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Abstract K-means clustering algorithm is rich in literature and its success stems
from simplicity and computational efficiency. The key limitation of K-means is that
its convergence depends on the initial partition. Improper selection of initial cen-
troids may lead to poor results. This paper proposes a method known as
Deterministic Initialization using Constrained Recursive Bi-partitioning (DICRB)
for the careful selection of initial centers. First, a set of probable centers are
identified using recursive binary partitioning. Then, the initial centers for K-means
algorithm are determined by applying a graph clustering on the probable centers.
Experimental results demonstrate the efficacy and deterministic nature of the pro-
posed method.
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1 Introduction

Clustering is the process of discovering natural grouping of objects so that objects
within the same cluster are similar and objects from different clusters are dissimilar
according to certain similarity measure. Various methods for clustering are broadly
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classified into hierarchical and partitional methods [1, 2]. Hierarchical methods
generate a nested grouping of objects in the form of dendrogram tree.
Single-linkage and complete-linkage are the well known hierarchical clustering
methods. The major drawback of these algorithms is their quadratic run time which
poses a major problem for large datasets [3]. In contrast to hierarchical methods,
partitional methods directly divide the set of objects into k groups without imposing
the hierarchical structure [1].

K-means is a popular partitional clustering algorithm with the objective of
minimizing the sum of squared error (SSE) which is defined as the sum of the
squared distance between the cluster centers and the points in the cluster. K-means
starts with k randomly chosen initial centers and assign each object in the dataset to
a nearest center. Iteratively, the centers are recomputed and objects are reassigned
to the nearest centers. Due to its simple implementation, K-means has been
extensively used in various scientific applications. However, the results of K-means
strongly depend on the choice of initial centers [1, 3, 4].

If the initial centers are improperly chosen, then the algorithm may converge to a
local optimum. Number of approaches have been proposed to wisely choose the
initial seeds for K-means [5–10].

A sampling based clustering solution for initial seed selection was suggested by
Bradley and Fayyad [5]. The idea was to choose several samples from the given set
of objects and applying K-means on each of the sample independently with random
centers. The resulting centroids from each subcluster is the potential guess of the
centers for the whole dataset. Likas et al. [8] proposed global K-means algorithm
which incrementally chooses k cluster centers one at a time. Experimental results
demonstrated that their method outperforms the K-means algorithm. But, this
method is computationally expensive as it requires N execution of the K-means
algorithm on the entire dataset, where N is the number of objects in the dataset [4].

Arthur and Vassilvitskii proposed an improved version of K-means known as
K-means++ [7]. It chooses the first center c1 randomly from the dataset and other
centers ci, 2� i� k are chosen such that distance between ci and the previously
chosen centers is maximum. Both theoretically and experimentally they have shown
that, K-means++ not only speed up the convergence of the clustering process but
also yields a better clustering result than K-means.

Alternatively, may initialization methods were discussed by considering the
principal dimensions for splitting the dataset [6, 9]. Ting and Jennifer [9] proposed
two divisive hierarchical approaches, namely PCA-part method and Var-part
method which identify the centers for K-means algorithm using k-splits along the
better discriminant hyperplanes.

Erisoglu et al. [6] proposed amethod which first defines the subspace of the dataset
X along two main dimensions that best represent the spread of the dataset. Then, the
data point with the longest distance from the centroid ofX in the subspace is chosen as
the first cluster center. The subsequent centers are chosen such that the center ci has
the maximum distance from the previously computed centers c1; . . .; ci�1.

Min-Max algorithm proposed by Tzortzis and Likas [10] tackles initialization
problem by implementing a weighted version of the K-means by assigning weights
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to the clusters in proportion to their variance. This weighting scheme attains high
quality partition by controlling the clusters with larger variance.

There are various methods for cluster initialization, a comparative study of
which can be seen in [4]. However, many of the methods run in quadratic time
[8, 11] which degrades the efficiency of K-means. In this paper, we propose an
initialization method which runs in Oðn lg nÞ time using constrained recursive
bi-partitioning. The performance of the proposed algorithm has been demonstrated
using experimental analysis.

The rest of the paper is organized as follows. The description of K-means
algorithm is given in Sect. 2. The proposed method is explained in Sect. 3. The
complexity of the proposed method is discussed in Sect. 4. The experimental
analysis is shown in Sect. 5. The conclusion and future scope are given in Sect. 6.

2 K-Means Algorithm

Let X ¼ fx1; x2; . . .; xng be the set of objects to be clustered into k groups, where k
is the number of classes of objects, which must be known a priori. The objective of
K-means is to find a k-partition of X such that the sum of squared error
(SSE) criterion is minimized. Let S ¼ fS1; S2; . . .Skg be the set of partitions
returned by K-means and let li be the center of the partition si. The sum of squared
error (SSE) is defined as follows [1].

SSE ¼
Xk

i¼1

X

xj�si

dðxj; liÞ2: ð1Þ

where dð. . .Þ denotes the distance (dissimilarity). K-means algorithm starts with k
arbitrary centers and iteratively recomputes the centers and reassigns the points to
the nearest centers. If there is no change in centers, then the algorithm stops. The
K-means algorithm is described as follows.

Algorithm 1 K-means Algorithm [2]

Input: Dataset X.
Output: k clusters of X.

1. Randomly choose k centers μi, 1 ≤ i ≤ k.
2. For each object xj in X, compute distance between xj and μi, 1 ≤ i ≤ k.
3. Assign xj to the partition si, such that the distance between xj and μi is minimum.
4. Recompute centers; repeat steps 2 and 3 if there is change in centers. Else stop.
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As the initial centers for K-means partition are chosen randomly, two or more
centers may collide in a nearby region. As a consequence, the points are forced to
be assigned to one of the nearest centers, leading to poor results. This is illustrated
in Fig. 1. It is clear from the figure that, K-means gets trapped with local optimum if
the initial centers are not chosen properly.

3 Proposed Method

The proposed method is a two-step process. In the first step, it identifies a set of
probable centers by dividing the dataset X into k

0
partitions. During the second step,

the actual centers are determined by grouping the probable centers into k subsets,
where center of each subset is considered as one of the k centers for K-means
algorithm.

3.1 Identifying Probable Centers

K-means algorithm tries to assign the points to a cluster based on a nearest center.
Representing a cluster using a single prototype (center) may not capture the intrinsic
nature of clusters [12]. Motivated from [12], we identify a pool of k

0
; k

0 � k most
likely points from the dataset, such that the spread of each cluster in the dataset is
well represented by a subset of these points. We call these points as probable
centers denoted by Y ¼ fy1; y2; . . .; yk0 g. In order to identify a set of probable
centers, this paper proposes an algorithm known as Constrained Bi-partitioning
algorithm.

Constrained Bi-partitioning Algorithm Generally a Bi-partitioning method
recursively split the dataset into a binary tree of partitions [13]. It starts from the
root node that contains the given dataset X and split the node into two subsets X1
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Fig. 1 K-means converging to a local optimum with random center initialization. a A given
dataset with four clusters. b Randomly chosen initial centers. c The result of K-means with centers
chosen in (b)
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and X2 based on certain partitioning criteria. The recursive splitting stops once k
partitions are identified.

This paper proposes an improved version of Binary partitioning known as
Constrained Bi-partitioning algorithm. The basis of bipartitional criteria adapted in
our proposed algorithm lies in choosing the two centers for splitting a node in the
tree. Two centers p and q are chosen such that they are the farthest pair of points in
the node in order to maximize the inter-cluster variance. While Bi-partitioning
algorithm stops when k partitions are identified, the constrained algorithm continues
the splitting process as long as the size of the subset to be partitioned is greater thanffiffiffi
n

p
. Thus, the number of partitions is not preset. The leaf nodes, the subsets which

cannot be partitioned further, are stored in the set of partitions S ¼ fS1; S2; . . .; Sk0 g.
The center of each partition Si in S is considered to be a probable center yi.

Figure 2 shows an example of a dataset and its probable centers. It is obvious
from the figure that, each cluster is covered by a subset of probable centers. The
actual centers of the K-means algorithm can be identified by merging these prob-
able centers into k groups.

3.2 Computation of k Initial Centers from k′ Probable
Centers

Once the set of probable centers Y ¼ fy1; y2; . . .; yk0 g are recognized, next we need
to identify the k disjoint subsets of Y . The probable centers must be grouped such
that the closeness between the centers within a subset is high as compared to the
closeness between the centers of different subsets. This in turn maximizes the
inter-cluster separation of the final clusters produced by the K-means algorithm.

The relative inter-connectivity of the probable centers intuitively expresses the
neighboring nature of the subsets and the breaks in the connectivity gives a clue on
the separation of actual clusters in the dataset. In order to identify such breaks, we

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

(a)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

(b)

Fig. 2 The probable centers. a The dataset. b The probable centers are marked in red dots (color
figure online)
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employ Minimum Spanning Tree (MST)-based representation of probable centers,
as MST of a set of points can be used to reflect the similarity of the points with their
neighborhood [14]. Simply removing k � 1 longest edges from the MST results in k
disjoint subsets of nearest centers, such that each subset would represent a cluster.
This is illustrated in Fig. 3.

As each yi � Y may or may not belong to the dataset X, we choose a best
representative point ri �X from each Si such that ri is closest to yi. Let R ¼
fr1; r2; . . .; rk0 g denotes the set of best representative points identified in the above
manner. Prim’s algorithm on R generates MST T1, removing k � 1 longest edges
from T1 yields k clusters of best representative points. Finally, the actual centers for
K-means algorithm are computed from the center of the k clusters. The proposed
method DICRB is summarized in Algorithm 2. The result of K-means initialized
with the proposed method is demonstrated in Fig. 4.
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Fig. 3 MST-based partitioning of probable centers for the dataset shown in Fig. 2a. a The MST of
probable centers. b k disjoint subsets of probable centers
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Fig. 4 Result of K-means initialized with proposed method. a The centers identified by proposed
method marked in red dots. b The final clusters identified by K-means initialized with proposed
method. c Result of K-means with random initialization (color figure online)
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Algorithm 2 Deterministic Initialization using Constrained Recursive Bi-partitioning
(DICRB) Algorithm

Input: Dataset X.
Output: k initial centers for K-means algorithm.

1. Let S be the set of partitions and initialize S = φ.
2. Initialize the node to be splitted X ′ = X.
3. Repeat

3.1 if size of X ′ >
√

n
3.1.1 Find the center μ of the node X ′.
3.1.2 Find a point o εX ′ such that d(o, μ) is minimum.
3.1.3 Choose two centers pεX ′ and qεX ′ such that p is farthest point from o and

q is farthest point from p.
3.1.4 Split the node X ′ into two nodes Xp and Xq according to centers p and q.
3.1.5 Recursively apply bi-partitioning on Xp and Xq.

3.2 else S = {S ∪ X ′}
4. Until there is no node to split
5. Identify a set of probable centers Y = {y1, y2, · · · , yk′}, where yi is the center of

the subset si.
6. Build a set of best representative points (R) by choosing points closer to each prob-

able center yiεY .
7. Construct MST T1 of R.
8. Remove k − 1 longest edges from T1 to get k clusters.
9. Center from each of the k clusters corresponds to actual center for K-means algo-

rithm.

4 Complexity of the Proposed Method

The complexity of the DICRB method is analyzed as follows. The steps 1–4 take
Oðn lg nÞ time to construct binary partitioning tree. Step-5 takes OðnÞ time to
identify the probable centers from each partition. Similarly OðnÞ time is needed to
find the best representative point set R in step-6. As the size of the set R is Oð ffiffiffi

n
p Þ,

Prim’s algorithm in step-7 takes OðnÞ and clustering in step-8 takes Oð ffiffiffi
n

p Þ com-
plexity. Hence, the overall time complexity to identify the initial cluster centers for
K-means algorithm is Oðn lg nÞ.

5 Experimental Results

The proposed method of initialization is compared against random initialization
based on the number of iterations (I) required for convergence, SSE and Adjusted
Rand Index (ARand) [15] of clusters after the convergence. The tests are conducted

On Careful Selection of Initial Centers for K-means Algorithm 441



on four synthetic and four real datasets. The K-means algorithm with randomly
chosen initial centers and K-means algorithm with proposed method of initialization
are run for 100 times on the identical datasets and the average value of I, SSE and
ARand are observed. We also report the maximum and minimum number of iter-
ations taken by both the methods.

The synthetic datasets DS1, DS2, DS3 and DS4 used in our experiments are
chosen such that each dataset would represent different kind of clustering problem.
The details of these datasets are given in Table 1 and are shown in Fig. 5. The
results of K-means on these datasets are shown in Tables 2 and 3. It is evident from
the results provided in the Tables 2 and 3 that, K-means initialized with proposed
method performs better in terms of constant number iterations and improved cluster
quality with respect to internal as well as external quality measures.

We have observed the results of proposed method also on few real datasets taken
from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/). The details
of these datasets can be seen in Table 1. Our proposed initialization method
maintains the stable results from K-means according to the number of iterations,
minimized error and improved cluster separation as compared to K-means with
random centers. This is evident from the results shown in Tables 4 and 5.

Table 1 Details of the
datasets. No. of instances (n),
no. of dimensions (d), no. of
clusters (k)

2-Dimensional synthetic datasets

Dataset n k

DS1 399 6

DS2 788 7

DS3 600 15

DS4 300 2

Real datasets

Dataset n d k

Iris 150 5 3

Ruspini 75 2 4

WDBC 569 32 2

Thyroid 215 5 6

Fig. 5 Synthetic datasets used for experimental study
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Table 2 Comparison of
initialization methods
according to number of
iterations (I) on synthetic
datasets

Dataset Method Avg (I) Max (I) Min (I)

DS1 Random 13 39 5

Proposed 9 9 9
DS2 Random 16 33 6

Proposed 10 10 10
DS3 Random 1 20 4

Proposed 6 6 6
DS4 Random 8 13 4

Proposed 6 6 6

Table 3 Comparison of
initialization methods
according to SSE and
adjusted rand index of clusters
on synthetic datasets

Dataset Method SSE Adjusted rand

DS1 Random 4801.04 0.6936

Proposed 4733.10 0.8361
DS2 Random 12322.38 0.7967

Proposed 11514.35 0.9277
DS3 Random 1001.47 0.8485

Proposed 186.57 0.9091
DS4 Random 11885.37 0.6229

Proposed 11876.01 0.6536

Table 4 Comparison of
initialization methods
according to number of
iterations (I) on real datasets

Dataset Method Avg (I) Max (I) Min (I)

Iris Random 9 15 3

Proposed 6 6 6
Ruspini Random 4 9 2

Proposed 2 2 2
WDBC Random 10 14 8

Proposed 8 8 8
Thyroid Random 9 15 3

Proposed 3 3 3

Table 5 Comparison of
initialization methods
according to SSE and
adjusted rand index of clusters
on real datasets

Dataset Method SSE Adjusted rand

Iris Random 106.35 0.8749

Proposed 87.31 0.9799
Ruspini Random 29385.95 0.7360

Proposed 13269.65 1.000
WDBC Random 11689.49 0.6972

Proposed 11640.71 0.7988
Thyroid Random 528.28 0.5608

Proposed 502.11 0.5907
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With random initialization method, the initial centers are arbitrary in each run
and thus the final clustering results are not deterministic. With the proposed
method, the initial centers are chosen from a pool of probable candidate centers
which always produce deterministic clustering results. The Fig. 6 shows the
Adjusted Rand value obtained from random initialization and proposed method on
Iris dataset for 10 runs of K-means. As can be seen from the figure, the Adjusted
Rand value for random initialization method changes with every run where as it
remains constant in the proposed method, showing the deterministic nature of our
algorithm.

6 Conclusion

This paper proposed an initialization method for K-means algorithm using con-
strained recursive bi-partitioning. The efficiency of the proposed method was
demonstrated through experiments on different synthetic and real datasets. While
the clustering results of K-means algorithm with random initialization is unstable,
our proposed method of initialization produces deterministic results. As a future
work, we will carry out an extensive analysis of DICRB method on more datasets.
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