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Abstract In pervasive computing environments, it is often required to cover a
certain service area by a given deployment of nodes or access points. In case of
large inaccessible areas, often the node deployment is random. In this paper, given a
random uniform node distribution over a 2-D region, we propose a simple dis-
tributed solution for self-organized node placement to satisfy coverage of the given
region of interest using least number of active nodes. We assume that the nodes are
identical and each of them covers a circular area. To ensure coverage we tessellate
the area with regular hexagons, and attempt to place a node at each vertex and the
center of each hexagon termed as target points. By the proposed distributed
algorithm, unique nodes are selected to fill up the target points mutually exclusively
with limited displacement. Analysis and simulation studies show that proposed
algorithm with less neighborhood information and simpler computation solves the
coverage problem using minimum number of active nodes, and with minimum
displacement in 95 % cases. Also, the process terminates in constant number of
rounds only.

Keywords Area coverage � Node deployment � Pervasive computing � Wireless
sensor networks � Hexagonal tessellation

1 Introduction

In many applications of pervasive computing from home and health care to envi-
ronment monitoring and intelligent transport systems, it is often required to place
the sensors or computing nodes or access points to offer services over a predefined
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area. In some cases, like mobile surveillance, vehicular networks, mobile ad hoc
networks, wireless sensor networks etc., the nodes are mobile and have limited
energy, limited storage and limited computation and communication capabilities.
These networks are often self-organized, and can take decision based on their local
information only. In wireless sensor networks (WSN), large number of sensor
nodes are spatially distributed over an area to collect ground data for various
purposes such as habitat and ecosystem monitoring, weather forecasting, smart
health-care technologies, precision agriculture, homeland security and surveillance.
For all these applications, the active nodes are required to cover the area to be
monitored. Hence, for these networks, the coverage problem has emerged as an
important issue to be investigated. So far, many authors have modeled the coverage
problem in various ways but most of them considered static networks. For deter-
ministic node deployment, centralized algorithms can be applied to maximize the
area coverage assuming the area covered by each node to be circular or square
[9, 11, 12]. Many authors solved the coverage problem by the deterministic node
placement techniques to maximize the network lifetime and to minimize the
application-specific total cost. In paper [3], authors investigated the node placement
problem and formulated a constrained multi-variable nonlinear programming
problem to determine both the locations of the nodes and data transmission pattern
in order to optimize the network lifetime and the total power consumption. Authors
in [10, 15] proposed random and coordinated coverage algorithms for large-scale
WSNs. But unfortunately, in many potential working areas, such as remote harsh
environments, disaster affected regions, toxic regions etc., sensor deployments
cannot be done deterministically. For random node deployment, virtual partitioning
is often used to decompose the query region into square grid blocks and the cov-
erage problem of each block by sensor nodes is investigated [6, 13, 14].

Whether the node deployment be deterministic or random, there is little scope of
improving the coverage once the nodes are spatially distributed and they are static.
Hence, mobility-assisted node deployment for efficient coverage has emerged as a
more challenging problem. Many approaches have been proposed so far, based on
virtual force [5, 18, 20], swarm intelligence [7, 8], and computational geometry
[16], or some combination of the above approaches [4, 17]. In [19], a
movement-assisted node placement method is proposed based on Van Der Waal’s
force where the relationship of adjacency of nodes was established by Delaunay
Triangulation and force is calculated to produce acceleration for nodes to move.
However, the computation involved is complex and it takes large number of iter-
ations to converge. Authors in [1] proposed a distributed algorithm for the auton-
omous deployment of mobile sensors called Push and Pull, where sensors
autonomously coordinate their movements in order to achieve a complete and
uniform coverage. In [16], based on Voronoi diagram, authors designed and
evaluated three distributed self-deployment algorithms for controlling the move-
ment of sensors to achieve coverage. In these protocols, sensors move iteratively,
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eventually reaching the final destination. This procedure is also computation
intensive and may take longer time to converge. Moreover each node requires the
location information of its every neighbor to execute the algorithm.

In this paper, given a random node deployment over a 2-D region, a simple
self-organized distributed algorithm is proposed to satisfy coverage of a given
region of interest using minimum number of nodes with limited mobility. To avoid
an iterative procedure, here some target points are specified deterministically by
tessellating the area with regular hexagons. After deployment, each node computes
the nearest target point. Next, a unique node closest to a target point is selected in a
distributed fashion based on local position information only, to move towards the
target point. In this way, nodes attempt to fill up the target points mutually
exclusively with minimum displacement. The set of nodes selected is made active
to cover the area. It is evident that compared to the works in [16, 19], the com-
putation involved in this algorithm is significantly simple, it requires no location
information of its neighbors and it converges faster in two rounds only. Analysis
and simulation results show that proposed algorithm with less neighborhood
information and simpler computation solves the coverage problem using minimum
number of active nodes, and with minimum displacement in 95 % cases. Also, the
process terminates in constant number of rounds only.

The rest of the paper is organized as follows. Section 2 defines the problem and
introduces the basic scheme of area coverage. Section 3 presents the distributed
algorithm for self-deployment. Section 4 evaluates the performance of the proposed
protocol by simulation. Finally, Sect. 5 concludes the paper.

2 Movement Assisted Area Coverage

2.1 Problem Formulation

Let a set of n nodes S ¼ s1; s2; . . .; snf g be deployed randomly over a 2-D region A.
It is assumed that each node is homogeneous, and covers a circular area with fixed
sensing radius r. The goal of this paper is that given the random uniform distri-
bution of a set of n nodes over a 2-D plane, to select a subset P � S and to place
them at nearest target points such that the cardinality of P is minimum and it covers
the area. Our objective is to develop a light weight self-organized distributed
algorithm for node rearrangement to reduce the amount of computation and rounds
of communication, and the average distance traversed by a node, to maximize
coverage utilizing minimum number of nodes. This in turn helps us to conserve
energy better and hence to enhance the network lifetime.
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2.2 Area Tessellation

Given a rectilinear area to be covered by nodes, Fig. 1 shows a typical regular
placement of nodes such that the overlapped region is minimum and the area is
fully covered using minimum number of nodes. The positions of all the nodes
basically defines a set of regular hexagons that tessellates the area as shown in
Fig. 2. The sensor nodes are to be placed exactly on the vertices and the centers of
the hexagons, termed here as the target points. In [2], it is proved that such node
placement technique maximizes the area coverage using minimum number of
nodes. In this case, the minimum number of nodes corresponds to the total number
of target points, and can be computed easily as a function of the sensing radius r as
shown below.

Let A be a 2-D axis-parallel rectangle L�W with ð0; 0Þ as the bottom-left corner
point, termed here as the origin. For any arbitrary bottom-left corner point ðx0; y0Þ,
the co-ordinate system is to be translated appropriately. The tessellation of A with
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regular hexagons of side h is shown in Fig. 2, where h ¼ ffiffiffi
3

p
r [1]. It is to be noted

that the target points lie along some rows and columns parallel to the x-axis and y-
axis respectively. Rows are separated by a distance:

dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � h2

4

r
¼ 3

2
r:

Similarly, columns are separated by a distance:

dl ¼ h
2
¼

ffiffiffi
3

p

2
r:

From Fig. 2, it is clear that, each even row-i starts with a target point ð0; i:dwÞ,
whereas each odd row-j starts with a target point ðdl; j:dwÞ. Hence given the area A,
the total number of rows is given by: Nrow ¼ W

dw

� �þ 1;. The total number of target
points is,

N ¼ Nrow � L
2dl

� �
þ Nrow

2

� �
:

Therefore, to cover the area A, the number of nodes to be deployed is n�N, to
fill up the target points exclusively. However, in practice, with random distribution
of nodes, the area to be monitored is over-deployed, and n >> N, providing suffi-
cient redundant nodes to ensure coverage.

2.3 Nearest Target Point Computation

Let a set of n nodes S ¼ fs1; s2; . . .; sng be deployed randomly over a 2-D region A.
Each node-i only have the information of its physical location ðxi; yiÞ and the
sensing range r. Now to estimate the location of its nearest target point, it should
have the knowledge of the origin, i.e. the bottom-left point of the area. The sink
may directly broadcast it to all nodes for a static area. In case, the area of interest is
dynamic, or depends on the deployment, the nodes may determine the origin as the
point with minimum abscissa and ordinate of all the nodes deployed as described
below. Here, during initialization, each node-i broadcasts its own location ðxi; yiÞ,
and maintains two variables initiated as xmin ¼ xi, and ymin ¼ yi to keep the mini-
mum abscissa and ordinate of all of the deployed nodes. It receives the messages
with locations ðxj; yjÞ from other nodes-j, and if xj � xmin and/or yj � ymin the values
of xmin (ymin) are changed appropriately, and if there is any update, the new message
is broadcasted again, otherwise it is ignored. In this way, after sufficient time, say T ,
all the nodes will acquire the same value of xmin and ymin and consider it as the
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origin of the area under consideration. In case of an event, the affected nodes may
define the event area in terms of this origin dynamically. Now, the initialization
phase is completed and the next phase starts. In the worst case, each node may have
to transmit n messages to complete the procedure.

After initialization phase, the nearest target point is to be computed by each
node. We assume that each node knows the origin ðxmin; yminÞ of A. Next, each node
i at location ðxi; yiÞ, attempts to find out its nearest target point. It computes

txðiÞ ¼ NI
jxi � xminj

dh

� �

and

tyðiÞ ¼ NI
jyi � yminj

dw

� �
:

Here NIðxÞ denotes the nearest integer value of x. Next, it finds the location of its
nearest target point TiðxTi; yTiÞ as:

yTi ¼ tyðiÞ � dw
xTi ¼ txðiÞ � h; when txðiÞ is even;

¼ txðiÞ � hþ h
2

otherwise:

Thus, each node finds its nearest target point and broadcasts it to its neighbors
which lie within its communication range to select a unique node in a distributed
fashion to be moved to a given target point exclusively. So, it is important to define
the communication range of a node to define its set of neighbors.

2.4 Role of Communication Range

So far, we have mentioned the sensing range of the sensor node-i that defines the
circular area with radius r, centered at node-i to be the area covered by node-i.
When a node executes a distributed algorithm, it is very important to identify its
neighborhood with which it can communicate directly. For that we should specify
the communication range rc of a node-i which indicates that when a node-i trans-
mits, a node-j can receive the packet if and only if, the distance between the nodes
dði; jÞ� rc. It is important to note that for all practical purposes, rc is independent of
r, since the transceiver hardware of the sensor node determines rc and r is the
property of the sensing hardware. For the proposed algorithm, it is required that
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each node should cooperate with its neighboring nodes which are within a distance
of 2ðhþ rÞ ¼ 2ð1þ ffiffiffi

3
p Þr. So, here we assume that rc � 2ð1þ ffiffiffi

3
p Þr, where r is the

sensing range.

3 Algorithms for Area Coverage

In wireless sensor networks, since nodes have limited computing and communi-
cation capabilities, it is always better to adopt distributed algorithms where nodes
may take decisions with simple computation based on their local information only
to produce a global solution.

Algorithm 1: Target Point Computation
Input: node: i(x, y)
Output: Target point: Ti(xTi, yTi)
ty ← NI( y

l );
if ty is even number then

tx ← NI( x
h );

xTi ← tx × h;
else

tx ← |x − h
2 |;

tx ← NI( tx
h );

xTi ← (tx × h) + h
2 ;

yTi ← ty × l;

Here initially, each node is in Active mode and knows its location and the origin
(xmin; ymin) of the area to be covered. In the first round, each node-i assumes a virtual
tessellation of the area with hexagon tiles and compute its nearest target point by
Algorithm 1. It broadcasts a Target message with data ðtiðx; yÞ; diÞ, where tiðx; yÞ is
its nearest target point and di is its distance from tiðx; yÞ. Each node-i waits till it
receives Target messages from all of its neighbors. Then it checks if it is at min-
imum distance from the target tiðx; yÞ. Then node-i is selected to fill up the target
tiðx; yÞ. The case of tie may be resolved by node-id. It broadcasts Selected(i, tiðx; yÞ)
message and moves to tiðx; yÞ point with displacement di and goes to Active state.
Otherwise, it goes into the Idle state. It is clear that within the circle Ci of radius r
around a target point tiðx; yÞ, if there exists at least one node, it will be filled up by
it. The problem arises if any circle Ci is originally empty due to initial random node
deployment. In that case, the Idle nodes will execute a second round of computa-
tion. Each idle node-i finds if there is any unfilled target node around it, i.e. within
the six adjacent circles overlapping with Ci. Next it finds the unfilled target points
and sort them according to the distance from it. Next it follows the same procedure
described above for each target unless it becomes selected or all the targets are
filled up.
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The distributed Algorithm 3, describes the sequence of steps of the procedure.

Algorithm 2: Node Selection for Target Point
Input: node: i, STATUS (active =1 or idle=0)
Output: movement: true/false
movement=true;
for each neighbor node do

if receives target(tj(x, y), dj) message then
if ti(x, y) == tj(x, y) // same target point then

if di > dj then
movement=false;
STATUS(i) ← 0;

if di == dj then
if i > j then

movement=false;
STATUS(i) ← 0;

if movement==true then
Move towards target point ti(x, y);
STATUS(i) ← 1;
broadcasts Selected(ti(x, y)) message;

Algorithm 3: Distributed Algorithm for Adjacent Target Points
Input: free node ni

Output: Active or idle
for each node i do

Compute nearest target point ti(x, y) (call Algorithm 1);
Compute all six neighbor target points of ti(x, y) and distances from its position.
Include all the target points in Li sorted by distance Di;
for Li �= {φ} do

Take first point ti(x, y) and di from Li and Di respectively;
broadcasts target(ti(x, y), di) message;
Wait and listen until receives all Target message from the neighbors;
Call Algorithm 2;
if STATUS(i) == 1 then

Goto Active Mode;
Free Li and Di;
Terminate;

else
if receives Selected(tj(x, y)) message then

Remove target point tj(x, y) from Li;

Terminate and goto idle Mode;

3.1 Complexity Analysis

It is evident that to find the target points Algorithm 1 is computed in constant time.
To take decision for selecting a unique node for each target point, each node waits
until it receives all the target messages from its d neighbors. Each node takes OðdÞ
time to get the minimum distance from its d neighbors. Therefore, Algorithm 2
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computes in OðdÞ time, where d is the maximum number of neighbors of a node.
Finally, each node attempts to fill up at most seven target points. Therefore, the total
time complexity of the distributed algorithm (Algorithm 3) is OðdÞ. In the dis-
tributed algorithm nodes broadcast at most seven Target messages and only one
Selected message. Therefore, per node at most eight messages are needed to
complete the procedure. Hence, the message complexity per node is Oð1Þ only.

4 Simulation Results

In our simulation study, we assume that n nodes, 250� n� 300, are distributed
randomly over a 500� 500 area with radius r ¼ 28:86 and side of the hexagon
h ¼ 50. All the target points associated with the circles are computed by nodes.
After executing the distributed algorithm, each node moves to its target point. The
performance of the proposed algorithm is evaluated in terms of coverage, rounds of
computation needed and displacement of nodes. The graphs show the average value
of 20 runs for 20 independent random deployments of nodes.

Figure 3 shows the variation of coverage percentage with n, the total number of
nodes deployed. If the total number of target points is 105, for n ¼ 50; 100; 150, the
coverage percentage is found to be 47, 84.57 and 99.36 % respectively. It gives an
idea that how much an area should be over deployed to achieve 100 % coverage
with random node deployment.

In Fig. 4, the variation in the number of computation rounds with n is presented.
It is to remember that with random deployment, if there is no empty circle Ci with
center at a target ti and radius r, the procedure completes in a single round only.
This fact is exactly revealed in Fig. 4. For n = 100, 150, 200, target points are filled
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up in two rounds whereas if n[ 200, the proposed technique takes a single round
to complete.

For a given random deployment of n ¼ 150 nodes, Fig. 5 shows the distances
traversed by each node to fill up target point with r ¼ 28:86. It shows that in more
than 95% cases, the target is filled up by a node with minimum possible dis-
placement. It is obvious that with greater values of n, this percentage can be
improved further.
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5 Conclusion

In this paper, we propose a self-organized node placement algorithm to satisfy the
coverage of a given region of interest in Wireless Sensor Networks. The area is
logically tessellated by regular hexagonal tiles starting from an origin. To get full
coverage with random deployment of n nodes over a 2D region, we need to place
unique nodes on every target point, which are essentially the vertices and the
centers of the hexagons. With just the knowledge of its own location and the origin,
each node executes a simple self-organized distributed algorithm OðdÞ time com-
plexity (d is the maximum number of neighbors of a node) and constant message
complexity, to fill up all the target points mutually exclusively with minimum
possible displacement. In case of failure of nodes, existing free nodes may take
necessary action to fill up the empty target points to make the system fault-tolerant.
We evaluate the performance of our proposed model by simulation. It shows that
with sufficient node density the algorithm attains full coverage using minimum
number of nodes and terminates in one round only. Also, in more than 95% cases
the displacement of an individual node is minimum.
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