
Evaluating the Effectiveness
of Conventional Fixes for SQL Injection
Vulnerability

Swathy Joseph and K.P. Jevitha

Abstract The computer world is definitely familiar with SQL as it plays a major
role in the development of web applications. Almost all applications have data to be
stored for future reference and most of them use RDBMS. Many applications
choose its backend from the SQL variants. Large and important applications like the
bank and credit-cards will have highly sensitive data in their databases. With the
incredible advancement in technology, almost no data can survive the omniscient
eyes of the attackers. The only thing that can be done is to make the attackers work
difficult. The conventional fixes help in the prevention of attacks to an extent.
However, there is a need for some authentic work about the effectiveness of these
fixes. In this paper, we present a study of the popular SQL Injection Attack
(SQLIA) techniques and the effectiveness of conventional fixes in reducing them.
For addressing the SQLIA’s in depth, a thorough background study was done and
the mitigation techniques were evaluated using both automated and manual testing.
We took the help of a renowned penetration testing tool, SQLMap, for the auto-
mated testing. The results indicate the importance of incorporating these mitigation
techniques in the code apart from going for complex fixes that require both effort
and time.

Keywords Web-attacks � SQLIA � SQL injection

S. Joseph (&) � K.P. Jevitha
Department of Computer Science and Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India
e-mail: swathyjoseph90@gmail.com

K.P. Jevitha
e-mail: kp_jevitha@cb.amrita.edu

© Springer India 2016
A. Nagar et al. (eds.), Proceedings of 3rd International Conference
on Advanced Computing, Networking and Informatics, Smart Innovation,
Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_44

417

1 Introduction

SQL Injection is defined by OWASP as “an attack that consists of insertion or
injection of a SQL query via input data from client to the application” [1]. SQLIA
has probably existed for ages, dating back to when SQL databases were first linked
to web applications. Despite its age, it still persists. SQLIA tops the recent list of
OWASP’s Top 10 web-attacks [2]. The evidences that these attacks still exist are
the Lizamoon [3] and the Lilupophilupop [4] attacks that compromised almost a
million websites.

The key objective of this work is to evaluate the effectiveness of the conven-
tional techniques in reducing the SQLIA. It was seen that the use of legacy code in
application development is one of the main reasons for this attack. The other
reasons include lack of input sanitization, architectural issues etc. We hope that our
work throws some light on the effectiveness of the code level defense techniques.
The important SQLIA’s considered here are the boolean-based blind, stacked
queries, time-based blind attack and the error-based injection attacks [5]. The
conventional fixes for SQLIA evaluated in this work include the use of parame-
terized queries, whitelist validation and stored procedures.

The rest of the paper is structured as follows: In Sect. 2, we present the related
work in this domain. In Sect. 3, we give a briefing about the different SQLIA
techniques and the intent for using them. In Sects. 4 and 5, we describe the use of
SQLMap tool and the testbed setup. In Sect. 6, we discuss about the different
defensive coding techniques and the implementation of code level mitigations. In
Sect. 7, we present the evaluation results and we conclude in Sect. 8.

2 Related Works

Diallo et al. [6] has a survey on the various dimensions of SQLIAs that includes the
different classes of attacks and the available approaches against them. Bono and
Domangue [7] describe the application of attack ideologies and the mitigations.
Input sanitization, prepared statements, stored procedures, principle of least privi-
leges and security audits are listed out in this paper. Shar and Tan [8] conclude that
the best strategy against the injection attacks is the integration of defensive coding
with runtime prevention methods. This work also gives a summary of the various
detection methods and run-time prevention methods. Ahmad et al. [9] has a detailed
study of each attack for the purpose of categorization of SQLIAs. This paper
categorizes the SQLIA into order-wise attacks, those against the database and
finally as blind attacks. They conclude that this classification can help in reducing
the possibility of occurrence of the vulnerability. Bisht et al. [10] throw some light
onto the prevention of SQLIA. Jane and Chaudhari [11] propose an approach which
is related to the inference of the intended query structure within an application. This
paper states that, for an input to be a useful candidate, it should be benign and the

418 S. Joseph and K.P. Jevitha

program’s control must flow in the same path. The programmer intention is mined
out and hence the approach is concluded to be quite promising. Halfond and Osro
[12] propose a technique that uses finite state machines for the detection of SQLIAs
and thereby preventing them. This technique finds the hotspots and creates
automaton for every hotspot. When a query is issued, this is verified against its
corresponding automata model and only if they match the user is allowed to
continue.

3 Important SQLIA Techniques

In this section, we present and discuss the important kinds of SQLIAs known to
date [13]. These techniques are used either individually or a few of them together to
perform the attack. Out of the described techniques, time-based and boolean based
attacks are inferential attacks.

Boolean-based blind technique: The attacker has no direct knowledge about
the authentication he has to obtain. This can be done by attaching true or false
statements along with legitimate SQL queries and observing the responses.

Time-based technique: The intent of the attacker is to verify the precision of his
guesses based on the time injection queries used. SQL statements used in this type
of injection attack holds the back-end database for a certain number of seconds. The
attacker notes the response time to infer if the injection is successful or not.

Error-based technique: This kind of attack exploits the error messages returned
by the database management software. If these are observed carefully, database
fingerprinting might be possible. Once the attacker gets to know the details of the
backend, he can use technology-specific methods for the attack. But this kind of
attack works only for the applications that are configured to disclose back-end dbms
error messages.

Piggy-backed technique: This technique is also known as the stacked queries
method. This attack uses multiple queries separated by a semicolon which can be
applied for data manipulations.

These are the first-order injection techniques. There are second-order SQLIAs
that take in the attack-intended input normally and the effect of that input will be
noticeable only from the next access to the database.

4 SQLMap

The SQLMap [5] tool, is an open source penetration testing tool developed in
Python. It automates the detection and exploitation of SQL injection flaws and takes
advantage of the vulnerabilities to gain access to the contents in the backend
database system. It supports the exploitation of 5 different injection types and
provides support for a number of databases. The tool uses the bisection algorithm

Evaluating the Effectiveness of Conventional Fixes for SQL … 419

for the implementation of boolean-based and time-based injections. Figure 1
provides a sample usage of the SQLMap. The tool was used to test all the appli-
cations by changing the level and risk options available within the tool. The risk
argument specifies the risk of tests that were to be done like the default tests or
heavy query tests. The level argument specifies the level of tests to be performed.
The number of tests performed increases as the level value is increased. The http
request is given as a parameter and p indicates the injectable parameter.

5 Testbed Description

This section gives a description of the testbed used for evaluating the different
SQLIA prevention techniques. For the purpose of comparison, we have used four
different test applications from the Amnesia [12] Testbed. The subjects are of
varying sizes. A brief description of what the applications dealt with, is given
below:

• Bookstore: online purchasing of books.
• Classifieds: advertise items and pets to be sold.
• Employee directory: details of the employees in a company.
• Events: details of various events to be held/hosted.

The applications were Java based with MySQL 5.6 as their back-end. These
applications were deployed using tomcat on windows 7. The SQLMap gives the
penetration tester, a broad range of options which eases his work. Initially, on the
raw code, with no fixes implemented, the SQLMap tool was run. It was seen that 3
types of injections were possible for all the applications. The injections possible
were error-based, time-based and boolean-based blind [5]. The manual testing on
these applications also showed the same result. Table 1 gives the vulnerability of
each application

Fig. 1 Sample SQLMap usage

Table 1 Number of
injectable pages per
application

Application Number of web-pages
per application

Number of
pages
injectable

Bookstore 19 2

Classifieds 20 3

Employee
directory

14 2

Events 13 2

420 S. Joseph and K.P. Jevitha

6 Mitigation Techniques

Three mitigation techniques were tried out—the parameterized queries, the stored
procedures and the whitelist validation.

Parameterized queries: This is language dependent. Java’s JDBC provides the
use of prepared statement class, while PHP provides the PHP Data Object
(PDO) package. This supports the placeholders and named parameters. Since our
applications are Java-based we go for the usage of prepared statements.
Parameterized queries provide the benefit that they take the user input as such.

E.g.: PreparedStatement prepStat = con.prepareStatement("select mem_id,
mem_lvl from membrs where mem_login =? and mem_passwd=?");

can be used instead of:

rs = openrs(stat, "select mem_id, mem_lvl from membrs where
mem_login = " + toSQL(sLogin, adText) + " and mem_passwd="
+ toSQL(sPassword, adText));

Whitelist validation: The Blacklist validation is popular. However, the whitelist
validation is more effective than the other one. Here we accept only what is known
to be true. We took the help of regular expressions for implementing this and used
the java.util.regex package. Table 2 shows the expressions used for the whitelist
validation. Data type, data size, range etc. are to be kept in mind while designing a
regular expression. So the bottom line is that, the applications would accept only the
input in the mentioned formats.

Stored procedures: This makes the task easier when repetitive tasks are to be
used. The SQL code is predefined in the database and then accessed from the
application. Stored procedure method is also said to give the effect of prepared
statements mentioned above, if used safely.

E.g.: begin select mem_id, mem_level into res1, res2 from membrs
where mem_login = plog and mem_passwd = ppas;

Table 2 Sample regular
expressions used for whitelist
validation

Regular expression Purpose

”\ \w*@\ \w*[.]\ \w{3}” For accepting an email_id

”\ \d{13}” For accepting credit card number

”\ \d{7}” Phone number

”\ \w*” First and last name

”\ \w{3,15}” Login and password

Evaluating the Effectiveness of Conventional Fixes for SQL … 421

We used this as the SQL procedure for accepting credentials for a login page in
the application which was stored in the database and later accessed from application
using:

String simpleProc = "{ call pbookstre2 (?,?,?,?) }";

Hence the test applications were re-coded using these three conventional fixes
separately.

7 Evaluation and Results

In this section, we describe how the effectiveness of the above mentioned tech-
niques were evaluated. The injection points were found out and then the tool was
run over the re-coded applications. The results were taken in the same manner
varying the risk and level parameters. Similarly the results were taken for every
injection point. Studying the queries that caused the injections even after the
implementation of the mitigation techniques revealed that they were complex and
nested queries. An example of a http request which caused error-based injections
possible bypassing the whitelist validation technique is:

Payload: FormName=Login&Login=admin’ AND (SELECT 6410 FROM
(SELECT COUNT(*),CONCAT(CHAR (58, 103, 112, 97, 58), (SELECT
(CASE WHEN (6410=6410) THEN 1 ELSE 0 AND =login&
ret_page=&querystring=

Table 3 shows a sample reading taken for the bookstore application when pre-
pared statements completely secured the application from injection attacks. Table 4
shows a sample reading for classifieds application. It was seen that the injections
were possible even after the use of prepared statements. Most of the queries found
its way to the data stored in the database through the virtual database of MySQL
called information_schema.

The injections possible in the testbed applications were found to be of three
major types: boolean-based blind, time-based blind and error-based injections [5].
The frequency of the injection attacks are depicted in Fig. 2. The time-based
boolean attack seems to be used heavily for the exploitation purpose, followed
closely by the error-based injection techniques.

The pie-chart in Fig. 3 shows the analysis of the fixes after recoding the
applications. Out of all the injections possible after the application of the fixes,
the analysis showed that 64 % of the queries bypassed the prepared statement fix.
The queries were mostly of second-order. 22 % of the queries bypassed stored
procedures and 14 % bypassed the whitelist validation. Our analysis leads to a
conclusion that the prepared statements prevent the first-order SQL injections to an
extent but not the second order injections. There are a few loopholes mentioned in
[14] with the use of stored procedures. A code which uses a procedure which has

422 S. Joseph and K.P. Jevitha

Table 3 A sample reading with zero injections possible when prepared statement is used

Risk Level Number of
injections
before applying
fix

After applying
fix 1: prepared
statements

After applying
fix 2: stored
procedures

After applying
fix 3: whitelist
validation

1 1 3 0 0 0

1 2 3 0 0 0

1 3 3 0 0 0

1 4 3 0 0 0

1 5 3 0 0 0

2 1 3 0 0 0

2 2 3 0 0 0

2 3 3 0 0 0

2 4 3 0 0 0

2 5 3 0 0 0

3 1 3 0 1 3

3 2 3 0 1 3

3 3 3 0 1 3

3 4 3 0 1 3

3 5 3 0 1 3

Table 4 A sample reading for classifieds application which shows injections are possible even
when prepared statement is used

Risk Level Number of
injections
before applying
fix

After applying
fix 1: prepared
statements

After applying
fix 2: stored
procedures

After applying
fix 3: whitelist
validation

1 1 3 2 0 0

1 2 3 2 0 2

1 3 3 2 0 2

1 4 3 2 0 2

1 5 3 2 0 2

2 1 3 2 0 2

2 2 3 2 0 2

2 3 3 2 0 2

2 4 3 2 0 2

2 5 3 2 0 2

3 1 3 2 1 2

3 2 3 2 1 2

3 3 3 2 1 2

3 4 3 2 1 2

3 5 3 2 1 2

Evaluating the Effectiveness of Conventional Fixes for SQL … 423

exec(@input) stored in its backend database will execute the input given by the user
regardless of what it is. While designing the stored procedures, the design of
parameters with larger sizes will make the application prone to SQL injections. The
designer should take ample care to allocate only limited sizes to the parameters in
the stored procedures. Given that the developer pays attention to the above criteria,
the stored procedures can effectively work against the first and second order
injections. The regular expressions used proved to be efficient. However, the one
used for accepting the user’s name was seen to be injectable as we did not mention
any particular constraints for it. Integrating validation with both the techniques
mentioned above is almost unbreakable for the attackers. The use of regular
expressions for whitelist validation is the most effective way to do it. There is
nothing as good as a properly crafted regular expression for the validation. The
entire data in the database could be dumped if injection was possible, through the
injection points. Our analysis shows that the whitelist validation can control the first
and second order injections to a good extent by efficiently utilizing the power of
regular expressions.

Fig. 2 Frequency graph of
the injection attacks possible

Fig. 3 Analysis of
effectiveness of the fixes

424 S. Joseph and K.P. Jevitha

The Fig. 4 shows the response time of different applications to the SQLMap tool.
The execution took approximately equal time for both prepared statements and
whitelist validation. The time taken by the tool was very high for applications using
stored procedures compared to the ones using the other two fixes. We believe that
the difference in time for execution of applications that use stored procedure, is due
to the fact that the actual functionality is stored in the database and hence access
time is quite large.

8 Conclusion

The conventional mitigations techniques were evaluated based on parameters like
the response time and decrease in the number of injections possible. The work
converged to a conclusion that by the usage of the conventional mitigation tech-
niques, we can reduce the number of injections considerably. Techniques which
focus on prevention of the attack should incorporate defensive coding. Dynamically
built SQL statements should be created properly with the conventional mitigation
techniques mentioned rather than using the simple concatenation technique. This
will make sure that only the legitimate queries are passed to the database server.
Using validation along with the other two techniques proved to be a reasonable
solution for this attack. The study of effectiveness of the conventional fixes showed
their inability for ultimate eradication and this opens the scope for further research
work.

References

1. OWASP: https://www.owasp.org/index.php/SQLInjection
2. OWASP Top 10 list: https://www.owasp.org/index.php/Top_10_2013-Top_10
3. LizaMoon the Latest SQL-Injection Attack: http://blogs.mcafee.com/mcafee-labs/lizamoon-

the-latest-sql-injection-attack

Fig. 4 Response time

Evaluating the Effectiveness of Conventional Fixes for SQL … 425

https://www.owasp.org/index.php/SQLInjection
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://blogs.mcafee.com/mcafee-labs/lizamoon-the-latest-sql-injection-attack
http://blogs.mcafee.com/mcafee-labs/lizamoon-the-latest-sql-injection-attack

4. Lilupophilupop: Tongue-twister SQL injection attacks pass one million mark: http://www.
infosecurity-magazine.com/news/lilupophilupop-tongue-wister-sql-injection/

5. SQLMap: https://github.com/sqlmapproject/sqlmap/wiki
6. Kindy, D.A., Pathan, A.K.: A Detailed survey on various aspects of SQL injection in web

applications: vulnerabilities, innovative attacks and remedies. In: International Journal of
Communication Networks and Information Security, vol. 5, no. 2, pp. 80–92 August 2013

7. Bono, S.C., Domangue, E.: SQL Injection: A Case Study, Whitepaper Oct 2012
8. Shar, L.K., Beng, H., Tan, K.: Defeating SQL Injection. IEEE Comput. Soc. 46(3), 69–77

(2013) (IEEE)
9. Ahmad, K., Shekhar, J., Yadav, K.P.: Classification of SQL injection attacks. In:

VSRD-TNTJ, vol. I, no. (4), pp. 235–242(2010)
10. Bisht, P., Madhusudan, P., Venkatakrishnan, V.N.: CANDID: Dynamic candidate evaluations

for automatic prevention of SQL injection attacks. In: ACM Transactions on Information and
System Security, vol. 13, no. 2, p. 139. ACM (2010)

11. Jane, P.Y., Chaudhari, M.S.: SQLIA: Detection and prevention techniques: a survey.
IOSR J. Comput. Eng. 2, 56–60. IOSR J. (2013)

12. Halfond, W.G.J., Orso, A.: AMNESIA: analysis and monitoring for neutralizing SQL
injection attacks. In: Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, pp. 174–183. ACM, New York (2005)

13. Clarke, J.: SQL Injection Attacks and Defense. Elsevier Inc (2009)
14. Howard, M., LeBlanc, D.: Writing Secure Code, 2nd edn. Microsoft Press, Washington (2003)

426 S. Joseph and K.P. Jevitha

http://www.infosecurity-magazine.com/news/lilupophilupop-tongue-wister-sql-injection/
http://www.infosecurity-magazine.com/news/lilupophilupop-tongue-wister-sql-injection/
https://github.com/sqlmapproject/sqlmap/wiki

	44 Evaluating the Effectiveness of Conventional Fixes for SQL Injection Vulnerability
	Abstract
	1 Introduction
	2 Related Works
	3 Important SQLIA Techniques
	4 SQLMap
	5 Testbed Description
	6 Mitigation Techniques
	7 Evaluation and Results
	8 Conclusion
	References

