
Performance Improvement of MapReduce
Framework by Identifying Slow
TaskTrackers in Heterogeneous Hadoop
Cluster

Nenavath Srinivas Naik, Atul Negi and V.N. Sastry

Abstract MapReduce is presently recognized as a significant parallel and dis-
tributed programming model with wide acclaim for large scale computing.
MapReduce framework divides a job into map, reduce tasks and schedules these
tasks in a distributed manner across the cluster. Scheduling of tasks and identifi-
cation of “slow TaskTrackers” in heterogeneous Hadoop clusters is the focus of
recent research. MapReduce performance is currently limited by its default
scheduler, which does not adapt well in heterogeneous environments. In this paper,
we propose a scheduling method to identify “slow TaskTrackers” in a heteroge-
neous Hadoop cluster and implement the proposed method by integrating it with the
Hadoop default scheduling algorithm. The performance of this method is compared
with the Hadoop default scheduler. We observe that the proposed approach shows
modest but consistent improvement against the default Hadoop scheduler in het-
erogeneous environments. We see that it improves by minimizing the overall job
execution time.

Keywords Hadoop � MapReduce � Job scheduling � TaskTracker �
Heterogeneous environments

N.S. Naik (&) � A. Negi
School of Computer and Information Sciences, University of Hyderabad,
Hyderabad 500046, India
e-mail: srinuphdcs@gmail.com

A. Negi
e-mail: atulcs@uohyd.ernet.in

V.N. Sastry
Institute for Development and Research in Banking Technology,
Hyderabad 500057, India
e-mail: vnsastry@idrbt.ac.in

© Springer India 2016
A. Nagar et al. (eds.), Proceedings of 3rd International Conference
on Advanced Computing, Networking and Informatics, Smart Innovation,
Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_49

465



1 Introduction

Efficiently storing, querying, analyzing, interpreting, and utilizing these huge data
sets presents one of the impressive challenges to the computing industry and the
research community [1]. A large number of organizations across the world use
Apache Hadoop, created by Doug Cutting, which is an open source implementation
of the MapReduce framework and processes massive amounts of data in-parallel on
large clusters of commodity systems. Take Yahoo, for example. Uses a Hadoop
cluster of 4,000 nodes, having 30,000 CPU cores, and 17 petabytes of disk space
[2]. The structure of MapReduce is based on the master-slave architecture [3].
A single master node monitors the status of all slave nodes in the cluster and
allocates jobs to them. The benefits of MapReduce framework are the capability of
fault tolerance and appropriate distribution of tasks to multiple processing nodes in
the cluster [4].

The basic assumption of Hadoop framework is that the nodes of the cluster are
homogeneous [5]. Several issues which will directly affect the performance of
MapReduce framework are node heterogeneity, stragglers, data locality and “slow
TaskTrackers” [6]. These issues have been undervalued by researchers in most of
the proposed MapReduce scheduling algorithms, which leads to poor performance
of Hadoop [7]. Minimizing the execution time of a job by appropriately assigning
tasks to the available nodes is a common goal of the MapReduce schedulers and it
is likewise a significant research topic because it betters the performance of
MapReduce framework [8].

In this research work, we address the problem of identifying “slow
TaskTrackers” in the heterogeneous Hadoop cluster by integrating it with the
Hadoop default scheduler. The proposed work helps the JobTracker not to schedule
any task on these identified “slow TaskTrackers” instead schedule on the remaining
TaskTrackers, which minimizes the job execution time and certainly improves the
overall performance of the MapReduce framework in heterogeneous environments.
Throughout this paper by “slow TaskTracker” we are referring to a TaskTracker
which has some tasks under it that are running slower relative to other tasks.

The rest of the paper is structured as follows. A background of the MapReduce
framework and the Hadoop’s default scheduler as related work is given in Sect. 2.
Procedure for identifying “slow TaskTrackers” in the heterogeneous Hadoop cluster
is given in Sect. 3 and Sect. 4 conducts a performance evaluation of the proposed
work. Finally, we conclude the paper and give some outlines of our future research
work in Sect. 5.

2 Related Work

This section provides a brief view of the MapReduce framework and explains about
the Hadoop default scheduling algorithm with its limitations.

466 N.S. Naik et al.



2.1 Basic Concepts in MapReduce

In Hadoop cluster, HDFS (Hadoop Distributed file system) contains one single
NameNode called master node and a number of DataNodes called worker nodes
[9]. NameNode maintains the meta-data information about the locations of data
chunks and DataNode stores the chunks of data in the cluster. For running a job in
the cluster, MapReduce component is used, which contains one JobTracker and a
series of TaskTrackers [10]. JobTracker manages the jobs and assigns tasks to the
TaskTrackers and TaskTracker processes the tasks on the corresponding node in the
cluster [11].

Scheduling of the MapReduce system has following stages while scheduling a
job in the cluster [12].

1. The Hadoop framework first breaks the input data file into M pieces of identical
data sizes and then distributed in the cluster.

2. The master node will pick up the idle worker nodes and allocates them M map
tasks. After intermediate output is produced by map tasks, the master node will
allocates R reduce tasks to the worker nodes which are idle.

3. The intermediate (key, value) pairs from the map function are buffered to local
disks at regular intervals.

4. The above buffered pairs are split into R regions by (map) worker using a
partition function (default is hash (intermediate key) mod R), so that same
intermediate (key, value) pairs go to one partition.

5. Reducers will read the data from the map workers using remote procedure calls,
then it sorts and groups the data by intermediate key so that all values of the
same key are collected together.

6. After complete execution of the map and reduce tasks, the outcomes will be fed
back to the user by the master node.

2.2 Hadoop Default Scheduling Algorithm

The progress score (PS) of a task t is denoted by PSt, which is calculated using (1)
for map tasks and (2) for reduce tasks [13].

PSt ¼ M=N ð1Þ

PSt ¼ ð1=3ÞðK þM=NÞ ð2Þ

where, M is the number of (key, value) pairs that have been processed successfully,
N is the overall number of (key, value) pairs and K is the stage (shuffle, sort and
merge) value in a reduce phase.

Performance Improvement of MapReduce Framework … 467



The average progress score of a job PSavg is calculated using (3), PS½i� is the
progress score of a task ti and n is the number of executable tasks in a job.

PSavg ¼
Xn

i¼1

PS½i�=n ð3Þ

Limitations of Hadoop Default Scheduler [13]

1. The map and reduce task weights in different stages are M1 = 1, M2 = 0 and
(R1 = R2 = R3 = 1/3) but these weights will change when tasks run in a
heterogeneous environment.

2. Default scheduler cannot identify the “slow TaskTrackers” in a heterogeneous
Hadoop cluster.

3. Default scheduler unobserved the accurate straggler tasks which need to be
re-executed in the cluster.

3 Proposed Method for Identifying Slow TaskTrackers
in Heterogeneous Hadoop Cluster

The performance of distributed and parallel systems likeMapReduce is closely related
to its Task scheduler. If a task is scheduled on a “slow TaskTracker” then the overall
execution time of a job will be increased. Finding “slow TaskTrackers” in hetero-
geneousHadoop cluster is an interesting research problembecause the efficientway of
finding it can significantly reduce the overall job execution time and thus improves the
performance of the MapReduce framework in heterogeneous environments.

The Progress score of a TaskTracker in the cluster is calculated using (4)

PSTTi ¼
Xt

j¼1

PSj=t ð4Þ

Here, the progress score of ith TaskTracker is PSTTi; PSj is the progress score of
a task calculated based on how much a task’s (key, value) pairs have been finished
per second, which is calculated as in Hadoop default scheduler and t is the number
of tasks on the ith TaskTracker in the cluster.

The average progress score of all TaskTrackers in the Hadoop cluster for a given
job is calculated using (5)

APSTT ¼
XT

i¼1

PSTTi=T ð5Þ

468 N.S. Naik et al.



Here, APSTT is the average progress score of all TaskTrackers in the cluster and
T is the number of TaskTrackers present in the Hadoop cluster.

We can find the “slow TaskTrackers” present in the cluster using (6)

PSTTi [APSTTðTTThþ 1Þ ð6Þ

For the ith TaskTracker, if it satisfies the above equation, then we can say that
particular TaskTracker is a “slow TaskTracker” otherwise it is the fast TaskTracker
in the heterogeneous Hadoop cluster.

TaskTracker Threshold (TTTh) is in the range [0,1] is used to categorize the
TaskTrackers in the Hadoop cluster into slow and fast. According to (6), if TTTh is
too small then it will categorize some fast TaskTrackers to be “slow TaskTrackers”
and if TTTh is too large then it will categorize some “slow TaskTrackers” to be fast
TaskTrackers. Thus, we have chosen 0.5 as an appropriate value for TTTh in our
experiments.

Input: The set of TaskTrackers present in the heterogeneous Hadoop cluster.
Output: The set of “slow TaskTrackers”.

Algorithm 1 Identifying slowTaskTrackers
1: set slowTaskTrackers
2: for each TaskTracker i in the cluster do
3: for each running task j of the job do
4: if task j is a Map task then
5: ProgressScorej M/N
6: else
7: ProgressScorej 1/3 ∗ (K +M/N)
8: end if
9: end for
10: PSTTi = t

j=1 PSj/t
11: end for
12: APSTT = T

i=1 PSTTi/T
13: for each running task i of the job do
14: if PSTTi > APSTT (TTTh+ 1) then
15: slowTaskTrackers.add(ith TaskTracker)
16: end if
17: end for
18: return slowTaskTrackers

Performance Improvement of MapReduce Framework … 469



4 Evaluation

In this section, we now briefly discuss the experimental environment, workload
description and then explains the performance analysis of our proposed method on
a heterogeneous Hadoop cluster.

4.1 Experimental Environment

We followed numerous stages to establish the experimental setup required to
conduct our experiments and considered heterogeneous nodes in a Hadoop cluster
as presented in Table 1, it has different Hadoop cluster hardware environment and
configurations. We used Hadoop cluster of five heterogeneous nodes to evaluate our
proposed method for finding “slow TaskTrackers”. One of the nodes was chosen as
a master node which runs the Hadoop distributed file system (NameNode) and
MapReduce runtime (JobTracker). The remaining four nodes were worker nodes
(DataNodes and TaskTrackers). The nodes were interconnected by Ethernet switch.
All systems in the cluster use Ubuntu 14.04 operating system, JDK version 8, and
Hadoop 1.2.1 version for performance evaluation.

In our experiments, we evaluate the proposed scheduling method using
Hi-Bench benchmark suite [14] because it is a new, realistic and comprehensive
benchmark suite for Hadoop.

4.2 Workload Description

We evaluate our proposed method using three different job types: Sort, WordCount,
and TeraSort, that simulate micro benchmarks of Hi-Bench benchmark suite. These

Table 1 Hadoop evaluation environment

Node Hardware configuration Hadoop configuration

Master node Intel Xeon(R) CPU E3110 @ 3.00 GHz, 4 GB RAM,
500 GB Disk space

Slave node 1 Intel core i3-3220 CPU @ 3.30 GHz, 2 GB RAM,
500 GB Disk space

3 map and 1 reduce
slots per node

Slave node 2 Intel core 2 duo CPU E7500 @ 2.93 GHz, 2 GB
RAM, 320 GB Disk space

2 map and 1 reduce
slots per node

Slave node 3 Intel Pentium CPU G640 @ 2.80 GHz, 2 GB RAM,
500 GB Disk space

1 map and 1 reduce
slots per node

Slave node 4 Intel Core 2 Duo Processor P8400 @ 2.26 GHz, 3 GB
RAM, 250 GB Disk space

2 map and 1 reduce
slots per node

470 N.S. Naik et al.



micro benchmarks show the key characteristics of MapReduce clearly and widely
used by the Hadoop research community to evaluate the scheduling algorithms in
their experiments. We briefly describe the micro-benchmarks as below [14]:

1. The WordCount workload counts the word frequencies from textual data. It is
mostly CPU bound (particularly during the map phase), causing high CPU
usage, light disk or network I/O.

2. The Sort workload depends on the Hadoop framework to sort the final results. It
is mostly I/O bound, having moderate CPU usage and heavy disk I/O.

3. The TeraSort workload is very high CPU utilization and moderate disk I/O
during the map and shuffle phases, and moderate CPU usage and heavy disk I/O
during the reduce phase.

4.3 Performance Analysis of Our Proposed Method

In order to evaluate the performance, we have integrated our proposed method with
the Hadoop default scheduling algorithm to identify the “slow TaskTrackers” in the
heterogeneous Hadoop cluster. We compared our proposed method with the Hadoop
default scheduler because it is a simple, fast algorithm, extensively used in numerous
recent Hadoop clusters and it has no procedure to find the “slow TaskTrackers” and
assumes nodes in the cluster as homogeneous. We presented our performance
improvement by comparing the proposed method with the Hadoop default scheduler
and performed Sort, WordCount, TeraSort benchmarks under heterogeneous envi-
ronments by considering the Job execution time as a metric for the evaluation.

In our experiments, we presented how “slow TaskTrackers” effect the execution
time of a job and performed three micro benchmarks over the MapReduce job
execution time metric for performance evaluation in the heterogeneous Hadoop
cluster. Figure 1 shows the performance comparison of the Default Hadoop
scheduler and Default Hadoop scheduler with the proposed method. In all of these
different workloads (Sort, WordCount and TeraSort), our proposed method
achieves the best in terms of minimum job execution time compared to the Hadoop
default scheduling algorithm in the heterogeneous environments.

Fig. 1 Comparison of job
execution time for different
workloads

Performance Improvement of MapReduce Framework … 471



5 Conclusion and Future Work

In this paper, we proposed a scheduling method and integrated it with the Hadoop
default scheduler, which aims to find the “slow TaskTrackers” in the heterogeneous
Hadoop cluster and it predicts the JobTracker in such a way that it will not schedule
any new tasks on the identified “slow TaskTrackers” in the cluster. In this proposed
method, when a JobTracker schedules a task on the TaskTracker, first it identifies
the “slow TaskTrackers” present in the Hadoop cluster, then it will not schedule the
tasks on those particular “slow TaskTrackers” instead schedules on the remaining
TaskTrackers in the Hadoop cluster. Our proposed method shows the best per-
formance in terms of job execution time compared to the Hadoop default scheduler
when executing the Sort, Word Count, and TeraSort benchmarks and thus it
improves the performance of the MapReduce framework in the heterogeneous
environments by minimizing the overall job execution time.

As part of the future research work, we would like to further identify the “slow
TaskTrackers” in each of the map and reduce phases of the MapReduce framework
in heterogeneous environments.

Acknowledgments Nenavath Srinivas Naik express his gratitude to Prof. P.A. Sastry (Principal),
Prof. J. Prasanna Kumar (Head of the CSE Department) and Dr. B. Sandhya, MVSR Engineering
College, Hyderabad, India for hosting the experimental test bed.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (2008)

2. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

3. Rasooli, A., Down, D.G.: An adaptive scheduling algorithm for dynamic heterogeneous
hadoop systems. In: Proceedings of the 2011 Conference of the Center for Advanced Studies
on Collaborative Research, pp. 30–44. Canada (2011)

4. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Job Scheduling
for Multi-User MapReduce Clusters. Technical Report, University of California, Berkeley
(2009)

5. Dawei, J., Beng, C.O., Lei, S., Sai, W.: The Performance of MapReduce: An In-depth Study.
VLDB (2010)

6. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapreduce
performance in heterogeneous environments. In: 8th Usenix Symposium on Operating
Systems Design and Implementation, pp. 29–42. ACM Press, New York (2008)

7. Tan, J., Meng, X., Zhang, L.: Delay Tails in Mapreduce Scheduling. Technical Report, IBM T.
J. Watson Research Center, New York (2011)

8. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for data intensive scientific analyses. In:
Proceedings of the 2008 IEEE Fourth International Conference on eScience, pp. 277–284
(2008)

9. Rasooli, A., Down, D.G.: A hybrid scheduling approach for scalable heterogeneous Hadoop
systems. In: Proceeding of the 5th Workshop on Many-Task Computing on Grids and
Supercomputers, pp. 1284–1291 (2012)

472 N.S. Naik et al.



10. Nanduri, R., Maheshwari, N., Reddyraja, A., Varma, V.: Job aware scheduling algorithm for
mapreduce framework. In: Proceedings of the 3rd International Conference on Cloud
Computing Technology and Science, pp. 724–729, Washington, USA (2011)

11. Zhenhua, G., Geo, R.F., Zhou, M., Yang, R.: Improving resource utilization in MapReduce.
In: IEEE International Conference on Cluster Computing, pp. 402–410 (2012)

12. Rasooli, A., Down, D.G.: COSHH: a classification and optimization based scheduler for
heterogeneous Hadoop systems. J. Future Gener. Comput. Syst. 1–15 (2014)

13. Naik, N.S., Negi, A., Sastry, V.N.: A review of adaptive approaches to MapReduce scheduling
in heterogeneous environments. In: IEEE International Conference on Advances in
Computing, Communications and Informatics, pp. 677–683, Delhi, India (2014)

14. Shengsheng, H., Jie, H., Jinquan, D., Tao, X., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: IEEE 26th International
Conference on Data Engineering Workshops, pp. 41–51 (2010)

Performance Improvement of MapReduce Framework … 473


	49 Performance Improvement of MapReduce Framework by Identifying Slow TaskTrackers in Heterogeneous Hadoop Cluster
	Abstract
	1 Introduction
	2 Related Work
	2.1 Basic Concepts in MapReduce
	2.2 Hadoop Default Scheduling Algorithm

	3 Proposed Method for Identifying Slow TaskTrackers in Heterogeneous Hadoop Cluster
	4 Evaluation
	4.1 Experimental Environment
	4.2 Workload Description
	4.3 Performance Analysis of Our Proposed Method

	5 Conclusion and Future Work
	Acknowledgments
	References


