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Abstract This paper employs an adaptive particle swarm optimization (APSO)
algorithm to solve the weighting matrices selection problem of linear quadratic
regulator (LQR). One of the important challenges in the design of LQR for real time
applications is the optimal choice state and input weighting matrices (Q and R),
which play a vital role in determining the performance and optimality of the con-
troller. Commonly, trial and error approach is employed for selecting the weighting
matrices, which not only burdens the design but also results in non-optimal
response. Hence, to choose the elements of Q and R matrices optimally, an APSO
algorithm is formulated and applied for tracking control of inverted pendulum. One
of the notable changes introduced in the APSO over conventional PSO is that an
adaptive inertia weight parameter (AIWP) is incorporated in the velocity update
equation of PSO to increase the convergence rate of PSO. The efficacy of the APSO
tuned LQR is compared with that of the PSO tuned LQR. Statistical measures
computed for the optimization algorithms to assess the consistency and accuracy
prove that the precision and repeatability of APSO is better than those of the
conventional PSO.
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1 Introduction

Linear Quadratic Regulator, a corner stone of modern optimal control, has attracted
considerable attention in the recent years due to its inherent robustness and stability
properties [1]. A minimum phase margin of (−60°, 60°) and a gain margin of
(−6, ∞) db provided by LQR enable the system to yield satisfactory response even
during the small perturbations. Moreover, by minimizing a quadratic cost function
which consists of two penalty matrices, namely Q and R matrices, LQR yields an
optimal response between the control input and speed of response. Hence, the LQR
techniques have been successfully applied to a large number of complex systems
such as vibration control system [2], fuel cell systems [3] and aircraft [4].
Nevertheless, one of the major issues of LQR design for real time applications is the
choice of Q and R weighting matrices. Even though, the performance of LQR is
highly dependent on the elements of Q and R matrices, conventionally the matrices
have been tuned either based on the designer’s experience or via trial and error
approach. Such approach is not only tedious but also time consuming. Hence, in
this paper the conventional LQR design problem is reformulated as an optimization
problem and solved using particle swarm optimization algorithm.

In literature, several results have been reported on PSO based state feedback
controller design. For instance, in [5] selection of weighting matrices of LQR
controller for tracking control of inverted pendulum has been solved using PSO. In
[6] the performances of GA and PSO for FACTS based controller design have been
assessed and reported that both the convergence and time consumption of PSO are
less than those of the GA based feedback controller design. PSO based variable
feedback gain control design for automatic fighter tracking problems have been
investigated in [7] and it has been reported that PSO based LQR design yields better
tracking response than the LMI based methods. However, the standard PSO has two
important undesirable dynamical properties that degrade its exploration abilities.
One of the most important problems is the premature convergence. Due to the rapid
convergence and diversity loss of the swarm, the particles tend to be trapped in the
local optima solution when solving multimodal tasks. The second problem is the
ability of the PSO to balance between global exploration and local search exploi-
tation. Overemphasize of the global exploration prevents the convergence speed of
swarm, while too much search exploitation causes the premature convergence of
swarm. These limitations have imposed constraints on the wider applications of the
PSO to real world problems [8]. Hence, to better the convergence rate and speed of
conventional PSO, we propose an adaptive PSO, whose inertia weight is varied
adaptively according to the particle’s success rate. The key aspect of the proposed
APSO is that an adaptive inertia weight parameter (AIWP), whose weights are
varied adaptively according to the nearness of the particles towards the optimal
solution, is introduced in the velocity update equation of conventional PSO to
accelerate the convergence of the algorithm. To assess the performance of the
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APSO based LQR control strategy, simulation studies have been carried out on a
benchmark inverted pendulum, which is a typical single input multi output system
(input: motor voltage, output: cart position and pendulum angle).

2 Problem Formulation

Consider a linear time invariant (LTI) multivariable system,

_X tð Þ ¼ AX tð Þ þ Bu tð Þ ð1Þ

Y tð Þ ¼ CX tð Þ þ Du tð Þ ð2Þ

The conventional LQR design problem is to compute the optimal control input u�

by minimizing the following quadratic cost function.

J u�ð Þ ¼ 1
2

Z1

0

XT tð ÞQX tð Þ þ uT tð ÞRu tð Þ� �
dt ð3Þ

where Q ¼ QT is a positive semi definite matrix and R ¼ RT is a positive definite
matrix. By solving the following Lagrange multiplier optimization technique, the
optimal state feedback gain matrix (K) can be computed.

K ¼ R�1BTP ð4Þ

where P is the solution of following ARE.

ATPþ PA� PBR�1BTPþ Q ¼ 0 ð5Þ

The elements of Q and R matrices play a vital role in determining the penalty on
system states and control input when the system deviates from the equilibrium
position. Normally, the Q and R matrices are chosen as diagonal matrices such that
the quadratic performance index is a weighted integral of squared error. The sizes of
Q and R matrices depend on the number of state variables and input variables
respectively. As an alternate to conventional trial and error based manual tuning of
these weighting matrices, in the following section, a bio-inspired evolutionary
algorithm, an adaptive PSO, has been incorporated in the LQR control strategy for
the optimal selection of Q and R.

3 Adaptive PSO

In the last decade, several variants of PSO have been put forward to enhance the
performance of conventional PSO. All the proposed variations are mainly to
improve the convergence and exploration-exploitation capabilities of PSO. One of
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the variations incorporated in the PSO is the use of inertia weight parameter to
accelerate the convergence of particles towards optimum value. As the inertia weight
not only determines the contribution rate of a particle’s previous velocity to its
current velocity but also yields the required momentum for the particles to move
across the solution space, it is important to control the inertia weight to strike a
balance between the global search and local exploitation. The larger value of inertia
weight concentrates more on global search, while the smaller inertia weight focuses
highly on fine tuning the current search space. A comprehensive survey on the use of
inertia weight schemes in PSO algorithms is given in [9]. In this paper, we extend the
idea of adaptive inertia weight strategy to solve the LQR optimization problem.

To implement an adaptive inertia weight strategy, it is important to evaluate the
position of the swarm during every iteration step. Hence, the success percentage
(SP) of particles is used to update the velocity adaptively. Large value of SP
indicates that the particles have reached the best value and the particles are slowly
progressing towards the optimum, whereas a small value of SP implies that the
particles are fluctuating around the optimum value with very less improvement.
Hence, the success rate can be used to modify the inertia weight adaptively. If the
fitness of the current iteration is less than that of the previous iteration the success
count (SC) is set to 1, else it is set to zero. Computing the ratio of the SC to the
number of iterations, the SP value is computed and used to arrive at the adaptive
inertia weight parameter (AIWP) as given below. Table 1 gives the pseudo code of
an adaptive PSO algorithm.

wðtÞ ¼ ðwmax � wminÞSPþ wmin ð6Þ

Table 1 APSO pseudo code

1: Randomly initialize Particle swarm, minimum and maximum values of
inertia weight (wmin,wmax)

2: for i <=100

3: Set Success Count (SC) = 0

4: Evaluate the fitness of particle swarm using f ¼ ISE ¼ R
e2ðtÞdt

5: for i = 1 to 30

6: if f\fpbesti
7: SC = SC + 1

8: fpbesti  f

9: xpbesti  xi
10: end if

11: if f\fgbesti
12: fgbesti  f

13: xgbesti  xi
14: end if

15: for d = 1 to dimensions

16: vdi t þ 1ð Þ ¼ w � vdi tð Þ þ c1 � rand1 pbestdi tð Þ � xdi tð Þ� �þ c2 � rand2 � pbestdg tð Þ � xdi tð Þ
� �

(continued)
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4 Single Inverted Pendulum

Single inverted pendulum is used as a typical benchmark system to evaluate
effectiveness of various control schemes due to its highly nonlinear and inherently
unstable properties. It consists of a DC motor and a pendulum, which is attached to
the shaft of the motor. Two encoders are used to measure the position of the cart
and the angle of the pendulum. Figure 1 shows the schematic diagram of a single
inverted pendulum.

Two control schemes, namely swing up control and stabilization control, are
used to meet the control objective of maintaining the pendulum angle at zero degree
while the cart tracks the reference trajectory. The stabilization control is imple-
mented using LQR due to the practical limitation on control input (motor voltage)
given to the cart system. Using Euler-Lagrangian energy based approach the
nonlinear equation of motion of pendulum can be written as

Mc þ Mp
� �

xc
::
tð Þ þ Beq _xc tð Þ � Mplp cos a tð Þð Þ� �

€a tð Þ þ Mplp sin a tð Þð Þ _a2 tð Þ ¼ Fc tð Þ
ð7Þ

and

�Mplp cos a tð Þð Þ xc:: tð Þ þ Ip þ Mpl
2
p

� �
€a tð Þ þ Bp _a tð Þ � Mpglp sin a tð Þð Þ ¼ 0

ð8Þ

Table 1 (continued)

17: xdi t þ 1ð Þ ¼ xdi tð Þ þ vdi t þ 1ð Þ
18: end for

19: PS = SC/100;

20: w ¼ ðwmax � wminÞ � SPþ wmin

21: end for

22: end for

Fig. 1 Schematic diagram of
single inverted pendulum
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To obtain the state model, four variables namely, cart position, pendulum angle,
cart velocity and pendulum velocity are taken as state variables and the state space
model is obtained by linearizing the model around the equilibrium point
(sin ðaÞ ffi a, cos ðaÞ ffi 1). The following numerical state space model of inverted
pendulum system is borrowed from [10] for controller design.

_xc
_a
xc
::

€a

2
64

3
75 ¼

0
0
0
0

0
0

2:2643
27:8203

1
0

�15:8866
�36:6044

0
1

�0:0073
�0:0896

2
64

3
75

xc
a
_xc
_a

2
64

3
75

þ
0
0

2:2772
5:2470

2
64

3
75u ð9Þ

y ¼
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

2
64

3
75

xc
a
_xc
_a

2
64

3
75 ð10Þ

5 Results and Discussion

The APSO based LQR tracking control algorithm is implemented in MATLAB
2013b. Table 2 gives the parameters used for PSO and APSO algorithms. The
dimension of the optimization algorithms are chosen to be 3 as the number of
variables to be optimized in the LQR design is 3 (q11, q22 and r). Moreover, the
number of iterations, particle size and cognitive acceleration constants in both PSO
and APSO are same except the inertia weight. In case of conventional PSO inertia
weight is linearly varied, whereas in APSO the inertia weight is adaptively varied
according to the particle’s success rate as given in (6). According to the fitness
function ISE, the optimization algorithms are executed for the specified number of
iterations and the global best of the particles, the weights of LQR, are obtained.
Figure 2 illustrates the fitness function of both PSO and APSO algorithms.

Table 2 Parameters of PSO
and APSO algorithms

Parameters PSO APSO

No. of population (N) 30 30

No. of iterations (i) 100 100

Dimensions (d) 3 3

C1 0.9 0.9

C2 1.2 1.2

Inertia weight (w) 0.9 AIWP
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From Table 3, it can be inferred that the minimum fitness function of APSO is
less than that of the PSO, which accentuates that the accuracy of the APSO is better
than that of PSO. Moreover, the convergence speed of APSO is faster than that of
PSO. Figure 3 shows the surface plot of the optimization algorithms. It can be noted
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Fig. 2 Fitness function of PSO and APSO

Table 3 Statistical analysis
of PSO and APSO

Statistical parameter PSO APSO

Mean lð Þ 0.1011 0.0316

Standard deviation rð Þ 0.2123 0.0367

Minimum mxð Þ 0.00032 0.0020

Maximum Mxð Þ 0.6962 0.1122

Range Rð Þ 0.6942 0.1119
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Fig. 3 Surface plots of PSO and APSO
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that the smoothness of the convergence is significantly better in APSO compared to
PSO. Table 4 gives the corresponding Q and R matrices and controller gain of LQR
obtained using the PSO and APSO algorithms.

5.1 Trajectory Tracking Response

To assess the tracking response of the APSO tuned LQR controller framework, a
square test signal of 0.05 Hz with 40 cm (peak to peak) displacement amplitude is
given and the response is illustrated in Fig. 4.

From Table 5, which gives the time domain specifications of the cart position
response, it is worth to note that both the settling time and the dead time of the
APSO tuned LQR is better than those of PSO tuned LQR. The pendulum angle
response and its corresponding motor voltage are shown in Fig. 5. Table 6 gives the
deviation and convergence time of pendulum angular response. The convergence
time of APSO based pendulum angular response is faster than that of PSO tuned
pendulum angle response.

Table 4 Weighting matrices and state feedback controller gains of PSO and APSO

Optimization
algorithm

Weighting matrices Controller gain

PSO Q ¼ diag 31:88 8:97 0 0½ �
R ¼ 0:22

K ¼ �82:61 145:47 �53:16 18:85½ �

APSO Q ¼ diag 13:65 8:92 0 0½ �
R ¼ 0:002

K ¼ �82:61 145:47 �53:16 18:85½ �
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Fig. 4 Cart position and tracking error for square trajectory
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6 Conclusions

In this paper, the weight selection problem of LQR has been solved using the APSO
algorithm and the efficacy of the controller has been tested on a benchmark inverted
pendulum. To increase the convergence speed and precision of the conventional
PSO, an AIWP has been introduced in the velocity update equation of PSO.
Statistical measures calculated for the optimization algorithms prove that the
introduction of AIWP significantly increases both the accuracy and consistency of
the conventional PSO. Moreover, the trajectory tracking response of inverted
pendulum accentuate that compare to PSO tuned LQR, the APSO tuned LQR
controller framework can result in not only improved tracking response but also
reduced tracking error.

Table 5 Comparison of cart position response

Optimization method Time domain parameters Performance index ISE

td ts %Mp

PSO 0.4 3.5 20 0.412

APSO 0.25 3 10 0.376
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Fig. 5 Pendulum angle and motor voltage for square trajectory

Table 6 Pendulum angle response

Optimization method Angle deviation (°) Convergence time (s)

PSO 1.3 3.2

APSO 1.2 3.0
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