
Chapter 3

Astrodynamics

Abstract To specify the functional requirements of STS, it is essential to under-

stand the orbital motion of the injected satellites under the influence of a central

gravitational force and other disturbing forces. This chapter deals with

astrodynamics which explains the motion of celestial bodies as well as human-

made satellites under the influence of gravitational force field of celestial bodies

and other external forces. Orbital motions of Low Earth Orbit (LEO) satellites are

the solutions of two-body problems i.e. the Earth and the satellite, in the specified

reference frame, considering the Earth’s gravitational force as the primary central

body force field. The deviation of the gravity force away from the central force field

and other disturbance forces affect the orbital motion of the satellites. In addition to

the central force field, gravitational forces of other planets and Moon also influence

the higher altitude orbital motions. Solutions for such motions are achieved by

solving restricted three body problem, considering the Earth’s gravity force as the

central gravity field whereas the perturbing gravitational force is from the third

body such as Moon. Depending on the type of trajectory, different reference frames

are used and theses aspects are explained first. Then, this chapter discusses the

orbital mechanics of satellites and various aspects of orbital motions of two-body

problems. The restricted three body problem and the resulting orbital motion are

also briefly explained. Even though the launch vehicles are capable of injecting the

satellites in the near Earth orbits, for certain scientific applications, these satellites

have to reach and orbit around Moon or distant planets. The interplanetary trajec-

tories of such satellites from the Earth bound orbits to the target planets are also

included. In an integrated mission management, optimum strategies like transfer-

ring the satellite at suitable time from the initial orbit to the required one in an

optimum fashion are required. Various optimum orbital transfer maneuver strate-

gies are explained in this chapter.
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3.1 Introduction

The functional requirement of a space transportation system (STS) is to lift a

specified satellite with a defined mass and to inject it into the mission defined

orbit (within allowable dispersion band) in space. To achieve the above require-

ments, the subsystems of the STS are designed to achieve the targeted state with the

specified accuracy bands in space, which in turn lead to the specified orbit within

the allowable error bounds. In order to specify the functional requirements in terms

of the required final state of STS, it is essential to understand the orbital motion of

the injected satellites under the influence of a central gravitational force and other

disturbing forces which can alter the orbits achieved by the STS.

Astrodynamics deals with the motion of celestial bodies as well as human-made

satellites under the influence of gravitational force field of celestial bodies and other

external forces. While the motion of celestial bodies are referred as celestial

mechanics, that of the human-made satellites are classified under orbital mechanics.

Generally, orbital motions of Low Earth Orbit (LEO) satellites are the solutions

of two-body problems in the specified reference frame, considering the Earth’s
gravitational force as the primary central body force field. In these problems, the

Earth and the satellite are the two bodies. The deviation of the gravity force away

from the central force field changes the characteristics of Earth-bound satellite

orbits. In certain cases, these particular orbital characteristics are favorably used to

achieve the satellite-specific mission requirements. In addition, other disturbance

forces also affect the orbital motion of the satellites.

In addition to the central force field, gravitational forces of other planets and

Moon also influence the higher altitude orbital motions. Solutions for such motions

are achieved by solving restricted three body problem, considering the Earth’s
gravity force as the central gravity field whereas the perturbing gravitational

force is from the third body such as Moon. Depending on the type of trajectory,

different reference frames are used and theses aspects are explained first. Then, this

chapter deals with the orbital mechanics of satellites and various aspects of orbital

motions of two-body problems. The restricted three body problem and the resulting

orbital motion are also briefly explained.

Even though the launch vehicles are capable of injecting the satellites in the near

Earth orbits, for certain scientific applications, these satellites have to reach and

orbit around Moon or distant planets. The interplanetary trajectories of such

satellites from the Earth-bound orbits to the target planets are also included.

In the integrated satellite mission management, optimum strategies are being

adopted considering: (i) launching satellites into a suitable Earth bound orbit and

(ii) transfer the satellite at suitable time from the initial orbit to the finally required

orbit in an optimum fashion. Various optimum orbital transfer maneuvers are also

brought out in this chapter.

Considering the integrated mission requirements and the various factors as

defined above, the mission target defined for the STS is also explained.
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3.2 Reference Frames

Orbital mechanics deals with the trajectories of satellites around central bodies. The

motion of a satellite is described in terms of its position and velocity vectors as

functions of time. Therefore, a reference frame is required with respect to which the

position and velocity vectors are defined. In order to define a coordinate reference

frame, three fundamental elements are required:

1. Origin

2. A reference plane passing through the origin

3. A reference axis, lying in the reference plane, originating from the origin and

pointing towards a well-defined reference point

The three dimensional coordinate system is defined by specifying one axis along

the direction of reference axis, second axis normal to the reference plane and third

axis in the reference plane, thus completing the right-handed orthogonal system.

Once the origin and reference plane are fixed in space and reference axis is

pointed towards distant stars, then the reference frame is fixed in space. The

reference frames, either fixed in space or moving with uniform velocity, without

rotation with respect to distant stars are un-accelerated. Such frames are called

inertial reference frames. If a reference frame is inertial, then every other reference

frame which is in uniform motion relative to it is also an inertial reference frame.

Inertial reference frames are important as it is useful to define motion of an

object as per the Newtonian mechanics. Alternatively, inertial reference frame is

one in which Newton’s laws of motion are valid.

In order to describe the motion of a satellite, the inertial reference frame makes

use of celestial references. Therefore, the corresponding celestial references are

explained first, followed by the reference frames being used in orbital mechanics to

describe the motion of satellite orbits.

3.2.1 Celestial Sphere and Ecliptic

Celestial sphere is a fictitious sphere of infinitely large radius with the Earth at its

center. All the celestial bodies appear to be on the surface of the sphere and move

westward over the celestial sphere due to the rotation of the Earth about its spin

axis. This is called diurnal motion. The extensions of the Earth’s equator and the

spin axis intersect with the celestial sphere and are called celestial equator and

celestial poles respectively. For an observer on the Earth, in addition to its daily

motion, there is a motion of the Sun towards eastwards over the celestial sphere at

the rate of approximately 1�/day and return to its initial position on the celestial

sphere in one year. The path of this apparent motion of the Sun over the celestial

sphere is called the ecliptic. With respect to the Sun, ecliptic is the Earth’s orbit
around the Sun. The ecliptic plane is inclined to the equatorial plane by an angle 2,
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which is called as the obliquity of the ecliptic. The present value of 2 is about 23.5�.
Axis of the ecliptic intersects the celestial sphere at the ecliptic poles. Therefore,

obliquity of the ecliptic 2 is the angle between celestial North Pole and

ecliptic pole.

Sun in apparent motion along ecliptic crosses the celestial equator at two points,

called equinoxes, and reaches highest point with respect to celestial equator, called

solstices. During its motion from the southern hemisphere to northern hemisphere,

the Sun crosses the celestial equator at Vernal equinox and reaches Summer solstice

in northern hemisphere. Subsequently, the Sun crosses the celestial equator at

Autumnal equinox during its motion from northern hemisphere to southern hemi-

sphere and reaches the Winter solstice. Approximate dates of occurrence of these

events over a year are:

Vernal equinox : March 21st

Summer solstice : June 21st

Autumnal equinox : September 21st

Winter solstice : December 21st

However, there could be a variation of �1 day due to the variation of prediction

methodologies and perturbations of planetary orbital characteristics. In effect, the

line joining the equinox points is the intersecting line of equatorial plane and

ecliptic plane. Due to the Sun, planets and Moon gravitational effects on Earth’s
orbit and spin axis, the equinox line is not fixed in space as given below:

1. The obliquity angle oscillates between 22.1� and 24.5� with a period of about

41,000 years. Currently the angle is 23.44� and decreasing.

2. The effect of other planets on the plane of Earth orbit causes smaller motion of

the ecliptic about 0.11400/year. This is known as planetary precision.

3. Due to the gravitational effect of the Sun and Moon on the Earth’s gravitational
bulge, the Earth spin axis rotates about the poles of ecliptic with the period of

approximately 26,000 years. This motion is called lunisolar precession.

Orbital plane of the Moon is also precessing with the period of 18.6 years. This

causes a nutation of smaller amplitude with a period of 18.6 years on the Earth

spin axis.

However, as the period involved in the variation of equinox line is very large

compared to the mission durations of STS and human-made satellites, the equinox

line can be considered as fixed in space and this plays a fundamental role for the

definition of inertial reference frames.

3.2.2 Heliocentric Inertial Reference Frame

Origin of the heliocentric reference frame is the Sun’s mass center. The fundamen-

tal plane is the ecliptic, X-axis of this frame is passing through the Vernal equinox,

Z-axis is along the ecliptic north pole direction and Y-axis lies in the ecliptic plane
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and completes the right-handed system as given in Fig. 3.1. Even though the Vernal

equinox is not fixed in space, still the heliocentric reference frame is considered as

an inertial frame for most of our missions since the time duration of most of the

missions are much smaller than the period of variations of the reference X-axis

(Vernal equinox).

This frame is useful for describing planetary motions or motion of human-made

satellites for the interplanetary missions.

3.2.3 Earth Centered/Geocentric Inertial (ECI)
Reference Frame

Origin of ECI is the Earth’s center. The fundamental plane is the equator, X-axis is

the reference axis, passing through the Vernal equinox, Z-axis is along the Earth’s
North Pole direction and Y-axis lies in the equatorial plane and completes the right-

handed system as shown in Fig. 3.2. It is pertinent to note that XYZ is not fixed with

the Earth and that it is non-rotating with respect to the distant stars, whereas the

Earth rotates.

As in the case of heliocentric reference frame, though the reference direction

towards Vernal equinox is not truly inertial, for the purpose of missions carried out

by the STS as well as for the orbital motions of satellites around the Earth, the ECI

frame can be considered as inertial reference. Earth gravitational accelerations are

calculated in this reference frame and the orbital elements of satellites are computed

based on the state vector given with respect to this ECI reference frame.

Fig. 3.1 Heliocentric

inertial frame
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3.2.4 Earth-Centered Rotating (ECR) Frame

Origin of ECR is the Earth’s center. The fundamental plane is the equatorial plane.

The reference axis, XR-axis is in the equatorial plane, passes through the Greenwich

meridian and rotates along with it, ZR-axis is along the Earth’s north pole and YR

lies in the equatorial plane, completes the right-handed system as given in Fig. 3.2.

The ECR frame rotates about ZR-axis at the spin rate of the Earth, i.e., 15.0411�/h
with respect to the ECI frame. This frame is also termed as World Geodetic System

(WGS) and is mostly used in Satellite Navigation System.

3.3 Laws of Motion

3.3.1 Kepler’s Laws

Many astronomers studied the motions of planetary bodies. Aristotle hypothesized

that all planetary bodies move in circular paths. Danish astronomer Tycho Brahe

(1546–1606) collected huge amount of accurate data on planetary motions for many

years. Johannes Kepler (1571–1630) joined Tycho Brahe as his assistant in 1600

and studied the Tycho’s data in detail during 1601–1606. Based on the extensive

studies, he deduced three laws of planetary motions as given below:

1. The orbit of each planet lies in a fixed plane containing the Sun and is an ellipse

with Sun at one focus.

2. The line joining a planet to the Sun sweeps equal areas in equal intervals of time.

Fig. 3.2 Earth centered

inertial and Earth centered

rotating frames
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3. The square of the period of revolution of a planet is proportional to the cube of

the semi-major axis of its elliptical orbit.

While the Kepler’s laws describe the motions of planets, orbital mechanics

based on the applications of Sir Issac Newton’s (1642–1727) law of universal

gravitation and his three laws of motion provide more general explanations for

the motions of the bodies. Kepler’s laws can be proved through Newtonian

mechanics. Since the velocities involved in the motion of the bodies are small

compared to the velocity of light, classical or Newtonian mechanics is sufficient for

describing the motion of satellites.

3.3.2 Newton’s Laws of Motion

Newton’s three laws of motion are given below:

1. A body continues its state of rest or of uniform motion in a straight line unless

compelled by external force to change the state.

2. The rate of change of momentum of a body is directly proportional to the applied

force and this change takes place in the direction of the applied force.

3. For every action there is always an equal and opposite reaction.

The first law is about the motion, which is relative. It is necessary to describe the

motion with respect to a reference frame. Therefore, the first law can be interpreted

as that there exists a reference frame with respect to which a body, free of all

external forces, is in uniform motion. Such a reference frame is inertial reference

frame. Therefore, Newton’s laws of motion are valid in inertial frame only.

While the first law gives qualitative statement that a force is the cause of motion,

the Newton’s second law provides the quantitative definition of the force. The

second law is valid only with respect to an inertial frame.

Consider a body of mass, m, moving with velocity V, then the linear momentum

of P of the body is given by,

P ¼ mV ð3:1Þ

As per the Newton second law,

F / dp

dt
ð3:2Þ

Considering mass, m is constant, then the Eq. (3.2) can be written as

F / m
dV

dt
ð3:3Þ
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Considering the rate of change of velocity as acceleration, a, Eq. (3.3) can be

written as

F ¼ kma ð3:4Þ

where a is the acceleration and k is the constant of proportionality, which depends

on the units of the parameters used in the equation. Considering force in Newton

(N), mass in kilogram (kg), acceleration in m=s2, for the case of F¼ 1 N, m¼ 1 kg,

a¼ 1 m=s2 then k¼ 1. Therefore, Eq. (3.4) can be written as

F ¼ ma ð3:5Þ

There are two types of masses viz., inertial mass and gravitational mass. The mass

used in Eq. (3.5) is the inertial mass whereas the mass used in the Newton law of

gravitation (as explained later) is gravitational mass. The inertial mass of a body

depends on the motion and is given by

m ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

c2

q ð3:6Þ

where m0 is the mass at rest, C is speed of light and V is the speed of the body in

motion. As the speed of the body considered is much less than the speed of light, in

Newtonian mechanics, mass can be assumed as constant, which corresponds to the

value at rest, m0.

Newton’s third law of motion explained that mutual forces of two bodies acting

upon each other are equal in magnitude and opposite in direction, and these actions

and reactions are collinear. Consider body 2 exerts a force F12 on body 1 as given in

Fig. 3.3, then body 1 exerts an opposite force F12 on body 2, so that

F12 þ F21 ¼ 0 ð3:7Þ

and

F12 ¼ �F21 ð3:8Þ

In summary, Newton’s first law of motion tells that the state of motion of a body can

be changed only if there is a force acting on it. The second law tells how much

change in the state of motion of the body, if there is a force and the third law tells

how the forces are exerted.

Fig. 3.3 Two bodies

separated by distance r
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3.3.3 Newton’s Law of Universal Gravitation

Newton’s law of universal gravitation states that two bodies exert a force on each

other along the line joining them and is directly proportional to the product of their

masses and inversely proportional to the square of the distance between them.

Consider two homogenous bodies with masses m1 and m2 as shown in Fig. 3.3.

The two bodies are subject to mutual gravitational forces. The gravitational force

acting on each body can be written as

F / m1m2

r2
ð3:9Þ

i.e.,

F ¼ Gm1m2

r2
ð3:10Þ

where the proportionality constant G is known as the Universal gravitational

constant and the value is about 6.67� 10�11 Nm2/kg2.

Assuming F21 is the gravitational force exerted on body 2 by body 1 and is given as

F21 ¼ Gm1m2

r2
ð3:11Þ

Similarly, the force on body 1 by body 2 is given by

F12 ¼ Gm1m2

r2
ð3:12Þ

In vector notations, F21 and F12 are in the opposite direction.

3.4 Two-Body Problem

In universe, each and every body is attracted to each other. Since the distance

between the bodies is large, the motion of two close bodies is influenced by their

gravitational forces alone where the other body effects are negligible. Therefore,

most of the orbital mechanics can be treated as the solution of a two-body problem.

Two-body orbital mechanics is the determination of the motion of two point masses

which are subjected only by their own mutual gravitational forces. This is the case

when both the bodies are homogeneous spheres. The deviations in the solutions of

two-body problems may arise when the bodies are not true point masses or some

other forces are exerted on the bodies apart from the mutual gravitational forces.

Such forces can be considered small compared to the gravitational forces and the

effects can be treated as perturbations over the solutions of two-body problems.
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In this section, general two-body problem is explained first, and then the special

case of motion of a very small body compared to the primary central body (as in the

case of satellite motion about the Earth) is described in detail. The perturbations due

to non-central force field are explained in a later section of this chapter.

Consider two homogeneous spherical bodies in inertial frame as shown in

Fig. 3.4. As per Newton’s law of universal gravitation, F21 is the force exerted on

body 2 by body 1 and is given as

F21 ¼ Gm1m2

r2
ð3:13Þ

where r is the distance between the bodies. Let r be the position vector of m2 with

respect to m1, and ur is the unit vector along the r, then

ur ¼ r

r
ð3:14Þ

In vector notation, Eq. (3.13) can be written as

F21 ¼ �Gm1m2

r2
ur ð3:15Þ

and the same can be expressed as

F21 ¼ �Gm1m2

r3
r ð3:16Þ

Using Newton’s second law of motion and referring Fig. 3.4a, the force, F21, can

also be written as

F21 ¼ m2
€R2 ð3:17Þ

Using Eqs. (3.16) and (3.17),

m2
€R2 ¼ �Gm1m2

r3
r ð3:18Þ

Using Newton’s third law, the force exerted on body 1 by body 2 can be written as

F12 ¼ �F21 ð3:19Þ

As explained earlier,

m1
€R1 ¼ Gm1m2

r3
r ð3:20Þ
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Let Rc be the center of mass of the two body system. Then,

Rc ¼ m1R1 þm2R2

m1 þm2

ð3:21Þ

and

€Rc ¼ m1
€R1 þm2

€R2

m1 þm2

ð3:22Þ

Adding Eqs. (3.18) and (3.20) yields

m1
€R1 þm2

€R2 ¼ 0 ð3:23Þ

Applying Eq. (3.23) in Eq. (3.22) shows that the acceleration of the center of mass

is zero. Therefore, center of mass of a two-body system can be considered for

inertial frame.

Eqs. (3.18) and (3.20) can be written as

€R2 ¼ �Gm1

r3
r ð3:24Þ

and

€R1 ¼ Gm2

r3
r ð3:25Þ

Subtracting Eq. (3.25) from Eq. (3.24),

Fig. 3.4 Two-body system: (a) two bodies in inertial frame (b) free-body diagram
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€R2 � €R1 ¼ �G m1 þm2ð Þ
r3

r ð3:26Þ

By the definition of position vectors,

r ¼ R2 � R1 ð3:27Þ

which gives

€r ¼ €R2 � €R1 ð3:28Þ

Using Eq. (3.28), Eq. (3.26) can be written as

€r ¼ � G m1 þm2ð Þ
r3

r ð3:29Þ

Equation (3.29) governs the motion of mass m2 relative to mass m1. This can also be

written as

€r ¼ � μ
r3
r ð3:30Þ

where μ ¼ G m1 þm2ð Þ is the gravitational constant of the specified two-body

system.

Since center of mass has zero acceleration, it can be considered as an inertial

reference and motion of each body can be defined about the center of mass. Let r1
and r2 be the position vectors of masses m1 and m2 with respect to the center of

mass. Then,

r ¼ r2 � r1 ð3:31Þ

Since the position vector of center of mass relative to itself is zero,

m1r1 þm2r2 ¼ 0 ð3:32Þ

Therefore,

r1 ¼ �m2

m1

r2 ð3:33Þ

Using Eq. (3.33) in Eq. (3.31) yields

r ¼ m1 þm2

m1

r2 ð3:34Þ
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The equations of motion of m2 with respect to the center of mass is given by

m2€r2 ¼ �Gm1m2

r3
r ð3:35Þ

Using Eq. (3.34) in Eq. (3.35) yields

€r2 ¼ � Gm1
3

m1 þm2ð Þ2
r2

r23
ð3:36Þ

Equation (3.36) gives the motion of m2 about center of mass. The path of m2

relative to center of mass is a conic with C as a focus, which is explained later. If V2

is the velocity and r2 is the position of m2, with respect to C, then this conic can be

Ellipse

Parabola

Hyperbola

9>>>>>>=
>>>>>>;

if

V2
2 < 2Gm1

3 = m1 þm2ð Þ2r2
h i

V2
2 ¼ 2Gm1

3 = m1 þm2ð Þ2r2
h i

V2
2 > 2Gm1

3 = m1 þm2ð Þ2r2
h i

8>>>><
>>>>:

Similarly, the expression for the path of m1 about center of mass can be derived.

Typical paths (ellipse) of the two bodies with respect to center of mass of two-body

problem are represented in Fig. 3.5.

Consider the Sun-Earth system, the ratio of masses isffi 1=332900 m2=m1ð Þ. The
distance between the Sun and the Earth is of the order of 150 million kilometers (r),

whereas the center of mass of the system is of the order of 455 km from the center of

the Sun. The angular velocity of line joining the Sun and Earth, ω is given by

Fig. 3.5 Two-body

motions
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ω ¼ V1

r1
¼ V2

r2
ð3:37Þ

where V1 and V2 are velocity of Sun and Earth with respect to center of mass

respectively, and r1 and r2 are distance of center of Sun and Earth with respect to the

center of mass of the system.

Therefore, the velocity V2 of the Earth (m2) about center of mass is of the order

of 30,000 m/s whereas that of the Sun (m1) of the order of 0.1 m/s.

When m1 � m2, as in the case of Earth-satellite systems, then the center of the

principal attracting body (in this case the larger body is Earth) can be taken as the

center of mass and hence can be considered as the origin of the inertial system. The

governing equations of such two-body system can be given using Eq. (3.29) as such.

€r ¼ � Gm1

r3
r ð3:38Þ

and

€r ¼ � μ
r3
r ð3:39Þ

where m1 is the mass of the larger body (Earth). In this case, the gravitational

constant, μ, is Gm1. The value of Earth’s gravitational constant is

3.986013� 105 km3/s2. The Eq. (3.39) describes the motion of the restricted

two-body system.

Cross product of Eq. (3.39) with r leads to

r� €r ¼ 0 ð3:40Þ

As

d

dt
r� _rð Þ ¼ _r � _r þ r� €r ð3:41Þ

Using Eq. (3.40), the Eq. (3.41) leads to

d

dt
r� _rð Þ ¼ 0 ð3:42Þ

Therefore, the angular momentum per unit mass H, given by

H¼ r� _r¼ constant ð3:43Þ

As r and ṙ are normal to the angular momentum, the orbital motion of the mass m2

is in a plane normal to H.
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Let A be the area swept by the line joining the two bodies in a specified time.

Then,

dA

dt
¼ 1

2
r� _rj j ¼ 1

2
Hj j ¼ constant ð3:44Þ

This proves Kepler’s second law. Solution to Eq. (3.39) can be obtained by taking

cross product of Eq. (3.39) with H.

H� €r ¼ �μ
r3

H� rð Þ ð3:45Þ
d

dt
ðH� _r Þ ¼ _H � _r þH� €r ð3:46Þ

Since the angular momentum is constant, _H ¼ 0. Therefore, Eq. (3.46) can be

written as

H� €r ¼ d

dt
H� _rð Þ ð3:47Þ

The right-hand side of Eq. (3.45) can be written as

1

r3
H� rð Þ ¼ 1

r3
r� _rð Þ � r½ � ð3:48Þ

Using vector rule,

r� _rð Þ � r ¼ rrð Þ _r � r _rð Þr ð3:49Þ

Using Eq. (3.49), Eq. (3.48) can be written as

1
r3
H� rð Þ ¼ r _r � _r r

r2
ð3:50Þ

But,

d

dt

r

r

� �
¼ r _r � _r r

r2
ð3:51Þ

Therefore, using Eqs. (3.47) and (3.51), Eq. (3.45) can be written as

d

dt
ðH� _r Þ ¼ �μ

d

dt

r

r

� �
ð3:52Þ

Integrating the Eq. (3.52) gives
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H� _r ¼ �μ
r

r
þ e

h i
ð3:53Þ

where e is the dimensionless vector constant of integration called eccentricity.

Equation (3.53) can be written as

r

r
þ e ¼ _r �H

μ
ð3:54Þ

Taking dot product of Eq. (3.54) with H gives

rH

r
þ eH ¼ _r �Hð ÞH

μ
ð3:55Þ

H is perpendicular to both r and ṙ. Therefore, r 	H ¼ 0. Similarly, the vector
_r � Hð Þ is perpendicular to both ṙ and H. Therefore, _r � Hð Þ : H ¼ 0. Consid-

ering the above aspects, Eq. (3.55) can be written as

eH ¼ 0 ð3:56Þ

Equation (3.56) shows the eccentricity vector, e is perpendicular toH and therefore

lies in the orbital plane formed by r and ṙ. e vector lies along the line of apsides as

explained below.

To express scalar equation of motion of two-body problem, take the dot product

of Eq. (3.54) with r as given below:

rr

r
þ re ¼ r

_r �Hð Þ
μ

ð3:57Þ

Using the vector identity of interchange of dot and cross products, Eq. (3.57) can be

written as

rr

r
þ re ¼ r� _rð ÞH

μ
ð3:58Þ

Since r 	 r ¼ r2, r� _r ¼ H and H 	H ¼ H2, Eq. (3.58) can be written as

rþ re ¼ H2

μ
ð3:59Þ

r 	 e can be expressed as

r 	 e ¼ re cosθ ð3:60Þ

66 3 Astrodynamics



where e is the magnitude of eccentricity vector, θ is the angle between eccentricity

vector (line of apsides) and position vector r. Then Eq. (3.59) is written as

r ¼ H2=μ
1þ e cosθ

ð3:61Þ

In general, conic section is the locus of all points which follow the constant ratio for

(rc/dc) as shown in Fig. 3.6, where rc is the distance of a point from focus and dc is

the distance of the point from a given line called directrix. The constant ratio (rc/dc)

is called the eccentricity, ec of the conic section.

From Fig. 3.6,

d0 ¼ dc þ rc cos θc ð3:62Þ

As per the definition of eccentricity,

pc
d0

¼ rc

dc
¼ ec ð3:63Þ

Using Eqs. (3.62) and (3.63), it can be shown that a conic equation is represented as

rc ¼ pc
1þ ec cos θc

ð3:64Þ

The value of ec decides the various conic sections as represented in Fig. 3.7.

ec ¼ 0, conic is circle

0 < ec < 1, conic is ellipse

Fig. 3.6 Conic section
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ec ¼ 1, conic is parabola

ec > 1, conic is hyperbola

Therefore, it can be concluded that the trajectory of a smaller body (in this case,

satellite) with respect to the bigger body (in this case, Earth) in the central

gravitational force field as represented in Eq. (3.61) is a conic as given below:

r ¼ p

1þ e cos θ
ð3:65Þ

where the semi-latus rectum of the trajectory is given by

p ¼ H2

μ
ð3:66Þ

The eccentricity, e, of the Eq. (3.65) decides the shape and type of the trajectory of

small body with respect to the bigger one as given below:

e¼ 1 represents a closed trajectory called circular orbit of smaller body around the

central body, whereas 0< e< 1 also represents a closed trajectory, and in this

case, the orbit is an ellipse. If e¼ 1, the trajectory of smaller body is an open

trajectory with the shape of parabola and e> 1 represents the motion of smaller

body as an open trajectory of hyperbola about the central body. This gives the

mathematical statement of Kepler’s first law. The orbit of a body under central

force field is called Keplerian orbit. Typical orbits and trajectories for various

Fig. 3.7 Conic sections
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values of e which have the same focus and common periapsis are represented in

Fig. 3.8.

As explained above, the cross product of Eq. (3.39) with specific relative angular

momentum (angular momentum per unit mass), gives the equation for the motion of

a smaller body in central force field. The dot product of Eq. (3.39) with specific

relative linear momentum gives the energy at any point on the orbit as explained

below:

The relative linear momentum of mass m2 is given by

L ¼ m2 _r ð3:67Þ

Therefore, the specific linear momentum is ṙ. Taking dot product of Eq. (3.39) with

ṙ gives

€r 	 _r ¼ �μ
r 	 _r
r3

ð3:68Þ

It is to be noted that

1

2

d

dt
ð _r 	 _r Þ ¼ €r 	 _r ð3:69Þ

Assuming V ¼ _r,

1

2

d

dt
ð _r 	 _r Þ ¼ 1

2

d

dt
ðV 	 VÞ ¼ 1

2

d

dt
ðV2Þ ð3:70Þ

Fig. 3.8 Orbits with

various eccentricities with

the same focus and common

periapsis
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Therefore, Eq. (3.69) can be written as

€r 	 _r ¼ d

dt

V2

2

� �
ð3:71Þ

The right-hand side of Eq. (3.68) can be written as

μ
r 	 _r
r3

¼ μ
_r

r2
¼ � d

dt

μ
r

� �
ð3:72Þ

Substituting Eqs. (3.71) and (3.72) in Eq. (3.68) gives

d

dt

V2

2
� μ

r

� �
¼ 0 ð3:73Þ

This gives

V2

2
� μ

r
¼ ε ð3:74Þ

where ε is a constant called total energy. (V2/2) is the specific relative kinetic

energy (kinetic energy per unit mass) and (μ/r) is the specific potential

energy (potential energy per unit mass) of the body m2 in the gravity field of

m1. The Eq. (3.74) gives the total mechanical energy per unit mass. Also the

Eq. (3.74) gives the conservation of the specific mechanical energy for the

defined trajectory, i.e., the total energy at any point of the trajectory is same

and is given by the relation (3.74). Equation (3.74) is also called vis-viva (living

force) integral.

3.4.1 Some Important Trajectory Parameters of Two-Body
Problem

As explained above, motion of the smaller body with respect to the bigger one is a

conic, which can be either a closed trajectory in terms of circular and elliptic orbits

or an open trajectory defined by a parabola or hyperbola depending on the eccen-

tricity value. Also, depending on the velocity magnitude at the instantaneous

location, energy of the trajectory is defined.

In the trajectory, the closest point to the primary focus (central body) is called

periapsis, and the farthest point is called apoapsis. The line joining the apses is

called apse line. In the case of motion of a satellite about the Earth, the periapsis and
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apoapsis are referred to as perigee and apogee, respectively. For the case of motion

about the Sun, the corresponding points are called perihelion and aphelion, respec-

tively. Typical trajectory of a smaller body m2 about the bigger body m1 is

represented in Fig. 3.9.

The eccentricity vector is always defined from the primary focus towards

periapsis and this becomes the reference for the measure of true anomaly, θ, the
location of the body with respect to the apse line. The flight path angle, γ, at any
location on the trajectory is defined as the angle between the velocity vector and the

local horizontal.

Angular velocity of the position vector r is _θ . Therefore, the horizontal velocity,
Vh is given by

Vh ¼ r _θ ð3:75Þ

Magnitude of angular momentum is the product of r and horizontal velocity. Thus

H ¼ r2 _θ ð3:76Þ

Equation (3.76) along with Eq. (3.65) gives

Vh ¼ μ
H
ð1þ e cos θÞ ð3:77Þ

Fig. 3.9 Trajectory of

orbiting body (m2) with

respect to the primary body

(m1)
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The radial velocity, Vr is ṙ. Therefore,

Vr ¼ dr

dt
¼ H3

μr2
e sin θ

ð1þ e cos θÞ2 ð3:78Þ

Using Eq. (3.66) gives

Vr ¼ μ
H
e sin θ ð3:79Þ

From the Fig. 3.9,

tan γ ¼ Vr

Vh

ð3:80Þ

Substituting Eq. (3.77), Eqs. (3.79) and (3.80) becomes

tan γ ¼ e sin θ
1þ e cos θ

ð3:81Þ

The magnitude of angular momentum at any location r is also expressed as

H ¼ rV cos γ ð3:82Þ

where V is the velocity of the smaller body and γ is the flight path angle.

Assume rp and ra are the distances of periapsis and apoapsis respectively with

respect to the primary focus and the corresponding velocities are Vp and Va

respectively. rp is the location when θ ¼ 0 and ra is the location of satellite when

θ becomes 180�. Using Eqs. (3.65) and (3.66),

rp ¼ H2

μ
1

ð1þ eÞ ð3:83Þ

and

ra ¼ H2

μ
1

ð1� eÞ ð3:84Þ

rp and ra are the minimum and maximum distances of the trajectory about the

primary body. At the periapsis and apoapsis, the flight path angle is zero.

The semi-major axis, a is given by

a ¼ rp þ ra

2
¼ H2

μ
1

ð1� e2Þ ð3:85Þ

Since the angular momentum is constant along the trajectory,
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H ¼ rpVp ¼ raVa ð3:86Þ

This gives

Vp ¼ H

rp
ð3:87Þ

and

Va ¼ H

ra
ð3:88Þ

From the above, it can be seen that Vp and Va are the maximum and minimum

velocities along the trajectory.

Since the energy along the trajectory, ε is constant, at the periapsis,

ε ¼ Vp
2

2
� μ
rp

ð3:89Þ

Using Eq.(3.87) into (3.89) yields

ε ¼ 1

2

H2

rp2
� μ
rp

ð3:90Þ

Using Eq. (3.83) in Eq. (3.90) gives

ε ¼ �1

2

μ2

H2
ð1� e2Þ ð3:91Þ

It can be seen from Eq. (3.91) that the energy is function of trajectory parameters.

Also, it can be concluded that:

1. For elliptic orbit (including circular orbit), ε is negative value
2. For parabolic orbit, ε ¼ 0

3. For hyperbolic orbit, ε is positive value

Using Eq. (3.85) in Eq. (3.91) gives

ε ¼ � μ
2a

ð3:92Þ

Alternatively,

a ¼ � μ
2ε

ð3:93Þ
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Thus, the semi-major axis is dependent only on the specific total energy. Using

Eq. (3.93) in Eq. (3.74) yields

V2 ¼ μ
2

r
� 1

a

� �
ð3:94Þ

Using Eq. (3.93) in Eq. (3.94) with the initial conditions of velocity and distance as

V0 and r0 respectively, the achieved trajectory characteristics can be identified as

follows:

Elliptic orbit

Parabolic trajectory

Hyperbolic trajectory

9>>>>>>=
>>>>>>;

if

V0 <

ffiffiffiffiffi
2μ
r0

r

V0 ¼
ffiffiffiffiffi
2μ
r0

r

V0 >

ffiffiffiffiffi
2μ
r0

r

8>>>>>>><
>>>>>>>:

Therefore, the following conclusions can be arrived at: At r0, for the lower velocity

V0, the orbit is ellipse. As V0 is increased the closed orbit gradually changes into

open trajectory. The minimum velocity required to achieve open trajectory is called

escape velocity and is given by

Vesc ¼
ffiffiffiffiffi
2μ
r0

r
ð3:95Þ

At this velocity, the trajectory of the smaller body with respect to the bigger body is

a parabola. Any increase in velocity leads to hyperbolic trajectory of the body with

respect to the primary body.

In summary, the following conclusions are arrived at:

1. Eccentricity determines the shape and type of trajectory

2. Semi-major axis defines the size and energy of the trajectory

The relations between these parameters and the trajectory are summarized below

in Table 3.1.

The following sections give the significance and specific features of each of the

above orbits and open trajectories.

Table 3.1 Trajectories in two-body problem

Trajectory Eccentricity, e Semi-major axis, a Specific energy

Circular orbit 0 a ¼ r Negative

Elliptic orbit 0 < e < 1 > 0 Negative

Parabola 1 1 0

Hyperbola > 1 < 0 Positive
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3.4.2 Circular Orbits

Applying e ¼ 0 in the Eq. (3.65) gives the radial distance of the circular orbit as

r ¼ H2

μ
ð3:96Þ

Also, for circular orbit, there is no radial velocity and the velocity, V, is always

tangential. Therefore, angular momentum of circular orbit is

H ¼ rV ð3:97Þ

and

V ¼ H

r
ð3:98Þ

Equations (3.96) and (3.98) show that the radial distance and velocity at any point

on the orbit are constants. Using Eq. (3.97) into Eq. (3.96) yields

Vcir ¼
ffiffiffi
μ
r

r
ð3:99Þ

Equation (3.99) gives velocity of satellite along the circular orbit of distance of r.

Time required to travel along the orbit once is called the period of the orbit, T,

and given by

T ¼ Circumference

Speed
ð3:100Þ

For the circular orbit of radius r, period is as given in Eqn. 3.100

For the circular orbit of radius r, period is given by

Tcir ¼ 2πr
Vcir

¼ 2πrffiffiffiffiffiffiffiffiffiffiffiðμ=rÞp ð3:101Þ

The specific energy of a satellite at circular orbit is obtained by substituting e ¼ 0 in

Eq. (3.91) as

Tcir ¼ 2π

ffiffiffiffi
r3

μ

s
ð3:102Þ

Using Eq. (3.96) in Eq. (3.102) yields
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ε ¼ �1=2ðμ2=H2Þ ð3:103Þ
εcir ¼ � μ

2r
ð3:104Þ

Equation (3.104) gives shows that the energy along a circular orbit is negative. As

r increases, the energy becomes less negative, indicating higher specific energy for

the higher circular orbits.

3.4.3 Elliptical Orbits

For the cases of 0 < e < 1, the relative radial distance calculated by the Eq. (3.65)

remains bounded for θ ranging from 0 to 2π and the orbit is elliptic one as shown in
Fig. 3.10. The minimum distance rp is from focus to the periapsis (P) and the

maximum distance ra is from F to apoapsis (A). ra and rp are values of

r corresponding to θ ¼ 0 and θ ¼ 180� respectively as are explained in Sect. 3.4.1:

Some additional parameters are explained in this section. Using Eq. (3.85) in

Eq. (3.65) an alternate form of orbit equation can be written as

r ¼ að1� e2Þ
1þ e cos θ

ð3:105Þ

From the above equation, the rp and ra are expressed as

rp ¼ að1� eÞ ð3:106Þ
ra ¼ að1þ eÞ ð3:107Þ

From Fig. 3.10, CF is expressed as

CF ¼ ae ð3:108Þ

Also, from the Fig. 3.10,

CF ¼ ae ¼ rB cos ðπ� βÞ ¼ � að1� e2Þ
ð1þ e cos βÞ

� �
cos β ð3:109Þ

From Eq. (3.109), e can be expressed as

e ¼ �cos β ð3:110Þ
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Using this, the value of rB can be given as

rB ¼ a ð3:111Þ

Therefore, the semi-minor axis, b is given by

b ¼ að
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ ð3:112Þ

The area of ellipse is given by

A ¼ πab ð3:113Þ

As per Eq. (3.44),

dA

dt
¼ H

2
ð3:114Þ

which can be used to obtain

ΔA ¼ H

2

� �
Δt ð3:115Þ

For one complete revolution, ΔA is πab and Δt is the period, T. Therefore,

Fig. 3.10 Elliptic orbit parameters
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T ¼ 2πab
H

� �
ð3:116Þ

Using Eq. (3.85) and (3.112) for a and b respectively yields

T ¼ 2π
μ2

Hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� �3

ð3:117Þ

Using Eq. (3.85) the period, T given as

T ¼ 2π

ffiffiffiffiffi
a3

μ

s
ð3:118Þ

which proves Kepler’s third law.

This expression reveals that the period of elliptic orbit is independent of eccen-

tricity and depends only on the semi-major axis. The two orbits having the same

period are represented in Fig. 3.11.

The eccentricity of the elliptical orbit can also be represented using Eq.(3.83)

and (3.84) as

rp

ra
¼ 1� e

1þ e
ð3:119Þ

which can be used to derive e as

e ¼ ra � rp

ra þ rp
ð3:120Þ

The Eq. (3.120) shows that

Fig. 3.11 Elliptic and circular orbits with same energy and period: (a) orbits comparison with

center aligned (b) orbits about the focus
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e ¼ distance between the two focii

distance between the apsi points

It can be seen from the above that the size of the elliptic orbit is defined by ‘a’
whereas the shape is decided by ‘e’. Together ‘a’ and ‘e’ define the elliptical orbit
characteristics.

Using the eccentric anomaly E, the position on an elliptic orbit is given by

r ¼ að1� e cos EÞ ð3:121Þ

Another important relation is Kepler’s equation defined by

M ¼ E� e sin E ð3:122Þ

where M is the Mean anomaly and

M ¼ tp

ffiffiffiffiffi
μ
a3

r
ð3:123Þ

where

tp ¼ time elapsed since the previous passage of periapsis

3.4.4 Parabolic Trajectories

Consider the orbit equation

r ¼ H2

μ

� �
1

1þ e cos θ

� �

and the orbit energy equation

ε ¼ �1

2

μ2

H2
ð1� e2Þ

and

ε ¼ V2

2
� μ

r

From the above equations, it can be observed that, for the case of e ¼1, the specific

energy ε is zero and as the true anomaly tends to 180�, the radial distance

approaches infinity.
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The velocity at r ¼ 1 is called residual velocity, V1 (sometimes referred as

excess velocity). For the case of parabolic trajectory, V1 is 0, meaning that, once

the body is placed in parabolic trajectory, it won’t come back, thus referred to as

open trajectory. Also, since the residual velocity V1 is zero, parabolic trajectory is

the boundary between the closed elliptical orbit and open hyperbolic trajectory.

Thus, the velocity on the parabolic trajectory is referred as escape velocity and is

given by

Vesc ¼
ffiffiffiffiffi
2μ
r

r
ð3:124Þ

Considering the Eq. (3.99), it can be seen that

Vesc ¼
ffiffiffi
2

p
Vcir ð3:125Þ

Thus at any distance, the required escape velocity is about 41.4 % more than the

circular orbital velocity at that location. Typical values of escape velocities are

given below:

11.12 km/s for escape from Earth from the Earth’s surface
617 km/s for escape from Sun from the Sun’s surface
42.1 km/s for escape from Sun from the Earth orbit

It is to be noted that if a body (satellite) is injected into a parabolic trajectory

about the primary body (Earth) with the escape velocity, Vesc, the satellite does not

go to infinity. As the distance increases, gravitational attraction of the Earth

reduces, and the influence of the Sun becomes predominant. At one point of time,

the satellite velocity with respect to Earth becomes zero; but the satellite velocity

about the Sun is same as that of the Earth and therefore both the Earth and the

satellite move about the Sun in the same orbit.

Typical parabolic trajectory is given in Fig. 3.12. Considering the Eq. (3.81), the

flight path angle at any location of a parabolic trajectory is given by

tan γ ¼ sin θ
1þ cos θ

ð3:126Þ

On simplifying the Eq. (3.126), it can be seen that

γ ¼ θ
2

ð3:127Þ

Thus, along parabolic trajectory, the flight path angle at any location is half of the

true anomaly.
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3.4.5 Hyperbolic Trajectories

Hyperbola is an open trajectory as represented in Fig. 3.13. Since the trajectory is

open one, the distance r can increase without limit. When r approaches1, the tip of

the position vector meets the asymptote. The asymptotes intersect at the centre,

O. The centre falls outside the trajectory.

The angle between the asymptote and major axis is θ1. Since the trajectory

meets the asymptote at infinity, θ1, is the true anomaly at infinity. Using the

equation,

r ¼ H2

μ
1

1þ e cos θ

at r ¼ 1, the term 1þ e cos θ ¼ 0. Therefore, θ1 can be expressed as

θ1 ¼ cos�1 � 1

e

� �
ð3:128Þ

The angle between the asymptotes is turning angle, δ. As the body travels from�1
to þ1, δ is the angle through which the velocity along the hyperbolic trajectory

turns. From Fig. 3.13, it can be seen that

cosðπ� θ1Þ ¼ cos
π
2
� δ
2

� �
ð3:129Þ

Using Eq. (3.128), Eq. (3.129) gives

Fig. 3.12 Typical

parabolic orbit
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δ ¼ 2sin�1 1

e

� �
ð3:130Þ

For the case of parabola, e ¼ 1which gives θ1 as 180�. Therefore, for parabola, the
asymptotes are parallel and do not intersect, and this is the limiting case between

closed elliptical orbits and the open hyperbola trajectory.

Consider the energy equation,

V2

2
� μ

r
¼ ε

As for hyperbolic trajectory, ε is a positive value; at r ¼ 1, the velocity is not zero

and this is called residual velocity, V1 which is given by

V12 ¼ 2ε ð3:131Þ

For the case of hyperbolic trajectory of a satellite from the Earth, at r ¼ 1, there is a

positive residual velocity and therefore the satellite has its own orbit around Sun,

which is different from that of the Earth.

At any point on the hyperbolic trajectory, the velocity is given by

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 εþ μ

r

� �r
ð3:132Þ

Fig. 3.13 Hyperbolic trajectory
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This gives,

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vesc

2 þ V12
p

ð3:133Þ

3.5 Satellite Orbit and Trajectory Requirements

The previous section deals with two-body problem, which defines the motion of a

smaller body with respect to a bigger body. From the human-made satellite require-

ments point of view, these solutions can be used to define the motion of satellites

(small body) about the Earth (bigger body). The requirements of orbits can be

classified into two categories: (i) closed orbits (circular and elliptic) and (ii) open

trajectories.

Closed orbits are used for the near Earth space utilization. These types of orbits

are used for the utilization of Earth for survey of natural resources, Earth observa-

tion and its surrounding environments, communication and navigational systems. In

another important application, these orbits are used as parking orbits, from which

the satellites are injected into interplanetary trajectories which are open trajectories.

This section gives uses of various types of orbits/trajectories required for various

applications.

3.5.1 Circular Orbits

Circular orbits of different altitudes are utilized for various applications. Circular

orbits are generally classified as Low Earth Orbit (LEO), Medium Earth Orbit

(MEO) and High Earth Orbit (HEO). There is a hazardous Van Allen radiation

belt around Earth, which starts at about 2400 km. The Van Allen belt consists of an

inner zone of high energy protons and an outer zone of high energy electrons.

Generally, the circular orbits are planned below the high intensity inner zone peak

(altitude ~ 3700 km) or above the high intensity outer zone peak

(altitude ~ 28,000 km). Low Earth circular orbits limit between around 150 km

(where the atmospheric drag effect on orbit is less) to 1000 km (which is well below

the Van Allen belt). The HEO is above the Geosynchronous Earth Orbit (GEO). In

between, orbits are referred as MEO.

A circular orbit which skim the surface of the Earth (assumes a spherical Earth

with no atmosphere) is referred as Earth-surface circular orbit and is many times

used as reference orbit. This orbit has the minimum energy, maximum circular orbit

velocity and minimum period. The period of this orbit is 84.4 min. This period is

called Schuler period and is used in inertial navigation.

Solar day (synodic day) is the time from noon to noon, which is the time taken by

Earth to rotate one full rotation about its axis, which is 24 h. But Earth also moves
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around the Sun. The siderial day is time taken by the Earth to complete one rotation

relative to inertial space. Siderial day period is 23 h 56 min 4.091 s.

Orbit with the period equal to a siderial day is called Geosynchronous orbit. If

such orbit is circular one and over equator and a satellite is placed on such orbit

looks stationary with respect to a specified point on the Earth. Such orbit is called

Geostationary Earth Orbit (GEO). The radial distance of GEO is 42,164 km and the

altitude is 35,786 km. Such orbits are useful for communication satellites and

weather satellites due to global coverage.

A satellite placed in GEO covers the latitudes range of�81.3� and Earth surface
area of 42.4 %. Therefore, 3 such satellites are required to cover the entire globe.

3.5.2 Elliptic Orbits

The elliptical orbits are used for reconnaissance satellites. The targets are near the

perigee of such orbits whereas the apogee phase is utilized for transmitting the

acquired information as well as to make the intercept problem more difficult. Also,

elliptic orbits with high eccentricity are used for communications of high latitude

regions as explained later.

Elliptic orbits are also used as the intermediate Geo Transfer Orbit (GTO) to

place a satellite into GEO. In order to achieve the maximum performance, initially

the launch vehicle places the satellite into an elliptic orbit of perigee altitude of

about 200 km with apogee altitude of about 36,000 km. The satellite further uses its

own propulsion system to transfer the satellite to GEO. This aspect is explained

later.

3.5.3 Open Trajectories

The open trajectories, primarily hyperbolic trajectories, have been used for escap-

ing Earth’s gravitational force field and to place a satellite in interplanetary or lunar
trajectories. Also, when the satellite enters or reenters the sphere of gravitational

attraction of another planet, the satellite follows hyperbolic trajectory. These

aspects are also covered in later part of this chapter.

3.6 A Note on Orbital Energy and Launching of Satellites
into Orbit

The previous section defines specified orbits or trajectories for specified spacecraft

depending upon application. This section gives the launch vehicle requirements to

achieve the specified orbits for the specified satellite.
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Specific energy of an elliptical orbit (circular orbit is a special case of elliptical

orbit) is given by

ε ¼ V2

2
� μ

r
ð3:134Þ

where V2/2 is the specific kinetic energy and �μ=rð Þ is the specific potential energy.
Considering a satellite of mass, m in the specified orbit, then the mechanical energy

of the satellite E is given by

E ¼ mε ð3:135Þ

Therefore, even though specific energy of an orbit is a defined value, depending on

the mass of the satellite, the mechanical energy of the satellite in that orbit would

vary. Therefore, for a heavier satellite, the mechanical energy of the satellite is

larger. Similarly, the mechanical energy of a satellite in a bigger orbit is higher than

that of the lower orbit. For the specified satellite to be placed in the defined orbit, the

satellite has to be injected into the orbit with the mechanical energy as given by

Eq. (3.135).

The specific kinetic energy depends on the square of orbital velocity at the

specified radial distance. As the velocity increases, the kinetic energy also

increases. For the radial distance close to zero, the potential energy is near to

negative infinity. At the surface of Earth, the specific potential energy is about

�62.6 MJ/kg, i.e., the energy becomes less negative and thus the energy increases.

Similarly, for the Earth bound orbit at the altitude of 360 km (r¼ 6738 km), the

specific potential energy is �59.2 MJ/kg. Thus at the altitude of 360 km above the

surface of Earth, there is potential energy increase by 3.4 MJ/kg. From these it can

be seen that as r increases, the negative value decreases, thus causing an increase in

the potential energy compared to that at the surface of Earth.

Therefore, while defining the energy of satellite orbit, one should not confuse

with its negative value. Even though the energy is negative, increase in the energy

with respect to its value at the surface of Earth has to be considered for all the

computations. From these explanations, it can be concluded

1. Energy increases for the orbits with larger r

2. Energy increases for the orbits with higher velocity

In order to launch a satellite of mass m from the surface of the Earth to the

specified orbit, it is essential to impart the mechanical energy, E ¼ mε, to the

satellite, where ε is the specific energy as per the requirements of the specified orbit.

The mechanical energy to the satellite is imparted by the launch vehicle. The

following are the requirements of the launch vehicle:

1. For the specified satellite mass, a larger launch vehicle is required to position the

satellite to a higher orbit than that required to launch the same satellite into a

lower orbit.
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2. A specified launch vehicle can launch higher mass satellite into a lower orbit or a

lesser mass satellite into a higher orbit.

These discussions give the total energy required to be generated by a launch

vehicle. In reality, the velocity addition and correspondingly the increase in

r happens during the STS operation time. The pattern of increase of these param-

eters depends on the vehicle configuration, the type of propulsion system and the

vehicle attitude history during thrusting phase and thrusting duration. In order to

reach the required orbit with the specified energy, at satellite injection at the

specified distance r, the velocity components and the flight parameters are to be

achieved by the launch vehicle as specified in Eqs. (3.77), (3.79) and (3.81). These

functions are carried out by the launch vehicle subsystems as per the details

provided in the subsequent chapters of this book.

During the launch vehicle operation, while propulsion system is adding energy

which in turn increases the velocity and altitude to the vehicle and satellite systems,

the Earth gravity reduces the velocity. The velocity loss due to gravity depends on

the vehicle attitude with respect to gravity acceleration direction during thrusting

phase and thrusting duration. Therefore, the energy provided by the propulsion

system has to be effectively utilized to impart the maximum mechanical energy to

the satellite to achieve the maximum performance. Generally, maximum energy

utilization of the launch vehicle and in turn the maximum performance can be

achieved if the satellites are injected at a lower orbit. However, depending on the

complexities of integrated launch vehicle – satellite mission, a trade-off between

the altitude of injection and velocity losses, suitable mission strategies are to be

defined.

3.7 Orbital Elements

The state of a satellite at any instant in inertial space is defined by its instantaneous

position and velocity components along the three axis of a specified reference

frame.

The solution of two-body problem as discussed earlier gives the motion of the

satellite in a plane, and the motion is along a closed orbit (circular or elliptic) or

open trajectory (parabola or hyperbolic). The two body solution thus defines only

type, shape and size of the orbits through two constants namely, eccentricity (e) and

semi-major axis (a). But these two constants are not sufficient to define completely

the location and velocity of the satellite at any instant. The additional constants

required are: (i) orientation of the orbit with respect to a reference frame

(3 constants) and (ii) position of the satellite in the orbit at any instant (1 constant).

Together, these six constants are called orbital elements. It is to be noted that the

components of position and velocity vectors in the defined Cartesian reference

frame is related to these orbital elements.
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The six orbital elements corresponding to a geocentric orbit as defined in

Fig. 3.14 are summarized below:

1. Orientation of orbital plane in inertial space is given by inclination (i) and right

ascension of ascending node (Ω)
2. Location of perigee in the orbital plane is defined by the argument of perigee (ω)
3. Type, shape and size of the orbit is defined by eccentricity (e) and semi-major

axis (a)

4. Location of the satellite in the orbit is defined by the true anomaly (θ). Other
equivalent parameters viz., mean anomaly, time since elapse of perigee, etc. can

also be defined as the sixth element.

The parameters ‘a’ and ‘e’ define size, shape and type of orbit. The orientation of
the orbital plane is defined by ‘Ω’ and ‘i’ and the location of perigee in that plane is
defined by ω. The position of satellite in the defined orbit as above is decided by ‘θ’.
These six orbital elements are explained below:

1. Right Ascension of Ascending Node (Ω)

The satellite during its orbital motion from southern hemisphere to northern

hemisphere crosses the equator at ascending node, while its motion from northern

hemisphere to southern hemisphere crosses the equator at descending node. The

line joining the nodes is called the line of nodes. The nodal line is the line of

intersection of orbital plane with equatorial plane. The angle of nodal line at

ascending node location measured eastward from the X-axis of ECI frame is called

the right ascension of ascending node.

Fig. 3.14 Orbital elements
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2. Orbital Inclination (i)

The angle between the equator and orbit at the location of ascending node,

measured from equator along the counter clockwise direction is called the inclina-

tion of the orbit.

3. Argument of Perigee (ω)

The angle between the line of nodes at the ascending node to the apsis line at the

perigee location is called argument of perigee. This angle is measured counter

clockwise from the line of nodes to the apsis line along the orbital plane.

4. Eccentricity (e)

This constant defines the type and shape of the orbit as explained earlier.

(v) Semi-major axis (a)

This constant defines the size of the orbit as explained earlier.

5. True anomaly (θ)

This is the angle measured clockwise from the apsis line at perigee location to the

position vector of the satellite. This is defined earlier as part of two-body motion.

3.8 Orbital Perturbations

Perturbations of geocentric orbital elements are explained in this section. The

two-body problem as explained in the previous sections considered central gravi-

tational force field. In reality, the actual force field is not central force field due to

the asphericity of Earth and due to the presence of atmospheric drag, third body

perturbations such as Moon, Sun and solar radiation pressure.

These perturbation forces can be added to the central force field and the equation

of motion of the satellite can be written as

€r ¼ � μ
r3
rþ f ð3:136Þ

The solution of Eq. (3.136) is not a Keplerian orbit as defined by the first part of

right hand side (RHS) of Eq. (3.136). However, the major force is the gravity force

(central force) due to spherical Earth which keeps the satellite in the Keplerian orbit

whereas the perturbation forces cause the variations in the Keplerian orbital

elements.

Variations in the orbital elements consist of the following components:

(i) secular, (ii) short period variation and (iii) long-period term as shown in

Fig. 3.15. Depending on the types of disturbing forces and orbital characteristics,

each orbital element has the specific variations.
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For near Earth satellites orbits, Earth’s asphericity causes major disturbing force

compared to the other sources and its effects are explained in the following section.

3.8.1 Effects of Earth’s Asphericity on Orbital Elements

Earth is an irregular shaped body which causes the gravitational force not passing

through its center and its gravitational potential is defined as

U¼�μ
r

1�
X1
n¼2

Jn
Re

r

� �n

Pn sinλð Þ
"

�
X1
n¼2

Xn
m¼1

Jn,m
Re

r

� �n

Pn
m sinλð Þcosm Φ�Φn,mð Þ

#

ð3:137Þ

where r, λ, ϕ are geocentric distance, latitude and longitude respectively. Pn(sinλ) is
Legendre’s polynomial of degree n in sinλ, Pnm(sinλ) is the associated Legendre

function of degree n and order m. Re is the equatorial radius of Earth. Jn, Jn, m and

ϕn, m are numerical coefficients that describe the mass distribution. The terms

having Jn are called zonal harmonics, which describe the deviation of gravity

away from Newtonian in the north-south direction. The terms having Jn, m, n 6¼
m are called tesseral harmonics and Jn, m, n¼m is known as sectorial harmonics,

which represent the deviation of gravity acceleration in the east-west direction.

The term with n ¼ 1 is absent due to the assumption that the origin of reference

frame coincides with center of mass of the Earth. The term J2 represents the

oblateness of Earth, J3 represents the Earth as pear shaped, J2,2 represents ellipticity

of the equator and so on. For an orbit inclined to the equator, the effects of tesseral

and sectorial harmonics can be assumed to be averaged out over a long period of

time. In this case, the Earth can be assumed to be an axi-symmetric body with zonal

Fig. 3.15 Typical variation

of anorbital element
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harmonics terms alone. However, for equatorial orbit, especially geostationary

orbit, wherein the satellite is positioned at same location with respect to the

Earth, tesseral and sectorial harmonics play a major role in the orbital elements

variations. Considering only zonal harmonics terms, the value of J2 is

1.0826� 10�3 and other coefficients are of the order of 10�6. Therefore, J2 term

is having the major impact on the orbital perturbations and is further analyzed as

given below.

Considering only J2 in Earth potential, define the Earth as oblate spheroid, and

due to this feature, the gravity acceleration is away from the center of Earth as

shown in Fig. 3.16, and the deviation is the function of latitude and radial distance.

The gravity component gr towards center of the Earth defines Keplerian orbital

elements whereas the disturbance component gd causes perturbation to the Kepler-

ian orbital elements. The disturbing potential considering only J2 term is given as

ΔU ¼ � μ
r
ðJ2Þ Re

r

� �2

P2ðsin λÞ ð3:138Þ

In this case, the gravitational acceleration of oblate Earth as defined by

Eq. (3.136) is

€r ¼ � μ
r3
rþ f

where

f ¼ frur þ fhuh þ fvuv ð3:139Þ

fr, fv and fh are the radial, normal (to orbital plane) and perpendicular to r and lying

in the orbital plane components of f and ur, uv and uh are the corresponding unit

Fig. 3.16 Oblate Earth
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vectors along these directions respectively. The disturbing force components

corresponding to J2 term, with respect to the orbital plane in terms of orbital

elements, can be expressed as

fr ¼ � μ
r2

3

2

� �
J2

Re

r

� �2

½1� 3 sin2i sin2ðωþ θÞ� ð3:140Þ

fh ¼ � μ
r2
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2

� �
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Re

r

� �2

sin2i sin½2ðωþ θÞ� ð3:141Þ

fv ¼ � μ
r2

3
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� �
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Re

r

� �2

sin 2i sinðωþ θÞ ð3:142Þ

The disturbance forces as given in Eqs. (3.140), (3.141), and (3.142) induce rates of

change of all the orbital elements. The rate of change of two orbital elements of

interest is given below:

_Ω ¼ H

μ
sinðωþ θÞ

sin ið1þ e cos θÞ fv ð3:143Þ

_ω ¼ � r cos θ
eH

fr þ ð2þ e cos θÞsin θ
eH

fh � rsinðωþ θÞ
H tan i

fv ð3:144Þ

It can be seen that the rate of change ofΩ is caused by disturbance normal to orbital

plane whereas disturbances in all the directions caused _ω. Integrating _Ω and _ω over

one orbit gives the average rate of change and is given by

_Ωav ¼
1

T

ðT
0

_Ω dt; _ωav ¼
1

T

ðT
0

_ω dt

where T is orbital period

After simplifications, the average rate of change of Ω is given by

_Ωav ¼ � 3

2
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and the average rate of change of ω is given by

_ωav ¼ � 3

2

ffiffiffiμp
J2Re
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2
sin2i� 2

� �
ð3:146Þ

Equations (3.145) and (3.146) are the secular variations on Ω and ω respectively.
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For the case of orbits with 0 
 i < 90�, which are called posigrade orbits, the

nodal line drifts westward and this phenomenon is called regression of the nodes.

For the case of retrograde orbits, i.e., 90� < i 
 180�, the nodal line advances.

Similarly for the orbits with 0 
 i < 63:4�, or 116:6� < i 
 180�, the perigee

advances in the direction of orbital motion. i.e., the whole orbit rotates in the orbital

plane along the direction of satellite motion. If 63:4� < i 
 116:6�, the perigee

regresses. For the case of i ¼ 63:4�, or i ¼ 116:6�, the apse line does not move.

These inclinations are called critical inclinations.

The phenomenon of nodal regression and perigee advancement due to Earth

asphericity are effectively utilized for the two important applications of satellite

orbits as explained below.

3.8.2 Sun-Synchronous Orbits

Sun-synchronous orbits are those orbits whose orbital plane makes constant angle

with the Sun-Earth line, i.e. for the Sun-synchronous orbits the angle between the

nodal line and the Sun-Earth line is always constant. For a defined orbit size (a) and

shape (e), inclination i can be found such that _Ω ¼ 0:9856�=day. This set of (a, e, i)
defines a Sun-synchronous orbit. As the Earth moves around Sun with the angular

rate of 0.9856�/day, and the nodal line also moves with the same rate, the nodal line

always form a constant angle with Sun-Earth line, which is decided by the satellite

applications. This is represented in Fig. 3.17.

Such satellites, for every swath, pass through same sunlight conditions or

darkness. This is particularly advantageous for Earth observation satellites to

Fig. 3.17 Sun-synchronous

orbit
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establish the correlations of various observations with respect to several phenomena

such as crop growth, forest coverage, drought conditions, etc. Sun-synchronous

orbits with nodal line perpendicular to the Sun-Earth line is also important. Since

Sun’s declination δ is within the range �23:5� < δ < 23:5�, by carefully selecting

launch date and orbital height, such orbit remains continuously in sunlight for more

than 8 months. These orbits are useful for solar power generation satellites.

3.8.3 Molniya Orbits

From the Eq. (3.146), it can be seen that if i ¼ 63:4�, or i ¼ 116:6�, then _ω ¼ 0. i.e.,

for such orbit, the apse line remains stationary in space. This feature was used by

erstwhile USSR for communication satellite, Molniya (lightning). The Russian

launch sites are at high northern latitudes, the northern most is Plesetsk at

62.8�N. As can be seen later, the lowest inclination orbit achievable for the launch

from this site is 62.8�. Therefore, from such launch sites, launching satellites into

geostationary orbit is costly. Also, the geostationary satellites positioned over

equator cannot effectively view the far northern latitude region of erstwhile

USSR. Under such situations, Molniya satellites launched into high eccentric

orbit with perigee of about 500 km altitude and apogee altitude of about

40,000 km with inclination of 63.4�. The period of this orbit is about 12 h. The

apogees of such orbits are placed over northern latitude to ensure that the satellite is

visible over USSR for most of its period. Molniya constellation consists of 8 satel-

lites; each separated by 45�. Each satellite is above 45�N latitude for 8 h. Typical

Molniya orbit is given in Fig. 3.18.

Fig. 3.18 Molniya orbit
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3.8.4 A Note on Osculating and Mean Orbital Elements

Due to continuous variation of orbital elements of short period and long period,

there are two terms used for defining orbital elements: (i) osculating elements and

(ii) mean orbital elements. Osculating orbital elements are the instantaneous Kep-

lerian orbital elements. If the perturbation forces at that instant vanishes, then the

orbital elements for the remaining period of time is constant, which is

corresponding to the osculating element at that instant. The mean orbital elements

and osculating elements are related by

ξosculating ¼ ξmean þ Δξ perturbation ð3:147Þ

where ξ is an orbital element (a, e, i,Ω,ω, θ). Due to the non-variation nature of

mean orbital elements, satellite mission targets are on the mean orbital elements.

Since the launch vehicle mission target is at a specified latitude, longitude and

altitude, the launch vehicle achieved orbit is corresponding to the osculating orbital

elements. Therefore, there should be suitable interface between the satellite require-

ments and launch vehicle mission target.

3.9 Restricted Three-Body Problem

For the satellite orbit trajectories beyond Earth such as lunar mission or interplanetary

mission, the satellite motion is influenced by both Earth and moon or Sun and Earth.

Under such cases, the two-body problem as described in previous section is not valid

and one has to adopt three-body problem as explained in this section. Consider two

massive bodies m1 and m2 m1 > m2ð Þ, which are under motion due to their mutual

gravitational attractions about the center of mass. Now consider a small body m,

which is very small compared to that of m1 and m2 as shown in Fig. 3.19. Motion of

the third body m under the influence of the gravity attraction of bigger bodies m1 and

m2 is called the restricted three-body problem. (Example: m1: Earth, m2: Moon and

m: satellite or m1: Sun, m2: Earth and m: satellite). There is no closed form solution to

this problem. Detailed discussion on such a problem is beyond the scope of this book.

Certain important aspects relevant to space transportation system under such condi-

tion are briefly summarized.

There are five equilibrium locations in this system, where the mass m has zero

velocity and acceleration with respect to m1 and m2. These equilibrium locations

are called liberation or Lagrange points. The equilibrium points lie in the orbital

plane of m1 �m2 system. Once a body m is placed at the liberation point, the body

stays there. However, for an inertial observer, a mass m placed at such locations

move around m1 and m2 in circular orbit.

For the Earth-Moon system, the locations of Lagrange points are given in

Fig. 3.20. L1 point of Sun–Earth system is about 1.5 million km from Earth. The
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L1, L2 and L3 are the saddle points i.e. unstable equilibrium points. The small body

occupying these locations can stay there only if there is no disturbance. L1, L2 and

L3 are the locations wherein the centrifugal force on the small mass m balances the

combined collinear gravitational forces of Earth and Moon for three conditions.

Due to unstable nature, any satellite placed in these points need fuel for keeping in

that location.

The Langrange points L4 and L5 are the stable equilibrium points. At these

locations, the gravitational forces from the massive bodies are in the ratio as that of

the masses of the bodies so that the resultant force passes through the barry center.

As the barry center is the center of mass of the system as well as center of rotation of

the three body system, the resultant force is the one required to keep the smaller

body at the Langrange point L4 or L5. Any disturbance caused to the small body at

this location results into stable oscillation about the equilibrium point, i.e. the small

body m orbits about the equilibrium point. Thus a satellite placed in a small orbit

about the stable equilibrium point stays there without any need for the fuel for

station keeping. These orbits are called halo orbits. The stable equilibrium points

are located at 60� with respect to the primary bodies. In nature, the Trojan asteroids

occupy the stable equilibrium points L4 and L5 of Sun-Jupiter system.

Even though L4 and L5 are stable equilibrium locations, due to orbital perturba-

tions caused by the other planetary bodies, some amount of fuel is required to keep

and maintain halo orbits.

Fig. 3.19 Restricted three-

body problem

Fig. 3.20 Lagrange points

of Earth-Moon system
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The satellites placed at the Liberation points (especially L2 of Earth-Moon

system) are useful as transit stations for interplanetary mission and for permanent

space colonies (especially placed at L4 or L5). They also can be used as stations for

permanent activities on Moon such as lunar mining etc.

3.10 Interplanetary Trajectories

In order to achieve an interplanetary mission (travel from Earth to another planet),

the satellite has to escape from the Earth’s gravitational attraction. Even though the
parabolic trajectory is an open trajectory which takes the satellite to infinity, if the

satellite is launched with just escape velocity, at infinity, the residual velocity is

zero and the satellite mission ends up with an orbit, same as that of Earth around

Sun. In order to ensure that the satellite escapes from the Earth’s gravitational

attraction and to reach the target planet, there must be an excessive residual velocity

at infinity, which is a characteristic of hyperbolic trajectory. Therefore, to achieve

interplanetary mission from Earth, the satellite has to be launched in a hyperbolic

trajectory. As the distance from the Earth increases, the Earth’s gravitational

attraction reduces and Sun’s gravitational attraction increases and at one point of

time, the satellite enters into a heliocentric trajectory with gravitational attraction of

the Sun. This heliocentric trajectory depends on the residual velocity of the vehicle

when it departs the Earth’s gravitation. As the vehicle enters into the gravitational

field of the target planet, the orbit becomes the planetocentric one.

The escape velocity at the time of Earth departure and trajectory during its entire

journey are decided on the specific mission of the satellite. There are three types of

interplanetary missions: (i) Fly-by mission, (ii) Orbiter mission and (iii) Lander

mission.

In the fly-by mission, the satellite passes through the target planet at a short

distance with respect to the planet and fly away further. In the orbiter mission, once

the satellite is reached at a specified location and distance with respect to the target

planet, propulsion system onboard the satellite is activated to reduce the velocity of

the satellite to end up with an orbit around the target planet, as per the mission

definition. In the case of lander mission, after reaching the orbit around the planet,

the vehicle velocity is further reduced in a controlled fashion by the propulsion

system. For the planets with atmosphere, the aerobreaking strategies are used to

reduce the chemical propulsion requirements. Due to the high residual velocity

requirements and the long distance travel, the interplanetary missions demand high

energy requirements as well as longer travel time. In order to achieve the higher

energy requirements and to reduce the travel time, advanced propulsion systems are

required.

The main attracting bodies involved in an interplanetary trajectory are Earth,

Sun and target planet. In addition, the gravitational attractions of Moon, other

planets and radiation pressure act as disturbance forces to the satellite. Therefore,

in reality, the interplanetary trajectories are many-body problems.
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Consider an interplanetary mission from Earth to a target planet (say, Mars) as

shown in Fig. 3.21. Initially, heliocentric conic section from Earth to target planet

locations meeting the energy requirements and travel duration is finalized. After

finalizing the requirements, the interplanetary trajectory is divided into three

Keplerian conic sections as given below:

1. Geocentric hyperbolic trajectory

2. Heliocentric trajectory

3. Planetocentric hyperbolic trajectory

The velocity requirements at the interfaces and the trajectory in the three phases

are decided to meet the integrated interplanetary mission requirements, i.e. the

above three conic sections are patched together to arrive at the defined

interplanetary trajectory. This approach is called patched conic method. After

designing the trajectory with the above method, considering all the disturbance

forces, their detailed trajectory analysis is carried out. While designing the

interplanetary trajectory with patched conic approach, the spheres of influence

plays a key role.

3.10.1 Sphere of Influence

In the patched conic approach, when a satellite follows Keplerian conic under the

influence of one body (say, mass, m2) the body is under the sphere of influence of

m2 whereas the second body (say, mass, m1) gravitational attraction acts as distur-

bance to the satellite. Sphere of influence is a surface along which the influence of

each body m1 and m2 are equal. Within the sphere of influence of m2, the trajectory

of satellite is influenced by gravitational acceleration of m2 whereas the gravita-

tional acceleration of m1 is acting as disturbance.

Fig. 3.21 Interplanetary

trajectory conics to Mars
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Consider two bodies and satellite as shown in Fig. 3.22. The sphere of influence

or activity sphere of m2 is defined by

rsi ¼ R
m2

m1

� �2=5
1

ð1þ 3 cos2βÞ1=10
ð3:148Þ

The surface is rotationally symmetric with respect to the line joining the bodies and

the shape of the surface is slightly different from a sphere.

For the case of Sun-Earth system, the sphere of influence of Earth varies from

0.8� 106 km to 0.925� 106 km. For the case of Earth-Moon system, the sphere of

influence of Moon varies between 58� 103 km and 66� 103 km.

3.10.2 Patched Conic Trajectory

As an example, the interplanetary trajectory from Earth to Mars is considered as

shown in Fig. 3.23. The satellite velocity required at the sphere of influence of Earth

to follow the heliocentric trajectory to reach Mars is V1e.

Fig. 3.22 Sphere of

influence

Fig. 3.23 Earth-Mars

trajectory
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V1e ¼ V1 � Ve ð3:149Þ

where Ve is the Earth’s orbital velocity and V1 is the velocity at the start of the

heliocentric conic near to the Earth side. Generally, at the surface of sphere of

influence, the velocity of the hyperbolic trajectory equals to the hyperbolic excess

(residual) velocity V1. In case additional velocity is required it can be imparted to

V1 to get the requiredV1e. Once the satellite arrives at the Mars, the planetocentric

excess velocity, V1m, is achieved by

V1m ¼ V2 � Vm ð3:150Þ

where V2 is the heliocentric conic velocity at the approach and Vm is orbital

velocity of Mars. If required, satellite velocity can be reduced to achieve the

required V1m.

By this process, the interplanetary trajectory from Earth to Mars is achieved.

3.11 Orbital Transfers and Launch Vehicle Orbit
Requirements

Although this section can be a part of chapter on Mission Design or Satellite

Launching, it is included here due to its close links with this chapter. Orbital

transfer is an integral part of satellite mission design. Requirements of a specific

orbit for a satellite depend on the application for which the satellite is intended for;

it needs to be placed in the specified orbit in terms of size, shape and orientation in

inertial space. As an example, remote sensing satellites need to be placed in the

circular orbits with the altitude ranging from 500 to 900 km along with the

inclination varying between 97� and 99�, whereas communication satellites need

to be placed in the circular orbit with an altitude of about 36,000 km above the Earth

over the equator (inclination¼ 0). The satellite orbits used for communication in

the high latitude region of Earth require high eccentric orbits with critical inclina-

tion (i¼ 63.4�) with apogee over the specified region of Earth, whereas global

navigational satellite systems need to be placed in orbits about 20,000 km with

inclination about 50�.
In addition, the satellites for lunar and interplanetary missions need to depart

from the Earth bound orbits at a specified time, day, month and year. Therefore,

depending on the applications, it is essential to place the satellite in its specified

orbit.

An efficient launch vehicle has to deliver the energy in the shortest possible time.

Sometimes, although the velocity achieved by the vehicle is substantial, the altitude

travelled by the vehicle may not meet the satellite requirements. Therefore, to

achieve the high altitude requirement of satellite, ensuring the required velocity,

the vehicle energy has to be appropriately utilized to increase the potential energy.
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This in turn reduces the share of kinetic energy, resulting in the reduction of

payload capability of the vehicle.

Thus, for a specified launch vehicle, there is trade-off between the orbital

altitude and the payload mass which can be placed in the specified orbit. To enhance

the payload capability, launch vehicle always prefers to place a satellite in an orbit

with lower altitude. The best performance of a launch vehicle is achieved by planar

trajectory missions. To obtain the required inclination, from the launch site, a

suitable launch azimuth is to be defined. Due to range safety limitations, the

required launch azimuth may not be feasible and hence it is difficult to achieve

the required inclination from the specified launch site. In certain cases, although the

best launch azimuth is feasible, the inclination of the orbit achieved is restricted by

the geographical location of launch site. For example, to achieve zero orbital

inclination, the launch site has to be located over equator with an azimuth of 90�.
Any deviation from this, results into different orbital inclination and this needs to be

corrected by the satellite.

Therefore, an integrated optimum strategy for achieving the maximum perfor-

mance is to target the launch vehicle to inject the satellite into the ‘best possible’
orbit, which achieves maximum payload. Further the satellite has to carry out the

needed orbital transfers from the orbit provided by the vehicle to the final specified

orbit. This needs additional fuel in satellite onboard.

Thus, launch vehicle design and mission planning is a trade-off between vehicle

capability vis-�a-vis extra fuel required in satellite to carry out the needed orbital

transfers. The quantity of fuel in satellite depends on the type of orbital transfer

maneuver needed. This section briefly explains the orbital transfer maneuvers from

the satellite. It is assumed that the propulsive system used for the orbital transfer is

imparting the required velocity in impulsive fashion.

3.11.1 Coplanar Circular Orbits Transfer

Assume the launch vehicle achieved orbit, O1 is a circular orbit with radius rc1, and

the satellite required orbit O2, is also circular orbit with radius rc2, as shown in

Fig. 3.24. Assuming O1O2 are coplanar (i.e., orbital inclinations are same), the

minimum energy path from O1 to O2 is Hohmann transfer. This is a semi-elliptic

trajectory with perigee tangential to the orbit altitude rc1 of O1 and apogee tangen-

tial to the orbit altitude rc2 of O2 as shown in figure.

Velocity of vehicle at A on the circular orbit O1 is as derived in Eq. 3.99 is

given by

Vc1 ¼
ffiffiffiffiffiffi
μ
rc1

r
ð3:151Þ
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The parameters of Hohmann transfer ellipse as given in Fig. 3.24 are given below:

r p ¼ rc1 ð3:152Þ
ra ¼ rc2 ð3:153Þ

a ¼ rc1 þ rc2

2
ð3:154Þ

Velocity of vehicle in elliptic path is given by

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

r
� 1

a

� �s
ð3:155Þ

Velocity of the vehicle at A (perigee), if the vehicle needs to travel in Hohmann

ellipse of Fig. 3.24 is given as

VA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

rc1
� 1

a

� �s
ð3:156Þ

Therefore the velocity increment required to transfer the vehicle from the launch

vehicle orbit O1 to transfer ellipse is given as

ΔVA ¼ VA � Vc1 ð3:157Þ

Fig. 3.24 Coplanar circular

orbits transfer
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Velocity of the vehicle at apogee of the transfer ellipse (B) is given by

VB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

rc2
� 1

a

� �s
ð3:158Þ

and velocity, Vc2 of the circular orbit altitude rc2 of O2 is given by

Vc2 ¼
ffiffiffiffiffiffi
μ
rc2

r
ð3:159Þ

Therefore, the velocity increment required to transfer the vehicle from the transfer

ellipse to the required satellite orbit O2 is given by

ΔVB ¼ Vc2 � VB ð3:160Þ

Thus applying the impulsive velocity increments ΔVA in the plane of orbit when

the vehicle reaches the location A, tangential to the orbit and subsequently ΔVB in

the plane of orbit when the vehicle reaches the location at B, tangential to the orbit,

the satellite will reach the final orbit O2.

Therefore, total velocity imparted by the satellite to transfer from launch vehicle

orbit to the satellite specified orbit is given by

ΔV ¼ ΔVA þ ΔVB ð3:161Þ

Assuming the specific impulse, Isp (in seconds) used by the satellite propulsion

system, the propellant needs to be stored in the satellite, mp, to achieve the final

orbit is given by

mp ¼ mi 1� e�
ΔV
g Ispð Þh i

ð3:162Þ

where mi is the mass of satellite injected by launch vehicle into initial orbit which

includes useful payload, propulsion system accessories and propellant.

3.11.2 Coplanar Elliptic Orbits Transfer

In this case, the initial orbit O1 and final orbit O2 are ellipses with the same focus as

given in Fig. 3.25. The coplanar Hohmann transfer ellipse and the locations and

directions of velocity increment applications are computed as given below:

Launch vehicle achieved orbital characteristics are: perigee radius¼ rp1, apogee

radius¼ ra1 and a1 ¼ ðrp1 þ ra1Þ=2.
Satellite required orbital characteristics are perigee radius¼ rp2, apogee

radius¼ ra2 and a2 ¼ rp2 þ ra2
	 


=2.
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Perigee velocity of O1 at A is given by

Vp1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

rp1
� 1

a1

� �s
ð3:163Þ

The transfer ellipse is with perigee radius of rp1 and apogee radius of ra2. Therefore,

the semi-major axis of transfer ellipse is

at ¼ rp1 þ ra2

2
ð3:164Þ

and the perigee velocity of transfer orbit at A is given by:

Vpt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

rp1
� 1

at

� �s
ð3:165Þ

Therefore, the velocity increment, ΔVA, required to be applied at A in the orbital

plane along the direction of velocity to transfer the vehicle from initial orbit, O1, to

transfer orbit is given by

ΔVA ¼ Vpt � Vp1 ð3:166Þ

Similarly, the apogee velocity of transfer ellipse at B is given by

Vat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

ra2
� 1

at

� �s
ð3:167Þ

Fig. 3.25 Coplanar elliptic

orbits transfer
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and the apogee velocity of the required orbit O2, at B is given by

Va2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

ra2
� 1

a2

� �s
ð3:168Þ

and therefore, the velocity increment,ΔVB, required to be applied at B in the orbital

plane along the direction of velocity to transfer the vehicle from the transfer orbit to

the final required orbit, O2, is given by

ΔVB ¼ Va2 � Vat ð3:169Þ

and the total velocity requirement is given by

ΔV ¼ ΔVA þ ΔVB ð3:170Þ

3.11.3 Coplanar Orbital Transfer from Ellipse to Circular
Orbit

In this case, the launch vehicle is assumed to inject the satellite in an elliptic orbit

O1 with a suitable perigee and apogee altitude corresponding to the circular orbit

height of the satellite. The satellite in turn circularizes the orbit to O2. Assuming

these orbits are coplanar, the incremental velocity required to be imparted by

satellite is computed as follows:

The launch vehicle orbit is an elliptic one with perigee radial distance of rp and

apogee radial distance of ra. The satellite required orbit is a circular orbit with

altitude of ra. In this case, the velocity increment need to be applied at the apogee

location, A, of launch vehicle orbit along the velocity direction.

The apogee velocity of launch vehicle orbit is given by

Va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

ra
� 1

a

� �s
; a ¼ ra þ rp

2
ð3:171Þ

The circular velocity of required orbit is given by

Vc ¼
ffiffiffiffi
μ
ra

r
ð3:172Þ

and the required velocity increment ΔVA to be applied at A along the velocity

direction is given by

ΔVA ¼ Vc � VA ð3:173Þ
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3.11.4 Inclination Change of Orbital Plane

Assume that the launch vehicle injects the satellite into a circular orbit O1 with the

altitude as specified by the satellite. But it could not achieve the required inclina-

tion, and in such case, the satellite needs to maneuver the orbital plane to reach the

final one, O2, as given in Fig. 3.26.

The inclination of the orbit is measured at equator when the satellite crosses the

line of nodes. Therefore, it is essential to apply the correction maneuver at the time

of equatorial crossing of the satellite. In this case, it is important not to change the

magnitude of the satellite velocity but to rotate the velocity vector, Vc, in a plane

normal to the original orbital plane. The incremental velocity required to change the

inclination has to be applied in the normal plane with magnitude and direction as

detailed below.

For simplicity, the velocity diagram of initial orbit O1 with inclination of i1 and

final orbit O2 with inclination of i2 of Fig. 3.26 is reproduced in Fig. 3.27.

From the figure, using trigonometrical relations, the velocity increment ΔV
required to rotate the velocity vector Vc with inclination of i1 to the velocity vector

of Vc with inclination of i2 can be computed as

ΔV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vc

2½1� cosði1 � i2Þ�
q

ð3:174Þ

This velocity increment needs to be applied when the satellite crosses the equator in

the plane normal to orbital plane. This has to be along the direction ψ with respect

to the initial velocity vector and given by

ψ ¼ π
2
þ ði1 � i2Þ

2
ð3:175Þ

Fig. 3.26 Inclination

change of circular orbits
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As per Eq. (3.174), the velocity increment required for inclination correction is

proportional to the velocity of the vehicle. Due to this, at high velocities the

correction velocity is rather high and the inclination correction maneuver is not

beneficial. It is always advantageous to carry out the correction when the satellite is

at lower velocity. Therefore, when there is large inclination correction, the pre-

ferred option is to increase the orbit size to elliptic and carry out the correction at

apogee, where the velocity is less. Subsequently circularize the orbit to the required

height as shown in Fig. 3.28.

The total velocity required is given below:

ΔV1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

rc
� 2

rc þ ra

� �s
�

ffiffiffiffi
μ
rc

r
ð3:176Þ

Va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

ra
� 2

rc þ ra

� �s
ð3:177Þ

ΔV2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Va

2ð1� cosΔiÞ
q

ð3:178Þ
ΔV3 ¼ ΔV1j j ð3:179Þ

Fig. 3.27 Velocity diagram

for change of inclination

Fig. 3.28 Optimum inclination correction maneuvers
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and therefore,

ΔV ¼ ΔV1 þ ΔV2 þ ΔV3 ð3:180Þ

i.e.,

ΔV ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

1

rc
� 1

rc þ ra

� �s
�

ffiffiffiffi
μ
rc

r" #

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ

1

ra
� 1

rc þ ra

� �
ð1� cosΔiÞ

s
ð3:181Þ

Equation (3.174) gives the incremental velocity required for correcting the incli-

nation of the orbit directly whereas Eq. (3.181) gives the incremental velocity

required for correcting the inclination through transfer ellipse. On analysis of

Eqs. (3.174) and (3.181), it can be seen that for correcting inclination up to about

39�, direct correction requires less impulse whereas for correcting inclination

beyond 39�, transfer ellipse method requires less incremental velocity than

correcting directly. For each inclination, there will be an optimum apogee for

inclination correction beyond 39� and beyond 60�, the apogee required for such

maneuver is 1, which is the limit.

3.11.5 Combined Orbit Size and Inclination Correction

In certain cases, from the launch vehicle achieved orbit to the satellite specified

orbit, both orbit size and inclination corrections have to be carried out.

This is the typical case of orbital transfer from launch vehicle achieved Geo

Transfer Orbit (GTO) to the Geo Stationary Orbit (GEO). In order to carry out the

orbital corrections, it is possible to use two strategies as given in Fig. 3.29.

As shown in the figure two strategies are: (i) First correct for the inclination and

then increase the orbit size, or (ii) First increase the orbit size and then correct for

the inclination. In both these strategies, the total velocity required will be large and

therefore third strategy of carrying out these maneuvers together as given in

Fig. 3.29d can be adopted which demands least velocity increment.

Assuming initial orbit velocity as Vi with inclination of ii and final orbit velocity

as Vf with inclination of if, the optimum incremental velocity magnitude is given by

ΔV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi

2 þ Vf
2 � 2ViVfcosΔi

q
ð3:182Þ
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where

Δi ¼ ii � if ð3:183Þ

and this impulsive velocity is to be applied to the vehicle when it crosses the equator

in a plane perpendicular to orbital plane. This has to be done at an orientation ψ
with respect to the initial orbital velocity vector Vi and is given by

ψ ¼ π� cos�1 Vi
2 þ ΔV2�Vf

2

2ViΔV

� �
ð3:184Þ

3.11.6 Launch Vehicle GTO Requirements for Geostationary
Satellite Missions

The geostationary satellites need to be placed in the circular orbit with altitude of

about 36,000 km and to be placed over equator, i.e. inclination of the orbit is zero.

Generally, if the launch vehicle needs to inject these satellites directly into the

geostationary orbit, there will be heavy loss. In addition, due to the limitations of

launch site location and launch azimuth, the finally achieved orbit may not be over

equator and it will have a certain inclination with respect to the equator.

The trade-off between the launch vehicle achieved orbit and the propellant

required in satellites to correct the orbit is needed. Based on such analysis, the

optimum strategy for launch vehicle orbit has to be decided.

1. Elliptic orbit with apogee equal to the orbital height required by the satellite

(i.e. 36,000 km) whereas the perigee height can be decided based on the launch

vehicle capability and other operational and satellite life time constraints.

Fig. 3.29 Optimum correction for orbit size and inclination: (a) requirement (b) velocity

changeþ Inclination change (c) inclination changeþ velocity change (d) inclination and orbits

size change together
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2. Due east launch which provides the minimum orbital inclination from the

specified launch site (equal to the latitude of the launch site)

The satellite carries out the orbit size maneuver at the apogee of the launch

vehicle achieved orbit as explained earlier. At the same time, the inclination

correction needs to be done. The inclination correction is optimum, if it is done at

the lowest velocity point of the orbit, i.e. at the apogee of the launch vehicle

achieved orbit. The efficient way of achieving both these corrections is to carry

out these operations together, i.e. at the apogee. At the same time, the inclination

correction needs to be carried out when the vehicle crosses the equator. Therefore

considering all these aspects, the launch vehicle achieved GTO is planned such that

the line of apsides is over the equator, i.e. argument of perigee of launch vehicle

GTO is either 180� or 0� depending upon the launch site and launch azimuth.

From the launch vehicle achieved GTO as defined earlier, satellite has to carry

out the maneuver as given in Eqs. (3.182), (3.183), and (3.184) to achieve the final

required orbit. Due to operational reasons and other maneuver constraints, some-

times multiple maneuver are needed when the vehicle crosses the equator at the

apogee location and it is continued till the satellite reaches the required orbital

height with zero inclination.
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