
A Hybrid CS–GSA Algorithm
for Optimization

Manoj Kumar Naik, Leena Samantaray and Rutuparna Panda

Abstract The chapter presents a hybridized population-based Cuckoo search–
Gravitational search algorithm (CS–GSA) for optimization. The central idea of this
chapter is to increase the exploration capability of the Gravitational search algo-
rithm in the Cuckoo search (CS) algorithm. The CS algorithm is common for its
exploitation conduct. The other motivation behind this proposal is to obtain a
quicker and stable solution. Twenty-three different kinds of standard test functions
are considered here to compare the performance of our hybridized algorithm with
both the CS and the GSA methods. Extensive simulation-based results are pre-
sented in the results section to show that the proposed algorithm outperforms both
CS and GSA algorithms. We land up with a faster convergence than the CS and the
GSA algorithms. Thus, best solutions are found with significantly less number of
function evaluations. This chapter also explains how to handle the constrained
optimization problems with suitable examples.

Keywords Cuckoo search � Gravitational search algorithm � Optimization

M.K. Naik (&)
Department of Electronics & Instrumentation Engineering, Institute
of Technical Education and Research, Siksha ‘O’ Anusandhan University,
Bhubaneswar 751030, India
e-mail: manojnaik@soauniversity.ac.in

L. Samantaray
Department of Electronics & Instrumentation Engineering,
Ajaya Binaya Institute of Technology, Cuttack, India
e-mail: leena_sam@rediffmail.com

R. Panda
Department of Electronics & Telecommunication Engineering,
VSS University of Technology, Burla 768018, India
e-mail: r_ppanda@yahoo.co.in

© Springer India 2016
S. Bhattacharyya et al. (eds.), Hybrid Soft Computing Approaches,
Studies in Computational Intelligence 611,
DOI 10.1007/978-81-322-2544-7_1

3

1 Introduction

Over the decades, the evolutionary computation (EC) algorithms have been suc-
cessfully smeared to solve the different practical computational problems like
optimization of the objective functions [1, 2], optimization of filter parameters [3,
4], optimization of different parameters for improvising image processing results [5,
6], optimal feature selection in pattern recognition [7–9], etc. Aforementioned
engineering applications are basically motivated by the near-global optimization
norm of the evolutionary computational methods. This permits those algorithms to
accomplish the task within a very big search space (of a given problem). However,
certain ECs are not yet investigated for solving a particular tricky efficiently. The
room of the proposed idea is to conduit the slit. It may generate concern among the
readers doing research in this area. There is a strong need to develop new hybrid
algorithms to suit a particular problem in hand. Further, by presenting a widespread
simulation results on the performance of 2 moderately firsthand ECs, we try to
convince the readers of their importance. In this chapter, an attempt is made to
attract the researchers regarding the aptness of the proposed technique for solving
the delinquent of the function optimization.

Many types of heuristic search ECs were proposed by investigators Genetic
algorithm (GA) [10], Ant colony algorithm (ACA) [11], Particle swarm optimi-
zation (PSO) algorithm [12], Bacterial foraging optimization (BFO) algorithm [13],
Cuckoo search (CS) algorithm [14–19], Gravitational search algorithm (GSA) [20],
etc. But a particular algorithm is not efficient to solve different types of optimization
problems. They never provide us with the best solutions. Certain algorithms offer
best solutions for particular (given) problems only. Thus, it is necessary to devise
hybridized heuristic population-based optimization methods for solving different
applications efficiently. In this chapter, a population-based hybridized optimization
algorithm is proposed. In this work, the thrust is mainly to cartel the social thinking
capability found in the Cuckoo birds and the local search capability observed in
Gravitational search method. Actually, an efficient optimization scheme is well
umpired by its two key features—(i) exploration and (ii) exploitation. Note that
exploration is the capability of an EC to explore the complete search space, and
exploitation is the skill to congregate to a better result. Combining these two
features, the best solutions can be obtained with less number of function evalua-
tions. Therefore, here an attempt is made to hybridize CS with GSA in order to
provide equilibrium for both exploration and exploitation ability. This chapter
describes the use of both the methods in a balanced manner. Note that hybridized
approach provides significant improvements in the solutions. Interestingly, the CS
is popular for its simplicity and its ability to search for a near-global solution.
Further, GSA provides a better local search method with good initial estimates to
solve a particular problem.

In fact, EC techniques were initially proposed by different researchers as an
approach to the artificial intelligence. Later, it has become more popular and is used

4 M.K. Naik et al.

directly to solve analytical and combinatorial optimization problems. However, the
demerit of an EC method is its slow convergence in solving multimodal optimi-
zation problems, to find near (global) optimum values. In this context, various EC
techniques are proposed. Recently, there has been a strong need to develop new
hybridized EC techniques to find better results. This chapter discusses the appli-
cation of a new hybrid EC method for optimization. Extensive empirical evalua-
tions are important to measure the strength and weaknesses of a particular
algorithm. In this connection, we consider 23 standard benchmark [21] functions.
The proposed CS–GSA algorithm performs better than GSA and CS techniques for
multimodal functions with many local minima. In addition, the proposed algorithm
is faster than GSA. The levy flight incorporated in the algorithm helps us for a
speed to reach the near (global) optimum very quickly. The idea behind this is
simple and straightforward. Thinking ability of the Cuckoo birds is very useful for
exploitation. In this study, we propose the hybridization of these two algorithms.
Here, 23 standard benchmark functions [21] are utilized to relate the performance of
our method. The results are compared to both the CS and GSA algorithms. In this
work, the solutions presented in the chapter reveal the fact that our proposed
algorithm is well suited for function minimization.

For this work, we consider 23 benchmark functions. These functions are given in
Table 1. More details on such test functions are discussed in the Appendix. Note
that the functions F1–F13 refer to the high-dimensional problems, whereas the
functions F1–F7 are known as the unimodal functions. The function F5 is a step
function. This has only one minimum. Further, the function is discontinuous. Here,
the function F7 is coined as the quartic function with noise. Here, rand (0, 1) is
basically a uniformly distributed random variable in the range (0, 1). Here, we also
consider multimodal functions F8–F13 for our experimental study. For these
functions, the amount of local minima surges exponentially with the surge in the
problem size. It is important to solve these types of functions to validate our

Table 1 Unimodal
benchmark functions

Benchmark function

F1 Xð Þ ¼Pn
i¼1 x

2
i

F2 Xð Þ ¼Pn
i¼1 xij j þ

Qn
i¼1 xij j

F3 Xð Þ ¼Pn
i¼1

Pi
j¼1 xj

� �2
F4 Xð Þ ¼ max

i
xij j; 1� i� nf g

F5 Xð Þ ¼Pn�1
i¼1 100 xiþ1 � x2i

� �2þ xi � 1ð Þ2
h i

F6 Xð Þ ¼Pn
i¼1 xi þ 0:5b cð Þ2

F7 Xð Þ ¼Pn
i¼1 ix

4
i þ random 0; 1½ Þ

A Hybrid CS–GSA Algorithm for Optimization 5

algorithm for optimization. The functions F14–F23 are called as the functions with
the low dimension. These functions have only a few local minima. It is relatively
easy to optimize the unimodal functions. However, the optimization is much more
significant in the case of multimodal functions. The ability of an algorithm is well
judged by its behavior, capable of escaping from the poor local optima while
localizing the best near (global) solution. Note that the functions F14–F23 are
multimodal in nature, but are fixed-dimensional functions. These functions are also
very useful for the measure of the accuracy of the hybrid soft computing
techniques.

The organization of the rest of the chapter is as follows: Sect. 1 is the intro-
duction part. Related work is discussed in Sect. 2. The hybridized population-based
CS–GSA algorithm is discussed in Sect. 3. Extensive results and discussions are
presented in Sect. 4. In this chapter, conclusions are presented in Sect. 5.

2 Related Works

The main objective of an optimization algorithm is to find a near or near-global
optimal solution. Several EC algorithms are presented in the literature, but the CS
algorithm [14–16] has its own importance. Interestingly, it consists of less
parameters for search, and so it is a faster optimization method. Recently, Chetty
and Adewumi [22] have done a case study on an annual crop planning problem
using a CS algorithm along with the GA and glow worm swarm optimization
(GSO); the former has shown superior results. Chen and Do [23] used the CS to
train the feed-forward neural networks for predicting the student academic per-
formances. Swain et al. [24] have proposed neural network based on CS and apply
the same for the noise cancellation. Khodier [25] used the CS algorithm for opti-
mization of the antenna array. Although the CS gives better performance, some
researcher adds some more characteristics to the search process. Zhao and Li [26]
proposed opposition-based learning to upsurge the exploration proficiency of the
CS algorithm.

The other non-evolutionary algorithms are also good at finding the near-global
optima. The GSA [20] is founded on the rule of gravity. It has better convergence in
the search space. Saha et al. [27]; Rashedi et al. [28] used the GSA for the filter
design and modeling. Many authors proposed new schemes to enhance the per-
formance of the GSA such as Disruption operator [29], black hole operator [30],
Niche GSA [31], and binary GSA (BGSA) [32].

Every algorithm has its own merits and demerits. To improve search perfor-
mance of one algorithm, some researcher proposed hybrid algorithm combining the
features of more than one algorithm. Mirjalili and Hashim [33] proposed hybrid
algorithm PSOGSA by integrating the ability of exploitation in PSO and the ability
of exploration in GSA. Jiang et al. [34] proposed HPSO-GSA for solving economic

6 M.K. Naik et al.

emission load dispatch problems by updating the particle position with PSO
velocity and GSA acceleration. Ghodrati and Lotfi [35] proposed hybrid algorithm
CS/PSO by combining the idea of cuckoo birds awareness of each other position
via swarm intelligence of PSO. A hybrid algorithm on GSA–ABC was proposed by
Guo [36] to update the ant colony with the help of an artificial bee colony algorithm
(ABC) and GSA. Sun and Zhang [37] have proposed GA–GSA hybrid algorithm
for image segmentation based on the GA and GSA. Yin et al. [38] proposed a
hybrid IGSAKHM approach for clustering by combining K-harmonic means
(KHM) clustering technique and improved gravitational search algorithm (IGSA).

In this section, we discuss the potential features of two different algorithms used
for optimization.

2.1 Cuckoo Search (CS) Algorithm

Cuckoo search (CS) method is basically a nature-inspired technique. This method is
introduced by Yang and Deb [14–17]. The CS is inspired by an interesting event
how the Cuckoo bird leaves eggs in the nest of another horde bird. The available
host nests are fixed. The egg laid by the Cuckoo bird may be exposed by the horde
bird with a probability pa 2 0; 1½ �. Then, the horde birds either throw those eggs or
abandon the present nest. Sometimes, the horde bird builds a new nest in a totally
different location [18] to deceive the Cuckoo bird. Here, each egg in the nest
represents a solution. It is interesting to note here that the CS has similarity to the
well-known hill climbing algorithm. Here, in the Cuckoo search, note that a par-
ticular pattern corresponds to a nest, whereas an individual feature of that pattern
resembles to that of an egg of the Cuckoo bird.

Interestingly, the CS method is founded on the succeeding three more idealized
strategies:

i. Every Cuckoo bird puts an egg at a time, it junk yards its egg in a randomly
selected nest.

ii. Nests having the best class of eggs are carried over to the subsequent
generations.

iii. Always the quantity of available horde nests is fixed. Note that the egg placed
by a Cuckoo bird is exposed by the horde bird with a probability pa Є [0, 1].
Then, the worst nests are revealed and discarded from future calculations.

The CS algorithm is mathematically modeled as follows: For a new search space
Xi t þ 1ð Þ for Cuckoo i for i ¼ 1; 2; . . .;Nð Þ at time t þ 1,

Xtþ1
i ¼ Xt

i þ a� L�evy kð Þ; ð1Þ

A Hybrid CS–GSA Algorithm for Optimization 7

where Xi tð Þ is the current search space at time t, represented as
Xi ¼ x1i ; . . .; x

d
i ; . . .; x

n
i

� �
, a[0 is the step size connected to the range of the

problem, � is the entry wise multiplication, and L�evy kð Þ is the random walk
through the Lévy flight. The Lévy flight [19] provides random walk for step size
from the Lévy distribution L�evy� u ¼ t�k

� �
by considering k such that it satisfies

1\k\3.
Here, time t denotes the number for a recent group (t = 1, 2, 3, …, tmax) and tmax

represents the pre-determined extreme cohort position. Here, the initial values of the
dth attribute of the ith pattern are found by

xdi t ¼ 0ð Þ ¼ rand � udxdi � ldxdi
� �þ ldxdi ; ð2Þ

where ld and ud are called as the lower and the upper search space limits of the dth
attributes, respectively. These attributes are useful for implementations. This
method is used to provide control over the boundary conditions in every calculation
step. Note that the value for the interrelated attribute is restructured, when it exceeds
the allowed search space limits. This is achieved by considering the value for the
nearby limit corresponding to the linked trait. In this discussion, it is seen that the
CS method identifies the best fruitful pattern as the Xbest pattern. This process is
accomplished before starting the iterative search method. Actually, here in the CS
algorithm, the iterative growth part of the pattern matrix initiates by the discovery
step of the U as

U ¼ C 1þ cð Þ � sin p � c=2ð Þ
C 1þc

2

� � � c � 2c�1
2

� �
0
@

1
A

1
c

: ð3Þ

The C in the above expression represents a gamma function and c� 1 ¼ k.
The evolution phase of the Xi pattern is defined by the donor vector v, where

v = Xi. The required step size value is calculated as

stepsized ¼ 0:01 � ud
vd

� �1
c

�ðv� XbestÞ:

Note that u = Ф randn[n] and v = randn[n].
Here, a donor pattern is randomly mutated as

v ¼ vþ stepsized � randn½n�: ð4Þ

In this scheme, the update procedure of Xbest in CS is stated as

Xbest f Xbestð Þ� f Xið Þ: ð5Þ

8 M.K. Naik et al.

It is noteworthy to mention here that the controller constraints of the CS tech-
nique are coined as scale factor (λ) followed by the mutation probability (pa). The
flow chart for the CS algorithm is shown in Fig. 1.

PseudoCode for CS

First identifies the search space-like dimension of search problem ‘n,’ the range of
the objective function, and objective function F(X). Let us choose some important
parameters N, pa, α, λ, tmax, and t = 1. Also, randomly initialize the population of
N host nests Xi tð Þ ¼ x1i ; . . .; x

d
i ; . . .; x

n
i

� �
with n dimension for i = 1, 2, …, N.

Select the fitness function F(X), X = (x1,x2,…,xn)T for n dimension.Select the fitness function F(X), X = (x1,x2,…,xn)T for n dimension.

Generate initial population of N host nests Xi (i = 1, 2, …, N).NNGenerate initial population of N host nests Xi (i = 1, 2, …, N).

Get a cuckoo ‘i’ randomly by Lévy flights, and evaluate the fitness FiF for egg ‘Xi’.Get a cuckoo ‘i’ randomly by Lévy flights, and evaluate the fitness Fi for egg ‘Xi’.

Chose a nest ‘j‘ ’ randomly from N nests, and evaluate the fitness N FjF for egg ‘XjX ’.Chose a nest ‘j’ randomly from N nests, and evaluate the fitness Fj for egg ‘Xj’.

FiF > FjFFi > Fj

Xi = XjX (for minimization problem) or XjX = Xi (for maximization problem)Xi = Xj (for minimization problem) or Xj = Xi (for maximization problem)
YesYes

Abandoned the worst nests with a probability pa. Also keep the best nests.Abandoned the worst nests with a probability pa. Also keep the best nests.

NoNo

Meeting end of criterion?Meeting end of criterion?

No

Return best solution.Return best solution.

YesYes

StartStart

StopStop

Fig. 1 Flow chart of CS

A Hybrid CS–GSA Algorithm for Optimization 9

do {

(a) Get a cuckoo ‘i’ randomly by Lévy flights, and evaluate the fitness Fi for egg Xi.

(b) Chose a nest ‘j’ randomly from N nests, and evaluate the fitness Fj for egg Xj.

(c) If (Fi > Fj)
Replace Xi with Xj for minimization problem, or Replace Xj with Xi for
maximization problem.

End
(d) The worst nests are abandoned with a probability (pa). The new ones are built

and keep the best ones.
(e) t = t +1.

} while (t < (tmax +1)) or End criterion not satisfied).

2.2 Gravitational Search Algorithm (GSA)

The GSA is based on the underlying principle of the Newton’s theory. This was
introduced in [20]. The Newton’s theory states that ‘Every particle in the universe
attracts every other particle with a force that is directly proportional to the product
of their masses and inversely proportional to the square of the distance between
them.’ Note that the force is inversely proportional to the distance between them.

This algorithm is quite interesting and considered as a collection of N agents
(masses) only. Here, the masses relate to the solution of an optimization (given)
problem. It is interesting to note here that the heavier mass has greater force of
attraction. This may be very near to the global optima. Let us initialize the search
space of the ith agent as Xi ¼ x1i ; . . .; x

d
i ; . . .; x

n
i

� �
for i ¼ 1; 2; . . .;Nð Þ, where

n signifies the dimension of the search space. Note that at a time t, the force of
attraction between mass ‘i’ by mass ‘j’ is defined as

Fij tð Þ ¼ G tð ÞMpi tð Þ �Maj tð Þ
Rij tð Þ þ e

xj tð Þ � xi tð Þ
� �

; ð6Þ

where Maj and Mpj are the active and passive gravitational masses connected to the
agent i, G tð Þ is coined as a gravitational constant at a particular time t, and Rij tð Þ is
the Euclidian distance between agents ‘i’ and ‘j,’ which is written as

Rij ¼ Xi tð Þ � Xj tð Þ
�� ��

2: ð7Þ

It is noteworthy to mention here that the gravitational constant G gradually
decreases with respect to the time. This event actually helps us to reach at the
minima in the search space. Therefore, the gravitational constant G is considered as
a function of the initial value G0 together with the time t. The phenomenon can
mathematically be modeled as

10 M.K. Naik et al.

G tð Þ ¼ G0 � e �b
t

tmaxð Þ; ð8Þ

where b is the descending coefficients. Note that tmax is the maximum number of
iterations considered for the simulation work.

Thus, the total amount of the force that acts on the agent i is Fi tð Þ, which can be
computed from Eq. (6) as

Fi tð Þ ¼
XN

j¼1;j 6¼i randj Fij tð Þ: ð9Þ

Here, different masses are computed from the fitness values. Further, the masses
are updated by the following set of equations:

Mai ¼ Mpi ¼ Mii ¼ Mi; i ¼ 1; 2; . . .;N; ð10Þ

mi tð Þ ¼ fiti tð Þ � worst tð Þ
best tð Þ � worst tð Þ ; ð11Þ

Mi tð Þ ¼ mi tð ÞPN
j¼1 mj tð Þ

; ð12Þ

where fiti tð Þ designates the fitness cost of an agent i at a particular time t. Here, best
(t) signifies the best fitness value and worst(t) represents the worst fitness value
among the N agents. Here, the acceleration of agent i at time t can be given by

ai tð Þ ¼ Fi tð Þ=Mi tð Þ; ð13Þ

where Mi tð Þ is coined as the mass of an agent i.
Finally, the velocity and the position of an agent in the search space are com-

puted as given below:

xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ; ð14Þ

and; vi t þ 1ð Þ ¼ randi � vi tð Þ þ ai tð Þ: ð15Þ

Note that the positions are updated iteratively using the above equations till the
GSA algorithm reaches the global or near-global minima. Actually, no further
change in the mass should undergo after attaining the global or near-global minima.
The flow chart for GSA is displayed in Fig. 2.

PseudoCode for GSA

In the beginning, it recognizes the search space, dimension of the search problem
‘n,’ the range of the objective function, and the objective function itself, i.e., F(X).

A Hybrid CS–GSA Algorithm for Optimization 11

Then choose some important parameters N, G0, β, tmax, and t = 1. After choosing
the parameters, randomly initialize the population of N agents (or masses) Xi tð Þ ¼
x1i ; . . .; x

d
i ; . . .; x

n
i

� �
with n dimension for i = 1, 2, …, N.

do {

(a) Evaluate the objective function F(Xi) for i = 1,2,…,N.
(b) Update G(t), best(t), and worst(t) of the current population.
(c) Calculate Mi(t) ,vi(t) and ai(t) for all N agents.
(d) Then calculate the new position Xi(t+1) of agents for i = 1,2,…,N.
(e) t = t +1.

} while (t < (tmax +1)) or End criterion not satisfied).

Select the fitness function F(X), X = (x1,x2,…,xn)T for n dimension.Select the fitness function F(X), X = (x1,x2,…,xn)T for n dimension.

Generate initial population of N agents (masses) Xi (i = 1, 2, …, N).NNGenerate initial population of N agents (masses) Xi (i = 1, 2, …, N).

Evaluate the fitness FiF for each agents Xi Evaluate the fitness Fi for each agents Xi

Update the G, best, and worst of the poulatiot n.Update the G, best, and worst of the poulation.

Meeting end of criterion?Meeting end of criterion?
NoNo

Return best solution.Return best solution.

YesYes

StartStart

StopStop

Calculate M andM a for N agents.NCalculate M and a for N agents.

Update the velocity and position of N agents.NUpdate the velocity and position of N agents.

Fig. 2 Flow chart of GSA

12 M.K. Naik et al.

3 A Hybrid CS–GSA Algorithm

It is well known from the literature that the CS is a heuristic search method based on
evolutionary computational approach. The beauty of the CS algorithm is that it uses
the randomized walk via a Lévy flight, as described in [14, 15]. Here, the Lévy
flight is quite effectual in discovering the search space. Note that the step size is
booked from the Lévy distribution as explained in [19].

Let us choose α as 1 (as a[0). So Eq. (1) is reduced to

Xi t þ 1ð Þ ¼ Xi tð Þ þ L�evy kð Þ: ð16Þ

From the above Eq. (16), it is clearly showed that the new search space (the new
solution) only rest on a Lévy distribution. Let us introduce a term lBest tð Þ, which
provides the best local solution among i = 1, 2, …, N at time t. Here, the lBest tð Þ
can be expressed by

lBest tð Þ ¼ Xj tð Þ
		8 j ¼¼ i;

for which f Xi tð Þð Þ is minimum,

for i ¼ 1; 2; . . .;N at time t:

ð17Þ

Let us again incorporate an additional term (coined as the proportionate term) to
the new solution, thereby incorporating the difference between the current solution
and the local best solution at time t. Therefore, Eq. (16) can be expressed by

Xi t þ 1ð Þ ¼ Xi tð Þ þ L�evy kð Þ � lBest tð Þ � Xi tð Þð Þ: ð18Þ

Further, let us see how every solution differs from the other at time t. In this
sense, the acceleration of an agent i at a time t is used to provide enhancement to the
local search in the GSA algorithm. Once more, we incorporate Eq. (13) in Eq. (18)
as expressed by

Xi t þ 1ð Þ ¼ Xi tð Þ þ L�evy kð Þ � lBest tð Þ � Xi tð Þð Þ þ ai tð Þ: ð19Þ

It is noteworthy to mention here that aiðtÞ is defined in Eq. (13). If we choose α
as the proportionate measure of the step size, then Eq. (19) can be re-organized as

Xi t þ 1ð Þ ¼ Xi tð Þ þ a� L�evy kð Þ � lBest tð Þ � Xi tð Þð Þ þ ai tð Þ: ð20Þ

Thus, Eq. (20) provides the new solution space for Cuckoo Search–Gravitational
Search Algorithm (CS–GSA) from the list of current solutions obtained in this
method. The flow chart for our new hybrid CS–GSA algorithm is shown in Fig. 3.

A Hybrid CS–GSA Algorithm for Optimization 13

PseudoCode for CS–GSA

In the opening, the objective function f Xð Þ with the dimension n is recognized.
Then choose the parameters N, pa, G0, α, λ, β, tmax, and t = 1 to control the
algorithm while in iteration. Let us initialize randomly the population of N horde
nests Xi tð Þ ¼ x1i ; . . .; x

d
i ; . . .; x

n
i

� �
with n dimension for i = 1, 2, …, N at t = 1.

Select the fitness function F(X), X = (x1,x2,…,xn)T for n dimension.

Generate initial population of N host nests (agents) Xi (i = 1, 2, …, N).

Get all N cuckoo randomly by Lévy flights, and evaluate the fitness Fi for egg ‘Xi’

Abandoned the worst nests with a probability pa. Also keep the best nests.

Meeting end of criterion?
No

Return best solution.

Yes

Start

Stop

Update the G, lBest, best and worst of the population.

Calculate M and a for N agents.

Update the new nests (agents)

Fig. 3 Flow chart of CS–GSA

14 M.K. Naik et al.

do {

(f) Evaluate the objective function ()if Χ for i = 1,2,…,N.

(g) Analyze all the fitness functions ()if Χ for i = 1,2,…,N. Then find the

lBest(t) from the Eq.(17).
(h) Update G(t) from the Eq. (8), Mi(t) from the Eq. (12). Then compute

acceleration ai(t) from the Eq. (13).
(i) Then compute the new position of Cuckoo nests by using the Eq. (20).
(j) The worst nests are abandoned with a probability (pa). The new ones

are built. Then, keep the best ones.
(k) t = t +1.

} while (t < (tmax +1) or End criterion not satisfied).

Finally, report the best f Xið Þ with i = 1, 2, …, N, also report the
corresponding Xi.

4 Results and Discussions

In this work, the main thrust is to improve the CS algorithm in comparison to the
standard CS methodology. Here, it is also important to bring some improvement
over the GSA. In this context, a new CS–GSA algorithm has been developed in the
previous Section.

4.1 Performance Evaluation Using Standard Benchmark
Functions

In the performance evaluation of the proposed algorithm, we consider 23 standard
benchmark functions [21] displayed in Tables 1, 2 and 3. Note that the convergence
rate of the unimodal benchmark functions is important to validate an optimization
algorithm. These useful functions are listed in Table 1.

It is noteworthy to mention here that the multimodal benchmark functions also
have a significant role in validating optimization algorithms. These multimodal
functions have many local minima, so it is difficult to optimize these functions.
Such functions are displayed in Table 2 and are used for the performance measure.

Further, multimodal functions with fixed dimensions are also considered in this
work. These types are displayed in Table 3. Generally, these functions have similar
performances for all types of optimization algorithms.

A Hybrid CS–GSA Algorithm for Optimization 15

Table 2 Multimodal benchmark functions

Benchmark function

F8 Xð Þ ¼Pn
i¼1 x2i � 10 cos 2pxið Þ þ 10

 �

F9 Xð Þ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x

2
i

q� �
� exp 1

n

Pn
i¼1 cos 2pxið Þ� �þ 20þ e

F10 Xð Þ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1

cos xiffi
i
p
� �

þ 1

F11 Xð Þ ¼ p
n

10 sin pyið Þ þ
Xn

i¼1 yi � 1ð Þ2 1þ 10sin2 pyiþ1
� �
 �þ yn � 1ð Þ2

n o
þ
Xn

i¼1 u xi; 10; 100; 4ð Þ
F12 Xð Þ ¼ 0:1 sin2 3px1ð Þ þ

Xn

i¼1 xi � 1ð Þ2
n

1þ sin2 3pxi þ 1ð Þ
 �þ xn � 1ð Þ2�
1þ sin2 2pxnð Þ
 �
þXn

i¼1 u xi; 5; 100; 4ð Þ

Table 3 Multimodal benchmark functions with fixed dimension

Benchmark function n

F13 Xð Þ ¼P30
i¼1�xi sin

ffiffiffiffiffiffi
xij j

p� �
30

F14 Xð Þ ¼ 1
500þ

P25
j¼1

1
jþ
P2

i¼1 xi�aijð Þ6
� ��1 2

F15 Xð Þ ¼P11
i¼1 ai � x1 b2i þbix2ð Þ

b2i þbix3þx4

� �2 4

F16 Xð Þ ¼ 4x21 � 2:1x41 þ 1
3 x

6
1 þ x1x2 � 4x22 þ 4x42 2

F17 Xð Þ ¼ x2 � 5:1
4p2

x21 þ
5
p
x1 � 6

� �
þ

10 1� 1
8p

� �
cos x1 þ 10

2

F18 Xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21
�h

�14x2 þ 6x1x2Þ� � 2x1 � 3x2ð Þ2
h

� 18�32x1 þ 12x21 þ 48x2
�

�36x1x2 þ 27x22
�þ 30

�

2

F19 Xð Þ ¼ �P4
i¼1

ci exp �
P3
j¼1

aij xj � pij
� �2 !

3

F20 Xð Þ ¼ �P4
i¼1

ci exp �
P6
j¼1

aij xj � pij
� �2 !

6

F21 Xð Þ ¼ �P5
i¼1 X� aið Þ X� aið ÞTþci

 ��1 4

F22 Xð Þ ¼ �P7
i¼1 X� aið Þ X� aið ÞTþci

 ��1 4

F23 Xð Þ ¼ �P10
i¼1 X� aið Þ X� aið ÞTþci

 ��1 4

16 M.K. Naik et al.

In this simulation study, the range of xi is different for different functions. The
ranges of these functions are described in Appendix. The choice of parameters is
important for evaluating the optimization algorithm. We have chosen best param-
eters for our study based on extensive simulation results. These parameters are used
for all the three algorithms. The parameter setting for GSA, CS, and CS–GSA is
shown in Table 4, for validating the benchmark functions given in Tables 1, 2 and 3.

The benchmark functions are categorized into three different tables as unimodal
test functions (F1–F7), multimodal test functions (F8–F12), and multimodal test
functions with fixed dimensions (F13–F23). The ranges of the objective functions
and the global minima are given in the Appendix. The search dimension ‘n’ is taken
as 10, 50 for the unimodal functions given in Table 1 and multimodal benchmark
functions given in Table 2. The search dimension ‘n’ for the multimodal functions
with fixed dimension is given in Table 3.

The performance evaluations of GSA, CS, and CS–GSA for the unimodal
benchmark functions are presented in Tables 5 and 6.

From Table 5, it is observed that the performance of GSA for the unimodal
benchmark functions F1, F2, and F4 with n = 10 seems to be better than the other
two algorithms. But for other functions, the performance of the CS–GSA algorithm
is better. For all benchmark functions, final results are reflected as the ‘Best,’
‘Median,’ and ‘Ave’ among 50 independent runs. Here, ‘Best’ implies the best
fitness value obtained from 50 independent runs. ‘Median’ refers to the median of
50 fitness values obtained from 50 independent runs. The ‘Ave’ denotes the average
value of 50 fitness values obtained from 50 independent runs. Within a function, the
performance of GSA, CS, and CS–GSA is compared. The best solutions among all
three algorithms are shown in boldface letters.

The performance evaluation of GSA, CS, and CS–GSA for the unimodal
benchmark functions F1 to F7 with n = 50 is displayed in Table 6. Here, the
proposed CS–GSA algorithm performs well as compared to other algorithms.

A comparison of these algorithms for the unimodal benchmark functions F4 and
F7 with n = 50 is shown in Fig. 4. It is seen that CS–GSA offers us best values
compared to other algorithms. Note that the maximum number of iterations con-
sidered here is 1000. Here, GSA is the second best.

The performance evaluation of GSA, CS, and CS–GSA for the multimodal
benchmark functions F8 to F12 with n = 10 is displayed in Table 7. Here, the
proposed CS–GSA algorithm performs well for all functions except F12.

The performance evaluation of GSA, CS, and CS–GSA for the multimodal
benchmark functions F8 to F12 with n = 50 is displayed in Table 8. Here, the new

Table 4 Parameter setting
for GSA, CS, and CS–GSA
for benchmark functions (F1–

F23)

Number of agents (masses or nests) N = 50

Number of maximum iteration tmax = 1000

Initial gravitational constant G0 = 100

Mutation probability pa = 0.25

Constant α = 1, β = 20, λ = 1.5

A Hybrid CS–GSA Algorithm for Optimization 17

hybrid CS–GSA algorithm performs well for all functions except F9. For the
function F9, GSA performs better.

A comparison of these algorithms for the multimodal benchmark functions F8

and F12 with n = 50 is shown in Fig. 5. It is observed that the performance of the
CS–GSA algorithm is better compared to other algorithms. Here, the maximum
number of iterations is 1000. From Fig. 5, it is observed that the GSA is the second
contestant.

The performance evaluation of GSA, CS, and CS–GSA for the multimodal
benchmark functions F13 to F23 with fixed dimension is displayed in Table 9. Here,
the new hybrid CS–GSA algorithm performs well for all functions except F14 and
F15. For the function F14, CS performs better than GSA and CS–GSA algorithms.
For the function F15, GSA performs better than CS and CS–GSA algorithms. From
the knowledge of the ‘Best,’ ‘Median,’ and ‘Average’ values, one can claim that
CS–GSA can be used for optimization of such type of functions.

A comparison of these algorithms for the multimodal benchmark functions F15

and F17 with fixed dimension is shown in Fig. 6. It is observed that the performance
of the CS–GSA algorithm is better compared to other algorithms. In this study, the

Table 5 Performance evaluation of GSA, CS, and CS–GSA for the unimodal benchmark
functions (displayed in Table 1) with n = 10

GSA CS CS–GSA

F1 Best 1.4442e-041 1.6724e-018 3.2886e-042
Median 1.5288e-040 2.2921e-016 5.4848e-039

Average 1.5737e-039 2.2606e-016 8.6919e-027

F2 Best 4.2795e-020 7.2314e-005 9.7964e-020

Median 1.1788e-019 2.2356e-004 4.8926e-019

Average 1.1491e-019 1.1321e-003 7.1335e-016

F3 Best 3.6769 4.4477 2.2928
Median 29.0889 33.4532 7.3735
Average 25.7047 28.9740 18.1172

F4 Best 1.3869e-020 1.7780e-003 6.2616e-019

Median 9.5122e-020 2.6564e-002 1.4920e-018

Average 1.5330e-019 0.2551 1.2400e-012

F5 Best 7.7969 12.4932 7.7306
Median 7.9811 15.1342 8.2032

Average 36.4058 39.2132 35.7741
F6 Best 0 0.0121 0

Median 0 0.0316 0
Average 0 0.1276 0

F7 Best 4.9725e-004 0.0217 4.7790e-004
Median 0.0042 0.0319 9.8222e-004
Average 0.0040 0.0332 0.0011

18 M.K. Naik et al.

Table 6 Performance evaluation of GSA, CS, and CS–GSA for the unimodal benchmark
functions (displayed in Table 1) with n = 50

GSA CS CS–GSA

F1 Best 17.9649 32.9181 17.7891
Median 204.0765 449.6065 210.6723

Average 235.1073 438.9923 235.0924
F2 Best 0.0055 0.2223 0.0063

Median 0.3428 0.4013 0.1391
Average 0.4440 0.6051 0.3131

F3 Best 1.1520e+003 5.4531e+003 1.8343e+003

Median 2.3741e+003 8.0569e+003 2.0492e+003
Average 2.5979e+003 7.9411e+003 2.7163e+003

F4 Best 6.9320 6.0721 4.6871

Median 9.6256 9.7903 6.1135
Average 9.9463 8.9143 5.9281

F5 Best 486.0379 473.9232 290.1693
Median 1.4569e+003 7.8442e+003 1.0498e+003
Average 1.8367e+003 7.8224e+003 1.6808e+003

F6 Best 84 221 231

Median 447 463 422
Average 492.3667 498.4113 460.2314

F7 Best 0.0704 0.1822 0.0150
Median 0.1502 0.1890 0.0347
Average 0.1659 0.3907 0.0361

0 200 400 600 800 1000
10

0

10
1

10
2

 F4

 Iteration

 B
es

t-
so

-f
ar

CS-GSA

GSA
CS

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 F7

 Iteration

 B
es

t-
so

-f
ar

CS-GSA

GSA
CS

Fig. 4 Performance comparison of GSA, CS, and CS–GSA for the unimodal functions F4 and F7

with n = 50

A Hybrid CS–GSA Algorithm for Optimization 19

Table 7 Performance evaluation of GSA, CS, and CS–GSA for the multimodal benchmark
functions given in Table 2 with n = 10

GSA CS CS–GSA

F8 Best 0.9950 2.2075 0
Median 2.9849 5.0666 0.9950
Average 3.5276 5.5697 0.8203

F9 Best 4.4409e-015 1.1146e-008 8.8818e-016
Median 4.4409e-015 1.5178e-006 4.4409e-015
Average 4.4409e-015 1.4342e-004 4.1179e-015

F10 Best 1.9788 1.9305 1.5922
Median 4.3241 4.8115 2.0312
Average 4.4531 5.1299 2.0954

F11 Best 4.7116e-032 2.4777 2.8302e-004

Median 4.1906e-005 3.2834 0.0012
Average 0.0585 3.0768 0.0028

F12 Best 1.3498e-032 1.7255e-005 5.630 × 10−19

Median 1.3498e-032 1.0319e-004 1.106 × 10−18

Average 1.3498e-032 1.0445e-002 3.666 × 10−4

Table 8 Performance evaluation of GSA, CS, and CS–GSA for the multimodal benchmark
functions given in Table 2 with n = 50

GSA CS CS–GSA

F8 Best 19.9081 48.6626 6.0071
Median 36.9289 53.0276 12.2704
Average 35.7943 52.6585 13.6570

F9 Best 0.3921 1.8128 0.2686
Median 0.4660 2.3657 1.9741

Average 0.5669 2.6760 1.9784

F10 Best 155.8180 206.0770 185.4950

Median 204.1554 281.4023 199.5789
Average 203.1253 286.6942 201.3960

F11 Best 0.7625 3.7943 0.9637

Median 2.4986 5.0298 1.7126
Average 2.7001 6.0326 2.3431

F12 Best 23.2165 26.3823 24.5563

Median 44.2780 41.5956 39.8451
Average 44.8839 48.2117 47.2341

20 M.K. Naik et al.

maximum number of iterations is 1000. From Fig. 6, it is seen that the GSA is the
second contestant.

The performances of the proposed algorithm are summarized as follows:

• For the unimodal test functions (F1–F7): When the best results are concerned,
CS–GSA outperforms GSA and CS. When the median and the average values
are concerned, GSA outperforms CS–GSA and CS. However, CS–GSA has
significant improvements over the CS.

• For the multimodal test functions (F8–F12): For functions F8 to F12 (except F11),
the results are dominated by the CS–GSA over GSA and CS.

• For the multimodal test functions with fixed dimensions (F13–F23): The result in
these functions is not varying so much, but still CS–GSA outperforms the other
two algorithms GSA and CS.

The convergence of four benchmark functions, out of 23 such functions, is
shown in Figs. 4, 5 and 6 using CS–GSA, GSA, and CS. Here, we consider 1000
iterations. In most of the cases, CS–GSA has shown a better convergence rate than
GSA and CS. Reason is that CS has the ability to abandon the worst solutions,
while searching for the best solutions quickly. From Figs. 4, 5 and 6, it is observed
that CS–GSA provides best fitness function values compared to GSA and CS
algorithms, because of the fact that the GSA has the ability to provide the best local
search mechanism. Hence, by combining these features of CS and GSA in the
hybridized CS–GSA, we get the best results.

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

 F8

 Iteration

 B
es

t-
so

-f
ar

CS-GSA

GSA
CS

0 200 400 600 800 1000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

 F12

 Iteration

 B
es

t-
so

-f
ar

CS-GSA

GSA
CS

Fig. 5 Performance comparison of CS–GSA, CS, and GSA for the multimodal functions F8 and
F12 with n = 50

A Hybrid CS–GSA Algorithm for Optimization 21

4.2 Solving the Constrained Optimization Problems

In this Section, we discuss the use of CS–GSA algorithm for solving the con-
strained optimization problems. Here, we consider two different constrained opti-
mization issues. These examples are very interesting and may create interest among
the readers to explore the idea further.

Table 9 Performance evaluation of GSA, CS, and CS–GSA for the multimodal benchmark
functions given in Table 3 with fixed dimension

GSA CS CS–GSA

F13 Best −1.7928e+003 −2.5756e+003 −1.7211e+003
Median −1.6104e+003 −2.3242e+003 −1.8677e+003

Average −1.5480e+003 −2.3359e+003 −1.9888e+003

F14 Best 0.9980 0.9980 0.9980
Median 3.9711 0.9985 0.9984

Average 5.1573 1.0009 1.0351

F15 Best 6.4199e-004 9.4845e-004 7.4790e-004

Median 0.0038 0.0016 0.0012

Average 0.0042 0.0018 0.0014

F16 Best −1.0316 −1.0314 −1.0316

Median −1.0316 −1.0305 −1.0316
Average −1.0316 −1.0302 −1.0316

F17 Best 0.3980 0.3979 0.3980
Median 0.3995 0.3997 0.3994

Average 0.3999 0.4007 0.4001

F18 Best 3.0000 3.0014 3.0000
Median 3.0000 3.0169 3.0000
Average 3.0000 3.0235 3.0000

F19 Best −3.8628 −3.8623 −3.8628
Median −3.8596 −3.8593 −3.8628
Average −3.8593 −3.8590 −3.8624

F20 Best −3.3220 −3.2779 −3.3220
Median −3.3220 −3.0968 −3.3220
Average −3.3220 −3.1105 −3.3220

F21 Best −10.1532 −8.8466 −10.1532
Median −2.9417 −4.2211 −10.1531
Average −5.4547 −4.6898 −7.3326

F22 Best −10.4029 −9.3378 −10.4029
Median −10.4029 −5.1803 −10.4029
Average −10.4029 −5.4778 −10.4029

F23 Best −10.5364 −8.7847 −10.5364
Median −10.5364 −5.1446 −10.5364
Average −10.2659 −5.4009 −10.5364

22 M.K. Naik et al.

4.2.1 Minimizing the Function

Here, we present an application of the proposed CS–GSA algorithm for function
minimization. This is a constrained optimization problem. We like to minimize the
function given in Eq. (21) [39]

f xð Þ ¼ x1 � 10ð Þ2þ 5 x2 � 12ð Þ2þ x43 þ 3 x4 � 11ð Þ2þ 10x65 þ 7x26 þ x47 � 4x6x7
� 10x6 � 8x7

ð21Þ

subject to the following constraints [39]:

g1 xð Þ ¼ 127� 2x21 � 3x42 � x3 � 4x24 � 5x5	 0

g2 xð Þ ¼ 282� 7x1 � 3x2 � 10x23 � x4 þ x5	 0

g3 xð Þ ¼ 196� 23x1 � x22 � 6x26 þ 8x7	 0

g4 xð Þ ¼ � 4x21 � x22 þ 3x1x2 � 2x23 � 5x6 þ 11x7	 0

� 10� xi� 10; i ¼ 1; 2; 3; 4; 5; 6; 7:

For the evaluation of constrained problem described in this section, we have
taken parameter for various algorithms given in Table 4. From Table 10, it is seen
that the proposed CS–GSA scheme is well suited for this constrained optimization
problem. The attribute values obtained by CS–GSA (marked as bold face letters)

0 200 400 600 800 1000
10

-4

10
-3

10
-2

10
-1

 F15

 Iteration

 B
es

t-
so

-f
ar

CS-GSA

GSA
CS

0 200 400 600 800 1000

10
0

 F17

 Iteration

 B
es

t-
so

-f
ar

CS-GSA

GSA
CS

Fig. 6 Performance comparison of CS–GSA, CS, and GSA for the multimodal functions F15 and
F17 with fixed dimension

A Hybrid CS–GSA Algorithm for Optimization 23

seem to be very close to the optimal values, presented in the table for a ready
reference. From Table 11, it is seen that the ‘Best,’ the ‘Median,’ and the ‘Average’
values obtained by CS–GSA (marked as bold face letters) seem to be better than the
other two algorithms.

4.2.2 One-Dimensional (1-D) Recursive Filter Design

Newly, an increasing interest is seen in the application of the EC algorithms for
solving the problems of traditional filter design methods. There is a merit of not
necessitating virtuous first estimate of the filter coefficients. Here, we present the
design of 1-D recursive filters using GSA, CS, and CS–GSA algorithms. Note that
the design of the IIR digital filter is well-thought-out here as a constrained opti-
mization tricky. Inbuilt constraint handling is found to guarantee stability. Here, the
best results are obtained through the convergence of the proposed CS–GSA method
in order to confirm the quality. Interestingly, a faster result is achieved through the
convergence of a meta-heuristic hybrid algorithm coined as CS–GSA algorithm. To
be precise, the proposed constraint management competence makes the proposed
method very eye-catching in the design of 1-D IIR digital filters. Results are
compared to GSA and CS techniques.

Table 10 Comparison of the best solutions given by GSA, CS, and CS–GSA with the optimal
solution for the constrained problem

EV GSA CS CS–GSA Optimal

x1 1.619429 −0.658157 2.169951 2.330499

x2 2.343357 1.408300 2.041937 1.951372

x3 0.965166 −1.128276 −0.936082 −0.477541

x4 2.737996 5.261455 4.052961 4.365726

x5 −0.119048 0.671794 −0.542999 −0.624487

x6 0.406691 0.824787 0.594817 1.038131

x7 0.854488 1.690929 1.462593 1.594227

g1(x) 0.934544 1.370761 3.37333058 4.464147e-05

g2(x) 2.514614e+02 2.650624e+02 2.473260e+02 2.525617e+02

g3(x) 1.591053e+02 2.186001e+02 1.514995e+02 1.448781e+02

g4(x) 0.905996 5.433623 1.650391 7.632134e-06

f(x) 731.535628 761.432542 688.856815 680.630111

‘EV’ stands for the estimated value

Table 11 Comparisons of
the statistical results of GSA,
CS, and CS–GSA for the
constrained problem

Algorithm Best Median Average

GSA 731.535628 736.213432 742.234546

CS 761.432542 776.324511 780.753411

CS–GSA 688.856815 696.062212 699.768549

24 M.K. Naik et al.

The block diagram showing IIR filter optimization is displayed in Fig. 7.
Evolutionary computational technique is very useful for synthesis of digital IIR
filters. The filter coefficients are chosen very accurately using evolutionary algo-
rithms. To reduce the error, the filter coefficients are optimized. Then it is used for
different applications. For this reason, EAs proved to be beneficial for the design of
1-D digital IIR filters. In this section, we discuss the design of 1-D IIR digital filter
design by three fairly new EC methods.

The GSA was used for the design of 1-D recursive filters [27] and IIR filter
design [40]. However, they are silent regarding the constraint treatment and
diminishing tool, which is required to guarantee stability of the 1-D recursive filters.
The design was not considered as the constrained optimization problem. Recently,
the authors in [40] considered this as a constrained optimization work and then
resolved this in designing the 1-D digital IIR filters. In this section, three optimi-
zation algorithms GSA, CS, and CS–GSA are deployed to design 1-D IIR filters.

Note that the system is called as recursive provided the preset output depends on
the present input, the past input, and the past output of the system. So a 1-D system
can be represented as

y mð Þ ¼ x mð Þ; x m� 1ð Þ; . . .; x m�Mð Þ; y m� 1ð Þ; . . .; y m�Mð Þf g: ð22Þ

For the evaluation of our proposed algorithm, let us consider a 1-D recursive
filter transfer function. The transfer function can be represented as

H zð Þ ¼ H0

PS
i¼0 aiz

iPS
i¼0 bizi

; a0 ¼ 1; and b0 ¼ 1: ð23Þ

The stability conditions are described as

H zð Þ ¼ A zð Þ
B zð Þ ; with B zð Þ 6¼ 0; and zj j 	 1: ð24Þ

Plant

Adaptive 1-D
recursive filter

using EC
technique

 x(k)

+

+

+

-
error signal e(k)

y(k)
 output

noise

u(k)

Fig. 7 One-dimensional
(1-D) recursive filter
optimization using EC
methods

A Hybrid CS–GSA Algorithm for Optimization 25

For S = 2, one can write

H zð Þ ¼ H0
1þ a1zþ a2z2

1þ b1zþ b2z2
: ð25Þ

In this section, the objective is to optimize the vector (X), where
X ¼ a1; a2; b1; b2;H0½ �, subject to the constraints given below:

1þ bið Þ[0; and 1� bið Þ[0: ð26Þ

Hence, this problem is known as a constrained optimization problem. Here, an
attempt is made to solve this problem using three different EC algorithms GSA, CS,
and CS–GSA. To evaluate the proposed 1-D recursive function, let us consider Md

as the desired magnitude response of the digital IIR filter expressed as a function of
frequency x 2 0; p½ �:

Md xð Þ ¼
1 if x� 0:05p
1ffiffi
2
p if 0:05p\x� 0:08p
1

2
ffiffi
2
p if 0:08p\-� 0:1p
0 otherwise

2
664 : ð27Þ

Here, our objective is to find H(z), such that it will closely approximate the
desired magnitude response. The approximation can be attained by a fitness
function J such as

J ¼
XP
n¼0

M xð Þj j �Md xð Þ½ �2; ð28Þ

where M xð Þ is the Fourier transform of the H zð Þ, i.e., M xð Þ ¼ H Zð Þ z¼e�jxj and
x ¼ p=Pð Þn.

The results (the filter parameters) are shown in Table 12.

Table 12 Comparisons of the best solution given by GSA, CS, and CS–GSA for the 1-D
recursive filter design. “EP” refers to the estimated parameters

EP GSA CS CS–GSA

a1 0.732505 0.746526 0.883583
a2 0.580788 1.321402 0.741019
b1 −0.852237 −0.928369 −0.982292
b2 −0.274744 −0.197190 −0.134745
H0 0.061419 0.041052 0.050245
1 + b1 0.147762 0.071630 0.017707
1 − b1 1.852237 1.928369 1.982292
1 + b2 0.725255 0.802809 0.865254
1 − b2 1.274744 1.197190 1.134745
J 0.596505 0.617075 0.578251

26 M.K. Naik et al.

From Table 12, it is observed that the filter parameter obtained by CS–GSA
algorithm is better than CS and GSA algorithms. They are optimized using CS–
GSA algorithm to reduce the error. A comparison of the statistical results of GSA,
CS, and CS–GSA for 1-D recursive filter design is presented in Table 13.

From Table 13, it is seen that the ‘Best,’ ‘Median,’ and ‘Average’ values of the
filter parameters for 50 independent runs obtained by CS–GSA algorithm are better
than CS and GSA algorithms. These statistical parameters are obtained using CS–
GSA algorithm for a better performance.

Figure 8 displays the frequency responses of the 1-D recursive filter designed
using CS–GSA, GSA, and CS as the three competitive methods. The above

Table 13 Comparisons of statistical results of GSA, CS, and CS–GSA for 1-D recursive filter
design

Algorithm Best Median Average

GSA 0.596505 0.796212 0.857275

CS 0.617075 0.776405 0.785817

CS–GSA 0.578251 0.669519 0.673789

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 Desired

 w

 A
b

s
(M

d
)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 CS-GSA (J = 0.578251)

 w

 A
b

s
(M

)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 GSA (J = 0.596505)

 w

 A
b

s
(M

)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 CS (J = 0.617075)

 w

 A
b

s
(M

)

Fig. 8 Amplitude responses of 1-D recursive filter of desired and using CS–GSA, GSA, and CS

A Hybrid CS–GSA Algorithm for Optimization 27

amplitude responses are plotted exhausting the solutions achieved by minimizing
J for 50,000 function evaluations, and the parameter is given in Table 4. Note that
in the cited numerical example, the solution attained by utilizing CS–GSA method
offers us a better approximation of the proposed transfer function than latter
methods. It seems closer to that of the desired frequency response. The GSA
method is the second contestant in this work. The performance of the CS–GSA is
quite better than the latter methods. From Fig. 8, we see that the frequency response
attained by utilizing CS–GSA method is better than the frequency responses
exhibited by other two algorithms CS and GSA.

5 Conclusions

In this chapter, the proposed hybrid algorithm CS–GSA outperforms both CS and
GSA algorithms in terms of obtaining best solutions. In fact, the GSA is used to
explore the local search ability, whereas CS is used to speed up the convergence
rate. The convergence speed of the proposed hybrid algorithm is faster than CS and
GSA algorithms. Interestingly, CS simulates the social behavior of Cuckoo birds,
while GSA inspires by a physical phenomenon. This proposal can easily be
extended to develop multi-objective optimization applications by considering dif-
ferent inbuilt constraints. Finally, it may be noted that the better convergence of CS
algorithm and local search ability of the GSA produce good results that are
beneficial.

Appendix: Benchmark Functions

a. Sphere Model

F1 Xð Þ ¼
Xn

i¼1 x
2
i ; �95� xi� 95; and min F1ð Þ ¼ F1 0; . . .; 0ð Þ ¼ 0

b. Schwefel’s Problem 2.22 [21, 42]

F2 Xð Þ ¼
Xn

i¼1 xij j þ
Yn

i¼1 xij j; �12� xi� 12; and min F2ð Þ ¼ F2 0; . . .; 0ð Þ
¼ 0

c. Schwefel’s Problem 1.2

F3 Xð Þ ¼
Xn

i¼1
Xi

j¼1 xj
� �2

; � 90� xi� 90; and min F3ð Þ ¼ F3 0; . . .; 0ð Þ
¼ 0

28 M.K. Naik et al.

d. Schwefel’s Problem 2.21

F4 Xð Þ ¼ max
i

xij j; 1� i� nf g; � 90� xi� 90; and min F4ð Þ ¼ F4 0; . . .; 0ð Þ
¼ 0

e. Generalized Rosenbrock’s Function

F5 Xð Þ ¼
Xn�1

i¼1 100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i
; � 30� xi� 30

min F5ð Þ ¼ F5 0; . . .; 0ð Þ ¼ 0:

f. Step Function

F6 Xð Þ ¼
Xn

i¼1 xi þ 0:5b cð Þ2; � 100� xi� 100; and min F6ð Þ ¼ F6 0; . . .; 0ð Þ
¼ 0:

g. Quartic Function i.e. Noise

F7 Xð Þ ¼
Xn

i¼1 ix
4
i þ random 0; 1½ Þ; �1:28� xi� 1:28

min F7ð Þ ¼ F7 0; . . .; 0ð Þ ¼ 0

h. Generalized Rastrigin’s Function

F8 Xð Þ ¼
Xn

i¼1 x2i � 10 cos 2pxið Þ þ 10

 �

; � 5:12� xi� 5:12

min F8ð Þ ¼ F8 0; . . .; 0ð Þ ¼ 0:

i. Ackley’s Function

F9 Xð Þ ¼ �20 exp �0:2
ffi
1
n

Xn

i¼1 x
2
i

r !
� exp

1
n

Xn

i¼1 cos 2pxið Þ
� �

þ 20þ e

� 32� xi� 32; and min F9ð Þ ¼ F 0; . . .; 0ð Þ ¼ 0:

j. Generalized Griewank Function

F10 Xð Þ ¼ 1
4000

Xn

i¼1 x
2
i �

Yn
i¼1

cos
xiffiffi
i
p
� �

þ 1; � 600� xi� 600

min F10ð Þ ¼ F10 0; . . .; 0ð Þ ¼ 0:

k. Generalized Penalized Function 1

F11 Xð Þ ¼ p
n

10 sin pyið Þ þ
Xn

i¼1 yi � 1ð Þ2 1þ 10 sin2 pyiþ1ð Þ
 �þ yn � 1ð Þ2
n o

þ
Xn

i¼1 u xi; 10; 100; 4ð Þ;

A Hybrid CS–GSA Algorithm for Optimization 29

where

u xi; a; k;mð Þ ¼
k xi � að Þm; xi [a

0;�a\xi\a;

k �xi � að Þm; xi\� a

8><
>: and yi ¼ 1þ 1

4
xi þ 1ð Þ

� 50� xi� 50; and min F11ð Þ ¼ F11 1; . . .; 1ð Þ ¼ 0:

l. Generalized Penalized Function 2

F12 Xð Þ ¼ 0:1 sin2 3px1ð Þ þ
Xn

i¼1 xi � 1ð Þ2
n

1þ sin2 3pxi þ 1ð Þ
 �þ xn � 1ð Þ2�
1þ sin2 2pxnð Þ
 �
þXn

i¼1 u xi; 5; 100; 4ð Þ;

where

u xi; a; k;mð Þ ¼
k xi � að Þm; xi [a

0;�a\xi\a

k �xi � að Þm; xi\� a

8><
>: ; and yi ¼ 1þ 1

4
xi þ 1ð Þ

� 50� xi� 50; and min F12ð Þ ¼ F12 1; . . .; 1ð Þ ¼ 0:

m. Generalized Schwefel’s Problem 2.26

F13 Xð Þ ¼
X30

i¼1�xi sin
ffiffiffiffiffiffi
xij j

p� �
; �500� xi� 500

min F13ð Þ ¼ F13 420:9687; . . .; 420:9687ð Þ ¼ �12569:5:

n. Shekel’s Foxholes Function

F14 Xð Þ ¼ 1
500
þ
X25

j¼1
1

jþP2
i¼1 xi � aij
� �6

 !�1
;�65:536� xi� 65:536

min F14ð Þ ¼ F14 �32;�32ð Þ
 1;

where

aij ¼ �32 �16 0 16 32 �32 � � � 0 16 32
�32 �32 �32 �32 �32 �16 � � � 32 32 32

� �
:

o. Kowalik’s Function

F15 Xð Þ ¼
X11

i¼1 ai �
x1 b2i þ bix2
� �

b2i þ bix3 þ x4

� �2
; � 5� xi� 5

30 M.K. Naik et al.

min F15ð Þ
 F15 0:1928; 0:1908; 0:1231; 0:1358ð Þ
 0:0003075. The coefficients
are displayed in Table 14 [21, 41, 42].

p. Six-Hump Camel-Back Function

F16 Xð Þ ¼ 4x21 � 2:1x41 þ
1
3
x61 þ x1x2 � 4x22 þ 4x42; �5� xi� 5

Xmin ¼ 0:08983;�0:7126ð Þ; �0:08983; 0:7126ð Þ
min F16ð Þ ¼ �1:0316285:

q. Branin Function

F17 Xð Þ ¼ x2 � 5:1
4p2

x21 þ
5
p
x1 � 6

� �
þ 10 1� 1

8p

� �
cos x1 þ 10

� 5� x1� 10; 0� x2� 15

Xmin ¼ �3:142; 12:275ð Þ; 3:142; 2:275ð Þ; 9:425; 2:425ð Þ
min F17ð Þ ¼ 0:398:

r. Goldstein-Price Function

F18 Xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21
�h

�14x2 þ 6x1x2Þ� � 2x1 � 3x2ð Þ2
h

� 18�32x1 þ 12x21 þ 48x2
� �36x1x2 þ 27x22

�þ 30
�

� 2� xi� 2; and min F18ð Þ ¼ F18 0;�1ð Þ ¼ 3:

Table 14 Kowalik’s function
F15

i ai b�1i

1 0.1957 0.25

2 0.1947 0.5

3 0.1735 1

4 0.1600 2

5 0.0844 4

6 0.0627 6

7 0.0456 8

8 0.0342 10

9 0.0323 12

10 0.0235 14

11 0.0246 16

A Hybrid CS–GSA Algorithm for Optimization 31

s. Hartman’s Family

F Xð Þ ¼ �
X4
i¼1

ci exp �
Xn
j¼1

aij xj � pij
� �2 !

; 0� xj� 1; n ¼ 3; 6

for F19(X) and F20(X), respectively. Xmin of F19 ¼ 0:114; 0:556; 0:852ð Þ, and
min F19ð Þ ¼ �3:86. Xmin of F20 ¼ 0:201; 0:150; 0:477; 0:275; 0:311; 0:657ð Þ,
and min F20ð Þ ¼ �3:32.
The coefficients are shown in Tables 15 and 16, respectively.

t. Shekel’s

FamilyF Xð Þ ¼ �Pm
i¼1 X � aið Þ X � aið ÞTþci

 ��1

; m ¼ 5; 7; and 10, for F21;

F22; and F230� xj� 10; xlocal optima
 ai; andF xlocal optima
� �
 1=ci for 1�

i�m:
These functions have five, seven, and ten local minima for F21;F22; and F23,
respectively. The coefficients are shown in Table 17.

Table 15 Hartman function F19

i ai1 ai2 ai3 ci pi1 pi2 pi3
1 3 10 30 1 0.3689 0.1170 0.2673

2 0.1 10 35 2 0.4699 0.4387 0.7470

3 3 10 30 3 0.1091 0.8732 0.5547

4 0.1 10 35 4 0.038150 0.5743 0.8828

Table 16 Hartman function F20

i ai1 ai2 ai3 ai4 ai5 ai6 ci
1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

i pi1 pi2 pi3 pi4 pi5 pi6
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

32 M.K. Naik et al.

References

1. Du W, Li B (2008) Multi-strategy ensemble particle swarm optimization for dynamic
optimization. Inf Sci 178:3096–3109

2. Panda R, Naik MK (2012) A crossover bacterial foraging optimization algorithm. Appl
Comput Intell Soft Comput, 1–7. Hindawi Publication

3. Mastorakis NE, Gonos IF, Swamy MNS (2003) Design of two-dimensional recursive filters
using genetic algorithm. IEEE Trans Circuits Syst-I Fundam Theory Appl 50:634–639

4. Panda R, Naik MK (2013) Design of two-dimensional recursive filters using bacterial foraging
optimization. In: Proceedings of the 2013 IEEE Symposium on Swarm Intelligence (SIS),
pp 188–193

5. Cordon O, Damas S, Santamari J (2006) A fast and accurate approach for 3D image
registration using the scatter search evolutionary algorithm. Pattern Recogn Lett 26:1191–
1200

6. Panda R, Agrawal S, Bhuyan S (2013) Edge magnitude based multilevel thresholding using
cuckoo search technique. Expert Syst Appl 40:7617–7628

7. Panda R, Naik MK, Panigrahi BK (2011) Face recognition using bacterial foraging strategy.
Swarm Evol Comput 1:138–146

8. Liu C, Wechsler H (2000) Evolutionary pursuit and its application to face recognition. IEEE
Trans Pattern Anal Mach Intell 22:570–582

9. Zheng WS, Lai JH, Yuen PC (2005) GA-Fisher: a new LDA-based face recognition algorithm
with selection of principal components. IEEE Trans Syst Man Cybern Part B 35:1065–1078

10. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge
11. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of

cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29–41
12. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE

international conference on neural networks vol 4, pp 1942–1948
13. Gazi V, Passino KM (2004) Stability analysis of social foraging swarms. IEEE Trans Syst

Man Cybern Part B 34:539–557
14. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of the world congress

on nature and biologically inspired computing, (NaBIC 2009), pp 210–214
15. Yang XS, Deb S (2013) Cuckoo search: recent advances and applications. Neural Comput

Appl 24(1):169–174
16. Cuckoo Search and Firefly Algorithm. http://link.springer.com/book/10.1007%2F978-3-319-

02141-6

Table 17 Shekel function F21, F22, and F23

i ai1 ai2 ai3 ai4 ci
1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

A Hybrid CS–GSA Algorithm for Optimization 33

http://springerlink.bibliotecabuap.elogim.com/book/10.1007%252F978-3-319-02141-6
http://springerlink.bibliotecabuap.elogim.com/book/10.1007%252F978-3-319-02141-6

17. Pinar C, Erkan B (2011) A conceptual comparison of the Cuckoo-search, particle swarm
optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev,
Springer. doi:10.1007/s10462-011-9276-0

18. Chakraverty S, Kumar A (2011) Design optimization for reliable embedded system using
cuckoo search. In: Proceedings of the international conference on electronics, computer
technology, pp 164–268

19. Barthelemy P, Bertolotti J, Wiersma DS (2008) A Lévy flight for light. Nature 453:495–498
20. Rashedi E, Nezamabadi S, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci

179:2232–2248
21. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol

Comput 3:82–102
22. Chetty S, Adewumi AO (2014) Comparison study of swarm intelligence techniques for annual

crop planning problem. IEEE Trans Evol Comput 18:258–268
23. Chen J-F, Do QH (2014) Training neural networks to predict student academic performance: a

comparison of cuckoo search and gravitational search algorithms. Int J Comput Intell Appl 13
(1):1450005

24. Swain KB, Solanki SS, Mahakula AK (2014) Bio inspired cuckoo search algorithm based
neural network and its application to noise cancellation. In: Proceedings of the international
conference on signal processing and integrated networks (SPIN), pp 632–635

25. Khodier M (2013) Optimisation of antenna arrays using the cuckoo search algorithm. IET
Microwaves Antennas Propag 7(6):458–464

26. Zhao P, Li H (2012) Opposition based Cuckoo search algorithm for optimization problems. In:
Proceedings of the 2012 fifth international symposium on computational intelligence and
design, pp 344–347

27. Saha SK, Kar R, Mandal D, Ghosal SP (2013) Gravitational search algorithm: application to
the optimal IIR filter design. Journal of King South University, 1–13

28. Rashedi E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search
algorithm. Eng Appl Artif Intell 24:117–122

29. Rashedi E, Nezamabadi-pour H, Saryazdi S (2011) Disruption: A new operator in gravitational
search algorithm. Sci Iranica D 18:539–548

30. Doraghinejad M, Nezamabadi-pour H, Sadeghian AH, Maghfoori M (2012) A hybrid
algorithm based on gravitational search algorithm for unimodal optimization. In: Proceedings
of the 2nd international conference on computer and knowledge engineering (ICCKE),
pp 129–132

31. Yazdani S, Nezamabadi-pour H, Kamyab S (2013) A gravitational search algorithm for
multimodal optimization. Swarm Evol Comput 1–14

32. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) BGSA: binary gravitational search
algorithm. Nat Comput 9(3):727–745

33. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization.
In: 2010 international conference on computer and information application, pp 374–377

34. Jiang S, Ji Z, Shen Y (2014) A novel hybrid particle swarm optimization and gravitational
search algorithm for solving economic emission load dispatch problems with various practical
constraints. Electr Power Energy Syst 55:628–644

35. Ghodrati A, Lotfi S (2012) A hybrid CS/PSO algorithm for global optimization. Lect Notes
Comput Sci 7198:89–98

36. Guo Z (2012) A hybrid optimization algorithm based on artificial bee colony and gravitational
search algorithm. Int J Digit Content Technol Appl 6(17):620–626

37. Sun G, Zhang A (2013) A hybrid genetic algorithm and gravitational using multilevel
thresholding. Pattern Recognit Image Anal 7887:707–714

38. Yin M, Hu Y, Yang F, Li X, Gu W (2011) A novel hybrid K-harmonic means and
gravitational search algorithm approach for clustering. Expert Syst Appl 38:9319–9324

39. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential
evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–
640

34 M.K. Naik et al.

http://dx.doi.org/10.1007/s10462-011-9276-0

40. Sarangi SK, Panda R, Dash M (2014) Design of 1-D and 2-D recursive filters using crossover
bacterial foraging and cuckoo search techniques. Eng Appl Artif Intell 34:109–121

41. He J (2008) An experimental study on the self-adaption mechanism used by evolutionary
programing. Prog Nat Sci 10:167–175

42. Ji M (2004) A single point mutation evolutionary programing. Inf Process Lett 90:293–299

A Hybrid CS–GSA Algorithm for Optimization 35

	1 A Hybrid CS--GSA Algorithm for Optimization
	Abstract
	1 Introduction
	2 Related Works
	2.1 Cuckoo Search (CS) Algorithm
	2.2 Gravitational Search Algorithm (GSA)

	3 A Hybrid CS--GSA Algorithm
	4 Results and Discussions
	4.1 Performance Evaluation Using Standard Benchmark Functions
	4.2 Solving the Constrained Optimization Problems
	4.2.1 Minimizing the Function
	4.2.2 One-Dimensional (1-D) Recursive Filter Design

	5 Conclusions
	Appendix: Benchmark Functions
	References

