Dynamic Slicing of Feature-Oriented
Programs

Madhusmita Sahu and Durga Prasad Mohapatra

Abstract We intend to suggest a dynamic slicing algorithm for feature-oriented
programs. We have named our algorithm Execution Trace file Based Dynamic
Slicing (ETBDS) algorithm. The ETBDS algorithm constructs an intermediate
program representation known as Dynamic Feature-Oriented Dependence Graph
(DFDG) based on various dependences exist amongst the program statements. We
use an execution trace file to keep the execution history of the program. The
dynamic slice is computed by first performing breadth-first or depth-first traversal
on the DFDG and then mapping out the resultant nodes to the program statements.

Keywords Feature-oriented programming (FOP) - Dynamic feature-oriented
dependence graph (DFDG) - FeatureC++ - Mixin layer

1 Introduction

Feature-Oriented Programming (FOP) is the study of feature modularity in pro-
gram families and programming models supporting it. The key idea behind FOP is
to build software by the composition of features. Features are the characteristics of
software that distinguish members of a program family. The FOP paradigm is
concerned with identifying functionality in the form of features.

The rest of the paper is organized as follows. Section 2 highlights an overview of
some previous works. Section 3 presents a brief idea of Feature-Oriented

M. Sahu (<)) - D.P. Mohapatra

Department of Computer Science & Engineering,

National Institute of Technology, Rourkela 769008, Odisha, India
e-mail: 513CS804 1 @nitrkl.ac.in

D.P. Mohapatra
e-mail: durga@nitrkl.ac.in

© Springer India 2016 381
A. Nagar et al. (eds.), Proceedings of 3rd International Conference

on Advanced Computing, Networking and Informatics, Smart Innovation,

Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_40

382 M. Sahu and D.P. Mohapatra

Programming. Section 4 describes our proposed work on dynamic slicing of
feature-oriented programs. Section 5 concludes the paper. We use node and vertex
interchangeably in this paper.

2 Overview of Previous Work

Apel et al. [1] presented FeatureC++ with an additional adoptation to
Aspect-Oriented Programming (AOP) concepts. Apel et al. [2] presented a novel
language for FOP in C++ namely FeatureC++. They showed few problems of FOP
languages during implementation of program families and proposed ways to solve
them by the combination of AOP and FOP features. We find no work discussing the
slicing of FOP. We present an approach for dynamic slicing of FOPs using
FeatureC++ as a FOP language. We have extended the work of Mohapatra et al. [3]
to incorporate feature-oriented features.

3 Feature-Oriented Programming (FOP)

The term Feature-Oriented Programming (FOP) was coined by Christian Prehofer
in 1997 [4]. FOP is a vision of programming in which individual features can be
defined separately and then can be composed to build a wide variety of particular
products. The step-wise refinement, where features are incrementally refined by
other features, results in a layered stack of features. A suitable technique for the
implementation of features is the use of Mixin Layers. A Mixin Layer is a static
component that encapsulates fragments of several different classes (Mixins) to
compose all fragments consistently.

FeatureC++ is an extension to C++ language supporting Feature-Oriented
Programming (FOP). Figure 3 shows an example FeatureC++ program. This pro-
gram checks the primeness of a number. Figure 1 shows different features supported
by our prime number checking problem and Fig. 2 shows the corresponding stack
of Mixin Layers. Details of FeatureC++ can be found in [1, 2].

Base

v

Check Result Main

Fig. 1 Features supported by prime number checking problem

Dynamic Slicing of Feature-Oriented Programs 383

Fig. 2 Stack of mixin layers Layer Class
in prime number checking ittt 1L
problem (I — |\|
| . I
I Base I Prime |1 |
l P J
| |________ILJ
I
_____________ [I
(: — l |
| . |
I Check 1| Prime |1 |
L L
_____________ I________.I[_J
_____________ L1 ___
[| — T
. I
| Result Il Prime |} 1
|
| |
ST i g
e N
i Main PrCheck| |
| |
\ - J

4 Proposed Work

This section describes our Execution Trace file Based Dynamic Slicing (ETBDS)
algorithm to compute dynamic slices of FOPs alongwith few definitions.

4.1 Definitions

Definition 1: Digraph A directed graph or digraph is defined as a collection of a
finite set, V, of elements called vertices or nodes and the set, E, of ordered pairs of
elements of V called edges or arcs.

Definition 2: Arc-classified digraph An arc-classified digraph is defined as a
digraph where more than one type of edges exist between two vertices and the
direction of edges between two vertices are not same.

Definition 3: Path A parh in a digraph is a sequence of edges or arcs connecting a
sequence of vertices and the edges are directed in the same direction.

Definition 4: Execution trace The path that an input data to a program actually
executes is referred to an execution trace. For example, Fig. 4 shows the execution
trace of the program given in Fig. 3 for the input data n = 5.

384 M. Sahu and D.P. Mohapatra

(a) (b) (c)
finclude<iostream> #include<iostream> #include<iostream>
using namespace std; using namespace std; using namespace std;
class Prime(
int n; refines class Prime{ refines class Prime{
public: public: public:
int check(}: 12 int check(){ 21 woid output(){
9 void input(){ int i; 22 if (check())
10 cout<<"Enter a number: ": 13 im2; 23 cout<<"Number is prime®;
11 cin>>n: 14 while (i<n) { else
} 15 if (nki==0) 24 cout<<"Number is not prime";
void cutput () ; 16 break: 1
| 17 it#; }:
I
is if (i==n)
19 return 1;
else
20 return 0;
1
}:
(d) (e)
#include<iostreams Base
using namespace std; Check
Result
class Prcheck{ Main
public:
5 static void main()}{
6 Prime p;
7 p.input():
8 p-output();

}
b
1 int main(){
2 Prcheck: :main();
3 int c=getchar();
4 return 0;

}

Fig. 3 A FeatureC++ program to check the primeness of a number. a Base/Prime.h.
b Check/Prime.h. ¢ Result/Prime.h. d Main/PrCheck.h. e Test-Prime.equation

4.2 The Dynamic Feature-Oriented Dependence
Graph (DFDG)

The DFDG is an arc-classified digraph consisting of vertices corresponding to the
statements and edges showing dynamic dependence relationships exist amongst
statements. The following types of dependence edges exist in the DFDG of a
feature-oriented program:

Control dependence edge: Control dependences represent the control conditions
or predicates on which the execution of a statement or an expression depends. For
example, in Fig. 5, the edge between nodes 21 and 22 indicates that node 21
controls the execution of node 22.

Data dependence edge: Data dependences represent the flow of data amongst the
statements and expressions. For example, in Fig. 5, the edge between nodes 13 and
14 indicates that node 14 uses the value of i defined at node 13.

Mixin call edge: Mixin call edges denote the entry of a function in a mixin layer in
response to a function call in another mixin layer. For example, in Fig. 5, the edge
from node 12 to node 22 indicates that node 22 in one mixin layer calls a function
check() that is defined in another mixin layer at node 12.

Mixin data dependence edge: Mixin data dependences represents the flow of data
amongst the statements and expressions in different mixin layers. For example, in

Dynamic Slicing of Feature-Oriented Programs 385

Fig. 5, the edge from node 14 to node 11 indicates that node 14 in one mixin layer uses
the value of n and 7 is defined in another mixin layer. Similarly, node 22 in one mixin
layer uses the value returned by node 19 and node 19 exist in another mixin layer.
Call edge: Call edges are used to reflect the entry of a function in response to a
function call. For example, in Fig. 5, there is an edge from node 5 to node 2 since
node 2 calls a function main defined at node 5 in the same mixin layer.

4.3 Computation of Dynamic Slices

Let FP be a feature-oriented program and G = (V, E) be the DFDG of FP. We use a
slicing criterion with respect to which the dynamic slice of FOP is to be computed.
A dynamic slicing criterion for G has the form <x, y, e, i>, where x € V represents
an occurrence of a statement for an execution trace e with input i and y is the
variable used at x. A dynamic slice DS of G on a given slicing criterion <x, y, e, i>
is a subset of vertices of G such that for any x" € V, x" € DS5(x, y, e, i) if and only if
there exists a path from x’ to x in G.
Algorithm 1 gives our proposed ETBDS algorithm.

Fig. 4 Execution trace of the 1(1) int main()
program given in Fig. 3 for 2(1) PrCheck: :main () ;
n=35 5(1) static void main()

6(1) Prime p;

7(1) p.input():;

9(1) wvoid input()
10(1) cout<<"Enter a number: ";
11(1) cin>>n;

8(1) p.output():;
21(1) woid output()
22(1) if(check())

12 (1) int check()
13(1) i=2;

14 (1) while (i<n)

15(1) if(n%i==0)

17 (1) i++;

14 (2) while(i<n)

15(2) if (n%i==0)

17 (2) i++;

14 (3) while(i<n)

15(3) if (n%i==0)

17 (3) i++;

14 (4) while (i<n)

18(1) if (i==n)

19(1) return 1;

23 (1) cout<<"Number is prime";
3(1) int c=getchar():
4(1) return 0;

386 M. Sahu and D.P. Mohapatra

Working of ETBDS Algorithm

The working of our ETBDS algorithm is exemplified with an example. Consider the
example FeatureC++ program given in Fig. 3. The program executes the statements
1,2,5,6,7,9,10, 11, 8, 21, 22, 12, 13, 14, 15, 17, 14, 1, 17, 14, 15, 17, 14, 18, 19,
23, 3, 4 in order for the input data n = 5. The execution trace file, shown in Fig. 4,
kept these executed statements. Then, applying Steps 6 to 23 of ETBDS algorithm

Legend for Edges

_—>

Control Dependence Edge

———————— >
Mixin Data Dependence Edge/
Mixin Call Edge

>

Legend for Edges

—>

Control Dependence Edge

———————— >
Mixin Data Dependence Edge/
Mixin Call Edge

>

Call Edge

Fig. 6 Dynamic feature-oriented dependence graph (DFDG) for the execution trace given Fig. 4
and node 23 as the starting point

Dynamic Slicing of Feature-Oriented Programs 387

and using the trace file shown in Fig. 4, the Dynamic Feature-Oriented Dependence
Graph (DFDQG) is constructed. The DFDG of the example program given in Fig. 3
is shown in Fig. 5 with input data n = 5. Suppose, we want to find the dynamic slice
of the output statement at node 23. Then, starting from node 23 and applying the
Step 25 of the ETBDS algorithm, the breadth first traversal yields the vertices 23,
22,21,19,8,5,2,1, 18,12, 11, 17,9, 7, 14, 17, 14, 17, 14, 13 and the depth first
traversal yields the vertices 23, 22, 21, 19, 18, 12, 11, 17, 14, 17, 14, 17, 14, 13,9,
7,5, 2,1, 8. Both the traversals yields the same result i.e., the same set of vertices in
the slice. These vertices are shown bold in Fig. 6. The statements corresponding to
these vertices are found using the Steps 26 to 27 of the ETBDS algorithm. This
produces the required dynamic slice consisting of statements numbered 1, 2, 5, 7, 8,
9, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23.

Algorithm 1 ETBDS Algorithm

1: Execute the program for a given input.

: Keep each executed statement in a trace file in the order of execution.

. if the program contains loops then
Keep each executed statement inside the loop in a trace file after each time it

has been executed.

5: end if

6: Make a vertex in the DFDG for each statement in the trace file.

7: for each occurrence of a statement in the trace file do

8: Make a separate vertex in the DFDG.

9: end for

10: if if node y controls the execution of node z then

11: Insert control dependence edge from x to y.

12: end if

13: if if node z uses a variable defined at node y then

14: Insert data dependence edge from z to y.

15: end if

16: if if node y calls a function defined at node x in the same mixin layer then

17: Insert call edge from x to y.

18: end if

19: if if node z in one mixin layer uses a variable or value defined at or returned from
node y in another mixin layer then

20: Insert mixin data dependence edge from z to y.

21: end if

22: if if node y in one mixin layer calls a function defined at node x in another mixin
layer then

23: Insert mixin call edge from z to y.

24: end if

25: Do the breadth-first or depth-first traversal throughout the DFDG taking any
vertex x as the starting point of traversal where x corresponds to the statement of
interest.

26: Define a mapping function g : DS¢(z,y,e,i) —FP.

27: Map out the yielded slice obtained in Step 25 throughout the DFDG to the source
program F'P using g.

=W N

388 M. Sahu and D.P. Mohapatra

5 Conclusion

We presented an algorithm for dynamic slicing of feature-oriented programs. First,
we executed the program for a given input and stored the execution history in an
execution trace file. Then, we constructed an intermediate representation called
Dynamic Feature-Oriented Dependence Graph (DFDG) based on various depen-
dences. The DFDG was traversed in breadth-first and depth-first manner and the
resultant nodes were mapped to the program statements to compute the dynamic
slice.

References

1. Apel, S., Leich, T., Rosenmuller, M., Saake, G.: FeatureC++: on the symbiosis of feature-oriented
and aspect-oriented programming. In: Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE’05), pp. 125-140. Springer, Berlin (2005)

2. Apel, S., Leich, T., Rosenmuller, M., Saake, G.: FeatureC++: feature-oriented and
aspect-oriented programming in C++. Technical report (2005)

3. Mohapatra, D.P., Sahu, M., Mall, R., Kumar, R.: Dynamic slicing of aspect-oriented programs.
Informatica 32(3), 261-274 (2008)

4. Prehofer, C.: Feature-oriented programming: a fresh look at objects. In: Proceedings of 11th
ECOOP, Lecture Notes in Computer Science, pp. 419—443. Springer, Berlin, Heidelberg (1997)

	40 Dynamic Slicing of Feature-Oriented Programs
	Abstract
	1 Introduction
	2 Overview of Previous Work
	3 Feature-Oriented Programming (FOP)
	4 Proposed Work
	4.1 Definitions
	4.2 The Dynamic Feature-Oriented Dependence Graph (DFDG)
	4.3 Computation of Dynamic Slices

	5 Conclusion
	References

