer of a two-layer ocean. The upper layer is of finite depth
and is bounded above by an ice-cover which is modeled as a thin elastic plate and the
lower layer extends infinitely downwards. The method of multipoles is employed to
study this problem. The problem of water wave scattering by a body of an arbitrary
shape is somewhat difficult to solve analytically. However, a nearly spherical body
can be treated by an approximate method.

Acknowledgments The authors thank the Reviewer for his comments and suggestions to revise
the paper.
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Chapter 18
An Improved Adomian Decomposition
Method for Nonlinear ODEs

Prakash Kumar Das and M.M. Panja

Abstract This work deals with getting approximate solution of boundary value
problem consists of nonlinear ordinary differential equations in a series of exponen-
tial instead of power of independent variable in traditional Adomian decomposition
method (TADM). As a consequence: (i) in contrast to TADM the vanishing bound-
ary condition for localized solution can be implemented in a straightforward way,
(ii) the convergence of the series obtained through the modification proposed here
found to be faster than the same obtained by employing TADM, and (iii) for most
of the problems, the sum of the series converges to the exact analytic solution to the
equation involved. The efficiency of the modification of TADM has been illustrated
for physical problems with varied nonlinearities.

Keywords Nonlinear ordinary differential equation · Boundary value problem ·
Improved Adomian decomposition method

18.1 Introduction

In many branches of applied mathematics, physical, biological, and engineering sci-
ences, evolution of physical processes are found to be described by nonlinear ordinary
or partial differential equations (ODEs/PDEs). The solution of such equations helps
one to understand the nature of evolution of the process. But in most of the cases,
it is not possible to find the exact solution to the equation used as the mathemati-
cal model for the description of the physical process of interest. A few analytical
methods such as symmetry method based on Lie theory [1, 2], Prelle-Singer method
[3], method based on Jacobi last multiplier [4], etc., analytical methods for approxi-
mate solution such as tanh method [5, 6], homotopy analysis method (HAM) [7, 8],
Adomian decomposition method (ADM) [9–21], etc., numerical methods, viz., finite

P.K. Das (B) · M.M. Panja
Department of Mathematics, Visva-Bharati, Santiniketan 731235, West Bengal, India
e-mail: prakashdas.das1@gmail.com

M.M. Panja
e-mail: madanpanja2005@yahoo.co.in

© Springer India 2015
S. Sarkar et al. (eds.), Applied Mathematics, Springer Proceedings
in Mathematics & Statistics 146, DOI 10.1007/978-81-322-2547-8_18

193



194 P.K. Das and M.M. Panja

difference/element methods are used to find the solution of this problems. Among
the approximation methods mentioned above, ADM is found to be the simplest one.
Using ADM, Adomian and his collaborators [9–14], Wazwaz [15–21] as well as
other researchers obtained the approximate solutions as the sum of finite number of
terms with the leading term as the polynomial in independent variable involved in
the problem. But in their approach, the boundary condition in case of infinite domain
cannot be implemented in a straight forward way. Instead, it is desirable to express
the successive terms in their approximate solution as a rational function with the
help of Padé approximant to accommodate boundary conditions. Naturally, question
arises whether straightforward method can be developed which is able to provide a
rapidly convergent series approximation of the solution to the differential equation
involving the physical processes that incorporate boundary conditions at ±∞ in a
straightforward way in both cases of finite as well as infinite domain.

In this paper, we have addressed this problem and developed an recursive scheme
for solving two-point nonlinear boundary value problems through a modification
of the conventional ADM. Here we have introduced an operator associated with the
linear part of the differential equation andderived a straightforward formula involving
such operator for correction terms associated to the nonlinear part of the equation.
We designate thismethod as the improvedAdomian decompositionmethod (IADM),
provides the solution in a series of exponentials instead of power of independent
variable, appears in case of conventional ADM. Expansion in series of exponential
perhaps is the source of accelerated convergence of the method proposed here.

The organization of this paper is as follows. The improved Adomian decompo-
sition method (IADM) within finite domain has been discussed in Sect. 18.2. Its
extension to infinite domain has been presented in Sect. 18.3. Our findings on utility
of the proposed IADM developed in previous two sections have been illustrated in
Sect. 18.4.

18.2 IADM in Finite Domain [a, b]

We consider here a two-point boundary value problem of the form

y′′(x) − λ2y(x) = N [y](x) + g(x), a ≤ x ≤ b (18.1)

within finite domain [a, b] subject to the Dirichlet boundary condition

y(a) = α, y(b) = β (18.2)

where N [y] is an nonlinear term in y, and g(x) is the inhomogeneous or source
term, continuous over [a, b]. Instead of shifting the linear term λ2y(x) of (18.1) into
R.H.S in conventional ADM, we incorporate it into the operator Ô[·] ≡ d2

dx2
− λ2,

so that (18.1) can now be recast into the form
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Ô[y](x) = N [y](x) + g(x), a ≤ x ≤ b. (18.3)

It is important to mention here that the linear operator Ô[·] can be written in the form

Ô[·](x) = eλx d

dx

(
e−2λx

) d

dx

(
eλx [·]) (18.4)

which plays the fundamental role in expressing the solution in terms of rapidly
convergent series of exponentials. One may reinterpret the inverse operator Ô−1 as
a twofold integral operator given by

Ô−1[·](x) = e−λx
∫ x

a
e2λx ′

∫ x ′

a
e−λx ′′ [·](x ′′)dx ′′dx ′. (18.5)

Note that representing inverse operator by integrals for a linear operator with
variable coefficient is also possible whenever it is factorizable. Application of Ô−1

given in (18.5) to y′′(x) − λ2y(x), one gets

Ô−1
[

y′′(x) − λ2y(x)
]

= e−λx
∫ x

a
e2λx ′

∫ x ′

a
e−λx ′′ (

y′′(x ′′) − λ2y(x ′′)
)
dx ′′dx ′

= e−λx
∫ x

a
e2λx ′

(
eλx ′

y′(x ′) − e−λa y′(a) + λe−λx ′
y(x ′) − λeλa y(a)

)
dx ′

= y(x) − y(a)e−λ(a−x) − e−λa (
y′(a) + λy(a)

)
(
eλx − e−λx

2λ

)

.

(18.6)

Operating Ô−1 on both sides of (18.3) followed by using (18.6) one gets

y(x) = y(a)e−λ(a−x) + e−λa (
y′(a) + λy(a)

) (
eλx − e−λx

2λ

)

+ Ô−1[N [y]](x) + Ô−1[g](x), (18.7)

which involve an unknown term y′(a). To eliminate y′(a), we substitute x = b in
Eq. (18.7) and solve for e−λa

(
y′(a) + λy(a)

)
to get

eλa (
y′(a) + λy(a)

) =
2λ

(
y(b) − y(a)e−λ(a−b) − Ô−1[N [y]](b) − Ô−1[g](b)

)

eλb − e−λb
.

(18.8)

Eliminating e−λa
(
y′(a) + λy(a)

)
from (18.7) with the help of (18.8) gives the

expression for y(x) involving inverse operator
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y(x) = y0(x) − Ô−1[N [y]](b)
eλx − e−λx

eλb − e−λb
+ Ô−1[N [y]](x). (18.9)

One can now apply the relevant steps of ADM for evaluating terms involving
nonlinear operator N [y](x) where leading term y0(x) is given by

y0(x) = y(a)e−λ(a−x) + y(b) − y(a)e−λ(a−b) − Ô−1[g](b)

eλb − e−λb

{
eλx − e−λx

}
+ Ô−1[g](x).

(18.10)

The successive corrections can be obtained recursively using the formula

yn+1(x) = Ô−1 [An] (x) − Ô−1 [An] (b)
(
eλb − e−λb

)
(
eλx − e−λx) , n ≤ 0, (18.11)

where An(x), n ≥ 0 are Adomain polynomial for nonlinear term given by the
formula

Am(x) = 1

m!

[
dm

dεm
N

( ∞∑

k=0

ykε
k

)]

ε=0

, m ≥ 0. (18.12)

18.3 IADM in Infinite Domain

Whenever the domain of independent variable become infinite, we write the inverse
operator Ô−1 as a twofold integral operator without limit given by

Ô−1[·](x) = e−λx
∫

e2λx
∫

e−λx [·](x) dx dx . (18.13)

In this case, operation of Ô−1 on y′′(x) − λ2y(x) gives

Ô−1
(

y′′(x) − λ2(x)
)

= e−λx
∫

e2λx
∫

e−λx
(

y′′(x) − λ2y(x)
)
dx dx

= e−λx
∫

e2λx (
e−λx y′(x) + λe−λx y(x) + c

)
dx

= y(x) + c

2λ
eλx − de−λx . (18.14)

involving two arbitrary constants c and d. Operating Ô−1 on both sides of Ô−1[y]
(x) = N [y](x) + g(x) and use of (18.14), leads to

y(x) = − c

2λ
eλx + de−λx + Ô−1[N [y]](x) + Ô−1[g](x). (18.15)
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Assuming λ > 0 and using the vanishing boundary condition y(∞) = 0 for
localized solution of (18.1) within [0,∞), we can obtain c = 0. Thus

y(x) = de−λx + Ô−1[N [y]](x) + Ô−1[g](x), x ∈ [0,∞). (18.16)

The correction to the leading order due to presence of nonlinearities are obtained
by executing steps followed in conventional ADM with

yn+1(x) = Ô−1 [An] (x), n ≥ 0 (18.17)

with
y0(x) = de−λx + Ô−1[g](x), (18.18)

where An(x), n ≥ 0 are Adomain polynomial for nonlinear term can be obtained
using the formula (18.12). It is important to note that whenever the domain becomes
(−∞, 0], instead of using vanishing boundary condition y(∞) = 0, for localized
solution (18.15) we use y(−∞) = 0 and get

y(x) = − c

2λ
eλx + Ô−1[N [y]](x) + Ô−1[g](x), x ∈ (−∞, 0] (18.19)

so that higher order corrections over leading order approximation

y0(x) = − c

2λ
eλx + Ô−1[g](x) (18.20)

can obtained recursively form

yn+1(x) = Ô−1[A ]n(x), n ≥ 0. (18.21)

In case of λ < 0, one has to proceed in the same way by retaining the term
involving eλx .

18.4 Illustrative Example

Our findings on getting approximate solution for nonlinear ODEs within finite and
infinite domain by using IADM proposed here have been summarized in Tables18.1
and 18.2, respectively.
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18.5 Conclusions

In this work, an improvement over conventional ADM has been proposed. The con-
sequence is to get an approximate solution of nonlinear ODE in the series of expo-
nential. As a result, the approximate solution become rapidly convergent and found
to converges to the exact analytic solution for both kind of problems defined over
bounded and unbounded domains. From this study, it also appears that conventional
ADM can further be improved for problem consists of variable coefficient in their
linear part in order to get rapidly convergent approximate solution of nonlinear ODEs
used as mathematical models for physical processes.
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Chapter 19
Numerical Algorithm for Computation
of Complete Theoretical Seismogram
in Layered Half-Space Media

Ajit De

Abstract A numerically stable computational scheme, using method of quadra-
ture, has been presented in this study to compute surface response or theoretical
seismogram in an n-layered vertically stratified media overlying a half-space with
constant layer parameters. The spherical shape has been ignored in the present earth
model. Simple buried source model has been considered. The present result has been
compared with the observed or previously computed seismograms. The overflow
error appearing in the numerical computation has been prevented by approximat-
ing layer matrices suitably or using generalized R/T (Reflection and Transmission)
coefficients. The numerical result has been represented here graphically. The present
study can be considered as first step toward computation of hazard map of a seismic
region.

Keywords Theoretical seismogram · Runge-Kutta method · Generalized
reflection · Transmission coefficients

19.1 Introduction

Anelastic half-space is a simplemodel of earth. But earth’s interior is inhomogeneous
and divided into various inhomogeneous layers, including the crust with nonuniform
P- and S-wave velocities. So it is the target of the researchers to construct efficient
models which include earth’s inhomogeneity, source geometry, and travel time of
seismic waves. Hisada [6] proposed an analytical method for effective computation
of displacement and stress of static (i.e., circular frequencyω = 0) and dynamic (i.e.,
ω �= 0) Green’s functions in a viscoelastic layered half-spacemodel. The generalized
R/T (Reflection and Transmission) coefficients, as proposed by Apsel and Luco [1],
have been modified in the model to overcome the problems of receiver-source close
depths and overflow. Desceliers et al. [2] presented a fast-hybrid numerical method
to simulate transient wave propagation due to given transient loads in a multilayered
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semi-infinitemedia. Themethod is based on timedomain formulation associatedwith
a 2D-space Fourier transform for two infinite layer dimensions and uses finite element
approximations. Watson [7] suggested a faster machine computation by introducing
modified matrix formulas for modal solution in a layered elastic half-space.

In the present study, the spherical shape of the earth has been ignored and it has
been considered as a system of n-parallel vertically stratified multilayered model
overlying a half-space where each layer parameter is constant. The Laplace trans-
formed surface displacement field, as proposed by Harkrider [5], has been evaluated
here by considering amethod of quadrature based on local sampling of the kernelwith
a quartic polynomial [1]. The result in the time domain has been obtained through
Fourier synthesis. The overflow error in numerical computation has been avoided
here using modified R/T coefficients [1] and approximating hyperbolic functions
suitably [3]. The numerical computation has been represented here graphically.

19.2 Formulation of the Problem and Basic Equations

A vertically stratified n-layered media overlying a half-space has been considered.
The origin of the reference system has been considered on the surface of the media
with xy-plane horizontal and z-axis directed inside it. The layer parameters λ, μ
(Lame’s constants) and densityρ of each layer are constant. The displacement vectors
→
u = →

u (r, θ; t) in each layer satisfy the differential equation

→∇
[
(λ + 2μ)

→∇ • →
u

]
− →∇ ×

[
μ

→∇ × →
u

]
+ 2

[(→∇ μ
→∇

) →
u + →∇ μ ×

(→∇ × →
u

)]
= ρ

∂2
→
u

∂t2

(19.1)

A source has been considered at a depth “h” below the surface as a time-dependent
stress discontinuity Δ(t)at the source layer S as

(
U S+

p (h)

DS+
p (h)

)
=

(
U S−

p (h)

DS−
p (h)

)
+

(
0

Δ(t)

)
, (p = PSV or SH) (19.2)

where S+ and S- are, respectively, the sublayers below and above the source.
The dynamic displacement-stress vectors

(
U j

p(z, h, k) and D j
p(z, h, k), p = PSV

or SH
)
in the j th layer of a layered half-space media can be expressed in terms of

down and up going P and S waves using modified R/T coefficients [1] as

(
U j

p(z, h, k)

D j
p(z, h, k)

)

=
(

E j
11

E j
21

E j
12

E j
22

)(
Λ

j
d(z)
0

0
Λ

j
u(z)

)(
C j

d (h)

C j
u (h)

)

(19.3)
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where C j
d (h) and C j

u (h) are, respectively, the down and up going coefficients and
E jas layer matrix in the j th layer. Now using Eqs. (19.1) and (19.2) and considering
the displacement-stress continuity at the layer boundaries other than the source,
the Laplace transformed radial and tangential components of surface displacement
(Harkrider [5], Hisada [6]) on the surface (z = 0) of the media can be expressed as

ur (r, θ) =
∫ ∞

0

[
U 1

P SV (0, h, k)
d J1(kr)

dkr
+ U 1

SH (0, h, k)
J1(kr)

kr

]
dk cos θ (19.4)

uθ (r, θ) = −
∫ ∞

0

[
U 1

P SV (0, h, k)
J1(kr)

kr
+ U 1

SH (0, h, k)
d J1(kr)

d(kr)

]
dk sin θ

(19.5)
where U j

P SV (z, h, k) and U j
SH (z, h, k) are, respectively, the components of dis-

placement in the j th layer due to PSV and SH waves, obtained form the layer matrix
product using modified R/T coefficients and (r,θ ) is the polar coordinate of the
receiver on the free surface.

19.3 Discussions

A numerically stable scheme which is free from overflow error has been presented
here. It has been observed that the integrands U 1

P SV (0, h, k) and U 1
SH (0, h, k) are

well behaved at large wave numbers and the tail ends of the wave number integrals
can be evaluated without complexity. Now to evaluate the integrations in (19.4) and
(19.5) numerically, the upper limit of the integrations must be truncated to a finite
value Km . As the source and the receiver are at different depths, the exponential
decay of the kernels U 1

PSV(0, h, k) and U 1
SH (0, h, k) are sufficient to guarantee that

the truncated integral gives an accurate estimate to the total integral if Km is selected
in such a way that Kmh � 1 or giving Km a finitely large value so that integrals
differ negligibly for neighboring values of Km .

The method of quadrature is based on sampling the kernel U 1
P SV (0, h, k) or U 1

SH
(0, h, k) in such a way that it can be represented locally by a quartic polynomial of
the form

U 1(0, h, k) =
5∑

q=1

5∑

l=1

Cql U 1
l

(
k − k2
Δk

)q−1

, k1 ≤ k ≤ k5 (19.6)

[U 1 represents U 1
P SV (0, h, k) or U 1

SH (0, h, k)] where the normalization constant
Δk = k4 − k2, U 1

l represents U 1(0, h, k) and Cql are functions of the sampling
points kl(l = 1, 5) [1].
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The contribution of the interval (k2, k4) to the total integral in (19.4) or (19.5) can
be approximated by

Δu f = Δu f P SV + Δu f SH , ( f = r or θ), (19.7)

where

Δur P SV =
5∑

l=1

U 1
l

(
d J1(kr)

d(kr)

)

l
cos θ

5∑

q=1

Cql Δk

q

and Δur SH =
5∑

l=1

U 1
l

J1 (klr)

klr
cos θ

5∑

q=1

Cql Δk

q
.

Now to get the result in the time domain, the integrations described above in (19.4)
and (19.5) for each frequency are followed by a Fourier synthesis or FFT

u∗
f (t) = 1

2π

∫ ∞

−∞
u f exp(iωt)dω, (where f = r, θ) (19.8)

The theoretical SH-seismogram due to a triangular source model (Fig. 19.1) in a lay-
ered half-space medium has been found to represent the time-dependent response of
Borregomountain earthquake event and our result agrees with the result of Franssens
[4] at a point (60, 0) on the surface in xz-plane (Fig. 19.2). The model (i.e., Fig. 19.1)
consists of a sediment layer of thickness 2.9km and a time-dependent triangular
source is located at a depth 9km below the earth’s surface. Figure19.3 represents a
theoretical SH-seismogram due to the same triangular source model but in an inho-
mogeneous medium with depth dependent linear variation of layer parameters. The
inhomogeneity in the above model has been modeled by subdividing the medium
into a finite number of isotropic sublayers with small values of layer thickness and
decreasing values of layer parameters up to the free surface, so that the result con-
verges. But one disadvantage in further sublayering is that it increases the possibility
of overflow error in numerical computation. Another alternative technique to model
vertical inhomogeneity is to solve the following ordinary differential equation of first
order by Runge–Kutta method of order 4 in the j th layer.

d

dz

(
U j

p(z, h, k)

D j
p(z, h, k)

)

= A

(
U j

p(z, h, k)

D j
p(z, h, k)

)

, (p = PSV or SH) (19.9)

where A is either a 4×4 or 2×2matrix, respectively, representing PSV and SH-wave
in the j th layer [8].

A complete theoretical or synthetic seismogram at the same point (60, 0) on the
surface has been presented in Fig. 19.4 for the one layer half-space earth model
as described in Fig. 19.1. The numerical algorithm has been presented in the study
through simple computer programming.
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Fig. 19.1 One-layer Half-space model of Borrego mountain earthquake [4]

Fig. 19.2 Theoretical
SH-seismogram due to a
buried triangular source
model (Fig. 19.1) at the
receiver (60, 0), on the
surface

Fig. 19.3 Theoretical
SH-seismogram due to the
buried triangular source
model at the same receiver
(60, 0) on the surface of an
inhomogeneous medium
with linear variation of
parameters

Fig. 19.4 Complete
theoretical seismogram due
to a buried triangular source
model (Fig. 19.1) at the
receiver (60, 0), on the
surface
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Chapter 20
Aleatory and Epistemic Uncertainty
Quantification

Palash Dutta and Tazid Ali

Abstract In this paper, an effort has been made to combine aleatory and epistemic
uncertainties in risk models. We have combined probabilistic distributions, general-
ized fuzzy numbers, and completely generalized interval valued fuzzy numbers.

Keywords Aleatory and epistemic uncertainty · Generalized fuzzy numbers ·
Interval valued fuzzy numbers · Risk assessment

20.1 Introduction

In some situations both aleatory and epistemic uncertainties co-exist in risk
assessment. Then, it is important to develop special techniques, which can handle
propagation of uncertainties (i.e., fuzzy and random), for carrying out risk assess-
ment. Different attempts have been made by different researchers for joint propa-
gation of aleatory and epistemic uncertainty in the same computation of risk viz.,
Guyonnet et al. [18, 19], Baudrit et al. [3–6], Kentel and Aral [24], Anoop et al.
[1], Li et al. [25], Rao et al. [30], Baraldi and Zio [2], Helton and Oberkampf [23],
Limbourg and de Rocquigny [26], Flage et al. [15, 16], Dutta and Ali [11], Haldar
and Reddy [20], Pedroni et al. [28, 29]. Here, it is seen that more often representation
of epistemic uncertainty is considered as Type-I fuzzy set. However, it is not always
possible for a membership function of the type to precisely assign one point from [0,
1] so it is more realistic to assign interval value. According to Gehrke et al. [17] many
people believe that assigning an exact number to experts opinion is too restrictive
and the assignment of an interval valued is more realistic. Hence, it is necessary
to go through interval valued fuzzy set (IVFS) to handle such situations. In May,
1975 Sambuc [31] presented in his doctoral research (thesis) the concept of IVFS
named as fuzzy set. After development of IVFVs, different researchers have studied
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this issue and applied in different areas. An IVFS is a set in which every element
has degree of membership in the form of an interval. One can say, IVFS consist of
two membership function, one is upper membership function (UMF) and other is
lower membership function (LMF). Dutta [12] presented an approach to combined
probability distributions, type-I fuzzy set (normal fuzzy numbers) and generalized
fuzzy numbers, Chutia [7] made an effort for combining probability distribution and
interval valued fuzzy number and applied to environmental risk modeling with a case
study, Dutta [13] also presented an approach to combine probability distributions,
normal fuzzy numbers and generalized interval valued fuzzy numbers. In this paper,
an approach has been proposed to combine probabilistic distributions, generalized
fuzzy numbers, and completely generalized interval valued fuzzy numbers. A case
study in risk assessment has been carried out in this setting.

20.2 Basic Concept of Fuzzy Set Theory

In this section, some necessary backgrounds and notions [10, 21, 22] of fuzzy set
theory that will be required in the sequel are reviewed.

20.2.1 Let X be a universal set. Then, the fuzzy subset A of X is defined by its
membership function

μA : X → [0, 1]

which assign a real number μA(x) in the interval [0, 1], to each element x ∈ A,
where the value of μA(x) at x shows the grade of membership of x in A.

20.2.2 Given, a fuzzy set A in X and any real number α ∈ [0, 1]. Then the α-cut of
A, denoted by

αA = {x ∈ X : μA(x) ≥ α}

20.2.3 The support of a fuzzy set A defined on X is a crisp set defined as

Supp(A) = {x ∈ X : μA(x) > 0}

20.2.4 The height of a fuzzy set A, denoted by h(A) is the largest membership grade
obtain by any element in the set and it is denoted as

h(A) = Supx∈X [μA(x)]

20.2.5 Generalized fuzzy numbers (GFN): The membership function of GFN A =
[a, b, c, d; w] where a ≤ b ≤ c ≤ d, 0 < w < 1 is defined as [8, 9]

μA(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x < a
w x−a

b−a x ∈ [a, b]
w x ∈ [b, c]
w d−x

d−c x ∈ [c, d]
0 x > d

(20.1)
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If w = 1, then GFN A is a normal trapezoidal fuzzy number A = [a, b, c, d].
If a = b and c = d, then A is a crisp interval. If b = c then A is a generalized
triangular fuzzy number. If a = b = c = d and w = 1 then A is a real number.
Compared to normal fuzzy number the GFN can deal with uncertain information
in a more flexible manner because of the parameter w that represent the degree of
confidence of opinions of decision makers.

20.2.6 An IVFS A defined in the universe of discourse X is represented by

A = {(x, [μL
A(x), μL

A(x)]) : x ∈ X}

where 0 ≤ μL
A(x) ≤ μU

A (x) ≤ 1 and the membership grade μ̄A(x) of elements
of x to the IVFS A is represented by an interval [μL

A(x), μL
A(x)], i.e., (μ̄A(x) =

[μL
A(x), μU

A (x)]).
20.2.7 If an IVFS A satisfies the following properties

� A is normal
� A is defined in a closed bounded interval
� A is convex set

Then, A is called an interval valued fuzzy number.
20.2.8 α-cut of IVFN: A generalization of α-cut of IVFS is

αA =
{

x : μL
A(x) ≥ α,μU

A (x) ≥ α
}

20.3 Approach to Quantify Aleatory and Epistemic
Uncertainty

In uncertainty modeling in terms of fuzzy set theory it is observed that representation
of uncertain parameters is Type-I fuzzy set where it is considered that membership
function precisely assign a point from [0,1]. However, in certain situation it is not
possible [17] so it is important to adopt IVFS to represent such uncertain situation. In
this approach, probability distribution, generalized fuzzy numbers, and completely
generalized IVFNs have been combined.

To depict the proposed approach, consider any arbitrary mathematical model

M = f (Pi , Gk, Fl) (20.2)

where i = 1, 2, . . . , m; k = 1, 2, . . . , s; and l = 1, 2, . . . , n which is a function of
parameters. Suppose Pi s are m parameters presented by probabilistic distributions;
Gks as are s parameters presented by generalized fuzzy numbers with heights wk

and Fl are n parameters presented by completely generalized interval valued fuzzy
numbers (IVFNs) with height of UMFs and LMFs are wU

l and wL
l , respectively.
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The approach is explained below:

Step 1: Consider, all generalized fuzzy numbers Gk with heightswk as well as UMF
(upper fuzzy numbers) Fu

1 , Fu
2 , . . . , Fu

n of completely generalized interval
valued fuzzy numbers (IVFNs) with height wU

l of UMFs. As both types of
fuzzy numbers have different heights, so to deal with themodel, we consider
α = [0, w] where w = min(wk, wU

l ).
Step 2: Calculate α-cut for each fuzzy number (α can be taken stepwise from 0 to

w). Then s + n numbers of closed intervals (as α-cut gives closed intervals)
will be obtained.

Step 3: Generate m number of uniformly distributed random numbers from [0, 1]
and perform Monte Carlo simulation to obtain m numbers of random num-
bers by sampling probability distribution.

Step 4: Assign all m random numbers and all combination of initial and end points
of the n + s intervals in the model M and calculate

M inf
1 = Inf(M) and Msup

1 = Sup(M).

Step 5: Repeat Steps 1–4 for 5000 times. Then 5000 minimum values (M inf
1 , M inf

2 ,

. . . , M inf
5000) and maximum values (Msup

1 , Msup
2 , . . . , Msup

5000) will be
obtained.

Step 6: Plot cumulative distribution function (cdf) of (M inf
1 , M inf

2 , . . . , M inf
5000) and

(Msup
1 , Msup

2 , . . . , Msup
5000), which will produce a pair of cdfs, i.e., lower

probability and upper probability.
Step 7: Consider, other α levels to calculate α-cut of each fuzzy number.
Step 8: Repeat Steps 1–6.

If proceeded in this way a family of cdfs will be obtained.

Step 9: Consider, all generalized fuzzy numbers Gk as well as LMF Fl
1, Fl

2, . . . , Fl
n

of completely generalized interval valued fuzzy numbers Fl with heights
wL

l , respectively. Here also heights of both types of fuzzy numbers are
different, so, we consider that α = [0, h] where h = min(Gk, wL

l ).

Step 10: Repeat Steps 2–8. In step 7 it should be noted that α = [0, h]. Then we
shall have another family of cdfs.

From these families of cdfs, membership functions at different fractiles can be gener-
ated. It will be completely generalized trapezoidal type interval valued fuzzy number.
First, family of cdfs will produce UMF and later family of cdfs will give LMF with
height w and h, respectively, of the resulting completely generalized interval valued
fuzzy number generated at different fractiles.
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20.4 Hypothetical Case Study

The general form of a comprehensive food chain risk assessment model as provided
by EPA [14], 2001 is follows

C DI = C f × FIR × FR × EF × ED × CF

BW × AT
(20.3)

where CID = Chronic daily intake (mg/kg-day), FIR = fish ingestion rate (g/day), FR
= fraction of fish from contaminated source, EF = exposure frequency (day/year), ED
= exposure duration (years), CF = conversion factor (=10−9), BW = body weight
(kg), AT = averaging time (days), and C f = chemical concentration of fish tissue
(mg/kg). The chemical concentration in fish tissue (C f ) can be computed as

C f = P EC × BC F (20.4)

where PEC = predicted environmental concentration (mg/l) and BCF is the chemical
bioaccumulation factor in fish (l/kg).

The noncancer risk model for fish ingestion is expressed as:

RiskNon-Cancer = C DI

R f d
(20.5)

where Rfd is the reference dose.
In this study, representation of the parameters predicted environmental concen-

tration (PEC), chemical bioaccumulation factors (BCF) are considered to be fuzzy
number while fish ingestion rate (FIR) is taken as normal probability distribution and
other parameters are taken to be constant. Values of the parameters for the calculation
of noncancer risk are given in the Table20.1.

The result of the noncancer human health risk assessment is performed using our
proposed approach and which is depicted in Fig. 20.1.

The result of the risk assessment is obtained in the formof family ofCdfs (basically
two families of cdfs, one in red colored and another in blue colored) at different α-
values. Red colored Cdfs are obtained for UMF and blue colored Cdfs are obtained
for LMF of the uncertain input parameter BCF. From these cdfs, risk at different
fractiles [10, 24, 27] can be calculated and which are obtained in the form of com-
pletely generalized interval valued fuzzy number with height of UMF and LMF are
0.8 and 0.7, respectively. It is because any arithmetic operations between general-
ized fuzzy numbers and normal fuzzy numbers produces generalized fuzzy number.
For instance, at 95th fractile, noncancer risk value lies in the completely general-
ized interval valued fuzzy number whose UMF is [2.639e-07, 4.136e-07, 4.346e-07,
6.22e-07; 0.8] and LMF is [3.016e-07, 4.135e-07, 4.347e-07, 5.655e-07; 0.8] and
which is depicted in Fig. 20.2.
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Table 20.1 Parameter values used in the risk assessment

Parameter Units Type of variable Value/distribution

Average time (AT) Days Constant 25550

Body weight (BW) Kg Probabilistic Normal(70,5)

Exposure duration
(ED)

Years Constant 30

Exposure frequency
(EF)

Days/year Constant 350

Fraction of
contaminated

− Constant

Fish (FR) 0.5

Fish ingestion rate
(FIR)

g/day Constant 170

Conversion factor (CF) − Constant 1E-09

PEC for As ug/l Fuzzy [4, 5, 6; 0.8]

BCF for As l/kg Fuzzy [35, 45, 55; 0.9] UMF

[40, 45, 50; 0.7] LMF

Oral Rfd for As mg/(kg.day) Constant 3.0E-04

Fig. 20.1 Cumulative
distribution functions of
noncancer risk for different
α values
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Fig. 20.2 Membership function of noncancer risk at 95th fractile

Fig. 20.3 Membership function of non cancer risk at 85th fractile

Similarly, at 85th fractile, risk values lie in the generalized fuzzy number [2.515e-07,
3.942e-07, 4.142e-07, 5.928e-07; 0.8] (UMF); [2.874e-07, 3.941e-07, 4.1432e-07,
5.389e-07; 0.7] (LMF). The graphical representation of the resulting noncancer risk
value at 85th fractiles is depicted in Fig. 20.3.

20.5 Conclusion

In this paper, we have proposed a method to deal with situations where some possi-
bilistic distributions are considered as normal interval valued fuzzy numbers together
with generalized fuzzy numbers. We have discussed a hypothetical case study using
the proposed approach. Risk is obtained in the form of Cdfs and from which, mem-
bership functions of the risk are generated at different fractiles. The membership
functions of risk at different fractiles are completely generalized interval valued
fuzzy numbers, since representation of at least one parameter is taken as generalized
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fuzzy number (IVFN). The upper and lower membership functions of the completely
generalized interval valued fuzzy number is trapezoidal type generalized fuzzy num-
ber, because any arithmetic operation of generalized fuzzy numbers (also generalized
fuzzy number and normal fuzzy number) produces trapezoidal type generalized fuzzy
number.
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Chapter 21
Bifurcation Analysis of SIR Model
with Logistically Grown Susceptibles
and Effect of Loss of Immunity
of the Recovered Class

Rita Ghosh and Uttam Ghosh

Abstract In this paper, we have investigated an SIR model with logistic growth rate
of susceptibles where rate of incidence is directly affected by the inhibitory factors or
social or psychological factors. In our model three equilibrium points are obtained,
one of them is endemic equilibrium point. One disease free equilibrium points is
unstable in nature in all circumstance and the trajectories in the neighborhood of
the endemic equilibrium point of our model undergoes a Hopf bifurcation subject to
some critical value of the carrying capacity. Finally, numerical solution is done.

Keywords Inhibition effect · Hopf bifurcation · Logistic growth rate · Lose
immunity

21.1 Introduction

The classical SIR model of Kermack and McKendrick [1] was a fundamental model
in the study of epidemiological modeling of infectious diseases. The several models
was analyzed considering different growth rate of susceptible and different incidence
rate [2–7]. Wang and Ruan [8] studied epidemic model with constant birth rate
of the susceptibles and constant removal rate of the infected class with standard
incidence rate and they discuss existence of Hopf bifurcation. Kaddar [2] studied the
dynamics of a delayed SIR epidemic model with a modified saturated incidence rate
and established the existence of delay dependent Hopf bifurcation. Hopf bifurcation
in an eco-epidemicmodelwas studied considering that the prey population is infected
with amicroparasite and predator functional response is Holling type-I. The criterion
for existence ofHopf type small periodic oscillationwas reported [4].Kar andMondal
[9] studied SIR epidemic model with logistic growth rate with saturated incidence
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rate and they showed that two type of bifurcation occurs depending on value of
delay. Stability and Hopf bifurcation for a delayed SIR epidemicmodel with Logistic
Growth rate of susceptibles was investigated by Xue and Li [10]. In their model they
assumed members of the recovered class will never be susceptible and consider the
rate of infection of the form βSI

1+α I where α is the inhibitory factor. In this paper, we
have proposed an SIR epidemic model with logistic growth rate where a percentage
of recovered class will lose immunity and return back into the susceptible class.
The rate of incidence is considered in the form βSI

1+α I , which is directly affected by
the inhibitory factors such as social awareness (α). Since the social awareness of the
susceptibleswill increase the factor 1+ αS will consequently decrease the term βSI

1+α I .

This implies due to social awareness of the susceptibles will decrease the transfer
of individuals from susceptibles class to infected class. The paper is organized as
follows, in first part of the paper we have formulate themodel, in second part stability
analysis of the equilibrium points and Hopf bifurcation criterion is analyzed. Finally,
numerical simulation is

21.2 Mathematical Formulation

Here, we consider the model in which the newly appointed S—class has logistic
growth rate and the rate of infection is directly affected by the inhibitory factors.
Logistic growth of the susceptible in the SIR model is more realistic as the number
of susceptible cannot grow exponentially. If S(t) be the number of susceptible, I (t)
be the number of infected and R(t) be the number of recovered individuals at time
t. Then, the governing differential equation of the proposed model is done.

d S

dt
= r S

(
1 − S

k

)
− βSI

1 + αS
− d S + μR (21.1)

d I

dt
= βSI

1 + αS
− (d + γ )I (21.2)

d R

dt
= γ I − (d + μ)R (21.3)

where, r = birth rate (intrinsic growth rate) of the susceptible class
k = carrying capacity
β = the transmission rate of infection
α = the parameter that measure the inhibitory factors
d = the natural death of the population
μ = rate at which the recovered class losses immunity and becomes susceptible
γ = rate at which the infected individuals recovered.

The model (21.2) shows that recovered class losses immunity at the rate of μ

become susceptibles. So the term +μR enters in the first equation of model.
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21.3 Stability Analysis of the Model

The system admits three equilibrium points, one of them is endemic and the
other two of them are disease free equilibrium points. The equilibrium points
are A0 = (S0, I0, R0) = (0, 0, 0), A1 = (S1, I1, R1) = (

k
(
1 − d

r

)
, 0, 0

)
and

A2 = (S2, I2, R2) where

S2 = 1

α (R01 − 1)
, I2 =

(d + μ)
(

d + S2r
k

)
S2 (R02 − 1)

d(d + μ + γ )

R2 = γ I

d + γ
, R01 = β

α(d + γ )
, R02 = αr (R01 − 1) k

αd (R01 − 1) k + r
.

The disease free equilibrium point A1 (S1, I1, R1) will exists only when r > d so
we are interested only when r > d. The endemic equilibrium point A2 (S2, I2, R2)

will exist if R01 > 1 and R02 > 1. Since the endemic equilibriumpoint A2 (S2, I2, R2)

and the disease free equilibrium point A1 (S1, I1, R1) are directly affected by the
carrying capacity k. As k increases then decreases and consequently number of
susceptibles will increase.

Since physically A0(0, 0, 0) is not important because in this case all the individual
population goes to extinction and so stability analysis about this point is not taken
into consideration. It can be shown that this point is an unstable equilibrium point.

Theorem 21.1 If r > d and βS1
1+αS1

− (d + γ ) < 0, then the second disease free
equilibrium point A1 (S1, I1, R1) is stable in nature otherwise unstable.

Proof The characteristic equation of the system (21.2) for this equilibrium point is

∣∣
∣∣∣∣∣
∣∣∣∣

r − d − λ − βS1
1 + αS1

μ

0
βS1

1 + αS1
− (d + γ + λ) 0

0 γ −(d + γ + μ)

∣∣
∣∣∣∣∣
∣∣∣∣

= 0. (21.4)

Solving Eq. (21.4) we get λ = −(r − d),
βS1

1+αS1
− (d + γ ), −(d + μ). Since

all the roots will be negative when r > d and βS1
1+αS1

− (d + γ ) < 0. Hence,
the solution in the neighbourhood of this disease free equilibrium point is stable in
nature. Otherwise one root is always positive and other two roots will be negative
and consequently, the solution in the neighborhood of this point will be unstable in
nature. Hence, the theorem is proved.

Again if r < d then A1 does not exist.

Theorem 21.2 If 1 < R01 < 1 + 2
kα

, R02 > 1 and r > d. Then the endemic
equilibrium point A2 (S2, I2, R2) will be asymptotically stable.
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The characteristic equation about the point A2 (S2, I2, R2) is

∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣

r(1 − 2S2
k

) − d − β I2
(1 + αS1)2

− λ − βS2
1 + αS2

μ

β I2
(1 + αS1)2

−λ 0

0 γ −(d + λ + μ)

∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣

= 0. (21.5)

Solving the above, we get

λ3 + C1λ
2 + C2λ + C3 = 0, (21.6)

where

C1 = 2d + μ − r + 2r S2
k

+ β I2
(1 + αS1)2

C2 = β I2(2d + γ + μ)

(1 + αS1)2
+ (d + μ)

(
d + μ − r + 2r S2

k

)

C3 = dβ I2
(1 + αS1)2

(d + μ + γ )

and

C1C2 − C3 = β2 I 22 (γ + 2d + μ)

(1 + αS1)4
+ β I2

(1 + αS1)2{(
−r + 2r S2

k

)
(3d + 2μ + γ ) + (2d + μ)2 + μ(d + γ )

}

+ (d + μ)

{(
−r + 2r S2

k

)2

+
(

−r + 2r S2
k

)
(3d + μ) + d(2d + μ)

}

C1 and C2 are positive under the conditions stated in the theorem, C3 is always
positive and C1C2 − C3 > 0.

Therefore, Routh Hurwitz criterion is satisfied and the eigenvalues values must
have negative real part. Hence, the solutions in the neighborhood of endemic equi-
librium point A2 (S2, I2, R2) will be stable in nature. Hence, the theorem is proved.

It is obvious from the definition of C1 and C2 that sign of them can be controlled
by changing the value of carrying capacity (k).
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21.4 Hopf Bifurcation Around Positive Equilibrium

Since the expression of C1, C2, C3, and C1C2 − C3 depends on carrying capacity
k. The sign of C1, C2, C3 and C1C2 − C3 can be controlled by changing the
values of k. A Hopf bifurcation of the system is expected for some range of k where
C1C2 − C3 = 0.

Theorem 21.3 The system (21.2) undergoes a Hopf bifurcation for R01 > 1 and
R02 > 1 when the carrying capacity k passes through the critical value kc with the
restriction r > 2d and k > 4r S2

2r−(3d+μ)
.

Proof Hopf bifurcation will occur if C1(k)C2(k) − C3(k) = 0 with Ci (k) > 0,
i = 1, 2, 3 and d(Reλ)

dk �= 0 at k = kc.

As for C1C2 = C3 with Ci > 0, then the characteristic equation becomes

(
λ2 + C2

)
(λ + C1) = 0

having roots −C1,±i
√

C2. So there are purely imaginary eigen values and one is
strictly negative real eigenvalue. We assume that for k is in the neighborhood of
k = kc the roots have the form λ1 = P1(k) + P2(k), λ2 = P1(k) − P2(k) and
λ3 = −P3(k) where Pi (k), i = 1, 2, 3 are real. In view of the above roots, the
corresponding characteristic equation will be

λ3 + (P3 − 2P1) λ2 +
(

P2
1 + P2

2 − 2P1P3

)
λ + P3

(
P2
1 + P2

2

)
= 0 (21.7)

comparingwegetC1 = P3 − 2P1,C2 = P2
1 + P2

2 − 2P1P3, andC3 = P3
(
P2
1 + P2

2

)
.

Since P1(k) = 0 at k = kc then from the above we get

(C1 + 2P1) C2 = C3 − 2P1 (C1 + 2P1)
2 . (21.8)

Differentiating both sides of (21.8) w.r.t. k we obtain

(C1 + 2P1)
dC2

dk
+ C2

(
dC1

dk
+ 2

d P1

dk

)

= dC3

dk
−

{

2
d P1

dk
(C1 + 2P1)

2 + 2P1
d (C1 + 2P1)

2

dk

}

(21.9)

Using the condition at k = kc, P1(k) = 0 we get

(
d P1

dk

)

k=kc

= −
{

d(C1C2−C3)
dk

2C2
1 + C2

}

k=kc

.
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Using the values of C1, C2, and C3 we get

(
d P1

dk

)

k=kc

= − 1

2C2
1 + C2

[{
2β2(2d + μ + γ )I2r S2

2 (d + μ)

k2d(d + μ + γ ) (1 + αS2)4
+ β

(1 + αS2)2

(
4d2 + 4dμ + μ2 + (d + μ)γ

) }
S2
2r(d + μ)

k2d(d + μ + γ )

+ β(3d + 2μ + γ )S2
2r(d + μ)

k2 (1 + αS2)2 d(d + μ + γ )

{
4r S2

k
+ r − 2d

}

+ 2r S2(d + μ)

k2

{
2r

(
1 − 2S2

k

)
− 3d − μ

}]

k=kc

< 0.

Hence, when k < kc then the solution will be unstable and for k > kc the solution
will be stable in nature in the neighbourhood of A2. Thus, Hopf bifurcation occurs
when the carrying capacity crosses the critical value k = kc.

Hence the result.

21.5 Numerical Simulation

The numerical simulation is done considering several values of the parameters. First,
we consider r = 14.0, K = 30, β = 1, d = 2, γ = 0.001, μ = 0.01, α = 0.021,
and then R01 = 23.79, R02 = 1.26, the endemic equilibrium point is obtained
(2.09, 11.51, 0.01), all values are taken as correct up to two decimal place. The cor-
responding numerical solution of the differential equations is shown in the Fig. 21.1.

For the critical value kc = 60.43 remaining all other parameter unchanged we
obtain R01 = 23.80, R02 = 2.08 and the endemic equilibrium point (2.09, 12.02,
0.01) and the corresponding graph of the numerical solution is shown in Fig. 21.2. It
is clear from the figure that a Hopf bifurcation of periodic solution occurs at k = kc

and the solution oscillates about the endemic equilibrium point.

Fig. 21.1 This figure represents the stability behavior of the endemic equilibrium of system
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Fig. 21.2 This figure represents periodic solution

21.6 Conclusions

In this paper, we formulate the epidemic model with logistic growth rate of suscepti-
bles and effect of loss of immunity of the recovered class and the inhibitory effect is
also taken into consideration. Here, three equilibrium points obtained. Two of them
are disease free and one is endemic equilibrium point. The solution in the neighbor-
hood of disease free equilibrium point A0(0, 0, 0) is always unstable in nature. The
solution in the neighborhood of other disease free equilibrium point A1(S1, R1, I1)
is stable if r > d and βS1

1+αS1
< 0 other wise unstable in nature. The solution in the

neighborhood of endemic equilibriumpoint trajectories undergoes aHopf bifurcation
depending on the values of carrying capacity k.
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Chapter 22
SIR Epidemic Modelling in Presence
of Inhibitory Effect and Delay

Uttam Ghosh and Rita Ghosh

Abstract Modelling of infectious diseaseswas investigated by several authors using
mathematical methods. Here, we consider the model in which inhibition effect is
taken into consideration in presence of delay of the infected to become infectious.
In this model two equilibrium points are found, one is disease free equilibrium point
and the other is the endemic equilibrium point. The endemic equilibrium point will
exists under certain condition. The character of solutions in the neighbourhood of
endemic equilibrium point is directly affected by inhibitory effect. The solutions in
the neighbourhood of disease free equilibrium point will be asymptotically stable
when the basic reproduction number less than one and the solution in the neigh-
bourhood of endemic equilibrium point will be asymptotically stable when the basic
reproduction number greater than one.

Keywords Equilibrium point · Inhibition effect · Asymptotically stable

22.1 Introduction

From the prehistory of civilization the human population is affected by different
infectious diseases. It is most important to formulate the spreading mechanism of
such diseases and finding mechanisms to control them. Mathematicians are using
mathematical models to study the above disease mechanisms. Karmack and Mck-
endrick [1] was first given the formulation of SIR model. The history of epidemic
and different epidemic models may be found in famous books Bailey [2], Murray
[3], Ma and Li [4] and Anderson andMay [5]. Recently Hetchote and Tunder [6], Liu
et al. [7, 8],Hetchote et al. [9],Xiao andRuan [10],Ghosh et al. [11] andmany authors
investigated different epidemic models. They studied different epidemic models
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considering different incidence rate of infection. One of them is bilinear incidence
rate kSI , where S and I are, respectively, the number of susceptible and infected
individuals in the population and k is the rate of infection is always positive [12].
Some authors used different saturated incidence rate [12–14].

In this paper, we consider two models in which the incidence rate of infection is
of the form kSI

1+αS+β I where α, β are positive constants denotes the inhibitory effect
(including all kind of saturation effects, taking of appropriate saturation effect or
sociological and psychological effects).

In the first model, delay is not taken into consideration. The second model is
analyzed in presence of delay. In both the cases two equilibrium points arises, one
is the disease free equilibrium point and other is the endemic equilibrium point. The
endemic equilibrium point exists depending under certain condition and is directly
affected by the inhibitory effect.

22.2 Mathematical Formulation

Let S(t) be the number of susceptible, I (t) be the number of infected and R(t) be
the number of recovered individuals such that N (t) = S(t) + I (t) + R(t). Here,
incidence rate of infection is taken into consideration is kSI

1+αS+β I . The corresponding
differential equation (in absence of delay) is given in Eq. (22.1) and the same model
in presence of delay is given in (22.2).

d S

dt
= b − d S − kSI

1 + αS + β I
+ γ R (22.1a)

d I

dt
= kSI

1 + αS + β I
− (μ + d) I (22.1b)

d R

dt
= μI − (γ + d) R (22.1c)

where b—is the birth rate, d—is the natural death rate of the population, μ—is
the natural recovery rate of infected individuals, γ—is the rate at which recovered
individuals lose immunity and return to the susceptible class, τ = time of delay of
infected class to becomes infectious.

d S

dt
= b − d S − kSI

1 + αS + β I
+ γ R (22.2a)

d I

dt
= kS(t − τ)I (t − τ)e−dτ

1 + αS(t − τ) + β I (t − τ)
− (μ + d) I (22.2b)

d R

dt
= μI − (γ + d) R (22.2c)
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22.3 Stability Analysis of First Model

To find disease free equilibrium points set

d S

dt
= d I

dt
= d R

dt
= 0.

Solving the equations two equilibrium points are obtained. The equilibrium
points are

(S0, I0, R0) =
(

b

d
, 0, 0

)
, (S1, I1, R1) ,

where

I1 = (d + γ )(bα + d) (R02 − 1)

dβ(d + γ ) + d(d + γ + μ)α(R01 − 1)
, S1 = 1 + β I1

α (R01 − 1)
, R1 = μI1

(d + γ )
,

R01 = k

α(d + μ)
, R02 = kb

(bα + d)(d + μ)
.

The endemic equilibrium points will exists only when R01 > 1 and R02 > 1.
Since biologically the model will be meaningful in the 1st octant only, i.e. in the
region {(S, I, R), S ≥ 0, I ≥ 0 and R ≥ 0}.
Theorem 22.1 The system S + I + R = b

d is a manifold of the system (22.1), which
is attracting fixed point in the first octant.

Proof Proof of the theorem is an immediate consequence of [12].

Theorem 22.2 The disease free equilibrium point of (22.1) is locally asymptotically
stable for all R01 < 1.

Proof Linearizing the system about the disease free equilibrium point (S0, I0, R0),
put S = Ś + S0, I = Í + I0, R = Ŕ + R0, and rewriting the system omitting the
dot sign we obtain

d S

dt
= −d S − kS0 I

1 + αS0
+ γ R (22.3a)

d I

dt
= kS0 I

1 + αS0
− (μ + d) I (22.3b)

d R

dt
= μI − (γ + d) R (22.3c)

The corresponding characteristic equation of the above system (22.3) are λ =
−d,−(d + μ) and λ = (d + μ)(R02 − 1). Since two of them is negative always
and the third root will be negative if R02 < 1 then all the roots are negative and
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consequently, the solution in the neighbour of the disease free equilibrium point will
be asymptotically stable in nature. Again when R02 > 1 then one the three roots will
be positive and other two is negative and the disease free equilibrium point will be a
saddle point. Therefore, solutions in the neighbourhood of this point will be unstable
in nature. When R02 > 1 then other equilibrium point will exist.

Theorem 22.3 The endemic equilibrium point of (22.1) is asymptotically stable for
all R01 > 1 and R02 > 1.

Proof Since the endemic equilibrium point will exists if R02 > 1 and R01 > 1.
Linearizing the system about the endemic equilibrium point (S1, I1, R1), put S =
Ś + S1, I = Í + I1, R = Ŕ + R1, and rewriting the system omitting the dot sign we
obtain

d S

dt
= −(d + A)S − B I + γ R (22.4a)

d I

dt
= AS + (B − μ + d) I (22.4b)

d R

dt
= μI − (γ + d) R (22.4c)

where

A = k I1 (1 + β I1)

(1 + αS1 + β I1)2
, B = kS1 (1 + αS1)

(1 + αS1 + β I1)2

The corresponding characteristic equation of the above system (22.4) is

λ3 + C1λ
2 + C2λ + C3 = 0 (22.5)

where C1 = 2d + A + γ + β I1(d + μ)

(1 + αS1 + β I1)
.

C2 = (A + d)(d + γ ) + β I1(d + μ)

(1 + αS1 + β I1)
+ (d + γ )

β I1(d + μ)

(1 + αS1 + β I1)
+ AB.

C3 = Ad(d + γ + μ) + d(d + γ )
β I1(d + μ)

(1 + αS1 + β I1)
.

Since C1, C2, C3, and C1 · C2 − C3 all are positive and therefore, all roots of
the Eq. (22.5) have negative real part (Routh-Horwtz criteria). Thus disease free
equilibrium point is asymptotically stable for R01 > 1 and R02 > 1. This concludes
the proof.

Since R02 is directly affected inhibitory effect α. As α—increase R02 decreases
and tends to zero when α tends to infinity. The graph of R02 is shown in the Fig. 22.1.
Considering d = 0.04, b = 5.0, andμ = 0.05 and taking k along y-axis and α along
x-axis graph of R02 is plotted.
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Fig. 22.1 Graph of R02

From Fig. 22.1 it is clear that as α tends to 1 what ever k may be then R02 becomes
less than 1 and then endemic equilibrium points does not exist. One can determine a
critical value of α such that the R02 greater than 1.

22.4 Stability Analysis Second Model

In this model also two equilibrium points of the system are found, one is the disease
equilibrium point (S0, I0, R0) = ( b

d , 0, 0) which always exists and the other is the
endemic equilibrium point (S11, I11, R11) where

I11 = (d + γ )(bα + d) (R04 − 1)

dβ(d + γ ) + d(d + γ + μ) (R03 − 1)
, S11 = 1 + β I1

α (R03 − 1)
,

R11 = μI11
(d + γ )

, R03 = ke−dτ

α(d + μ)
, R04 = kbe−dτ

(bα + d)(d + μ)
.

Since the endemic equilibrium points will exists R03 > 1 and R04 > 1.

Theorem 22.4 The disease free equilibrium point of (22.2) is asymptotically stable
for R04 < 1 and unstable when R04 > 1.

Proof Linearizing the system about the disease free equilibrium point (S0, I0, R0),
put S = Ś + S0, I = Í + I0, R = Ŕ + R0 in (22.2) neglecting the higher order terms
and rewriting the system omitting the dot sign we obtain

d S

dt
= −d S − kS0 I

1 + αS0
+ γ R (22.6a)

d I

dt
= kS0 I (t − τ)e−dτ

1 + αS0
− (μ + d) I (22.6b)

d R

dt
= μI − (γ + d) R (22.6c)
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The corresponding characteristic roots of the above system (22.6) areλ = −d,−(d+
μ) and the other root satisfy the transcendental equation

kS0e−((d+λ)τ)

1 + αS0
= λ + (d + μ). (22.7)

If τ = 0 then R03 = R01 and R04 = R02 then λ = (d +μ)(R02−1), Since in the first
case we already establish the disease free equilibrium point will be asymptotically
stable in absence of delay if R02 < 1. If possible let Eq. (22.7) has imaginary root
of the form λ = iω(ω > 0). Hence putting λ = iω in (22.7) and separating real and
imaginary part we get

μ + d = A1e−dτ S0 cos τω

ω = A1e−dτ S0 sin τω

}

where A1 = kb
αb+d , Squaring and adding the above two and writing in the simplest

form we get ω2 = (d + μ)2(R2
04 − 1). Since if R04 < 1 then there exists no real

value of ω, such that iω is a root of equation (22.7). By Rouche’s theorem all the
eigenvalues have negative real part of equation (22.7) and consequently, the solutions
will be stable in nature. If R04 > 1, then, the disease free equilibrium (S0, I0, R0) is
unstable for τ = 0. By Kuang theorem the equilibrium point (S0, I0, R0) is unstable
for all τ ≥ 0.

This concludes the proof

Theorem 22.5 The endemic equilibrium point of (22.2) is asymptotically stable for
R03 > 1 and R04 > 1.

Proof Since the endemic equilibrium points will exists only when R03 > 1 and
R04 > 1. Now, Linearzing the system of equations about the endemic equilibrium
point (S11, I11, R11) we get the reduce system (putting S = Ś + S11, I = Í + I11,
R = Ŕ + R11 and writing omitting the dot sign)

d S

dt
= −(d + A)S − B I + γ R (22.8a)

d I

dt
= e−dτ AS(t − τ) + (B − μ − d) I (t − τ)e−dτ (22.8b)

d R

dt
= μI − (γ + d) R (22.8c)

where

A = k I11 (1 + β I11)

(1 + αS11 + β I11)2
, B = kS11 (1 + αS11)

(1 + αS11 + β I11)2
.

The corresponding characteristic equation of the above system (22.8) is

λ3 + d1λ
2 + d2λ + d3 − e−(d+λ)τ {Bλ2 + B(2d + γ )λ + B Aμγ } = 0 (22.9)
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where d1 = 3d + A+μ+γ, d2 = (d + A)(d +γ )+(d + A)(d +μ)+(d +μ)(d +γ )

and d3 = (d + A)(d + γ )(d + μ).

For τ = 0 the equation reduce to Eq. (22.5) and then R04 = R02 and from
Theorem 22.3 the system will be asymptotically stable. Hence, instability occurs for
a particular value τ = 0. If possible let one root (say λ = iω) of Eq. (22.9) must
exists lies on the imaginary axis. Putting λ = iω in (22.9) we get after equating real
and imaginary part and writing in the simplest form

ω6 + p1ω
4 + p2ω

2 + p3 = 0 (22.10)

where

p1 = (d + A)2 + (d + γ )2 + (d + μ + B)
β I11(d + μ)

(1 + αS11 + β I11)
+ B2

(
1 − e−2dτ

)
,

p2 =
{
(d + B + μ)

β I11(d + μ)

(1 + αS11 + β I11)
+ d2

}
(d + γ )2 + (d + γ )2(d + A)2

+ 2ABμγ e−2dτ + B2
{

d2 + (d + γ )2
} (

1 − e−2dτ
)

+
(

A2 + 2d A
)

(d + μ)2

and

p3 = {d(d + γ )B + Aμγ }2
(
1 − e−2dτ

)
+

{
d(d + γ )B + Aμγ + d3

}

{
d(d + γ )

β I11(d + μ)

(1 + αS11 + β I11)
+ Ad(d + μ + γ

}
.

Since Eq. (22.10) is a cubic in ω2 having all the coefficients are positive and
consequently positive ω2 cannot be found from (22.10). Thus no ω can be found
such that iω is a root of equation (22.10). By Rouche’s theorem the real parts of all
the eigenvalues have negative real part and consequently the solutions will be stable
in nature. Therefore, the solutions in the neighbourhood of endemic equilibrium
point (S11, I11, R11) is locally asymptotically stable for R04 > 1 and R03 > 1,
consequently by Kuang theorem, the endemic equilibrium point is asymptotically
stable for τ ≥ 0. This concludes the proof.

22.5 Numerical Simulation

The numerical computation is done considering b = 15.0, k = 0.008, d =
0.04, γ = 0.001, μ = .01, α = 0.12, β = 0.5. The diseases free equilibrium
point is (375, 0, 0) in both the cases. For τ = 0 the endemic equilibrium point is
A11(343.32, 25.47, 6.21) for the first model. For τ = 2 the endemic equilibrium
point for the second model is A21(353.15, 17.56, 4.28). Here, the critical analysis is
done considering the endemic equilibrium points only because it is important in real
aspect. From Theorem 22.3 it is clear that A11(343.32, 25.47, 6.21) is global attrac-
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tor of the first model and from Theorem 22.5 it is clear that A21(353.15, 17.56, 4.28)
is a global attractor for the second model.

Since the number of susceptible increases more when delay is taken into consider-
ation and compare to when delay is not taken into consideration. And consequently,
the number of infected is increasing more when delay is taken into consideration
which is clear from Figs. 22.2 and 22.3. It is also clear from the disease free equilib-
rium points that the number of susceptible will be more in delay considering case,
i.e. those disease will spread fast which has no incubation period.

Again though the numbers R01, R02, R03 and R04 is not direct function of β but
solution depends directly on β. When β decreases then the number of infected
increases and when β increases then the number of infected is tending to zero and
then the endemic equilibrium points reduces to disease free equilibrium point. Again
since both S and I are depends on the another Inhibition parameter α, As α increases
then S decreases and one time it becomes biologically invalid because then S becomes
negative but I becomes a finite quantity.

Fig. 22.2 Graph of S–I–R for τ = 0

Fig. 22.3 Graph of S–I–R for τ = 2
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22.6 Discussion

Our goal of mathematical formulation of different epidemic modelling is to obtain
some condition which will control processes. In the two models we obtain four
numbers R01, R02, R03 and R04 depending on which we can conclude weather the
solutionswill be stable or unstable in nature. Since the numbers are directly dependent
on different parameters such as birth rate, death rate, etc. controlling this parameter
we can easily able to control the parameters but controlling some of the parameter are
beyond of human capacity we avoid them uncontrolling parameters. In this problem,
the inhibitory parameter (or the saturation affect) is directly controlling the stability
of the solutions. From the numerical simulation it is clear that the number of infective
individuals (22.1a) is directly affected by the parameters αand β. Another important
parameter τ is also controlling the disease spreading mechanism. When τ increases
the number of infected will decrease because of slow spreading of the disease.
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Chapter 23
Numerical Solutions of Incompressible
Viscous Flows in a Double-Lid-Driven Cavity

Hemanta Karmakar and Swapan K. Pandit

Abstract Applications of the compact scheme based on 5-point stencil to spa-
tial differencing of the streamfunction velocity formulation of the two-dimensional
incompressible viscous flows governed by Navier-Stokes equations in a two-sided
lid-driven rectangular cavity is presented. This cavity problem has multiple steady
solutions for some aspect ratios. However, for the square cavity, the fluid flow problem
produces only a single steady solution for both the parallel and antiparallel motion
of the walls. The flow patterns are unlike to the one-sided lid-driven cavity flows.
The transient solution involves different vortex structures and free share layers. The
computed results show the accuracy, efficiency, and stability of the compact scheme
even for higher Res. Results obtained are in well agreement with the numerical and
experimental results available in the literature.

Keywords Transient solutions · Incompressible viscous fluid · Rotating secondary
vortices

23.1 Introduction

The past few decades have seen the development of many numerical schemes [1–5].
Whenever, there is a new scheme developed for the study of computational fluid
dynamics, it is used to study the benchmark problem of one-sided lid-driven cavity
flow for code verification. Another classic example is the flow induced by the tangen-
tial movement of two facing cavity boundaries with uniform velocities [6, 7]. In the
practical field, this is applied in several engineering situations, such as the flow over
cutouts, designs, and repeated slots on the walls of heat exchangers or on the surface
of aircraft bodies. If the two facing walls move in the same direction, it is termed
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as parallel wall motion and if in the opposite direction, it is termed as antiparallel
wall motion. Kuhlmann and other investigators [7] (see, the references therein) have
done some experimental and computational work on two-sided lid-driven rectangular
cavity with various aspect ratios. Furthermore, in contrast to the fairly large number
of studies conducted for single-sided lid-driven cavities, only a few investigations
have been carried out for flows in two-sided lid-driven cavities. Overall, no compact
schemes have been found to solve the two-sided lid-driven cavity flows with high
Reynolds number.

The aim of this paper is to study the transient solutions even for higher Res for
both the parallel and antiparallel motion of the walls.

23.2 Problem

An incompressible viscous flow in a square cavity whose two walls, i.e., top and
bottom side moves in a same or opposite direction with uniform velocity is the
problem which we have focused in our present work. The other vertical walls are
kept stationary. The boundary condition of above type motion are shown in the
Fig. 23.1.

The governing equations describing the incompressible viscous flows in a two-
sided lid-driven cavity are the Navier-Stokes equations (N-S) which can be written
in terms of non-dimensional streamfunction (ψ)-vorticity (ζ ) form as follows:

− ∂2ψ

∂x2 − ∂2ψ

∂y2 = ζ, (23.1)

Re
∂ζ

∂t
− ∂2ζ

∂x2 − ∂2ζ

∂y2 + u Re
∂ζ

∂x
+ vRe

∂ζ

∂y
= 0 (23.2)

u=1, v=0

u=1, v=0

u=
0

,v
=

0

u=
0,

v=
0

x

y

u=-1, v=0

u=1, v=0

u=
0,

v=
0

u
=

0,
v=

0

x

y

(a) (b)

Fig. 23.1 Schematic picture of two-sided lid-driven cavity with boundary conditions a parallel and
b antiparallel wall motion
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where V = (u, v) is the velocity vector and Re
(
= V0 L

ν

)
is the Reynolds number

with V0, L , ν are, respectively, reference velocity, cavity length, and kinematic vis-
cosity.

Now eliminating ζ from the above two equations, the pure streamfunction for-
mulation of the full governing equations including the source term f can be written
as

l
∂

∂t

(
∂2ψ

∂x2 + ∂2ψ

∂y2

)
+ a

∂4ψ

∂x4 + b
∂4ψ

∂x2∂y2 + c
∂4ψ

∂y4 + d

(
∂3ψ

∂x3 + ∂3ψ

∂x∂y2

)

+ e

(
∂3ψ

∂y3 + ∂3ψ

∂x2∂y

)
= f (23.3)

where l = Re, a = −1, b = −2, c = −1, d = u Re, e = vRe, and f = 0.

Assuming the physical domain to be rectangular and constructing on it a uni-
form rectangular mesh of steps h and k in the x and y-directions, respectively, the
discretized form of Eq. (23.3) at the (i, j)th node is given by

l
(
δ2

xδ
+
t ψn

i, j + δ2
yδ

+
t ψn

i, j

)
+ 12

h2 ai, j

(
−δ2

xψi, j − δx vi, j

)

+ 1

2
bi, j

(
−δxδ

2
yvi, j + δ2

xδyui, j

)
+ 12

k2 ci, j

(
−δ2

yψi, j + δyui, j

)
+ di, j

(
−δ2

x vi, j

)

+ ei, jδ
2
x ui, j + di, j

(
−δ2

yvi, j

)
+ ei, jδ

2
yui, j = fi, j + O

(
Δt, h2, k2

)
, (23.4)

where we have used u = ∂ψ

∂y
and v = −∂ψ

∂x
. After having a second-order approxi-

mations in (23.4) for space, we now intend to discretize time derivative as accurately
as possible and obtain a stable numerical scheme. Introducing weighted time average
parameter μ such that tμ = (1 − μ)t (n) + μt (n+1) for 0 ≤ μ ≤ 1, where n denote
the nth time level, we can have a family of integrators; for example, forward Euler
for μ = 0, backward Euler for μ = 1 and Crank-Nicholson for μ = 0.5.

23.3 Results and Discussions

In Table 23.1, the vortex centres of the primary and secondary vortices have been
presented and compared the results presented in [6] (values within the parenthesis).
The transient flow pattern (see Fig. 23.2) of incompressible viscous fluid in a square
cavity whose top and bottom lids are moving along the positive x-axis direction with
the uniform velocity has been shown in Fig. 23.2. With the advancement of time, a
pair of counter-rotating secondary vortices is seen to be appeared near the center of
the right wall which is placed symmetrically about the horizontal centerline.
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Table 23.1 Location of primary and secondary vortex center for parallel wall motion

Re Primary vortex centre Secondary vortex centre

Bottom Bottom

x y x y

100 0.6167(0.6145) 0.2001(0.2026) – –

400 0.5833(0.5845) 0.2416(0.2388) 0.9834(0.9873) 0.4833(0.4638)

1000 0.5333(0.5354) 0.2417(0.2452) 0.9583(0.9551) 0.4583(0.4570)

2000 0.5167(0.5132) 0.2425(0.2474) 0.9417(0.9400) 0.4584(0.4573)
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Fig. 23.2 Parallel wall motion of the cavity flow problem: evolution of streamlines at different
time stations for the lid-driven cavity flow with aspect ratio 1.0 for Re = 1000

In Table 23.2, we have presented the primary and secondary vortex centres formed
in antiparallel motion and compared the results presented in [6] (values within the
parenthesis). The transient flow pattern of an incompressible viscous fluid is shown
in Fig. 23.3 in which the top and bottom walls move into the opposite direction with
uniform velocity. It is seen that in the steady-state only one primary vortex formed at
the geometric center of the cavity. It is also seen that two secondary vortices formed
at the top left and bottom right corners of the cavity and the position of the primary
vortex center is same as the geometric center of the cavity.

In Fig. 23.4, we have shown the horizontal velocity profile along the vertical
centerline for parallel wall motion from Re = 100 to 3200.
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Fig. 23.3 Antiparallel wall motion of the cavity flow problem: evolution of streamlines at different
time stations for the lid-driven cavity flow with aspect ratio 1.0 for Re = 1000
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23.4 Conclusion

The present work involves the computation of incompressible flows in a two-sided
lid-driven cavity using time dependent compact scheme based on 5-point stencil to
spatial differencing of the streamfunction velocity formulation. We have investigated
the transient flow for both parallel and antiparallel motion of the two facing walls. The
transient solution reveals different vortex structures and free share layers which are
unlike to the one-sided lid-driven cavity flows. Results obtained are in well agreement
with the available numerical results.
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Chapter 24
Propagation of SH-Type Wave in Anisotropic
Layer Overlying an Anisotropic Viscoelastic
Half-Space

S. Kumar and P.C. Pal

Abstract An analysis has been carried out for the propagation of SH-type wave in
anisotropic layer overlying anisotropic viscoelastic half-space of higher order. The
dispersion relation is obtained under certain boundary conditions. The numerical
results are discussed through figures for a particular model by plotting the graph
between phase velocity and wave number for different values of thickness of layer.

Keywords SH-type wave · Anisotropic layer · Inhomogeneity · Viscoelastic coef-
ficient · Phase velocity

24.1 Introduction

Nowadays, for engineers, physicists and seismologists have become a great challenge
to explore the interior of earth due to high demand of raw materials like minerals,
crude oils, coal, natural gases, etc. for the industries and fulfil the needs of grow-
ing population. The study of wave propagation is making revolution for mankind. It
helps in exploring or predicting the hidden resources in the earth. Also, the number of
earthquakes increasing day by day around theworld draws attention for seismologists
to study the seismic waves, as we know that the earth is highly inhomogeneous and
anisotropic and some materials exhibit viscoelastic behaviour. In order to describe
the nature of wave propagation accurately, we have to consider anisotropy with vis-
coelastic properties of materials. When seismic waves propagate underground, then
they are not only influenced by anisotropy of the medium but also by intrinsic vis-
cosity of the medium [1]. Das and Sengupta [2] have discussed the surface-wave
propagation in general viscoelastic media of higher order. They considered the gen-
eral theory of surface waves in higher order viscoelastic solid containing time rate of
strain and investigated the particular surface waves of Rayleigh, Love and Stoneley
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type. Kakar et al. [3] have studied the propagation of Rayleigh, Love and Stone-
ley waves in fibre-reinforced, general viscoelastic media of higher order (nth order)
including time strain under the effect of gravity.

In the present investigation, an attempt has been made to study the behaviour of
SH-type wave when upper boundary plane is considered as free surface. The layer
is anisotropic and half-space is of anisotropic viscoelastic material of higher order.
The dispersion relation is obtained in determinant form. The numerical results are
discussed through figures for a particular model, and effects of thickness of layer on
phase velocity are shown.

24.2 Formulation of the Problem and its Solution

Here, we consider an anisotropic elastic layer of finite thickness h lying over a half-
space of anisotropic viscoelastic material of higher order. The interface of these
two mediums is considered at z = 0, whereas free surface is at z = −h. Here, z
axis is directed vertically downward and x axis is assumed in the direction of the
propagation of wave with velocity c. For SH-type of waves, the displacement and
body forces do not depend on y, and if (u, v, w) be the displacement at any point
P (x, y, z) into the medium, then u = w = 0 and v is the function of x, z and t. The
two equations of motions are identically satisfied (Fig. 24.1).

For anisotropic layer, the equation of motion for SH-type wave without body
forces is given by

∂τxy

∂x
+ ∂τyz

∂z
= ρ1

∂2v1
∂t2

(24.1)

Fig. 24.1 Geometry of the
problem
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The stress–strain relations and density are taken as

τxy = C46
∂v1
∂z

+ C66
∂v1
∂x

τyz = C44
∂v1
∂z

+ C46
∂v1
∂x

⎫
⎪⎬

⎪⎭
(24.2)

Substituting (24.2) in (24.1), we have

C66
∂2v1
∂x2

+ 2C46
∂2v1
∂x∂z

+ C44
∂2v1
∂z2

= ρ1
∂2v1
∂t2

(24.3)

Assuming the solution as v1 (x, z, t) = V1 (z) eik(x−ct) and substituting in (24.3),
we have

d2V1

dz2
+ 2ikα1

dV1

dz
− k2α2

{
c2

β2
1

− 1

}

V1 = 0 (24.4)

where α1 = C46
C44

, α2 = C66
C44

and β2
1 = C66

ρ1
.

The solution of equation (24.4) is given as

V1 (z) = Ae−iks1z + Beiks2z (24.5)

where s1 = α1 +
√

α2
1 + α2

{
c2

β2
1

− 1

}
and s2 = −α1 +

√

α2
1 + α2

{
c2

β2
1

− 1

}
.

Hence, the displacement and stress component for anisotropic layer are given by

v1 (x, z, t) = V1 (z) eik(x−ct) =
(

Ae−iks1z + Beiks2z
)

eik(x−ct) (24.6)

(
τyz

)
I = C44

∂v1
∂z

+ C46
∂v1
∂x

(24.7)

For anisotropic viscoelastic half-space, the equation of motion for SH-type wave
without body forces is given by

∂τxy

∂x
+ ∂τyz

∂z
= ρ2

∂2v2
∂t2

(24.8)

The stress–strain relations as considered by Flugge [4] are

τxy = D2
∂v2
∂z + D3

∂v2
∂x

τyz = D1
∂v2
∂z + D2

∂v2
∂x

}

(24.9)

where D1 = ∑n
λ=0 Cλ

44
∂λ

∂tλ
, D2 = ∑n

λ=0 Cλ
46

∂λ

∂tλ
and D3 = ∑n

λ=0 Cλ
66

∂λ

∂tλ
.
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Substituting (24.9) in (24.8), we have

D3
∂2v2
∂x2

+ 2D2
∂2v2
∂x∂z

+ D1
∂2v2
∂z2

= ρ2
∂2v2
∂t2

(24.10)

Assuming the solution as v2 (x, z, t) = V2 (z) eik(x−ct) and substituting in (24.10),
we have

d2V2

dz2
+ 2ikα4

dV2

dz
− k2α5

{

1 − c2

β2
2

}

V2 = 0 (24.11)

where α4 = D′
2

D′
1
, α5 = D′

3
D′
1
, β2

2 = D′
3

ρ2
and D′

1 =
n∑

λ=0
Cλ
44 (−ikc)λ , D′

2 =
n∑

λ=0
Cλ
46 (−ikc)λ , D′

3 =
n∑

λ=0
Cλ
66 (−ikc)λ.

The solution of equation (24.11) is given as

V2 (z) = Ce−ikm1z + Deikm2z (24.12)

where m1 = α4 +
√

α2
4 + α5

{
c2

β2
2

− 1

}
and m2 = −α4 +

√

α2
4 + α5

{
c2

β2
2

− 1

}
.

Hence, the displacement and stress component for half-space are given by

v2 (x, z, t) = Ce−ik(m1z−x+ct) (24.13)

(
τyz

)
I I = D1

∂v2
∂z

+ D2
∂v2
∂x

(24.14)

24.3 Boundary Conditions

We assume that anisotropic layer and the half-space are in welded contact. Therefore,
the boundary conditions are the continuity of displacement and stress at the interface.
Mathematically, these boundary conditions can be expressed as follows: (i) v1 = v2
at z = 0. (ii)

(
τyz

)
I = (

τyz
)

I I at z = 0. (iii)
(
τyz

)
I = 0 at z = −h (upper boundary

as free surface).

Substituting (24.6), (24.7), (24.13) and (24.14) in the above boundary conditions,
we have three homogeneous equation in A, B and C , and eliminating A, B and C
from these equations, we have
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tanh

⎡

⎣ikh

√√√√α2
1 + α2

{
c2

β2
1

− 1

}⎤

⎦ =
α2

{
c2

β2
1

− 1

}
− 2

√

α2
1 + α2

{
c2

β2
1

− 1

}

2α1

(

α4 +
√

α2
4 + α5

{
c2

β2
2

− 1

})

(24.15)
Equation (24.15) is the dispersion relation of SH-type wave propagation in

anisotropic layer overlying anisotropic viscoelastic half-space of higher order.

24.4 Numerical Results and Discussion

In order to show the dependency of phase velocity on wave number, we have taken
data for anisotropic medium from Rasolofosaon and Zinszner [5].

C44 = 25.97Gpa, C46 = 0.43Gpa,C66 = 37.82Gpa and ρ1 = 2727 kg/m3.

For anisotropic viscoelastic half-space, the viscoelastic coefficients are considered
up to second order and are taken as follows:

C0
44 = 324Gpa,C1

44 = 198Gpa,C2
44 = 248Gpa,C0

46 = 59Gpa,C1
46 = 78Gpa,

C2
46 = 79Gpa,C0

66 = 79.7Gpa,C1
66 = 66.1Gpa,C2

66 = 81Gpa, ρ2 = 3320 kg/m3.

The graphs are plotted separately for both real and imaginary parts for phase
velocity against wave number. In Fig. 24.2, the graph is plotted for real part of phase

velocity, i.e. Re
(

c
β1

)
, against non-dimensional wave number kh for different values

of thickness of layer. The figure reveals the fact that the phase velocity decreases for
increasing values of kh, but as we increase the thickness of layer, the magnitude of
phase velocity decreases for all values of kh. In Fig. 24.3, the graph is plotted for

imaginary part of phase velocity, i.e. Im
(

c
β1

)
, against non-dimensionalwave number

Fig. 24.2 Variation of phase

velocity, i.e. Re
(

c
β1

)
,

against non-dimensional
wave number kh
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Fig. 24.3 Variation of phase

velocity, i.e. Im
(

c
β1

)
,

against non-dimensional
wave number kh

kh for different values of thickness of layer. It can be observed from the figure that
the rate at which phase velocity decreases is little higher than for real phase velocity,
i.e. the magnitude of phase velocity is different but the nature of curve is almost same
for both the graphs.

24.5 Conclusions

The propagation of SH-type surface waves is investigated in anisotropic layer lying
over anisotropic viscoelastic half-space of higher order. The solutions for layer and
half-space are obtained analytically and dispersion relation is obtained. The numer-
ical results are discussed through figures. From figures, it can be concluded that the
thickness of layer has great impact on the phase velocity. So the thickness of layers
within the earth plays a vital role in seismic wave propagation.
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Chapter 25
Global Stability and Chaos-Control
in Delayed N-Cellular Neural Network Model

Amitava Kundu and Pritha Das

Abstract In this paper stability, bifurcation, and chaotic behavior of a cellular neural
network (CNN) model which is a regular array of n (≥3) cells with continuous acti-
vation function are presented. In the delayed cellular neural network model (DCNN)
criteria for the global asymptotic stability of the equilibrium point is presented by
constructing suitable Lyapunov functional. Numerical simulations are given to verify
the analytical results. The role of delay in chaos control of the CNNs has been shown
numerically.

Keywords Time delay · Global asymptotic stability · Chaos control · Cellular
neural network

25.1 Introduction

In this paper, the generalization to cellular neural network (CNN) model (introduced
byChua andYang [2]) for neuronswith two-way (bidirectional) time delayed connec-
tions between the neurons and itself using delay-differential equations is studied. In
recent years, neural networks (especially, Hopfield type, cellular, and bidirectional
associative memory, recurrent neural networks) have been applied successfully in
many areas, such as signal processing, pattern recognition, associative memories
[6, 8]. Processing of moving images requires the introduction of delay in the signal
transmitted among the cells [7]. Brain areas are assumed to be bidirectionally (BAM)
coupled forming delayed feedback loops. The malfunctioning of the neural system
is often related to changes in the delay parameter causing unmanageable shifts in the
phases of the neural signals [4].

We are motivated to study effectiveness of time delay as well as synaptic weights
in changing the dynamics of n-dimensional BAM cellular neural network. With this
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motivation, we studied the global stability analysis of the system and obtained suf-
ficient criteria with respect to synaptic weights. We investigated the system numeri-
cally without time delay showing complex dynamics including chaos but the chaotic
behavior of the system is controlled as the interconnection transmission delay is
introduced.

This paper is structured as follows: InSect. 25.2 a sufficient condition for the global
asymptotic stability of the equilibrium point in the delayed model is found by using
Lyapunov functional method. In Sect. 25.3, numerical simulations are presented to
verify the analytical results. Besides numerical results are discussed showing changes
of dynamics of the system from unstable to stable (chaos control [1, 3, 5, 10]) due
to time delay. Finally, some concluding remarks have been drawn on the implication
of our results in the context of related work mentioned above in Sect. 25.4.

25.2 Mathematical Model with Time Delay and Global
Stability

We consider, an artificial n-neuron network model of cellular neural networks time
delayed connections between the neurons by the delay differential equations:

dxi

dt
= −ci xi (t) + aii f [xi (t)] +

n∑

j=1,i �= j

bi j f
[
x j (t − τ j )

]
, c j > 0, i = 1, 2, 3, . . . , n

(25.1)

with xi (t) is the activation state of i th neuron at time t, f [xi (t)] is the output state
of the i th neuron at time t, aii is self-synaptic weight, bi j is the strength of the j th
neuron on the i th neuron at time (t − τ j ), τ j is the signal transmission delay along
the axon of the j th unit and is nonnegative constant and ci (decay rate) is the rate
with which the ith neuron will reset its potential to the resting state in isolation when
disconnected from the network. In the following, we assume that each of the relation
between the output of the cell f and the state of the cell possess following properties:

(H1) f is bounded on R.
(H2) There is a number μ > 0 such that | f (u) − f (v) |≤ μ | u − v | for any
u, v ∈ R.

It is easy to find from (H2) that f is a continuous function on R. In particular, if
output state of the cell is described by f (xi ) = tanh(xi ), then it is easy to see that the
function f, clearly satisfy the hypotheses (H1) and (H2). To clarify our main results,
we present following two lemmas.

Lemma 25.1 For the DCNN (1), suppose that the output of the cell f satisfy the
hypotheses (H1) and (H2) above. Then all solutions of the DCNN (1) remain bounded
for [0,+∞).
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Lemma 25.2 Let f(t) be a nonnegative function defined on [0,+∞) such that f(t) is

integrable (that is
∫ ∞

0
f (t) dt < +∞) and uniformly continuous on [0,+∞). Then

lim
t→∞ f(t) = 0.

Theorem 25.1 For the DCNN (1), suppose that the outputs of the cell [f(xi (t)]
satisfy the hypotheses (H1) and (H2) above and there exists constants ωi > 0, ω j > 0
(i, j = 1, 2, . . . , n) such that

μ2

⎧
⎨

⎩

(
2 | ai j |2

)
+

n∑

j=1,i �= j

(
| bi j |2 +ω j

ωi
| bi j |2

)
⎫
⎬

⎭
< 2ci (25.2)

i = 1, 2, . . . , n, in which μ is a constant number of the hypothesis (H2) above. Then
the equilibrium x∗ of the DCNN (1) is also globally asymptotically stable independent
of delays.

Applying Theorem25.1 above, we can easily establish the following corollary.

Corollary 25.1 For the DCNN (1), suppose output of the cell [f(xi (t)] satisfy the
hypotheses (H1) and (H2) above and there exists constant μ such that

μ2

⎧
⎨

⎩

(
2 | aii |2

)
+

n∑

j=1,i �= j

(
| bi j |2

)
⎫
⎬

⎭
< 2ci (25.3)

i = 1, 2, . . . , n, in which μ is a constant number of the hypothesis (H2) above.
Then the equilibrium x∗ of the DCNN (1) is also globally asymptotically stable
independent of delays.

25.3 Numerical Results

In this section, the analytical results obtained above are verified by using numerical
examples given below. We used Matlab 7.10 for simulation. Besides, in numeri-
cal portion we assume n = 5 and excitatory self-connections but excitatory and
inhibitory interconnecting synaptic weights.

25.3.1 Example 1

ẋ1 = −10x1(t) + 2.1 tanh [x1(t)] + 2.17 tanh [x2(t − τ)]

ẋ2 = −20x2(t) − 3.5 tanh [x1(t − τ)] + tanh [x2(t)] + 3.11 tanh [x3(t − τ)]

ẋ3 = −20x3(t) − 1.425 tanh [x2(t − τ)] + 3.4 tanh [x3(t)] − 1.1 tanh [x4(t − τ)]
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Fig. 25.1 Solution trajectory and corresponding phase portrait in (x1, x2, x3) space showing stable
behavior satisfying globally asymptotically stable conditions (25.3)

ẋ4 = −30x4(t) − 1.75 tanh [x3(t − τ)] + 2 tanh [x4(t)] − 1.1 tanh [x5(t − τ)]

ẋ5 = −25x5(t) + 2 tanh [x4(t − τ)] + 3 tanh [x5(t − τ)] .

Time series plot and phase portrait of Example 1 showing stable behavior
satisfying conditions (25.3) is illustrated in Fig. 25.1.

But without any time delay and violating the restriction of weight parameters for
global asymptotic stability, we consider the next example.

25.3.2 Example 2

ẋ1 = −1.1x1(t) + 2.1 tanh [x1(t)] + 2.17 tanh [x2(t)]

ẋ2 = −1.5x2(t) − 2.51 tanh [x1(t)] + tanh [x2(t)] + 3.11 tanh [x3(t)]

ẋ3 = −2.5x3(t) − 1.75 tanh [x2(t)] + 3.4 tanh [x3(t)] − 7 tanh [x4(t)]

ẋ4 = −15x4(t) − 6.75 tanh [x3(t)] + 16.9 tanh [x4(t)] − 10.1 tanh [x5(t)]

ẋ5 = −25x5(t) + 10 tanh [x4(t)] + 30 tanh [x5(t)] .

Thephase portraits (Fig. 25.2) show the evidence that there exists chaotic attractors
with the above set of parameter values in Example 2.

This chaotic nature is controlled as interconnection transmission delay is intro-
duced (see Example 3) of the previous example with same parameter values and
periodic behavior is illustrated in Fig. 25.3.
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Fig. 25.2 Solution trajectory showing chaotic behavior and corresponding phase portrait in
(x1, x2, x3) space

Fig. 25.3 Control of chaos: Solution trajectory showing periodic behavior corresponding phase
portrait in (x1, x2, x3) space

25.3.3 Example 3

ẋ1 = −1.1x1(t) + 2.1 tanh [x1(t)] + 2.17 tanh [x2(t − τ)]

ẋ2 = −1.5x2(t) − 2.51 tanh [x1(t − τ)] + tanh [x2(t)] + 3.11 tanh [x3(t − τ)]

ẋ3 = −2.5x3(t) − 1.75 tanh [x2(t − τ)] + 3.4 tanh [x3(t)] − 7 tanh [x4(t − τ)]

ẋ4 = −15x4(t) − 6.75 tanh [x3(t − τ)] + 16.9 tanh [x4(t)] − 10.1 tanh [x5(t − τ)]

ẋ5 = −25x5(t) + 10 tanh [x4(t − τ)] + 30 tanh [x5(t)] .
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25.4 Discussion

A set of sufficient conditions for the global asymptotic stability of the equilibrium
point in the delayed model have been shown (proofs can be established by using
two lemmas, Lyapunov functional method, and combining with the techniques of
inequality of DCNNs). The results obtained show some restrictions on synaptic
weights and decay parameters for the global stability of the system are independent of
any delay. Here, we did not assume any symmetry of the connection matrix (bi j )n×n ,
excitatory and inhibitory connections did not influence the sufficient criteria for
global stability. Besides, we considered the output state [ f (xi (t)] only satisfying
hypotheses (H1) and (H2) above, not requiring them to be differentiable.

This paper also deals with chaos control by introducing time delay (see Fig. 25.3)
in CNNs. Furthermore, different from the work of Yang and Huang [9] where
adjustable parameter lies off the main diagonal (self-connection weights) and they
have showed chaotic dynamics for particular values of weight parameter, we are able
to control that type of dynamical behavior of CNNs in more generalized format.
Moreover, the methods of this paper may be applicable in more complicated systems
also.
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Chapter 26
Scattering of Water Wave by Undulating
Porous Bed Topography in an Ice-Covered
Ocean

Sandip Paul and Soumen De

Abstract Water-wave scattering by porous bottom undulations of an ocean with
an ice cover is investigated by perturbation analysis. The first-order reflection and
transmission coefficients were obtained using Green’s integral theorem and Fourier
transform technique. It is shown that the expressions for the first-order reflection and
transmission coefficients are same for both the techniques. The first-order reflection
coefficient is computed numerically and it is observed that the porosity of the ocean
bottom has an effect on the reflection and transmission coefficients. The problem is
also studied when the porosity parameter is a complex number. Numerical results
are depicted graphically in a number of figures for different values of parameters.

Keywords Water-wave scattering · Porous bed · Ice cover · Perturbation analysis ·
Green’s integral theorem

26.1 Introduction

In polar region, ocean surface covered by a thin ice plate plays a critical role in study
of ice-wave interaction problem. The infinitely large ice plate acts as insulator in
transforming heat from the water beneath and the air by solar radiation. The study of
water wave travelling beneath the ice sheet is important because it may cause cracks
in the ice sheet. Linear water-wave interactionwith thin floating ice cover ismodelled
as a thin elastic sheet has been studied by a number of researchers Chakrabarti [1],
Fox and Squire [2] under the assumptions of the linearized theory. The scattering
of water waves by the edge of a semi-infinite ice sheet in a finite depth ocean using
residue calculus technique has been studied by Linton and Chung [3]. Evans and
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Davies [4] considered the problem of scattering of obliquely incident waves on a
semi-infinite thin elastic plate in water of finite depth using Wiener–Hopf technique.
Chung and Fox [5] investigated the problem of interaction between ocean-going
waves and a semi-infinite ice sheet, focusing on the calculation of the reflection
of incident waves. Water-wave scattering by a strip of an ice cover floating on the
surface of deep water is considered by Gayen et al. [6].

The literature concerning a study of ocean wave interaction with an ice cover in
the presence of a undulating porous bottom of some special types has taken attention
to the researchers (see Martha and Bora [7], Zhu [8], Silva et al. [9]). Earlier on,
Evans and Linton [10] considered the problem of scattering of water waves by a
varying bottom topography an used mapping method in which the problem was
first transferred into a uniform strip resulting in a variable-free surface boundary
condition. Mandal and Basu [11] studied that the diffraction of water waves by a
small cylindrical elevation of the bottom of a laterally unbounded ocean covered by
an ice sheet is investigated by the perturbation analysis. Mase and Takeba [12], Zhu
[8] and Silva et al. [9] investigate the wave scattering problem involving porous bed.
Martha et al. [13] considered the problem of Oblique water-wave scattering by small
undulation on porous sea-bed. They obtain the first-order reflection and transmission
coefficients. The problem of oblique wave propagation over a small deformation in
a channel flow consisting of two layers was considered by Mahapatra and Bora [14].

In the present paper, we consider the problem of scattering of an incoming wave
train by porous bottom undulation of an ocean of finite depth which is covered by a
thin sheet of ice instead of having a free surface. The bed is composed of some specific
kind of rigid porous material which is characterized by a known porosity parame-
ter η, whose dimension is inverse of length. Porosity parameter considered here is
either real or complex. The motion inside the porous bottom has been neglected.
In deriving the linearized ice-cover condition, it has been assumed that the waves
are long compared to the thickness of the ice sheet (see Gol’dshtein and Marchenko
[15], Chakrabarti [1]). However, Mandal and Basu [11] shows that this assumption
is not necessary. The incoming wave train is partially reflected and partially trans-
mitted through the ocean. A simplified perturbation technique is employed to reduce
the original boundary value problem coupled one up to first order. This problem
is solved here by two methods, based on the Green’s integral theorem and Fourier
transform technique, to obtain the first-order reflection and transmission coefficients
in terms of integrals involving the shape function describing the bottom undulations.
The first-order coefficients are depicted graphically against the wave number for a
sinusoidal-shape function for its physical importance. The effects of flexural rigidity
of the ice sheet and porosity on the reflection and transmission coefficients are inves-
tigated numerically and corresponding graphs are plotted against the wave number
of the incident wave for different values of the porous parameter and for a fixed value
of the flexural rigidity.
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26.2 Formulation of the Problem

We consider an incompressible, inviscid, homogeneous water of finite depth h and a
two-dimensional Cartesian co-ordinate system with y-axis is taken vertically down-
ward and x-axis (i.e. y = 0) is the position of the infinite ice sheet. Here, the fluid is
assumed to be irrotational. The undulating porous bottom is given by y = h + εc(x),
where c(x) is a bounded and continuous function describing the shape of the bottom
topography such that c(x) vanishes at infinity and ε being a small non-dimensional
number denotes themeasure of smallness of the bottom elevation. Assuming the time
dependence of the dependent variables to be of the form e−iωt , the velocity potential
can be written as Re{ψ(x, y)e−iωt}, where ψ(x, y) satisfies the Laplace’s equation

∇2ψ = 0 in 0 ≤ y < h + εc(x),−∞ ≤ x ≤ ∞. (26.1)

The water is assumed to be covered by thin infinitely extent ice sheet of very small
thickness d. Here, the ice sheet is considered as a thin elastic plate floating over the
fluid extending to infinity. Then the linearized boundary condition at the thin ice
sheet [c.f. Mandal and Basu [11] ] is

Kψ +
(
1 + D

∂4

∂x4

)
∂ψ

∂y
= 0 on y = 0, (26.2)

where D = Ed3

12(1−ν2)ρg
is the flexural rigidity of the plate, K = ω2

g , ω being the
angular frequency of the incident wave; E, ν, d, ρ and ρe are the Young modulus,
Poisson’s ratio, the thickness of the ice sheet, the density of the fluid and the density
of the ice sheet, respectively; and g being the acceleration due to gravity.

The linearized condition on undulating porous bottom is

∂ψ

∂n
− ηψ = 0 on y = h + εc(x) (26.3)

In the boundary condition (26.3), the normal derivative ∂
∂n has been involved. The

porous effect parameter corresponding to the sea-bed under consideration is denoted
by η, which is taken to be real.

The above BVP suggests us to assume the progressive wave ψ(x, y) defined in
the infinite strip −∞ < x < ∞, 0 ≤ y ≤ h; propagating just below the ice sheet is
given by

ψ0(x, y) = 1

K

{
K sinh k0y −

(
1 + Dk40

)
k0 cosh k0y

}
eik0x in−∞ < x < ∞, 0 ≤ y ≤ h.

(26.4)

If c(x) = 0,−∞ < x < ∞, i.e. if the bottom be the plane y = h without any
undulation, the above boundary value problem suggests the propagation of a plane
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water wave, whose velocity potential is ψ0(x, y)e−iωt , where the wave number k0
satisfies the dispersion equation

Δ(u) = 0, (26.5)

where

Δ(u) ≡ (1 + Du4)u2 sinh uh − u
{

K + (1 + Du4)η
}
cosh uh + ηK sinh uh.

(26.6)

The dispersion equation (26.5) has exactly two real roots ±k0(k0 > 0), two con-
jugate complex roots ±μ, ±μ̄ with positive real and imaginary parts and an infinite
number of purely imaginary roots±ikn , n = 1, 2, 3, . . . satisfying the transcendental
equation

(1 + Dk4n)k2n sin knh + kn

{
K + (1 + Dk4n)η

}
cos knh − ηK sin knh = 0. (26.7)

Although we have considered η as a real quantity, it is possible to find the disper-
sion relation for complex η too. Suppose η = η1 + iη2, with η1, η2 �= 0 are real and
the dispersion equation has a non-zero real root.

When a train of waves from negative infinity (i.e. x −→ −∞) propagates below
the thin ice sheet withmode k0 incident upon the undulating porous sea-bed, thewave
energy will partially reflected by and partially transmitted over the bottomwithmode
k0 and then ψ will satisfy the following infinite requirements:

ψ(x, y) → ψ0(x, y) + Rψ0(−x, y) as x −→ −∞
ψ(x, y) → T ψ0(x, y) as x −→ ∞ , (26.8)

where R denotes the reflection coefficient corresponding to the reflected wave and
T is the transmission coefficient corresponding to the transmitted wave.

For very small undulation, (26.3) can be approximated up to the first order of
smallness, which is

ψy(x, y) − ε
d

dx
{c(x)ψx (x, h)} − η{ψ(x, y) + εc(x)ψy(x, y)} + O

(
ε2

)
= 0 on y = h.

(26.9)

26.3 The Perturbation Technique

In the absence of bottom undulation, there is no energy reflection and total transmis-
sion occurred. As a result, we express ψ(x, y), R and T as
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ψ(x, y) = ψ0(x, y) + εψ1(x, y) + O(ε2)

R(x, y) = εR1(x, y) + O(ε2)

T (x, y) = 1 + εT1(x, y) + O(ε2)

(26.10)

Using the expressions in Eq. (26.10) in Eqs. (26.1)–(26.3) and Eqs. (26.8) and
(26.9), we found that ψ1(x, y) satisfies the following B.V.P.:

∇2ψ1 = 0 in 0 ≤ y ≤ h, − ∞ < x < ∞, (26.11)

Kψ1 +
(
1 + D

∂4

∂x4

)
ψ1y = 0 on y = 0, (26.12)

ψ1y − ηψ1 = V (x) on y = h, (26.13)

where

V (x) ≡ d

dx
{c(x)ψ0x (x, h)} + ηc(x)ψ0x (x, h)

= − ik

K
A (k)

d

dx

{
c (x) eikx

}
− ηk

K
B (k) c (x) eikx , (26.14)

and

A (k) =
(
1 + Dk4

)
k cosh kh − K sinh kh,

B (k) =
(
1 + Dk4

)
k sinh kh − K cosh kh,

(26.15)

The infinite conditions are

ψ1(x, y) ∼
{

R1ψ0(−x, y) as x → −∞,

T1ψ0(x, y) as x → ∞.
(26.16)

26.4 Solution by Using Green’s Integral Theorem

The boundary value problem given in Eqs. (26.11)–(26.13) can be solved by con-
structing a Green’s function G (x, y;α, β) satisfying the following B.V.P.:

∇2G = 0 in 0 ≤ y ≤ h, except at (α, β), where 0 < β < h (26.17)

K G +
(
1 + D

∂4

∂x4

)
G y = 0 on y = 0, (26.18)

G y − ηG = 0 on y = h, (26.19)

G ∼ log r as r =
{
(x − α)2 + (y − β)2

} 1
2 −→ 0, (26.20)
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G ∼ multiple of
1

K

{
K sinh k0y −

(
1 + Dk40

)
k0 cosh k0y

}
eik0|x−α|

as |x − α| → ∞. (26.21)

The condition (26.18) describes the fact that G represents an outgoing wave as
|x − α| → ∞.

To solve the above boundary value problem, we used the method used by Rhodes-
Robinson [16] and we get

G(x, y;α, β) = 2π i{(k0 cosh k0h − η sinh k0h) cosh k0(h − y) + η sinh k0y}
k0 cosh k0hΔ′ (k0)

× {K sinh k0β − (1 + Dk40)k0 cosh k0β}eik0|x−α|

+
∞∑

n=1

2π{(kn cos knh − η sin knh) cos kn (h − y) + η sin kn y}
kn cos knhΔ′ (kn)

× {K sin knβ − (1 + Dk4n)kn cos knβ}e−kn |x−α|

+ 2π i{(λ cosh λh − η sinh λh) cosh λ (h − y) + η sinh λy}
λ cosh λhΔ′ (λ)

×
{

K sinh λβ −
(
1 + Dλ4

)
λ cosh λβ

}
eiλ|x−α|

+ 2π i
{(

λ̄ cosh λ̄h − η sinh λ̄h
)
cosh λ̄ (h − y) + η sinh λ̄y

}

λ̄ cosh λ̄hΔ′ (λ̄
)

×
{

K sinh λ̄β −
(
1 + Dλ̄4

)
λ̄ cosh λ̄β

}
e−i λ̄|x−α|.

(26.22)

For outgoing, nature of G(x, y;α, β) given in (26.18) suggests us to consider

G(x, y;α, β) → 2π i{(k0 cosh k0h − η sinh k0h) cosh k0(h − y) + η sinh k0y}
k0 cosh k0hΔ′ (k0)

× {K sinh k0β − (1 + Dk40)k0 cosh k0β}eik0|x−α|.
(26.23)

Apply Green’s integral theorem on ψ1(x, y) and G(x, y;α, β) in the form

∫

C

(
ψ1

∂G

∂n
− G

∂ψ1

∂n

)
ds = 0, (26.24)

where C is the closed contour taken in positive sense bounding common region of
the interior of the rectangle formed by the line segments y = 0, h(−X ≤ x ≤ X)

and x = ±X (0 ≤ y ≤ h) and the exterior of the circle of radius ρ and centre at
(α, β) and ultimately making X → ∞ and ρ → 0.
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Due to the outgoing nature of ψ1(x, y) and G(x, y;α, β), the only contribution
to the integral (26.24) is from the line y = 0(−X ≤ x ≤ X) and from the circle as
ρ → 0, and finally we obtain the solution of the B.V.P. as

ψ1(α, β) = 1

2π

∫ ∞

−∞
G(x, h;α, β)V (x)dx . (26.25)

where V (x) is given in (26.14).
To get the first-order transmission and reflection coefficients, we take α → ±∞

in the infinite conditions given in (26.16) and (26.23) above and using in (26.25).
Taking α → ∞ in Eqs. (26.16) and (26.23), we have

ψ1(α, β) → T1ψ0(α, β) (26.26)

G(x, h;α, β) → 2π i K

Δ′ (k0)
e−ik0xψ0(α, β). (26.27)

Using (26.27) in (26.25), we obtain T1 as

T1 = ik0{k0A(k0) − ηB (k0)}
Δ′ (k0)

∫ ∞

−∞
c(x)dx . (26.28)

Similarly, taking α → −∞ in Eqs. (26.16) and (26.23), we have

ψ1(α, β) → R1ψ0(−α, β), (26.29)

G(x, h;α, β) → 2π i K

Δ′ (k0)
e−ik0xψ0(−α, β). (26.30)

Using (26.30) in (26.25), we obtain R1 as

R1 = − ik0{k0A(k0) + ηB (k0)}
Δ′ (k0)

∫ ∞

−∞
c(x)e2ik0x dx, (26.31)

where

A (k0) =
(
1 + Dk40

)
k0 cosh k0h − K sinh k0h,

and

B (k0) =
(
1 + Dk40

)
k0 sinh k0h − K cosh k0h.
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26.5 Solution by Using Fourier Transform Technique

The boundary value problem described by Eqs. (26.11)–(26.13) can be solved easily
by Fourier transform technique to get ψ1, by defining

Ψ1 (ξ, y) =
∫ ∞

−∞
ψ1(x, y)e−iξ x dx . (26.32)

We note that the wave number k is assumed to have a very small imaginary part
so that ψ1 decreases exponentially as x → ∞.

Then Ψ1(ξ, y) satisfies the following B.V.P.:

d2Ψ1

dy2
− ξ2Ψ1 = 0 on 0 ≤ y ≤ h, (26.33)

KΨ1 +
(
1 + Dξ4

)
Ψ1y = 0 on y = 0, (26.34)

Ψ1y − ηΨ1 = V̄ (ξ) on y = h, (26.35)

where

V̄ (ξ) =
∫ ∞

−∞
V (x) e−iξ x dx . (26.36)

Solving the above B.V.P., we have the following expression for Ψ1(ξ, y):

Ψ1 (ξ, y) = V̄ (ξ)

Δ (ξ)

{(
1 + Dξ4

)
ξ cosh ξ y − K sinh ξ y

}
. (26.37)

It is clear that the dispersion relation Δ(ξ) is an even function of ξ and so, by
taking inverse Fourier transform on Ψ1 (ξ, y) defined by

ψ1 (x, y) = 1

2π

∫ ∞

−∞
Ψ1(ξ, y)eiξ x dξ, (26.38)

we will get the first-order potential function as

ψ1 (x, y) = 1

2π

∫ ∞
0

{(
1 + Dξ4

)
ξ cosh ξ y − K sinh ξ y

}

Δ (ξ)

{
V̄ (−ξ)e−iξ x + V̄ (ξ)eiξ x

}
dξ.

(26.39)

The integrand on the right side has poles at the zeros of the dispersion equation
given by Eq. (26.6) and the expression for ψ1 (x, y) can be obtained by finding the
residue at the poles. We consider a contour in the fluid region just below the poles
of the integrand. On rotation of the contour as used in Martha et al. [13], we get the
behaviour of ψ1 (x, y) as x → ∞ and we find
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ψ1 (x, y) −→ i

(
1 + Dk40

)
k0 cosh k0y − K sinh k0y

Δ′ (k0)
V̄ (k0)e

ik0x , (26.40)

where

V̄ (k0) = {k0A (k0) − ηB (k0)}
K

∫ ∞

−∞
c(x)dx . (26.40)

Comparingwith the infinite condition given in (26.16), the first-order transmission
coefficient is given by

T1 = ik0 {k0A (k0) − ηB (k0)}
Δ′ (k0)

∫ ∞

−∞
c(x)dx . (26.41)

Similarly as x → −∞, we get the first-order reflection coefficient as

R1 = − ik0 {k0A (k0) + ηB (k0)}
Δ′ (k0)

∫ ∞

−∞
c(x)e2ik0x dx, (26.42)

where

A (k0) =
(
1 + Dk40

)
k0 cosh k0h − K sinh k0h,

and

B (k0) =
(
1 + Dk40

)
k0 sinh k0h − K cosh k0h.

26.6 Particular Case

Example 1 For progressive wave of mode k0, we consider the shape function c(x) as

c(x) =
{

a sin lx, for
−nπ

l
≤ x ≤ nπ

l
;

0, otherwise;
(26.43)

where a and l are the amplitude of the sinusoidal ripple on the bottom surface and
the ripple wave number, respectively, n being the number of ripple.

On substitution (26.43) in Eqs. (26.41) and (26.42), the first-order reflection and
transmission coefficients are given as follows:

R1 = (−1)n 2iak0l {k0A (k0) + ηB (k0)}(
l2 − 4k20

)
Δ′ (k0)

sin
2k0nπ

l
, (26.44)

T1 = 0, (26.45)

where Δ′ (k0) is the derivative of Δ(k0) given in (26.6).



266 S. Paul and S. De

Example 2 For Progressive wave of mode k0, we consider the shape function c(x)

in the form of an exponentially decaying bottom as

c(x) = ae−μ|x |, (μ > 0) f or − ∞ < x < ∞ (26.46)

where a and μ are the amplitude of the ripple on the bottom surface and the ripple
wave number, respectively. In this case, the top of the elevation lies at the point (0, H)

on either side where it decreases exponentially.
On substitution (26.46) in Eqs. (26.41) and (26.42), the first-order reflection and

transmission coefficients are given as follows:

R1 = −2iak0μ {k0A (k0) + ηB (k0)}(
l2 + 4k20

)
Δ′ (k0)

(26.47)

T1 = 2iak0 {k0A (k0) − ηB (k0)}
μΔ′ (k0)

(26.48)

Example 3 For progressive wave of mode k0, we consider the shape function c(x) as

c(x) = ae−κx2 , (a, κ > 0) for − ∞ < x < ∞ (26.49)

In this case, the bottom undulations are in the form of elevation with Gaussian
profile, the maximum elevation occurring at (0, H).

On substitution (26.49) in Eqs. (26.41) and (26.42), the first-order reflection and
transmission coefficients are given as follows:

R1 = − iak0 {k0A (k0) + ηB (k0)}
Δ′ (k0)

(π

κ

)1/2
e−k20/κ (26.50)

T1 = iak0 {k0A (k0) − ηB (k0)}
Δ′ (k0)

(π

κ

)1/2
(26.51)

26.7 Numerical Results

In the previous section, we have considered three special forms of the bottom undu-
lation. Since a sinusoidal ripple has a significant importance in ocean research, we
studied a sinusoidal patch in the ocean bed for graphical representation of the first-
order reflection coefficient |R1| as a function of the wave number K h.

In Fig. 26.1, |R1| depicted against the wave number K h for D/h4 = 0.3, a/h =
0.1, lh = 1, n = 2 and ηh = 0.0, 0.08, 0.15. It is clear that |R1| is an oscillating
function of K h and the peak value increases with the porous effect parameter. For
a particular porous effect parameter ηh, if the bed wave number is twice the wave
number along the x-axis (l = 2k0), the theory predicts a resonant interaction between
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Fig. 26.1 |R1| as a Function
of K h for Different ηh

Fig. 26.2 |R1| as a Function
of K h for Different D/h4

the bed and free surface validating the theoretical result obtained byMandal andBasu
[11].

In Fig. 26.2, the graph shows the effect of the flexural rigidity of the ice sheet on
propagation of wave for a specific type of porous bottom with ηh = 0.08; a/h =
0.1; lh = 1, n = 2 for four different values of D/h4(= 0, 0.3, 0.7) against K h.
When D/h4 = 0, i.e. when the upper surface of the ocean is free, the first-order
reflection coefficient |R1| is more oscillatory than in the presence of ice sheet, i.e.
when D/h4 �= 0 and the peak value decreaseswith increasing D/h4. Onemore thing
can be observed from this figure that, as the value of D/h4 increases, the number of
poles in |R1| increases.

Figure26.3 depicted here shows the first-order reflection coefficient |R1| against
K h for ηh = 0.05, D/h4 = 0.3, a/h = 0.1, lh = 1 and n = 1, 3, 5. It is clearly
observed that the oscillating nature of |R1| increases with n. The peak value increases
as the number of patches at the bottom increases showing the physical nature of
the reflected wave obtained in (26.44) and the peak value become unbounded for
indefinite value of n.
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Fig. 26.3 |R1| as a Function
of K h for Different n

26.8 Conclusion

Scattering of surface waves by porous bottom undulation in a ocean of finite depth
is investigated. Using a simplified perturbation analysis, the problem is reduced
up to first order. The boundary value problem is solved by two methods: Green’s
integral theorem and Fourier transform technique. First-order reflection and trans-
mission coefficients are obtained in terms of computable integrals and found that
for sinusoidal bottom, the first-order transmission coefficient is identically zero. The
first-order reflection coefficient presented graphically in a number of figures and it is
observed that the reflection coefficient increases with increasing porous effect for an
ice sheet of specific rigidity and the same type of result obtained for different types
of ice cover with various rigidities where the bottom having a fixed porosity. Also for
the sinusoidal bottom, the wave transmission and reflection increases as the ripple
number increases. So far we have considered the real porosity coefficient only, but
in case of complex porosity coefficient η = η1 + iη2 with η1, η2 �= 0, it is found
that the dispersion equation has only one real root as zero, and hence there is no
progressive wave.
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Chapter 27
Numerical Simulations of Natural
Convection and Entropy Generation
in a Square Cavity with an Adiabatic Body

Swapan K. Pandit

Abstract The present work deals with the numerical simulations of natural con-
vection and entropy generation in a two-sided differentially heated square cavity
with an adiabatic square body located at the centre of the cavity. We have applied
our recently proposed higher order compact scheme [1] based on nine-point com-
pact stencil to spatial differencing of the streamfunction-vorticity formulation of the
two-dimensional incompressible viscous flows governed by Navier–Stokes equa-
tions including the energy transport equations. In addition, local entropy generation
distributions are computed using the steady-state values of velocity and temperature.
The present results are compared with numerical results available in the literature
and excellent match is observed in all the cases.

Keywords Natural convection · Entropy generation · Square cavity · Adiabatic
body

27.1 Introduction

Over the past few decades, there have been considerable interests to study the heat
transfer in a thermally driven square cavity due to large number of technical applica-
tions such as packed sphere beds, chemical catalytic reactors, grain storage, geother-
mal reservoirs, solidification of casting, crude oil production, etc. The review of the
natural convection reveals that the available studies could be classified into two cate-
gories. They are natural convection in square cavities with and without the presence
of a block (blockmay be sink, source, or adiabatic) [2, 3].Most of the previous studies
on natural convection considered the classic case of thermal convection between the
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bottom hot and top cold walls, without any obstacles between them [4–6]. This study
was cited by several authors later as a benchmark exercise for validation purposes.

It should be noted that many numerical methods, including finite difference, finite
element, finite volume, and lattice Boltzman methods, have been used to investigate
the steady natural convection in a square cavity. Most of these numerical schemes are
either first-order or second-order accurate in space, particularly the central difference
ones have been used in a large number because of their straight forwardness in
application. Also, whenever there have been attempts to solve for the flows using
higher order [7], they are confined invariably to uniform space grids.

The aim of the present work is to study the hydrodynamic, thermal, and entropy
generation characteristics of a differentially heated square cavity in the presence of
single block using our recently proposed higher order compact scheme.

27.2 Problem

The schematic of a two-dimensional rectangular enclosure with an adiabatic square
body and the coordinate system is shown in Fig. 27.1a. The system consists of a
square enclosure with sides of length L, within which another square solid body with
sides of length W is centered. The bottom wall is kept at a constant high temperature
of Th , whereas the top wall at a constant low temperature of Tc. The left and right
side walls along the horizontal direction are adiabatic. A multi-domain methodology
(see Fig. 27.1b) is used to consider the square body at the center of the computational
domain.
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Fig. 27.1 a Geometry and b Mesh structure of the problem
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27.3 Governing Equations

The governing equations for this problem are the incompressible N–S equations for
the unsteady two-dimensional flows in terms of variable vorticity (ζ ) and stream-
function (ψ), which are supplemented by the energy equation for the nondimensional
temperature T :

− ∂2ψ

∂x2
− ∂2ψ

∂y2
= ζ, (27.1)

1

Pr

∂ζ

∂t
− ∂2ζ

∂x2
− ∂2ζ

∂y2
+ u

Pr

∂ζ

∂x
+ v

Pr

∂ζ

∂y
+ 1

Da
ζ = Ra

∂T

∂x
. (27.2)

∂T

∂t
− ∂2T

∂x2
− ∂2T

∂y2
+ u

∂T

∂x
+ v

∂T

∂y
= 0. (27.3)

If the reference temperature T0 is taken as being equal to Tc, the dimensionless
boundary conditions for the present problem are specified as follows:

u = v = ψ = 0,
∂T

∂y
= 0 at left wall,

u = v = ψ = 0,
∂T

∂y
= 0 at right wall

and

u = v = ψ = 0, T = 1 at bottom wall and

u = v = ψ = 0, T = 0 at top wall.

The different entropy parameters, i.e., Local entropy generation due to heat trans-
fer (ST ) and Local entropy generation due to fluid friction (SF ), can be written in
nondimensional form based on the local thermodynamic equilibrium of linear trans-
port theory [8] as follows:

ST =
(

∂T

∂x

)2

+
(

∂T

∂y

)2

(27.4)

SF = γ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+
(

∂u

∂y
+ ∂v

∂x

)2 ]
(27.5)

where the parameter γ in Eq. (27.5) is called irreversibility distribution ratio and is
defined as

γ =
[

αm

LΔT

]2(
μT0

k

)
. (27.6)
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27.4 Results and Discussions

To access the accuracy of the present numerical approach, we have studied the bench-
mark problem for the differentially heated square cavity with the hot left wall and
cold right wall in the presence of adiabatic top and bottom walls, similar to the case
reported by Ilis et al. [9]. We have computed the maximum value of local entropy
generation due to heat transfer (l.h.t.max) and the maximum value of local entropy
generation due to fluid friction (l.f.f.max). The results in Fig. 27.2 in terms of entropy
generation due to heat transfer and fluid friction are in excellent agreement with the
work [9].
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Fig. 27.2 Local entropy generation due to a heat transfer (ST ) and b fluid friction (SF ) for a cavity
with a hot left wall and cold right wall with adiabatic top and bottomwalls at Ra = 103 for Pr = 0.7
(benchmark problem)
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Fig. 27.4 Local entropy generation due to a fluid friction and b heat transfer in a cavity with an
adiabatic body at center for Ra = 103

Figure27.3 shows the streamlines and isotherms corresponding to the steady-state
solution. The streamlines form four symmetric vortices circulating in the clockwise
and counter-clockwise directions. The direction of rotation of these cells is uniquely
determined by the thermal boundary condition. The values of isotherms at the lower
part (0.5 ≤ y ≤ 0) are in the range of 0.5–1, and those at the upper part (0 ≤ y ≤ 0.5)
are in the range of 0–0.5. The thermal gradient in the upper half of the enclosure
is symmetric to that in the lower half and there is also a leftright symmetry about
the vertical centerline. In Fig. 27.4, we have shown the computed values of entropy
generation due to fluid friction and heat transfer. It is seen that the maximum value of
local entropy generation due to heat transfer (l.h.t.max) is much more than l.f.f.max.
These maximum values occur at the corner and near the adiabatic body.
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Chapter 28
On an Interface Elliptic Crack

Tushar Kanti Saha and Arabinda Roy

Abstract The three-dimensional problem of an elliptic crack located at the inter-
face between two bonded dissimilar elastic half-spaces and crack faces subjected
to normal pressure equal in magnitude and opposite in direction is considered here.
Considering a Cartesian coordinate system with the xOy-plane coinciding with the
crack plane and origin O coinciding with the crack centre, the mixed boundary con-
ditions on the z = 0 plane give rise to three pairs of dual integral equations. This
typical mixed boundary value problem is solved here analytically for the first time
for normal pressure prescribed on the crack faces. With uniform normal pressure,
the three pairs of dual integral equations are reduced to two sets of dual integral
equations, which further reduce to a Cauchy singular integral equation that is solved
using Plemelj formula. The present work opens up the possibility of further research
work in the field of interface elliptic crack located at the interface of bonded elastic
or piezoelectric solids.

Keywords Interface elliptic crack · Analytical solution · Dual integral equation ·
Cauchy singular integral equation · Plemelj formula

28.1 Introduction

The problem of two semi-infinite dissimilar elastic bodies joined along the interface
plane with a crack embedded in the interface is of immense practical importance. The
problem represents the idealization of two dissimilar elastic solids welded together
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with cracks developed along the weld plane owing to faulty joining techniques. The
motivation of such study lies in its application to the fracture of layered composites,
as such materials are being used in wide range of engineering field in recent years.

The studyof 2D interface crackproblemswas initiated byWilliams [1]. Thereafter,
Mossakovsky and Rykba [2] initiated the study of 3D interface crack problems.
Several studies havebeen carried out since then in thefield of interface crackproblems
both in 2D and in 3D (see [3–18]). In the field of 3D interface crack problems, most
of the works carried out so far are confined to the case of a penny-shaped crack (see
e.g. [7–12]). Other than the work of Shifrin et al. [18], which gives an analytical–
numerical solution to the problem, no other work is found in the literature regarding
interface elliptic crack. In the present study, we have attempted to give an exact
analytical solution to the problem considered.

The problem considered here is that of determining the displacement field in
the vicinity of an elliptic crack situated at the interface of two half-spaces of dif-
ferent elastic materials bonded together along their common plane boundary. The
deformation in the two half-spaces is a result of the application of a symmetrically
distributed pressure to the faces of the crack. The approach of Roy and Saha [20]
has been adopted to reduce the mixed boundary value problem to three pairs of dual
integral equations. On suitable transformations from Cartesian to polar coordinates,
these three pairs of dual integral equations reduce to two pairs for the special case of
the crack faces subjected to uniform normal pressure. These two pairs of dual inte-
gral equations are similar to those obtained earlier by Lowengrub and Sneddon [12].
Hence, following the same method, the analytical solution for the displacement field
is obtained by reducing the pair of integral equations to a Cauchy singular integral
equation and using Plemelj formula (see [19] for solution of such singular integral
equations).

28.2 Formulation of the Problem

Let the elliptic crack occupies the region (see Fig. 28.1)

S : x2

a2
+ y2

b2
≤ 1; z = 0 (a is the semi-major axis and b is the semi-minor axis of the ellipse)

(28.1)

The equation of elastic equilibrium is as follows:

(λ0 + μ) ∇∇ · u + μ∇2u = 0 (28.2)

where λ0, μ are the elastic constants and u is the displacement vector. Solution of
this equation can, in general, be expressed in terms of three harmonic potentials and
are unique and complete. However, the choices of the harmonic functions are not
unique and are often dictated by the nature of the problem. Consequently, a number
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Fig. 28.1 Geometry of the
problem

of representations of u are possible. Here, we take the displacement field in terms of
three scalar potentials φ, ψ , χ [21, 22] as

u = ∇φ − z∇ψ + (3 − 4ν)kψ + ∇ × (kχ) (28.3)

where ν is the Poisson’s ratio, and φ,ψ andχ satisfy the three-dimensional Laplace’s
equation

∇2(φ,ψ, χ) = 0 (28.4)

Let z > 0 be occupied by the medium (to be denoted by (I)) with elastic
constants λ01, μ1, ν1 and the displacement field in this medium be denoted by
u1 = (u1, v1, w1). Similarly, let z < 0 be occupied by the medium (II) with elas-
tic constants λ02, μ2, ν2 and the corresponding displacement field be denoted by
u2 = (u2, v2, w2).

Similarly, let the scalar potentials in the two media be denoted by (φ1, ψ1, χ1)

and (φ2, ψ2, χ2), respectively.
The solutions of the Laplace’s equation (28.4) in the two media are as follows:

(
φ j , ψ j , χ j

) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
(
Pj , Q j , R j

)
exp [i(ξ x + ηy) − λz] dξdη (28.5)

where j = 1 for medium I and 2 for medium II and Pj , Q j and R j are the functions
of ξ , η and λ = √

ξ2 + η2.

We assume that the lower and upper faces of the crack are subjected to a prescribed
pressure τ 0zz . The conditions satisfied inside the crack area are

(i) τ
(1)
zz (x, y, 0+) + τ 0zz = 0, (ii) τ

(2)
zz (x, y, 0−) + τ 0zz = 0

(iii) τ
(1)
zx = τ

(2)
zx = 0, (iv) τ

(1)
zy = τ

(2)
zy = 0

⎫
⎬

⎭
∀(x, y) ∈ S

(28.6a)
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The conditions satisfied on the crack plane (z = 0) outside the crack area are

(i) τ
(1)
zx − τ

(2)
zx = 0, (ii) τ

(1)
zy − τ

(2)
zy = 0, (iii) τ

(1)
zz − τ

(2)
zz = 0

(iv) u(1)
x − u(2)

x = 0, (v) u(1)
y − u(2)

y = 0 (vi) u(1)
z − u(2)

z = 0

}

∀(x, y) /∈ S

(28.6b)

In addition to these conditions, the stress and displacement should vanish at infinity.
Satisfying the boundary conditions, we get

2λμ1P1 = μ1(3 − 4ν1)Q1 + μ2Q2
2λμ2P2 = −μ1Q1 − μ2(3 − 4ν2)Q2

R2(ξ, η) = −μ1

μ2
R1(ξ, η) (28.7)

Using the integral representations (28.5) in (28.3), and utilizing the boundary con-
ditions (28.6a, 28.6b) together with (28.7), we arrive at three pairs of dual integral
equations. We recast these integral equations to a desired format by the following
substitutions step by step:

(1) κ1 = 3 − 4ν1, κ2 = 3 − 4ν2, Γ = μ2
μ1

(28.8)

(2) A1(ξ, η) = −λP1(ξ, η)

B1(ξ, η) − A1(ξ, η) = κ1Q1(ξ, η)

κ−1
1 C1(ξ, η) = −λR1(ξ, η)

⎫
⎪⎪⎬

⎪⎪⎭
(28.9)

(3) W (ξ, η) = 1
2 (κ1κ2 − 1) A1 + {

κ1Γ + 1
2 (κ1κ2 + 1)

}
B1

U (ξ, η) = {
κ1Γ + 1

2 (κ1κ2 + 1)
}

A1 + 1
2 (κ1κ2 − 1) B1

V (ξ, η) = (1 + Γ ) C1(ξ, η)

⎫
⎪⎪⎬

⎪⎪⎭
(28.10)

α = (κ1 − 1) Γ − (κ2 − 1)

β = (κ1 + 1) Γ − (κ2 + 1)

γ = (κ2+Γ )(1+κ1Γ )
1+Γ

t (x, y) = (κ2 + Γ ) (1 + κ1Γ ) κ1μ
−1
1 τ 0zz (x, y)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(28.11)

so that, αU (ξ, η) + βW (ξ, η) = (κ2 + Γ ) (1 + κ1Γ ) [(κ1 − 1) A1 + (κ1 + 1) B1]

and, βU (ξ, η) + αW (ξ, η) = (κ2 + Γ ) (1 + κ1Γ ) [(κ1 + 1) A1 + (κ1 − 1) B1]

}

(28.12)

Finally, we have the following three pairs of dual integral equations:

1

2π

∫ ∞
−∞

∫ ∞
−∞

λ−1 [iξU (ξ, η) + iηV (ξ, η)] exp [i(ξ x + ηy)] dξdη = 0, ∀(x, y) /∈ S

(28.13a)
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1

2π

∫ ∞
−∞

∫ ∞
−∞

[
iξ {βU (ξ, η) + αW (ξ, η)} + iηγ V (ξ, η)

]
exp [i(ξ x + ηy)] dξdη = 0,

∀(x, y) ∈ S (28.13b)

1

2π

∫ ∞

−∞

∫ ∞

−∞
λ−1 [iηU (ξ, η) − iξV (ξ, η)] exp [i(ξ x + ηy)] dξdη = 0, ∀(x, y) /∈ S

(28.14a)

1

2π

∫ ∞

−∞

∫ ∞

−∞
[
iη {βU (ξ, η) + αW (ξ, η)} − iξγ V (ξ, η)

]
exp [i(ξ x + ηy)] dξdη = 0,

∀(x, y) ∈ S (28.14b)

1

2π

∫ ∞

−∞

∫ ∞

−∞
W (ξ, η) exp [i(ξ x + ηy)] dξdη = 0, ∀(x, y) /∈ S (28.15a)

1

2π

∫ ∞
−∞

∫ ∞
−∞

λ [αU (ξ, η) + βW (ξ, η)] exp [i(ξ x + ηy)] dξdη = t (x, y) , ∀(x, y) ∈ S

(28.15b)

Transforming to cylindrical polar coordinate system through the following transfor-
mations

(ξa, ηb) = (k cosχ, k sin χ) , k ∈ (0,∞) , χ ∈ [0, 2π ] ;

and

(x, y) = (ar cos θ, br sin θ) , r ∈ [0, 1] , θ ∈ [0, 2π ] ;

k =
(

a2ξ2 + b2η2
)1/2

, χ = tan−1
(

ηb

ξa

)
, r =

(
x2

a2 + y2

b2

)1/2

,

λ2 =
(
ξ2 + η2

)
= k2

b2

(
1 − k20 cos

2 ξ
)

, k20 =
(
1 − b2

a2

)
,

or, λ = k

b
Δ(k0) , where Δ(k0) =

(
1 − k20 cos

2 χ
)1/2 ;

and using the following result of Bessel functions Jn(·)

exp (±i z cos θ) =
∞∑

n=0

εn (±i)n Jn (z) cos nθ where, εn =
{
1, n = 0
2, n < 0
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we have, for the special case of crack faces subjected to uniform pressure, the fol-
lowing reduced pairs of integral equations:

∫ ∞

0
kW C

0 (k) J0 (kr) dk = 0, (r > 1) (28.16a)

∫ ∞

0
k2

(
αU C

0 (k) + βW C
0 (k)

)
J0 (kr) dk = πab2t0

I C
0,0

, (0 ≤ r ≤ 1) (28.16b)

and,
∫ ∞

0
kU C

0 (k) J1 (kr) dk = 0, (r > 1) (28.17a)

∫ ∞

0
k2

(
βU C

0 (k) + αW C
0 (k)

)
J1 (kr) dk = 0, (0 ≤ r ≤ 1) (28.17b)

where U c
0 and W c

0 are the first cosine terms in the Fourier expansion of U (ξ, η)

and W (ξ, η), respectively; I C
0,0 = 1

2

∫ 2π

0
Δ(k0) dχ ; and t0 is the equivalent form of

t (x, y) for uniform pressure τ0.

28.3 Analytical Solution of the Pairs of Integral Equations

The pairs of integral equations (28.16a, 28.16b) and (28.17a, 28.17b) are similar in
form to those of a penny-shaped crack at the interface of two dissimilar semi-infinite
elastic bodies (see Eqs. (2.19)–(2.22) of [12]). Hence, we adopt the technique of
Lowengrub and Sneddon [12] for the solution of the above pairs of integral equations.
We assume the solutions of U C

0 (k) and W C
0 (k) as

⎧
⎪⎪⎨

⎪⎪⎩

kUC
0 (k) =

∫ 1

0
ψC
0 (ρ) cos (kρ) dρ =

√
π

2

∫ 1

0
ψC
0 (ρ) (kρ)1/2 J−1/2 (kρ) dρ

and, kW C
0 (k) =

∫ 1

0
φC
0 (ρ) sin (kρ) dρ =

√
π

2

∫ 1

0
φC
0 (ρ) (kρ)1/2 J1/2 (kρ) dρ

(28.18)

where the functions are to be such that φC
0 (−ρ) = −φC

0 (ρ) and ψC
0 (−ρ) =

ψC
0 (ρ) if

∫ 1

−1
ψC
0 (ρ) dρ = 0.

Now, putting λC
0 (x) = ψC

0 (x) + iφC
0 (x) and writing 2

π
C + i ab2t0

E(k0)
x = Q (x), the

pairs (28.16a, 28.16b) and (28.17a, 28.17b) reduce to the following singular integral

http://dx.doi.org/10.1007/978-81-322-2547-8_2
http://dx.doi.org/10.1007/978-81-322-2547-8_2
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equation:

βλC
0 (x) + 1

iπ

∫ −1

1

αλC
0 (ρ)

ρ − x
dρ = Q (x) (−1 ≤ x ≤ 1) (28.19)

Q (−x) = Q (x) (28.20)

The Cauchy singular integral equation (28.19) can be solved using Plemelj formula
(see Muskhelishvili [19]). In the present case, we obtain the solution as follows:

λC
0 (x) = ab2βt0(

β2 − α2
)

E (k0)
Z (x) (−ω + i x) (28.21)

where the function Z(t) is determined by the formula

Z (t) =
√

β2 − α2 [R (t) + i F (t)] = (α + β) X+ (t) = (β − α) X− (t) (28.22)

R (t) = cos

(
ω ln

1 − t

1 + t

)
, F (t) = sin

(
ω ln

1 − t

1 + t

)
(28.23)

X (z) = (z − 1)iω (z + 1)−iω (28.24)

ω = 1

2π
ln

β + α

β − α
= 1

2π
ln

μ2κ1 + μ1

μ1κ2 + μ2
(28.25)

Once λc
0 is obtained, ψc

0 and φc
0 are obtained as real part and imaginary part of

λc
0, respectively. Substituting these in (28.18), we get U c

0 (k) and W c
0 (k) which give

back U (ξ, η) and W (ξ, η). By back substitution in equations (28.10), (28.9), (28.7)
and (28.5), one can then get back the potentials φ j and ψ j step by step.

28.4 Conclusion

The problem of an elliptic crack lying at the interface of two bonded dissimilar elastic
solids has been formulated as three pairs of dual integral Eqs. (28.13a, 28.13b) to
(28.15a, 28.15b). For the special case of the crack faces subjected to uniform normal
pressure, the coefficients associated to the Fourier cosine term V c

0 (k), responsible for
the solution of the potential λ j , vanishes and these three pairs of integral equations
have been reduced to two pairs of integral equations that are similar to those obtained
earlier in the problem of a penny-shaped crack lying at a similar interface. The
two pairs of dual integral equations reduce to Cauchy singular integral equation
following [12]. This singular integral equation is solved through Plemelj formula.
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Thus the solution to the displacement field has been obtained analytically which has
opened up the field of research in interface elliptic crack problems. The quantities of
physical interest, e.g. crack-opening displacement, stress intensity factor and crack
energy release rate, are under consideration.
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Chapter 29
Dynamical Complexity of a Ratio-Dependent
Predator-Prey Model with Strong Additive
Allee Effect

Pallav Jyoti Pal and Tapan Saha

Abstract In this paper, a predator-prey systems of two species is proposed where
prey population is subjected to a strong additive Allee effect and predator popula-
tion consumes the prey according to the ratio-dependent Holling type-II functional
response.Weuse the blow-up technique in order to explore the local structure of orbits
in the vicinity of origin. We have determined the conditions for extinction/survival
scenarios of species. Some basic dynamical results; the stability; phenomenon of
bi-stability and the existence of separatrix curves; Hopf bifurcation; saddle-node
bifurcation; homoclinic bifurcation, and Bogdanov-Takens bifurcation of the system
are studied. Numerical simulation results that complement the theoretical predic-
tions are presented. A discussion of the consequences of additive Allee effect on the
model along with the ecological implications of the analytic and numerical findings
is presented.

Keywords Predator-prey model · Allee effect · Stability and bifurcation · Hopf
bifurcation · Saddle-node bifurcation · Bogdanov-Taken bifurcation

29.1 Introduction

The modeling of predator-prey interactions incorporating Allee effect [2, 3, 11] in
prey population growth has become a broad field of research in ecology for the
understanding of population dynamics. The originator and namesake of Allee effect
was Warder Clyde Allee (1885–1955), an US zoologist and ecologist, who observed
that many animal and plant species suffer a decrease of the per capita rate of increase
as their populations reach small sizes or low densities. In particular, the population
exhibits a “critical size or density,” belowwhich the per capita growth rate is negative
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and the population declines on average, and above which the per capita growth rate is
positive and the population increases on average yielding convergence to the carrying
capacity. This ecological phenomenon is termed as strong Allee effect. The Allee
effect can be caused by difficulties in finding mating partners for sexual reproduction
at small densities, inbreeding depression, demographic stochasticity, or a reduction
in cooperative interactions.

Several algebraic forms to describe the Allee effect are available in the literature,
see Table1 of [2] or Table3.1 of [3]. In this present study, we consider the equation

dx

dt
= x

[
r(1 − x

K
) − m

x + b

]
(29.1)

which is commonly known as an additive Allee effect, where K is the carrying
capacity, r denotes the intrinsic per capita growth rate of the population, m and b are
the Allee effect constants such that K > b. The term subtracted from the logistic
growth term is proportional to m

x+b in Eq. (29.1) is to represent the reduction of the
per capita growth rate of a population due to Allee effect.

We have considered the ratio-dependent functional response where the consump-
tion rate of the predator is a function of the prey-to-predator ratio, not on the absolute
numbers of prey only or both species. There are growing explicit biological and
physiological evidence (cf. [1, 6]) that in many situations when predators have to
search for food (and, therefore, have to share or compete for food), a more suitable
general predator-prey theory should be based on the ratio-dependent theory. To the
best of our knowledge, the effect of additive Allee on a ratio-dependent [5–7, 12,
13] predator-prey model is entirely unaddressed in the literature to date. However,
the effect of multiplicative Allee effect (with single and multiple mechanism) on
ratio-dependent predator-prey model have recently been described in [4, 9]. In this
paper, we offer a contribution toward addressing this major research gap by estab-
lishing complete study of the dynamics including a detailed bifurcation analysis of
our proposed model.

This paper is organized as follows: The model is proposed in Sect. 29.2 along
with some basic results. Section29.3 deals with the mathematical analysis including
existence of equilibria, stability, and Hopf bifurcation analysis of the model. This
section also discusses the stability analysis of the origin (a complicated equilibrium
point). In Sect. 29.4, we prove the existence of a Bogdanov-Takens bifurcation of co-
dimension 2 including a series of other bifurcations, such as saddle-node bifurcation,
Hopf bifurcation, and Homoclinic bifurcations. In Sect. 29.5, we perform numerical
simulation in support of our analytical results anddiscuss themain results of the paper.

29.2 Model Description and Basic Results

In this paper, we consider a predator-prey model where the prey growth is damped
by the strong additive Allee effect given by Eq. (29.1) and the functional response of
predator to prey abundance is ratio-dependent given by cx

x+ϑy where c is the capturing
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rate of the predator and ϑ is the half-saturation constant of the predator functional
response.Accordingly,we are concernedwith the following ratio-dependentHolling-
type II predator-prey model

dx

dt
=

[
r
(
1 − x

K

)
− m

x + b

]
x − cxy

x + ϑy
, (29.2a)

dy

dt
= c1xy

x + ϑy
− dy. (29.2b)

such that x(0) > 0, y(0) > 0. In system (29.2), x(t) and y(t) stands for prey and
predator density at time t , and c1, d are positive constants that stand for conversion
rate of prey into predators biomass, death rate of predator, respectively.

Non-dimensionalization of this model (29.2) can be performed by using the trans-
formation x = K x̂ , y = K

ϑ
ŷ, t = t̂

r and dropping the hats for notational convenience,
we derive

dx

dt
= x(1 − x) − γ x

x + ρ
− αxy

x + y
= f (x, y), (29.3a)

dy

dt
= βxy

x + y
− δy = g(x, y), (29.3b)

where α = c
rϑ

, β = c1
r , γ = m

r , ρ = b
K and δ = d

r are the dimensionless parameters
with the following initial conditions

x(0) = x0 > 0, y(0) = y0 > 0.

The model system (29.3) is not well-defined at the origin and for this we define
f (0, 0) = g(0, 0) = 0. To illustrate the types of Allee effect (cf. [10]) on the
prey population in the absence of predator, we present Fig. 29.1. In this study, we
only consider strong Allee effect on the prey population and we aim to discuss the
complex interplay between the strong additive Allee effect and the predation on the
deterministic population dynamics in continuous time. For strong Allee effect, we
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Fig. 29.1 Blue curve Strong Allee effect for γ > ρ, ρ < 1 and (ρ + 1)2 > 4γ . The parameter
values are α = 0.3, γ = 0.25, δ = 0.5, ρ = 0.2. Red curve Weak Allee effect for γ < ρ. Parameter
values are α = 0.3, γ = 0.25, δ = 0.5, ρ = 0.3
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have γ > ρ, ρ < 1 and (ρ + 1)2 > 4γ . Based on the standard methods we shall
present some preliminary results like positivity and the boundedness of solutions of
the system (29.3) for the case of a strong Allee effect without proof.

Lemma 29.1 Solutions of model (29.3) corresponding to initial conditions (29.4)
are defined on [0,+∞) and remain positive for all t ≥ 0.

Theorem 29.1 All the solutions of system (29.3) that initiate in R2+ are uniformly
bounded with an ultimate bound.

29.3 Stability and Hopf Bifurcation Results

We now find all biological feasible equilibria admitted by system (29.3). For all
parameter values, (0, 0) is an equilibrium point (controversial equilibrium point) of
the system. The equilibria on the positive x-axis are E1(x1, 0) and E2(x2, 0) where

x1 = 1 − ρ − √
D1

2
and x2 = 1 − ρ + √

D1

2

such that D1 = (1+ρ)2−4γ > 0. If γ = 1
4 (1+ρ)2, both the axial equilibria collides

to
( 1
2 (1 − ρ), 0

)
and if γ > 1

4 (1+ρ)2, there exists no axial equilibria on the positive
x-axis. The other equilibria, if exists, are the interior equilibrium point(s). Assume
A = (1−ρ)β− (β − δ)α, B = αρ (β − δ)+β (γ − ρ) > 0 and D2 = A2 − 4βB,
then we have the following three cases:

1. If D2 > 0, then there exists two interior equilibrium points namely, E∗
i ≡

(x∗
i , y∗

i ), where x∗
1 = A−√

D2
2β , x∗

2 = A+√
D2

2β , y∗
i = x∗

i (β−δ)

δ
, i = 1, 2 provided

A > 0 and β > δ.
2. If D2 = 0, β > δ and A > 0 then the two positive equilibrium points E∗

1 and E∗
2

coincide to an unique interior equilibrium point E∗(x∗, y∗) =
(

A
2β ,

A(β−δ)
2δβ

)
.

3. If either D2 < 0, or A < 0, the system (29.3) has no interior equilibrium point
(Fig. 29.2).

29.3.1 Qualitative Property of Solutions Near (0, 0)

We note that system (29.3) is not well defined at E0 ≡ (0, 0). Thus system (29.3)
cannot be linearized at (0, 0) and the standard linear stability analysis method for
(0, 0) is not applicable. In Jost et al. [6] have studied the analytical behavior at (0, 0)
for a common ratio-dependent model by blow-up method. Following [14], we have
studied crucially all possible topological structures of a small neighborhood of (0, 0)
where the trajectories approach the origin along characteristic directions.We redefine
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Fig. 29.2 Graphical illustration of nullclines. Here, the red (blue) curves represent the preda-
tor(prey) nontrivial nullclines. Equilibria are represented by small red circles. The black lines rep-
resent the vertical asymptotes that exists when the nontrivial prey nullcline become an unbounded
curve. Top panel α = 0.3, γ = 0.25, δ = 0.5, ρ = 0.2, β = 0.9 (black), 1.5 (red) and 2.5
(magenta). Middle panel α = 0.1, β = 0.9, γ = 0.25, δ = 0.5, ρ = 0.2. Lower panel α = 0.2,
β = 0.9, γ = 0.25, δ = 0.5, ρ = 0.2

the derivative as dx
dt = dy

dt = 0 when (x, y) = (0, 0). To be compatible with ecolog-
ical significance, we analyze the behavior of trajectories near E0(0, 0) in presence
of all other critical points. Through time rescaling dt → (x + ρ) (x + y) dτ , we
obtain a polynomial differential equations system topologically equivalent to origi-
nal one in the interior of first quadrant. We introduce polar coordinates (r, θ), setting
x = r cos θ , y = r sin θ , and the polynomial differential equations system reduces
to:

dr

dt
= r2 (H(θ) + o(1)) , (29.4a)

dθ

dt
= r (G(θ) + o(1)) , (29.4b)

where H and G are homogeneous trigonometric polynomials in the variables cos θ

and sin θ such that
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H(θ) = −ρ δ sin3 θ − cos θ sin θ(−ρ (β − δ) sin θ

+ (γ − ρ + α ρ) cos θ) + (ρ − γ ) cos3 θ,

G(θ) = cos θ sin θ((α ρ − ρ δ − ρ + γ ) sin θ

+ (ρ β − ρ δ + γ − ρ) cos θ).

Then, the characteristic equation is given by G(θ) = 0, i.e.,

cos θ sin θ ((α ρ − ρ δ − ρ + γ ) sin θ + (ρ β − ρ δ + γ − ρ) cos θ) = 0. (29.5)

By [14], any trajectory that will tends to origin must tend to it either spirally or along
a fixed direction. This can be characterized from the characteristic equation. Clearly,
ρ (β − δ) + γ − ρ > 0. Then, the following three cases arise:

29.3.1.1 Case 1: α ρ − ρ δ − ρ + γ > 0

In this case, the characteristic equation (29.5) has two roots in 0 ≤ θ ≤ π
2 , namely

θ1 = 0 and θ2 = π
2 .

Theorem 29.2 Suppose that (α ρ − ρ δ − ρ + γ ) > 0. Then

1. there exists ε1 > 0 and r1 > 0 such that there exists a unique orbit of the system
in {(θ, r) : 0 ≤ θ < ε1, 0 < r < r1} tends to (0, 0) along θ1 = 0 as t → +∞,

2. there exists ε2 > 0 and r2 > 0 such that all orbits of the system in{
(θ, r) : 0 ≤ π

2 − θ < ε2, 0 < r < r2
}

that tend to (0, 0) along θ2 = π
2 as

t → +∞.

29.3.1.2 Case 2: α ρ − ρ δ − ρ + γ = 0

In this case Eq. (29.5) has two roots in 0 ≤ θ ≤ π
2 , namely θ1 = 0 and θ2 = π

2 with
θ2 being a real multiple root of multiplicity two of G(θ) = 0.

Theorem 29.3 Suppose that (α ρ − ρ δ − ρ + γ ) = 0. Then

1. there exists ε3 > 0 and r3 > 0 such that there exists a unique orbit of the system
in {(θ, r) : 0 ≤ θ < ε3, 0 < r < r3} tends to (0, 0) along θ1 = 0 as t → +∞,

2. there exists ε4 > 0 and r4 > 0 such that all orbits of the system in{
(θ, r) : 0 ≤ π

2 − θ < ε4, 0 < r < r4
}

that tend to (0, 0) along θ2 = π
2 as

t → +∞.

29.3.1.3 Case 3: α ρ − ρ δ − ρ + γ < 0

In this case, (29.5) has three simple roots, namely θ1 = 0, θ2 = π
2 and θ3 =

arctan −(ρ β−ρ δ+γ−ρ)
α ρ−ρ δ−ρ+γ

. We have exactly the same results as stated in the above theo-
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rems for characteristic directions θ1 and θ2 and we have to study for the other char-
acteristic direction θ3 only. We apply Briot-Bouquet transformation [14] to prove the
following theorem.

Theorem 29.4 Suppose (α ρ − ρ δ − ρ + γ ) < 0. Then there exist ε5 > 0 and
r5 > 0, such that all orbits of the system in {(θ, r) : 0 ≤ |θ − θ3| < ε5, 0 < r < r5}
that tends to (0, 0) along θ3 as t → ∞.

29.3.2 Local Stability of Equilibria and Bifurcation Results

In this section,we focus on investigating the local asymptotic stability of the boundary
equilibria E1 and E2 and interior equilibria E∗

i , i = 1, 2, whenever they exists, by
studying the eigenvalues of the Jacobian matrix evaluated at each equilibrium points.
Furthermore, we also study the existence of Hopf bifurcation around the interior
equilibrium point E∗

2 with α as bifurcation parameter arising when E∗
2 looses its

stability.
E1(x1, 0) is a saddle point having the x-axis as an unstable manifold if interior

equilibria does not exits, otherwise it is an unstable node provide β 	= δ. If β = δ,
the system (29.3) is reduced to the following system by suitable transformation

ż1 = λ11z1 + ||z||2, ż2 = − β

x1
z2

2 + ||z||3,

where λ11 = x1
√

D1
x1+ρ

> 0. It indicates that E1(x1, 0) is a saddle-node (repelling).
E2(x2, 0) is stable if interior equilibria does not exits, otherwise it is a saddle

having stable manifold along x-axis provided β 	= δ. If β = δ, E2 ≡ (x2, 0) of
system (29.3) is a saddle-node (attracting).

The trace and determinant of the Jacobian matrix J ∗
i of the system (29.3) at E∗

i
are given by

T r(J ∗
i )|(x∗

i ,y∗
i ) = − x∗

i

√
D2

β
(
x∗

i + ρ
) − x∗

i y∗
i (β − α)

(
x∗

i + y∗
i

)2 and

det J ∗
i |(x∗

i ,y∗
i ) =

(
2βx∗

i − A
)

x∗
i
2 y∗

i
(
x∗

i + ρ
) (

x∗
i + y∗

i

)2 = (−1)i√D2x∗
i
2 y∗

i(
x∗

i + ρ
) (

x∗
i + y∗

i

)2 .

It clearly shows that, the critical point (x∗
1 , y∗

1 ) is always a saddle point, where as,
the locally asymptotic stability of the critical point (x∗

2 , y∗
2 ) is determined by sign of

trace of J ∗
2 |(x∗

2 ,y∗
2 ). For α < β, T r(J ∗

2 )|(x∗
2 ,y∗

2 ) < 0. Therefore, the system (29.3) will
be locally asymptotically stable around the interior equilibrium point E∗

2 (x∗
2 , y∗

2 ) if
α < β.
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29.3.2.1 Hopf Bifurcation and Its Degeneracy

Consider that ∃ α = α∗ such that T r(J ∗
2 )|(x∗

2 ,y∗
2 ) = 0. Consequently, since

det J ∗
2 |(x∗

2 ,y∗
2 ) > 0, both the eigenvalues of J ∗

2 at (x∗
2 , y∗

2 ) are purely imaginary

given by ±i
√
det J ∗

2 |(x∗
2 ,y∗

2 ,α∗). It has been observed that the transversality condition

for Hopf bifurcation holds, therefore, the system experiences a Hopf bifurcation at
the critical value α = α∗. Further, E∗

2 (x∗
2 , y∗

2 ) is unstable if T r(J ∗
2 )|(x∗

2 ,y∗
2 ) > 0. It

is to be noted that the computation of explicit expression for α∗ in terms of system
parameters other than α is a very cumbersome task and is not carried out here. How-
ever, it may be observed that, whenever α < α∗, the positive interior equilibrium
E∗
2 of system (29.3) is a locally asymptotically stable node and for α > α∗, E∗

2 is
an unstable focus through a Hopf bifurcation that occurs around E∗

2 due to the sta-
bility changes from stable to unstable at the critical value α = α∗. We will employ
a numerical example to illustrate the fact discussed above.

Degeneracy of Hopf bifurcation point can be determined by computing Lyapunov
coefficients or by deriving normal form with the help of central manifold argument.
If it is nondegenerate then we have only one limit cycle around E∗

2 in the vicinity of
α = α∗ and if it is degenerate then we have to compute the multiplicity of the focus
E∗
2 at α = α∗. We have observed numerically that the first Lyapunov coefficient is

positive.

29.3.2.2 Saddle-Node Bifurcation

Theorem 29.5 The system (29.3) undergoes a saddle-node bifurcation around E∗ ≡
(x∗, y∗) when ρ = ρ∗ where ρ∗ = −β+α β−α δ+2 β

√
γ

β
and A = (1−ρ)β − (β −δ)α

provided A > 0, α (β − δ) + 2 β
√

γ > β and β > α.

Proof Oneof the eigenvalues of the Jacobianmatrix (J ∗, say) evaluated at E∗(x∗, y∗)
will be zero iff det J ∗|(x∗,y∗) = 0, which gives ρ = −β+α β−α δ+2 β

√
γ

β
= ρ∗, say.

The other eigenvalue is given by T r (J ∗) = − x∗
1 y∗

1 (β−α)

(x∗
1+y∗

1)
2 which will be negative

in order to ensure a saddle-node bifurcation implying β > α. The eigenvectors of

J ∗ and (J ∗)T associated to the eigenvalue 0 is given by Λ21 =
(

δ
α−δ

, 1
)T

and

Λ22 =
(
−β (β−δ)

α δ
, 1

)T
, respectively. Now, ΛT

22[Fρ(E∗, ρ∗)] = −2 (β−δ)γ Aβ2

α δ (A+2 ρ∗ β)2
	= 0

and ΛT
22[D2F(E∗, ρ∗)(Λ21,Λ21)] 	= 0. Thus by using Sotomayor’s theorem, we

conclude that, the system experiences a saddle-node bifurcation around E∗ at the
bifurcation value ρ = ρ∗. This means that, there are no equilibria for ρ < ρ∗ and
there are two equilibria namely E∗

i ≡ (x∗
i , y∗

i ), i = 1, 2 for ρ > ρ∗, one of which is
saddle point and the other is a node.
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29.4 Bogdanov-Takens Bifurcation

In this section, we discuss the Bogdanov-Takens bifurcation of the model system
(29.3) by using the methods in [8]. We assume that the conditions β > δ, A >

0, A2 = 4βB hold for which the two interior equilibria E∗
1 and E∗

2 merge into

the nonhyperbolic critical point E∗
(

A
2β ,

A(β−δ)
2βδ

)
. Under these conditions it can be

shown that E∗ is a saddle node whenever α 	= β; attracting if β > α and repelling
if β < α. We assume α = β = α∗. In this case, the Jacobian matrix corresponding
to the linearization of (29.3) at E∗ has two zero eigenvalues. Our first task is to
investigate the nature of the critical point E∗ under the conditions α = β = α∗ and
δ = δ∗.

Using the following transformation x1 = x − x∗, y1 = y − y∗, x∗ = A/2β, and
y∗ = A(β − δ)/2βδ, we get

ẋ1 = p̄10x1 + p̄01x2 + p̄20x21 + p̄11x1x2 + p̄02x22 + O(||x ||3) (29.6)

ẋ2 = q̄10x1 + q̄01x2 + q̄20x21 + q̄11x1x2 + q̄02x22 + O(||x ||3) (29.7)

where p̄i j = 1
i ! j !

∂ i+ j f

∂xi
1∂x j

2

, q̄i j = 1
i ! j !

∂ i+ j g

∂xi
1∂x j

2

at E∗ and 1 ≤ i + j ≤ 2. Using a series of

transformations, we reduce the system (29.3) to

dω1

dt
= ω2, (29.8)

dω2

dt
= ρ1ω

2
1 + ρ2ω1ω2 + O(||ω||3), (29.9)

where ρ1 = p̄01q̄20+ p̄10 ( p̄20 − q̄11)− p̄210( p̄11−q̄02)
b1

+ p̄02 p̄310
p̄201

and ρ2 = − p̄10
p̄01

( p̄11+
2q̄02) + 2 p̄20 + q̄11 when ρ1ρ2 	= 0. Hence, the critical point E∗ is a cusp of co-
dimension 2, i.e., a Bogdanov-Takens singularity. This shows that for parameters
(α, δ) in a neighborhood of (α∗, δ∗), the model system (29.3) undergoes BT bifur-
cation at E∗.

Now our task is to derive the generic normal unfolding of BT singularity. Consider
α = β = α∗ + λ1, δ = δ∗ + λ2 where λ1 and λ2 is very small. Then in a sufficiently
small neighborhood of (x∗, y∗, λ∗), there exists a parameter dependent nonlinear
smooth invertible variable transformations, smooth invertible parameter changes,
and a direction preserving time reparametrization, which together reduce the system
(29.3) to the following normal form

dξ1

dτ
= ξ2, (29.10)

dξ2

dτ
= μ1 + μ2ξ1 + ξ21 + sξ1ξ2, (29.11)
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where s = ±1. The expressions of μ1, μ2 and the transversality condition of a
Bogdanov-Takens bifurcation are not presented here for the lack of space.

Assume that s = −1. There exists a neighborhood of (μ1, μ2) = (0, 0) in R2 so
that the bifurcation plane is divided into four regions by the following curves

1. SN+ = {
(μ1, μ2) : μ2

2 = 4μ1, μ2 < 0
}
,

2. SN− = {
(μ1, μ2) : μ2

2 = 4μ1, μ2 > 0
}
,

3. H = {
(μ1, μ2) : μ1 = 0, μ2 < 0

}
,

4. H L = {
(μ1, μ2) : μ1 = − 6

25μ
2
2 + O(μ2

2), μ2 < 0
}
,

where SN represents a saddle-node bifurcation curve having two branches SN+ and
SN− corresponding to μ2 < 0 and μ2 > 0 respectively, H is the Hopf bifurcation
curve and H L is theHomoclinic bifurcation curve. For the case s = +1, the local rep-
resentations of bifurcation curves in a small neighborhood of (μ1, μ2) = (0, 0) will
be obtained by using the linear transformation of coordinates (ξ1, ξ2, t, μ1, μ2) →
(ξ1,−ξ2,−t, μ1,−μ2).

29.5 Conclusion

The Allee effect has been shown to be very common in population dynamics. In
this paper we have proposed a ratio-dependent predator-prey model with a strong
additive Allee effect in prey population growth. We have shown that the trajectories
approach the origin along characteristic directions divide a neighborhood of the
origin into a finite number sectors. We have observed that the origin is always a
point of attraction (cf. Fig. 29.3). For a certain set of parameters, the total extinction,
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Fig. 29.3 Top panel Origin is an attractor for α = 0.3 ((α ρ − ρ δ − ρ + γ ) > 0), α = 0.25
((α ρ − ρ δ − ρ + γ ) = 0) and α = 0.2 ((α ρ − ρ δ − ρ + γ ) < 0) with other parameter values
β = 0.9, γ = 0.25, δ = 0.5, ρ = 0.2. Lower panel For α = 0.3, β = 2.5, γ = 0.25, δ = 0.5,
ρ = 0.2, origin is a global attractor
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Fig. 29.4 Phase portraits in the (x, y) plane. Top panel When λ1 = 0, λ2 = 0, the unique
degenerate interior equilibrium point E∗ is a cusp of codimension 2. Middle panel When
λ1 = 0.190685425, λ2 = −0.151314575, there exists a limit cycle. Lower panel When λ1 =
0.200385425, λ2 = −0.0164314575, there is a homoclinic orbit (shown by red solid curve). The
parameter values are α = 1.009314575 = β, γ = 0.08, δ = 0.505, ρ = 0.07

population coexistence or the oscillating coexistence of population are observed. The
bi-stability scenario is detected. Two singularities (0, 0) and E∗

2 can be local attractor
at the first quadrant, or a limit cycle coexists around E∗

2 with a locally asymptotically
stable point (0, 0). Both the basins of attractions are separated by a separatrix and the
trajectories near the separatrix curve are extremely sensitive to the choice of initial
condition. We have shown that the model exhibit codimension two bifurcations near
a Bogdanov-Takens singularity, which produces a series of bifurcation like Hopf
bifurcation, saddle-node bifurcation, Homoclinic curve when two parameters vary
near the interior equilibrium point for some specific parameter values (cf. Fig. 29.4).
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Chapter 30
A Simple Theoretical Approach to the Fermi
Energy Under Size Quantization
with Quantum Mathematical Modelling
in Nanostructured Materials

Subhamoy Singha Roy

Abstract In modern days, with the advent of MBE,MOCVD, FLL and other exper-
imental techniques, low-dimensional structures having quantum confinement in one,
two and three dimensions such as ultrathin films, inversion layers, quantumwires and
dots, have attracted much attention, not only for their potential in uncovering new
phenomena in nanostructured electronics but also for their interesting devices appli-
cation in heterostructure-based various materials, that are being currently studied
because of the enhancement of carrier mobility and such quantum confined sys-
tems find ex-digital networks, optical modulators and also in other devices. In this
paper, an effort is made to study the Fermi-Diracs distribution function in degenerate
semiconductors forming band tails ( fs) on the basis of a newly formulated electron
dispersion law ( f0 is the well Fermi-Dirac function) and also it will be of much more
interest, to investigate the Fermi-Dirac distribution function under the condition of
carrier degeneracy, since it will help my revise in transport coefficients and electron
dynamics in electronic devices made of degenerate semiconductors (n-type GaAs as
an example).

Keywords Fermi energy · Nanostructured materials · Fermi-Dirac distribution

30.1 Introduction

In this context, I wish to note that the formation of band tails in degenerate semicon-
ductors is an experimental fact and often explained by the overlapping of the impurity
band with the conduction and valance bands. Kane and Bonch-Bruevich have inde-
pendently developed a semi-classical theory of band tailing in semiconductors having
unperturbed parabolic energy bands. Kane’s semi-classical model, considering the
parabolic density of states (DOS), was used to explain the experimental findings of
tunnelling and the optical absorption edges in heavily doped semiconductors. Unlike
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Kane, in this paper I have used the realistic picture of the variation of kinetic energy
of the electron with the local point in space coordinates. This kinetic energy is then
averaged over the entire region of variation presumptuous a Gaussian-type potential
energy and furthermore the investigational results for the Fermi energy [1–10].

30.2 Theoretical Background

The Fermi-Dirac probability density function provides the probability that an energy
level is occupied by a fermion which is in thermal equilibrium with a large reservoir.
Fermions are by definition particles with half-integer spin (1/2, 3/2, 5/2, …). The
conservative Fermi-Dirac distribution function is given by [11–13]

f0(E) = 1

1 + exp
[(

E − E f
)
/kB T

] , (30.1)

where E is the total energy of electron as measured from the edge of the conduction
band in the vertically upward direction, E f is the corresponding Fermi energy, kB is
the Boltzmann constant and T is the temperature and the general expression of the
carrier density in a semiconductor is obtained by integrating the product of the density
of states with probability density function over all possible states. For electrons in
the conduction band the integral is taken from the bottom of the conduction band,
labelled Ec to the top of the conduction band.

Now the concentration in n-type non-degenerate semiconductor can be written as

n =
top of the conduction band∫

EC

n(E) dE =
top of the conduction band∫

EC

gc(E) f (E) dE (30.2)

f (E) is the Fermi function.

n =
∫ ∞

EC

gc(E) f (E) dE . (30.3)

Now the three-dimensional n-type and p-type non-degenerate semiconductor can
be written as

n =
∫ ∞

EC

8π
√
2

h3 m∗3/2
e

√
E − EC

1

1 + exp[(E − EF )/kT ] dE (30.4)

p =
∫ EV

−∞
gv(E) [1 − f (E)] dE (30.5)

and p =
∫ EV

−∞
8π

√
2

h3 m∗3/2
h

√
EV − E

1

1 + exp [(EF − E) /kT ]
dE . (30.6)
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Now in the degenerate semiconductors, forming band tails, the electron energy at
a particular point (r) is given as

E = �
2k2/2m∗

c + V (r̄) , (30.7)

where � = h/2π, h is Planck constant, k is the wave vector of the electron and m∗
c

is the effective electron mass at the edge of the conduction band and V (r) is the
impurity potential at a local point (r).

The potential energy can be written as [5–7]

F(V ) = 1
√

πη2e

exp

(
− V 2

η2e

)
, (30.8)

where ηe is the screening potential. I wish to note that the Gaussian function for the
impurity potential distribution has been derived by many authors [4–6].

The average kinetic energy of the whole system is obtained by averaging the local
kinetic energy fluctuation as represented by

∫ E

−∞
(E − V ) F(V ) dV =

(
�
2k2

2mc

) ∫ E

−∞
F(V ) dV . (30.9)

As the function F(V ) is the Gaussian distribution with limits V of extending from
−∞ to +∞, so in the right-hand side of (30.9), I extend the upper limit of V from
V → E to V → ∞.

Thus from (30.9), I can write

(
�
2k2

2m∗
c

)
= γ (E, ηe) , (30.10)

where

γ (E, ηe) =
(

ηe

2
√

π

)
exp

(
− E2

η2e

)
+

[
1

2E

] [
1 + Er f

(
E

ηe

)]

in which Er f (E/ηe) is the error function.
The average effect of V (r̄) on E

(〈E ′〉) can be expressed as

〈E ′〉 =

∫ E

−∞
E ′F(V ) dV

∫ ∞

−∞
F(V ) dV

. (30.11)
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From (30.10) and (30.11) can be written as

〈E ′〉 = γ (E, ηe) . (30.12)

I have shown in (30.10) that γ (E, ηe) shows the band tailing effects so the 〈E ′〉
also exists for negative values of E .

The impurity screening potential, ηe is given as

ηe = e2

εd
(4π · Ni/K D)1/2, (30.13)

where

Ni = 1

3π2

(
2m∗

c

�2

)
γ 3/2 (

Ē f , ηe
)

(30.14)

in which Ē f is the Fermi energy corresponding to the average energy 〈E ′〉 in degen-
erate semiconductors forming band tails and

K 2
D = e2

εd
· 1

4π2

(
2m∗

c

�2

)3/2
[

1 + Er f

(
Ē f

ηe

)]

. (30.15)

In the absence of band tails [11–13] I have

Ni = 1

3π2

(
2m∗

c

�2

)3/2

E3/2
f . (30.16)

Comparing (30.13) and (30.16), find as

ηe → 0, γ
(
Ē f , ηe

) = E f . (30.17)

Thus the Fermi-Dirac statistics for degenerate semiconductors having Gaussian
band tails can be written as

f p
(〈E ′〉, Ē f , T

) = 1

1 + exp
[(〈E ′〉 − Ē f

)/
kB T

] , (30.18)

where

〈E ′〉 = 1

2π1/2 ηe exp
(
−E2/η2e

)
+ 1

2
E [1 + Er f (E/ηe)] . (30.19)

It appears from (30.19) that in the absence of band tails ηe → 0, 〈E ′〉 = E
and Ē f = E f respectively. Under this case, (30.18) gets simplified to (30.1) for
Fermi-Dirac distribution function in the absence of band tails. It may be noted from
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(30.19) that 〈E ′〉 and E are not same. Furthermore, due to the screening of the
impurity potential, ηe, the average electron energy 〈E ′〉 of the conduction band
electron is quite different from E . As a result, we find from (30.1) and (30.18)
that f0

(
E, E f , T

)
and f p

(〈E ′〉, Ē f , T
)
are not same. I can, therefore, infer that

the Fermi-Dirac distribution function for degenerate semiconductors forming band
tails possesses additional concentration dependence through screening potential in
addition to the usual E, E f and T dependences.

30.3 Conclusion

For the purpose of numerical computations, Fig. 30.1 shows the parabolic density of
states function with Ec = 0 and the density of states function, the Fermi function as
well as the product of both which is the density of electrons per unit volume and per
unit energy, n(E). The integral corresponds to cross-hatched area under the curve.

Taking n-type GaAs as example, together with the parameters m∗ = 0.067m0,

εd = 99.061ε0, E = 50MeV. Er f (x) = 1− (
at + bt2 + ct3

)
exp

(−x2
)
[14, 15]

and T = 4.2K , where a = 0.34802, b = −0.09587, c = 0.74785, t = (1+ px)−1

and p = 0.47047. I have plotted in Fig. 30.2, f0 and f p as functions of carrier
concentration.

Fig. 30.1 Exposed are the density per unit energy, n(E), and the probability of occupancy, f (E).

The carrier density equals the cross-hatched area under the curve
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Fig. 30.2 The solid plot exhibits the dependence of f p on the carrier concentration for n-GaAs at
4.2K. The dotted plot exhibits the same dependence for f0

The Fig. 30.2 indicates that f0 and f p showalmost a step function varying between
the values 0 and 1, with steps occurring at a lower Ni for f0 and at higher values of
carrier concentration for f p. This implies that effects of carrier concentration on the
distribution functions f0 and f p are more significant in case of f p than that of f0.
Thus, I can conclude that the Fermi-Dirac distribution function f p is more effective
than f0 at higher a value of carrier concentration, when the semiconductor becomes
degenerate as a consequence of heavy doping and forms band tails. Thus I wish to
remark that for degenerate semiconductors in the presence of band tails, the Fermi-
Dirac distribution function f p as given by (30.18) should be used than f0 as given
by (30.1). I can conclude that the experiment should be performed very carefully in
order to obtain the accurate values of the distribution function comparable with the
present theoretical value in heavily doped degenerate semiconductors forming band
tails and it may be noted that the E −k dispersion relation as formulated in this paper.
Since the experimental results are not available in the literature to the best of our
knowledge, I cannot compare our analysis with experiments although the theoretical
results as given here would be useful in analyzing the experimental data when they
appear and can also be used as the technique for probing the band structure in heavily
doped non-parabolic semiconductors [14–20].

Acknowledgments The author is grateful to Kaberi Singha Roy and Arika Singha Roy for helpful
comments that lead to the improvement of the paper.
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Chapter 31
Entropy Generation During Mixed
Convection in a Porous Double-Lid-Driven
Cavity

Swapan K. Pandit, Anirban Chattopadhyay and Sreejata Sen Sarma

Abstract The issue of entropy generation in a vertically two-sided lid-driven square
cavity filled with porous medium for mixed convection heat transfer is analysed
by solving numerically the mass, momentum and energy balance equations, using
Darcy’s law and Boussinesq-incompressible approximation. Two opposite vertical
walls are kept at different temperatures, while the bottom as well as the top walls
is adiabatic. We have used Higher Order Compact (HOC) scheme [1] to discretize
the governing equations. Entropy generation terms involving thermal and veloc-
ity gradients are evaluated accurately based on the elemental basis set via the Pade
approximation method.We have first solved benchmark problem given in [2]. Excel-
lent agreement was obtained between benchmark results and the results that validate
our used computer code.

Keywords Mixed convection · Entropy generation · Double-Lid-Driven

31.1 Introduction

In recent years, the problem of mixed convection in enclosures with various thermal
boundary conditions has been analysed in a number of studies by several researchers.
In addition, the analysis of convective flow and heat transfer in fluid saturated porous
media has also attracted the attentionofmany researchers during the past fewdecades.
This type of flow can be found in grain storage, chemical catalytic reactors, solar
collectors, heat exchangers, solidificationof casting, separationprocesses in chemical
industries, etc.

Very recently, Sivasankaran et al. [3] studied mixed convection flow and heat
transfer in a square cavity with top lid moving filled with fluid saturated porous
medium with sinusoidal temperature distributions on both side walls. They conclude
that the non-uniform heating of both walls is beneficial for improving heat transfer,
as compared to the case of uniform heating. Perusal of the literature reveals that only
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Fig. 31.1 Physical
configuration and coordinate
system

few studies have been reported on entropy generation during convection in enclosures
filled with porous medium. The analysis of entropy generation is a relatively modern
method to evaluate the performance of a thermal system and to arrive at optimum
design criteria based on the principle of “entropy generation minimization” [4]. Heat
transfer processes are inherently an irreversible process and hence some amount of
useful energy is destroyed in the process, leading to a decrease in efficiency of the
system. The “loss” of useful energy due to irreversibility is given in terms of “entropy
generation” based on second law of thermodynamics.

The present study describes numerically the entropy generation due to mixed
convection flow in a square cavity filled with fluid saturated porous medium. The
left and right moving wall have, respectively, the cold and sinusoidal temperature
distribution, while both the top and bottom walls are adiabatic (see Fig. 31.1).

We have used fourth-order compact scheme on non-uniform grids presented in [1]
to discretize the stream function–vorticity formulation of Navier–Stokes equations
with the consideration of Darcy-Forchheimer model. The approach also involves
discretizing the entropy generation equations using not only the nodal values of the
unknown transport variable but also the values of its first derivatives. In turn first
derivatives are discretized by using Pade approximation.

31.2 Governing Equations

The governing equations describing the incompressible viscous flows in a two-sided
lid-driven cavity is in terms of non-dimensional stream function (ψ)-vorticity (ζ )

formulation as follows:

−
(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)
= ζ (31.1)

∂ζ

∂t
− 1

Re
· ∂2ζ

∂y
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ 1

ReDa
ζ = Gr

Re2
∂T

∂x
(31.2)

∂T

∂t
− 1

Re Pr

D2T

∂x2
− 1

Re Pr

∂2T

∂x
+ u

∂T

∂x
+ v

∂T

∂y
= 0 (31.3)
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where V = (u, v) is the velocity vector and T, the temperature.

Ra

(
= gβT L3 (Th − Tc)

vα

)
, Gr

(
= Ra

Pr

)
, Re

(
= V0L

v

)
,

Pr
(
= v

α

)
, Da =

(
= K

L2

)
, Ri

(
= Gr

Re2

)

are, respectively, the Rayleigh number, Grasshof number, Reynolds number, Prandlt
number, Darcy number andRichardson numberwith V0, L , βT , K , v are respectively
reference velocity, cavity length, thermal expansion coefficient, permeability of the
porous medium and kinematic viscosity. The dimensionless boundary conditions are
as follows:

u = 0, v = 1 and T = 0 for x = 0 and 0 ≤ y ≤ 1
u = 0, v = 1 and T = sin(πy) for x = 1 and 0 ≤ y ≤ 1

u = 0, v = 0 and
∂T

∂y
= 0 for y = 0 and 0 ≤ x ≤ 1; u = 0, v = 0 and

∂T

∂y
= 0

for y = 0 and 0 < x < 1; u = 0, v = 0 and
∂T

∂y
= 0 for y = 1 and 0 ≤ x ≤ 1.

In addition, entropy parameters such as local entropy generation due to heat trans-
fer (ST 1) and local entropy generation due to fluid flow

(
S f 1

)
can be written in non-

dimensional form based on the local thermodynamic equilibrium of linear transport
theory [5], as follows:

ST1 =
(

∂T

∂x

)2

+
(

∂T

∂y

)2

(31.4)

S f 1 = Γ

[{
u2 + v2

}
+ Da

[

2

{(
∂u

∂x

)2

+
(

∂v

∂x

)2
}

+
(

∂u

∂y
+ ∂v

∂x

)2
]]

(31.5)

where the parameter Γ in Eq. (31.5) is called irreversibility distribution ratio and is
defined as

Γ =
[

α2

k(ΔT )2

] (
μT0

k

)
. (31.6)

where, k is the effective thermal conductivity of the porous medium. α is the
thermal diffusivity, T0 is the bulk temperature, and μ is the dynamic viscosity. ΔT
is the difference between maximum and minimum temperature of the hot wall.
It may be noted here that in present study Γ is taken as 10−2.

31.3 Discretization and Solution Procedure

We have discretised the transformed form of governing Eqs. (31.2)–(31.3) compactly
using our recently proposed higher order compact scheme [1] designed for incom-
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pressible viscous fluid flows on non-uniform grids. It is worthwhile mentioning that
we have obtained the entropy generation due to heat transfer and fluid friction by cal-
culating the fourth-order accurate thermal and velocity gradients in the computational
(ξ − η) plane using classical Pade approximation which is given as follows:

1

6

(
φξ

)
(i−1, j) + 4

6

(
φξ

)
(i, j) + 1

6

(
φξ

)
(i+1, j) = φ(i+1, j) − φ(i−1, j)

2h
1

6

(
φη

)
(i, j−1) + 4

6

(
φη

)
(i, j) + 1

6

(
φη

)
(i, j+1) = φ(i, j+1) − φ(i, j−1)

2k

whereφ stands for temperature and velocity variables. Here, h and k are, respectively,
the uniform step lengths along horizontal and vertical directions in the computational
plane.

The system of algebraic equations resulting from discretization of temperature
equation, vorticity equation and stream function equation are solved in sequence
using a decoupled algorithm in an outer–inner iteration procedure. In all of these
computations, we have used biconjugate gradient stabilized method (BiCGStab)
without preconditioning.

31.4 Results and Discussions

To assess the numerical accuracy of our computer code, we have compared the results
of the problem described in Ilis et al. [2]. We have computed the maximum value of
local entropy generation due to heat transfer (l.h.t.max) and the maximum value of
local entropy generation due to fluid friction (l.f.f.max). An excellent match is seen
(see Fig. 31.2).

The working fluid is chosen with Prandlt number Pr= 0.7 and is fixed throughout
the study. The physical system consists of both the moving vertical walls along
upward direction in which the shear and buoyancy forces are aiding each other on
the right wall, whereas they are opposite on the left wall. So the circulation of the
eddy is based on the dominant one. We have computed the results for three different

Fig. 31.2 Comparison of local entropy generation due to heat transfer and fluid friction. a Ilis et
al. [2]. b Present
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Fig. 31.3 Stream line contour for Ri=0.1

Fig. 31.4 Temperature contour for Ri=0.1

Fig. 31.5 Entropy generation due to fluid friction for Ri=0.1

Das in both the cases of lower and higher Ris. Streamlines show two circulating
cells in which a clockwise rotating cell is induced by shear force near the left wall
and an anticlockwise rotating cell near the right wall. At lower Da, Da=0.001 for
Ri=0.1, two symmetrical vortex formed while that symmetricity breaks down with
the increase of Da (see Fig. 31.3). It is seen from the isotherms that the horizontal
thermal gradients exist in the upper half mid-plane of the cavity. For higher Da, it
clustered near the central zone. It is also seen (see Figs. 31.4 and 31.8) that the steeper
thermal gradients in the mid-plane of the cavity disappear with the increase of the
Richardson number. There is a significant change in streamline contours with the
increase of Ri, i.e. Ri = 100. At Richardson number Ri=100, the right cell occupies
the majority of the cavity (see Figs. 31.5, 31.6, and 31.7).

From the entropy generation contour it is seen that the maximum value of local
entropy generation occurs considerably higher due to heat transfer (l.h.t.max) for
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lower Ri in all the three cases. It is also observed that for a given Ri, the fluid friction
value (l.f.f.max) is increasing with the increasing values of Da (Figs. 31.9 and 31.10).

Fig. 31.6 Entropy generation due to heat transfer for Ri=0.1

Fig. 31.7 Streamline contour for Ri=100

Fig. 31.8 Temperature contour for Ri=100

Fig. 31.9 Entropy generation due to fluid friction for Ri=100
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Fig. 31.10 Entropy generation due to heat transfer for Ri=100

31.5 Summary

The present work involves the computation of incompressible flows in a two-sided
lid-driven cavity using time-dependent compact scheme based on 9-point stencil
to spatial differencing of the stream function–vorticity formulation of the Darcy-
Forchheimer model including the energy transport equations. We have investigated
the steady-state solutions for both parallel motion of the two vertical walls. The
solutions reveal that there is a significant change in increasing Ri values.
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