
Architectural Characterization of Web
Service Interaction Verification

Gopal N. Rai and G.R. Gangadharan

Abstract Web service interaction utilizes disparate models as it still does not have
its own model for verification process. Adaptation of a different model is not always
beneficial as it may prune several significant characteristics that worth considering
in verification. The primary reason behind this adaptation is that the primitive
characteristics are not well identified, standardized, and established for Web service
interaction model. In this article, we therefore investigate the primitive character-
istics of Web service interaction model that need to be well considered in verifi-
cation. Further, we study the appropriateness and effectiveness of two modeling and
verification phenomena namely model checking and module checking with respect
to investigated primitive characteristics.

Keywords Web services composition � Formal methods � Modeling � Model
checking � Module checking

1 Introduction

Web services are self contained, self-describing modular applications that can be
published, located, and invoked across the web [1]. Since Web services interact
with each other through messages (synchronous and asynchronous), concurrency
related bugs and/or inconsistency problems are possible in the interaction patterns
(communication patterns). In order to overcome the problem, Web service inter-
action verification is required.

G.N. Rai (&) � G.R. Gangadharan
IDRBT, Castle Hills, Masab Tank, Hyderabad 500 057, India
e-mail: gopalnrai@gmail.com

G.R. Gangadharan
e-mail: geeyaar@gmail.com

G.N. Rai
SCIS, University of Hyderabad, Gachibowli, Hyderabad 500 046, India

© Springer India 2016
A. Nagar et al. (eds.), Proceedings of 3rd International Conference
on Advanced Computing, Networking and Informatics, Smart Innovation,
Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_47

447

Classical testing techniques are inadequate to verify the interaction among ser-
vices [2, 3]. A Web service interaction scenario resembles with reactive and con-
current systems, with component-based systems [4, 5], and with multi-agent
systems [6] up to a certain extent. Therefore, various Web service interaction
modeling and verification techniques are proposed on the basis of these approaches
[6, 7]. However, composition among services tangles the task of verification as it
poses unique primitive verification requirements that are not covered by either
classical tests or other verification approaches.

Many efficient and industry wide accepted formal verification tools are available
that could verify Web service interaction. However, transformation of a service
interaction scenario into an input model for any existing verification tool may loose
the architectural originality and significant native primitive notions, thus, restricting
the verifiable properties (requirements). In this article, we characterize the model of
Web service interaction for verification, a novel effort towards establishing Web
service interaction verification model.

The rest of the article is structured as follows. Section 2 investigates fundamental
characteristics of a Web service interaction model. We study the appropriateness
and effectiveness of model checking and module checking in Sect. 3. Section 4
provides conclusion and future directions.

2 Primitive Characteristics of Web Service
Interaction Model

In this section, primitive characteristics of the Web service interaction model are
discussed as follows.

2.1 Modular and Hierarchical Architecture

All Web services basically fall into two categories: either basic or composite.
A basic Web service does not take help of other Web services to accomplish the job
whereas a composite Web service does.

Modular architecture of Web services interaction model refers to the design of a
system composed of independent Web services that could interact with each other.
The advantage of the modular architecture is that a module could be added or
substituted with another suitable module without affecting the rest of the system.

Hierarchical architecture of Web services interaction model comes in the exis-
tence only when a composite service comes in the existence. A composite service
depends on the other basic or composite services. A composite service is a higher
level abstraction and basic Web services are lowest level abstraction. Web service
interaction possess hierarchical architecture but nesting of Web services are not

448 G.N. Rai and G.R. Gangadharan

allowed. Indeed, nesting of Web services does not make any sense as basic Web
services work as independent modules.

Therefore, Web service interaction model has both shades of hierarchical and
modular architectural archetype. It requires modeling a Web service in such a way
that it preserves its identity and supports composite services at a time.
Consequently, a Web service can serve as an independent module and can serve as
an building block of a composite service.

2.2 Open System

Each basic Web service works as an independent module that fundamentally yields
an open system from a verification perspective. An open system is one which is
designed to interact with an environment [8]. A web service cannot anticipate all
behaviors of its interacting partner in advance, thus enabling the open system
phenomenon. In order to be able to model the open system, environment modeling
is inevitable. Classical modeling approaches and many other new verification
techniques does not support environment modeling. They typically apply to closed
systems whose behavior is fully specified.

2.3 Trace Modeling

Informally, a trace (in the context of Web services) is a linear, unidirectional Web
service composition workflow path in which each node represents a Web service
and the directed edges indicate the flow from one service to another. Trace mod-
eling and computation are among the most primitive modeling requirements for
Web service interaction as the computation of trace related phenomenons (such as
trace inclusion, trace crossing, and trace merging) reduce the time and space
complexity for verification.

Formal definition of a Web service trace is given as follows.

Definition 1 (Trace) A trace is a tuple T ¼ ðW; I;wi;wnÞ, where W ¼
fw1; � � � ;wmg is a finite set of the Web services, I :W !W is an invocation
function such that wiIwj if and only if wi invokes wj, wi 2 W is a service from
which trace generation begin and 6 9wj 2 W : wjIwi, and wn 2 W is a service on
which trace ends up and 6 9wj 2 W : wnIwj.

Let wi be a Web service then T wi represents a set which contains all the traces
generated by the service wi. The concept of trace is utilized mainly while studying
behavioral equivalence of services.

Architectural Characterization of Web Service Interaction … 449

2.4 Asynchronous Messaging

A Web service consists ports and a port consists sets of input and output messages.
Messages consisting activities are unit of interaction. There are two principal
messaging models used in Web services namely synchronous and asynchronous
model. The two Web service messaging models are distinguished by their way of
request-response operation handling mechanism.

Synchronous messaging and asynchronous messaging among less number of
services can be handled in a fair manner without much complexity. If involved
number of services are high, asynchronous messaging complicates the verification
process.

2.5 Recursive Composition

Composition and recursive composition are fundamental characteristics of Web
service interaction model. Composition of services is aggregation of facilities
provided by services. Recursive composition refers recursive aggregation of ser-
vices. The difference between recursive composition and non-recursive composition
is explained as follows.

Let 〈A, B〉 represents the knowledge that a Web service A is composed of a Web
service B. Let f〈A, B〉, 〈B, C〉, 〈C, D〉g represents a composition scenario. If a
composition dependency holds among tuples such as 〈A, B〉 depends upon 〈B, C〉
and 〈B, C〉 depends upon 〈C, D〉 then it forms a recursive composition scenario
otherwise non-recursive composition.

2.6 Dynamic Reconfiguration

There are two crucial factors that make consideration of dynamic reconfiguration in
the case of Web service inevitable. First, a Web service resembles a module (a basic
Web service resembles an independent module whereas a composite Web service
resembles a dependent module). Second, dynamic availability of services. Web
services are accessible through the Web and a Web service could become
unavailable/removed at any time or a new Web service could be introduced at any
time. Ethically, a composition designer or verifier must be ready for substitution,
replacement, and introduction of services. Introduction or unavailability of a service
could make complete chaos if not handled properly. Automatic dynamic service
composition is a rapidly emerging paradigm and research topic that is based on
dynamic reconfiguration phenomenon.

450 G.N. Rai and G.R. Gangadharan

2.7 Hierarchical Concurrency

Classical model-based verification approaches do not consider hierarchy among
Web services while verifying the interaction. They keep transmitting all variables
that are being considered for verification through every state in their state transition
diagram. All variables need not be considered at a time. A hierarchy must be found
among services and must be considered in verification process. We explain a
hierarchical concurrency scenario among Web services as follows.

Let 〈A, B〉 represents the knowledge that A is composed of B and 〈A, B〉 → 〈B,
C〉 represents the knowledge that 〈A, B〉 depends upon 〈B, C〉. Let us consider the
following scenario

hA;Bi hI; Ji
#

hB;Ci ðB; JÞ ! hJ;Ki
#

hC;Di hK; Li

Consider that concurrency has to be resolved between services B and J for a
given specification. If 〈B, C〉 and 〈J, K〉 do not affect 〈B, J〉 regarding concurrency
then concurrency will be resolved between B and J only (B and J are first level
services). No need to involve the services C and K (C and K are second level
services). If the concurrency is not resolved at first level then only second level
services will be considered. Again, if second level services are also not sufficient to
resolve the concurrency, third level services (D and L are third level services) will
be considered.

We introduce a conceptual term sphere of influence to ease the process of
hierarchical concurrency verification in the context of Web service interaction.
Sphere of influence is a set of Web services computed for an Web service such that
either each member of the set is directly invokable by the center service or invokes
the center service. Figure 1 is a pictorial representation of the sphere of influence for
a Web service namely WS1. This diagram infers that services WS2, WS3, WS4,
and WS5 constitutes the sphere of influence set for the service WS1. Figure 2 is an

WS1 WS3

WS4

WS5

WS2Fig. 1 Sphere of influence
for a Web service WS1

Architectural Characterization of Web Service Interaction … 451

evolved version of sphere of influence depicted in Fig. 1. Sphere of influence serves
as a basic model to verify hierarchical concurrency.

2.8 Verification of Adversarial Specification

Classical temporal logics such as linear temporal logic (LTL) and computation tree
logic (CTL) are unable to specify collaborative as well as adversarial interactions
among different Web services. Alternating Temporal Logic (ATL) [8] is designed
to write requirements of open system [8] and is able to express collaborative as well
as adversarial interaction specifications. ATL models each Web service as an agent.
Let Σ be a set of agents corresponding to different Web services, one of which may
correspond to the external environment. Then, the logic ATL admits formulas of the
form Ah ih i}p, where p is a state predicate and A is a subset of agents. The formula
Ah ih i}p means that the agents in the set A can cooperate to reach a p-state no

matter how the remaining agents resolve their choices.

3 Web Service Interaction Verification

In this section, we study and compare two different model-based formal verification
approaches that are suitable for service interaction verification: model checking and
module checking. Further, we study the working mechanisms of their representative

WS1 WS3

WS4

WS5

WS2

WS6

WS7WS8

WS9

W10

W11

W12

W13

Fig. 2 Evolved version of
sphere of influence depicted
in Fig. 1

452 G.N. Rai and G.R. Gangadharan

tools and its input languages whether there are native language constructs or not to
support the desired characteristics discussed earlier in this paper.

Model Checking Model checking has been widely used as one of the formal
techniques for Web service composition and interaction verification [7, 9–12]. In
order to be able to model check a Web service interaction scenario, the scenario has
to be modeled as an input model of model checking. The transformation of service
interaction into an input model of model checking yields a monolithic structure.
This transformed structure collapses several significant characteristics such as
modular cum hierarchical architecture. Further, monolithic structure increases
computation overhead and is not adequate for reasoning. The biggest drawback one
faces with model checking is that it does not support open system modeling that is
primary requirement for modeling of Web service interaction. Model checking does
not have any provision for interface and private variable types. Consequently, a
chaos develops among variables in verification.

SPIN [13] and NuSMV [14] are representative tools of model checking. SPIN
supports only linear-time temporal logic whereas NuSMV supports both linear-time
temporal logic as well as branching-time temporal logic. We study NuSMV
(NuSMV 5.0) as a representative tool for model checking.

Module Checking Module checking is also an model-based formal verification
technique. It could be considered as an alternative of model checking. Module
checking differs from model checking in various means as follows. From modeling
point of view, module checking supports the heterogeneous modeling framework of
reactive modules whereas model checking supports unstructured state transition
graphs. From specification writing point of view, module checking employs ATL to
write specification about the system whereas model checking verifies the specifi-
cations written in LTL/CTL. From architecture point of view, module checking
facilitates with hierarchical design and verification along with modular design
whereas model checking provides only modular designing and verification.

We study MOCHA [15] (jMOCHA 2.0) as a representative tool for module
checking. MOCHA is an interactive verification environment that supports a range
of compositional and hierarchical verification methodologies.

A comparative analysis between NuSMV 5.0 and jMOCHA 2.0 with respect to
investigated characteristics is shown in Table 1.

4 Related Work

To the best of our knowledge, a paper merely focusing on architectural charac-
terization of Web service interaction is not available in literature. However, some of
the studied characteristics are discussed individually in articles. Hierarchical

Architectural Characterization of Web Service Interaction … 453

architecture of Web services is discussed in [16]. Hnetynka et al. [4] discusses
dynamic reconfiguration of Web services and collaboration among them. Roglinger
[17] presents a requirements framework for verification. However, the proposed
requirements in [17] corresponds to model checking and not characterizing the Web
service interaction. Pistore et al. [18] present a requirement model for verification of
Web services. However, the authors focus on business requirements not architec-
tural characterization in the paper [18].

We do not find any evidence of Web service interaction verification using
module checking tool (jMOCHA) in literature. However, ATL is used for Web
service verification along with Petri net in [19].

5 Conclusion and Future Work

On the basis of our study, we conclude that Web service interaction is a modular
cum hierarchical architecture. Each Web service works as an open system.
Recursive composition is a fundamental characteristic of Web service interaction.
And a verification approach for Web services must support hierarchical concur-
rency verification with adversarial specification facility.

Though module checking is an efficient verification technique for reactive,
concurrent, and open systems, it is not widely accepted among industry and aca-
demia. Reasons might be lack of popularity and complex specification writing
scheme. However, on the basis of our study, we advocate use of module checking
rather than model checking for verification of Web services interaction.

Table 1 Verification requirements versus verification approaches

Verification requirements Model checking
(NuSMV)

Module checking
(jMOCHA)

Property
type

Modular architecture Yes Yes Modeling

Hierarchical architecture No Yes Modeling

Variables support Global External, interface,
private

Modeling

Lazy evaluation No Yes Modeling

Dynamic reconfiguration No No Modeling

Composition No Yes Modeling

Recursive composition No No Modeling

Open system modeling No Yes Modeling

Trace containment
verification

No Yes Modeling

Adversarial specification No Yes Specification

454 G.N. Rai and G.R. Gangadharan

There are many improvement suggestions that could be considered as parts of
future work. First, we want to investigate hierarchical structure of Web service
interaction in more depth. Both verification approaches model checking and module
checking do not support recursive composition and dynamic introduction or
removal of a service. Therefore, realization of a verification approach based on
investigated characteristics and sphere of influence will be our second future work.
Discovering all fundamental and advanced verification requirements for Web ser-
vice interaction is also a part of our future work.

References

1. Wang, H., Huang, J.Z., Qu, Y., Xie, J.: Web services: problems and future directions. Web
Semantics: Sci. Serv. Agents World Wide Web 1(3), 309–320 (2004)

2. Bozkurt, M., Harman, M., Hassoun, Y.: Testing Web Services: A survey. Department of
Computer Science, King’s College London, Tech. Rep. TR-10–01 (2010)

3. Mei, L., Chan, W., Tse, T., Jiang, B., Zhai, K.: Preemptive regression testing of
workflow-based web services. IEEE Trans. Services Comput. (2014)

4. Hnetynka, P., Plášil, F.: Dynamic reconfiguration and access to services in hierarchical
component models. In: Component-Based Software Engineering, pp. 352–359. Springer
(2006)

5. Lau, K.K., Wang, Z.: Software component models. IEEE Trans. Softw. Eng. 33(10), 709–724
(2007)

6. Walton, C.: Model checking multi-agent web services. In: AAAI Symposium of Semantic
Web Services (2004)

7. El Kholy, W., Bentahar, J., El Menshawy, M., Qu, H., Dssouli, R.: Modeling and verifying
choreographed multi-agent-based web service compositions regulated by commitment
protocols. Expert Syst. Appl. 41(16), 7478–7494 (2014)

8. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM (JACM)
49(5), 672–713 (2002)

9. Bentahar, J., Yahyaoui, H., Kova, M., Maamar, Z.: Symbolic model checking composite
web services using operational and control behaviors. Expert Syst. Appl. 40(2), 508–522
(2013)

10. Boaro, L., Glorio, E., Pagliarecci, F., Spalazzi, L.: Semantic model checking security
requirements for web services. In: 2010 International Conference on High Performance
Computing & Simulation, pp. 283–290 June 2010

11. Marques, A.P., Ravn, A.P., Srba, J., Vighio, S.: Model-checking web services business
activity protocols. Int. J. Softw. Tools Technol. Transf. 15(2), 125–147 (2013)

12. Sheng, Q.Z., Maamar, Z., Yao, L., Szabo, C., Bourne, S.: Behavior modeling and automated
verification of Web services. Inf. Sci. 258, 416–433 (2014)

13. Holzmann, G.J.: The SPIN model checker: Primer and reference manual, vol. 1003.
Addison-Wesley Reading (2004)

14. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In: Computer
Aided Verification, pp. 359–364. Springer (2002)

15. De Alfaro, L., Alur, R., Grosu, R., Henzinger, T., Kang, M., Majumdar, R., Mang, F.,
Meyer-Kirsch, C., Wang, B.: Mocha: Exploiting Modularity in Model Checking. Tech. Rep,
DTIC Document (2000)

16. Kreger, H.: Web services conceptual architecture (wsca 1.0). IBM Software Group 5 (2001)

Architectural Characterization of Web Service Interaction … 455

17. Rglinger, M.: Verification of web service compositions: an operationalization of correctness
and a requirements framework for service-oriented modeling techniques. Business & Inform.
Syst. Eng. 1(6), 429–437 (2009)

18. Pistore, M., Roveri, M., Busetta, P.: Requirements-driven verification of web services.
Electronic Notes Theor. Comput. Sci. 105, 95–108 (2004)

19. Schlingloff, H., Martens, A., Schmidt, K.: Modeling and model checking web services.
Electron. Notes Theoret. Comput. Sci 126, 3–26 (2005)

456 G.N. Rai and G.R. Gangadharan

	47 Architectural Characterization of Web Service Interaction Verification
	Abstract
	1 Introduction
	2 Primitive Characteristics of Web Service Interaction Model
	2.1 Modular and Hierarchical Architecture
	2.2 Open System
	2.3 Trace Modeling
	2.4 Asynchronous Messaging
	2.5 Recursive Composition
	2.6 Dynamic Reconfiguration
	2.7 Hierarchical Concurrency
	2.8 Verification of Adversarial Specification

	3 Web Service Interaction Verification
	4 Related Work
	5 Conclusion and Future Work
	References

