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Abstract The paper presents the results of correlation analysis between node
centrality (a computationally lightweight metric) and the maximal clique size
(a computationally hard metric) that each node is part of in complex real-world
network graphs, ranging from regular random graphs to scale-free graphs. The
maximal clique size for a node is the size of the largest clique (number of con-
stituent nodes) the node is part of. The correlation coefficient between the centrality
value and the maximal clique size for a node is observed to increase with increase in
the spectral radius ratio for node degree (a measure of the variation of node degree
in the network). As the real-world networks get increasingly scale-free, the corre-
lation between the centrality value and the maximal clique size increases. The
degree-based centrality metrics are observed to be relatively better correlated with
the maximal clique size compared to the shortest path-based centrality metrics.

Keywords Correlation � Centrality � Maximal clique size � Complex network
graphs

1 Introduction

Network Science is a fast-growing discipline in academics and industry. It is the
science of analyzing and visualizing complex real-world networks using graph
theoretic principles. Several metrics are used to analyze the characteristics of the
real-world network graphs; among them “centrality” is a commonly used metric.
The centrality of a node is a measure of the topological importance of the node with
respect to the other nodes in the network [1]. It is purely a link-statistics based
measure and not based on any offline information (such as reputation of the node,
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cost of the node, etc.). The commonly used centrality metrics are degree centrality,
eigenvector centrality, closeness centrality and betweenness centrality. Degree
centrality (DegC) of a node is simply the number of immediate neighbors for the
node in the network. The eigenvector centrality (EVC) of a node is a measure of the
degree of the node as well as the degree of its neighbor nodes. DegC and EVC are
hereafter referred to as degree-based centrality metrics. Closeness centrality
(ClC) of a node is the inverse of the sum of the shortest path distances of the node to
every other node in the network. Betweenness centrality (BWC) of a node is the
ratio of the number of shortest paths the node is part of for any source-destination
node pair in the network, summed over all possible source-destination pairs that do
not involve the particular node. ClC and BWC are hereafter referred to as shortest
path-based centrality metrics. Computationally efficient polynomial-time algorithms
have been proposed in the literature [1–4] to determine exact values for each of the
above centrality metrics; hence, centrality is categorized in this paper as a com-
putationally lightweight metric.

A “clique” is a complete sub graph of a graph (i.e., all the nodes that are part of
the sub graph are directly connected to each other). Cliques are used as the basis to
identify closely-knit communities in a network as part of studies on homophily and
diffusion. Unfortunately, the problem of finding the maximum-sized clique in a
graph is an NP-hard problem [3], prompting several exact algorithms and heuristics
to be proposed in the literature [5–9]. In this paper, a recently proposed exact
algorithm [5] has been chosen to determine the size of the maximum clique for
large-scale complex network graphs and extended to determine the size of the
maximal clique that a particular node is part of. The maximal clique size for a node
is defined as the size of the largest clique (in terms of the number of constituent
nodes) the node is part of. Note that the maximal clique for a node need not be the
maximum clique for the entire network graph; but, the maximum clique for the
entire graph could be the maximal clique for one or more nodes in the network.

Since the maximal clique size problem is a computationally hard problem and
exact algorithms run significantly slower on large network graphs, the paper
explores whether the maximal clique size correlates well to one of the commonly
studied computationally lightweight metrics, viz., centrality of the vertices, for
complex real-world network graphs: if a high positive correlation is observed
between maximal clique size and one or more centrality metrics, one could then
infer the corresponding centrality values of the vertices as a measure of the maximal
clique size of the vertices in real-world network graphs. The work available in the
literature so far considers these two metrics separately. This will be the first paper to
conduct a correlation study between centrality and maximal clique size for
real-world network graphs. To the best of the author’s knowledge, there is no other
work that has done correlation study between these two metrics (and in general, a
computationally hard metric vis-a-vis a computationally lightweight metric) for
real-world network graphs.

The rest of the paper is organized as follows: Sect. 2 describes the six real-world
network graphs that are used in this paper and presents an analysis of the degree
distribution of the vertices in these graphs. Section 3 presents the results of the
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correlation studies between centrality and maximal clique size at the node level for
each of the real-world network graphs. Section 4 concludes the paper. Throughout
the paper, the terms ‘node’ and ‘vertex’ and ‘link’ and ‘edge’ are used
interchangeably.

2 Real-World Networks and Their Degree Distribution

The network graphs analyzed are briefly described as follows (in the increasing
order of the number of vertices): (i) Zachary’s Karate Club: Social network of
friendships (78 edges) between 34 members of a karate club at a US university in
the 1970s; (ii) Dolphins’ Social Network: An undirected social network of frequent
associations (159 edges) between 62 dolphins in a community living off Doubtful
Sound, New Zealand; (iii) US Politics Books Network: Nodes represent a total of
105 books about US politics sold by the online bookseller Amazon.com. A total of
441 edges represent frequent co-purchasing of books by the same buyers, as
indicated by the “customers who bought this book also bought these other books”
feature on Amazon; (iv) Word Adjacencies Network: This is a word co-appearance
network representing adjacencies of common adjective and noun in the novel
“David Copperfield” by Charles Dickens. A total of 112 nodes represent the most
commonly occurring adjectives and nouns in the book. A total of 425 edges connect
any pair of words that occur in adjacent position in the text of the book;
(v) American College Football Network: Network represents the teams that played
in the Fall 2000 season of the American Football games and their previous rivalry—
nodes (115 nodes) are college teams and there is an edge (613 edges) between two
nodes if and only if the corresponding teams have competed against each other
earlier; (vi) US Airports 1997 Network: A network of 332 airports in the United
States (as of year 1997) wherein the vertices are the airports and two airports are
connected with an edge (a total of 2126 edges) if there is at least one direct flight
between them in both the directions. Data for networks (i) through (v) and (vi) can
be obtained from http://www-personal.umich.edu/*mejn/netdata/ and http://vlado.
fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm respectively.

Figure 1 presents the degree distribution of the vertices in the six network graphs
in the form of both the Probability Mass Function (the fraction of the vertices with a
particular degree) and the Cumulative Distribution Function (the sum of the frac-
tions of the vertices with degrees less than or equal to a certain value). The average
node degree and the spectral radius degree ratio (ratio of the spectral radius and the
average node degree) have been also computed; the spectral radius (bounded below
by the average node degree and bounded above by the maximum node degree) is
the largest Eigenvalue of the adjacency matrix of the network graph, obtained as a
result of computing the Eigenvector Centrality of the network graphs. The spectral
radius degree ratio is a measure of the variation in the node degree with respect to
the average node degree; the closer the ratio is to 1, the smaller the variations in the
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node degree and the degrees of the vertices are closer to the average node degree
(characteristic of random graph networks). The farther is the ratio from 1, the larger
the variations in the node degree (characteristic of scale-free networks).

3 Correlation Analysis: Centrality Versus
Maximal Clique Size

This section presents the results of correlation coefficient analysis conducted
between the centrality values observed for the vertices vis-a-vis the maximal size
clique that each vertex is part of. The analysis has been conducted on the six
real-world network graphs with respect to centrality and the maximal clique size
measured for the vertices in these graphs. The algorithms implemented include
those to determine each of the four centrality metrics (Degree, Eigenvector,
Betweenness and Closeness) and the exact algorithm to determine the maximal
clique size for each vertex in a graph.

Table 1 presents results of the correlation coefficient analysis of the four cen-
trality metrics and the maximal clique size observed for the vertices in each of the
six real-world network graphs studied in this paper. Values of correlation coefficient
greater than or equal to 0.8 (high correlation) have been indicated in bold; values
below 0.5 (low correlation) are indicated in italics; and values between 0.5 and 0.8
(moderate correlation) are indicated in roman. If X and Y are the average values of
the two metrics (say X and Y) observed for the vertices (IDs 1 to n, where n is the
number of vertices) in the network, the formula used to compute the Correlation
Coefficient between two metrics X and Y is as follows:

CorrCoeff ðX; YÞ ¼
Pn

ID¼1
ðX½ID� � XÞ � ðY ½ID� � YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

ID¼1
ðX½ID� � XÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

ID¼1
ðY ½ID� � YÞ2

s ð1Þ

Fig. 1 Node degree: probability mass function and cumulative distribution
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As one can see in Table 1, in general, the correlation between the centrality
metrics and the maximal clique size increases as the spectral radius ratio for node
degree increases. This implies, the more scale-free a real-world network is, the
higher the correlation between the centrality value and the maximal clique size
observed for a node. With several of the real-world networks being mostly
scale-free, one could expect these networks to exhibit a similar correlation to that
observed in this paper.

The degree-based centrality metrics (degree centrality and eigenvector centrality)
have been observed to be very positively and highly correlated with the maximal
clique size observed for the nodes. Between the two degree-based centrality met-
rics, the eigenvector centrality metric shows higher positive correlations to the
maximal clique size. This could be attributed to the eigenvector centrality of a node
being a measure of both the degree of the node as well as the degrees of its
neighbors. That is, a high degree node located in a neighborhood of high degree
vertices is more likely to be part of a maximal clique of larger size. In addition, as
the networks get increasingly scale-free, nodes with high degree are more likely
connected to other similar nodes with high degree (to facilitate an average path
length that is almost independent of network size: characteristic of scale-free net-
works [1] contributing to a positive correlation between degree-based centrality
metrics and maximal clique size.

With respect to the two shortest-path based centrality metrics, the betweenness
centrality metric is observed to exhibit a low correlation with maximal clique size
for all the six real-world network graphs; the correlation coefficient increases as the
network becomes increasingly scale-free. In networks with minimal variation in
node degree (like the American College Football network that is more closer to a
random network), nodes that facilitate shortest-path communication between sev-
eral node pairs in the network are not part of a larger size clique; on the other hand,

Table 1 Correlation coefficients: centrality metrics and maximal clique size for the nodes

Network
index

Network name
(increasing order
of spectral radius
ratio)

Degree
versus
clique

Eigenvector
versus
clique

Closeness
versus
clique

Betweenness
versus clique

(v) American College
Football Network

0.32 0.35 −0.03 −0.17

(ii) Dolphins’ Social
Network

0.78 0.56 0.42 0.28

(iii) US Politics Books
Network

0.70 0.75 0.32 0.37

(i) Zachary’s Karate
Club Network

0.64 0.77 0.62 0.46

(iv) Word Adjacencies
Network

0.71 0.82 0.84 0.48

(vi) US Airports 1997
Network

0.87 0.95 0.84 0.40
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nodes that are part of larger size cliques in such random networks exhibit a rela-
tively lower betweenness centrality. Since the degrees of the vertices in random
networks are quite comparable to the average node degree, there is no clear ranking
of the vertices based on the degree-based centrality metrics and maximal size
cliques that they are part of. Also, if at all a vertex ends up being in a larger sized
clique in random network graphs, it is more likely not to facilitate shortest path
communication between the majority of the vertices (contributing to a negative/zero
correlation or at best a low correlation with betweenness centrality). As the network
becomes increasingly scale-free, the hubs that facilitate shortest-path communica-
tion between any two nodes in the network exhibit higher betweenness and
closeness centralities as well as form a clique with other high-degree hubs—
exhibiting the ultra small-world property (the average path length is ln(ln N), where
N is the number of nodes in the network) [1]. The correlation of the closeness
centrality values and the maximal clique size values observed for the vertices in
real-world network graphs is significantly higher (i.e., positive correlation) for
networks that are increasingly scale-free.

Overall, the degree-based centrality metrics exhibit a relatively better correlation
with the maximal clique size compared to that of the shortest-path based centrality
metrics (especially in networks with low-moderate variation in node degree). For
real-world networks that exhibit moderate-high variation in node degree, the
shortest-path based centrality metrics (especially closeness centrality) fast catch up
with that of the degree-based centrality metrics and exhibit higher levels of positive
correlation with maximal clique size. As the networks become increasingly
scale-free, the hubs (that facilitate shortest-path communication between any two
nodes) are more likely to form the maximum clique for the entire network graph—
contributing to higher levels of positive correlation between node centrality and
maximal clique size.

4 Conclusions

The correlation coefficient analysis studies between the centrality metrics and the
maximal clique size for the vertices in the real-world network graphs unravel
several significant findings that have been so far not reported in the literature: (i) the
degree-based centrality metrics (especially the eigenvector centrality) exhibit a
significantly high positive correlation to the maximal clique size as the networks get
increasingly scale-free; (ii) the betweenness centrality of the vertices exhibits a low
correlation with that of the maximal size cliques the vertices can be part of; (iii) in
real-world networks that are close to random network graphs, the centrality metrics
exhibit a low correlation to maximal clique size (especially in the case of
shortest-path based closeness and betweenness centrality metrics); (iv) for all the
four centrality metrics, the extent of positive correlation with maximal clique size
increases as the real-world networks become increasingly scale-free.
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With the problem of determining maximal clique sizes for individual vertices
being computationally time consuming, the approach taken in this paper to study
the correlation between maximal clique sizes and centrality can be the first step in
identifying positive correlation between cliques/clique size in real-world network
graphs to one or more network metrics (like centrality) that can be quickly deter-
mined and thereby appropriate inferences can be made about the maximal size
cliques of the individual vertices. The degree-based centrality metrics (especially
the eigenvector centrality) have been observed to show promising positive corre-
lations to that of maximal clique sizes of the individual vertices, especially as the
networks get increasingly scale-free; this observation could form the basis of future
research for centrality-clique analysis for complex real-world networks.
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