Deterministic Transport Protocol Verified
by a Real-Time Actuator and Sensor
Network Simulation for Distributed Active
Turbulent Flow Control

Marcel Dueck, Mario Schloesser, Stefan van Waasen
and Michael Schiek

Abstract Total drag of common transport systems such as aircrafts or railways is
primarily determined by friction drag. Reducing this drag at high Reynolds num-
bers (<10%) is currently investigated using flow control based on transversal surface
waves. For application in transportation systems with large surfaces a distributed
real-time actuator and sensor network is in demand. To fulfill the requirement of
real-time capability a deterministic transport protocol with a master slave strategy is
introduced. With our network model implemented in Simulink using TrueTime
toolbox the deterministic transport protocol could be verified. In the model the
Master-Token-Slave (MTS) protocol is implemented between the application layer
following the IEEE 1451.1 smart transducer interface standards and the Ethernet
medium access protocol. The model obeys interfaces to the flow control and the
DAQ-hardware allowing additional testing in model in the loop simulations.

Keywords TrueTime - Real-Time transport protocol - Distributed actuator and
sensor network - Network model

M. Dueck (B<) - M. Schloesser - S. van Waasen - M. Schiek

Central Institute of Engineering, Electronics and Analytics ZEA-2: Electronic Systems,
Forschungszentrum Juelich GmbH, Wilhelm-Johnen-Strafe, 52428 Juelich, Germany
e-mail: m.dueck @fz-juelich.de

URL: http://www.fz-juelich.de

M. Schloesser
e-mail: m.schloesser@fz-juelich.de

S. van Waasen
e-mail: s.van.waasen@fz-juelich.de
URL: https://www.uni-due.de/

M. Schiek
e-mail: m.schiek @fz-juelich.de

S. van Waasen
University of Duisburg-Essen, Faculty of Engineering, 47057 Duisburg, Germany

© Springer India 2016 29
A. Nagar et al. (eds.), Proceedings of 3rd International Conference

on Advanced Computing, Networking and Informatics, Smart Innovation,

Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_3

30 M. Dueck et al.

1 Introduction

In the FOR1779 research group “Active drag reduction by transversal surface
waves” [1] fundamental research in the field of active drag reduction in high
Reynolds numbers is done based on both wind tunnel experiments and numerical
studies. The final aim is to realize turbulent flow control based on transversal
surface waves by a distributed real-time actuator and sensor network.

The flow control will be embedded into a cascade control loop. Where the task
of the outer loop is to optimize drag reduction by adapting wave parameters such as
amplitude, frequency and wavelength. The inner loop is responsible for the wave
control and thus minimizes deviations of the surface from the desired wave form.

The development of the distributed actuator and sensor network is based on
modelling the network using Simulink and the TrueTime toolbox [2]. The model is
used to investigate the most efficient topology and communication flow for the
distributed turbulent flow control. The required real-time behavior will be assured
by deterministic network communication. The network simulation is designed as a
model in the loop approach to be used either as stand-alone network simulation or
to utilize flow control experiments in the wind tunnel. For this the model includes
interfaces to the flow control and the DAQ-hardware driving the actuators and
sensors [3].

In Sect. 2 the model based on IEEE 1451.1 smart transducer interface standards
is described. In Sect. 3 the three layer model and its origin is explained. Section 4
deals with the developed real-time Master-Token-Slave protocol to cover the
missing features in the communication model. In Sect. 5 evaluation of the network
behavior is presented as the verification of the proposed transport protocol. In
Sect. 6 the work is summarized and future steps are presented.

2 Model

Data exchange in the actuator and sensor network is based on the IEEE 1451.1
smart transducer interface standards [4] and the node names are also chosen
referring to this standard as network capable application processor (NCAP) and
smart transducer module (STM).

The different node types are representing the interface node (NCAP;), controller
nodes (NCAP(), nodes for actuation and local control (STM,) and sensor nodes
(STMs) to measure data for the flow control (see Table 1). The strategy for a
standard communication can be described as follows:

Flow control provides wave parameters as actuating variables
NCAP; takes data and forwards it to NCAP¢

NCAP distributes data to STM,

STM, generates closed loop controlled surface wave

STMg measures friction coefficient and supplies it to NCAP¢

Nk W=

Deterministic Transport Protocol Verified by a Real-Time ... 31

Table 1 Description of the modelled nodes

Name Behavior

NCAP, Interface for external flow control

NCAPc Controlling, distributing and gathering data

STMj Actuator node with internal closed loop wave control
STMg Sensor node for flow control

028 30

Fig. 1 Simulink network model consisting of eleven TrueTime network nodes and splitted into
three different networks. One to connect NCAP; and two NCAP ¢+ nodes. Each NCAP is connected
to its assigned STM, and STM; nodes in a separate network. There are also interfaces to common
Simulink subsystems on NCAP; and STM, for providing model in the loop behavior

6. NCAP gathers drag reduction information and forwards it to NCAP,
7. NCAP; provides drag reduction information to flow control

To set up a communication between the nodes the TrueTime toolbox provides a
low level network communication which is used here. The parameters of the low
level Ethernet network have been verified using a Raspberry Pi testbed [5]. The
described approach additionally needs to cover the real-time capability for a pre-
dictable message arrival time on the destination node. This Master-Token-Slave
protocol represents the transport layer between the particular IEEE 1451.1 com-
munication and Ethernet representing the physical layer. The current TrueTime
simulation chart is shown in Fig. 1.

3 Three Layer Communication Concept

Referring to the ISO-OSI communication model [6], common real-time protocols
are settled either above the transport layer such as RTP [7] or below the transport
layer. This is realized either within medium access control protocols including
hardware components [8] or industrial bus technology, e.g. fieldbusses [9]. Inside
the layer architecture there is a logical communication between equal layers on each

32 M. Dueck et al.

communication partner. Physical communication only takes place on the bottom
layer.

Following a simplified OSI-model, a three layer architecture is used in this paper
as outlined by Deleuze [10]. It consists of application layer, transport layer and
network access layer (see Fig. 2). For the presented purpose every layer uses
defined interfaces to communicate with top and bottom layer. No cross-layer
communication is allowed. One advantage using a layer strategy is to achieve
replaceable protocols.

This approach can be nested in heterogeneous networks. The layers have to be
implemented in every node (see Fig. 3). The NCAP; and STM nodes are connected
with predefined protocols [3] to real hardware modules. The application layer
protocol is divided into three different parts, the node behavior, the parameter
format and the IEEE 1451.1 communication layer (see Fig. 3).

The simulation includes the “Master-Token-Slave” real-time transport protocol.
Transport layer communication to the external hardware is interfaced by UDP to the
central control and by TCP/IP to the actuation control [3]. The bottom layer in
every node is defined by Ethernet and it is simulated in TrueTime which we
recently investigated using a hardware testbed [5].

Application — — Application
Transport — — Transport
Network Network

Fig. 2 Simplified protocol stack based on internet protocol architecture. This simplification
enables easier modelling of network behavior

flowcontrol || NCAR || NCAR || STM./STMs || DAQ-System |

> v

control ___ i check ___ li'"'di's'tfib_gt_q___ '"",-,BFi-@g_e_“____l . LabView_ __
<XML> :;<XML>' parami :param.'param:. param. pararﬁ'. 'Eparam.l data '
i T eeEwasl T TP
UDP é EUDP ,J éMTS(reaLtime)!: ,:TCP/IF;”Jé ETCP/IP/I nidaqU
Ethernet ! |Ethernet j i slimulated Etherrinet I b:E‘hemeﬁi J 'éElhemet; AO/AIU
2 ;, v ‘: \a

Simulation (Modelin the Loop)

Fig. 3 Package delivery through communication layers from central control algorithm to
actuation hardware for analog in- and output. The nodes in the middle are parts of the Simulation
with UDP and TCP/IP interfaces to the hardware

Deterministic Transport Protocol Verified by a Real-Time ... 33

4 Real-Time Master-Token-Slave Protocol

As proposed by Verissimo [11], it is possible to gain real-time behavior in networks
by deterministic package distribution. Because application layer and medium access
layer have already been defined by IEEE 1451.1 and Ethernet the transport protocol
is apparently designated to deliver the real-time capability. The described network
model is sealed to the outside and has not to be secured against external errors.

The defined transport protocol is named Master-Token-Slave, short MTS. The
general behavior of interactions is similar to common protocols. An interface is
provided to the upper layer using queues to buffer data. The layer below is used by
the send- and receive interfaces available in TrueTime. Usually packages are
embedded into frames running through network layers. There are two C-structures
defined in this model: the mts_msg structure provides necessary information as
outer frame added by the MTS transport layer. I1451_msg represents the IEEE
1451.1 message and is a dummy structure for the data to send (e.g. commands,
functions, parameters, values) by the application itself. So an T1451_msg is
handed over to the MTS interface and can also be expected by receiving messages
through the MTS transport layer. An example for message exchange can be found in
Fig. 4.

The communication is strictly ordered to assure determinism. It is initiated and
driven by one master. Slave nodes just have to react on incoming messages. In the

Master Slave
FOR1779—Application = — FOR1779—Application
start send start send
actuation| result actuation| result

[EEE 1451.1 — — [EEE 14511
EXEC TRETURN EXEC | RETURN
(PARAM)| (PARAM) (PARAM)| (PARAM)
Master Token Slave [— — Master Token Slave
fistatus ORDER | [TOKEN |
M U SIREPORT) exec) | |resulh :

ORDER | |TOKEN

|
(EXEC) (RESULF) : M U Sifgﬁgii
Ethernet — —>| Ethernet
Cable Cable

Fig. 4 Example to clarify the MTS interactions with the upper and lower layers. According to the
IEEE 1451.1 standard, messages are sent to invoke actions on the other nodes and wait for return
values. The MTS-protocol sorts it into two phases to send the order and carry the answer. The third
phase is optionally provided to the slave node for expressing any errors or giving status reports

34 M. Dueck et al.

described example (see Fig. 1) the communication flow is divided into three dif-
ferent communication phases, nested in two separated network sections. This
ensures that every NCAP; is master for all NCAP and every NCAPc controls his
own set of STM, and STM nodes separately. In contrast to a homogeneous network
our heterogeneous approach allows higher efficiency in communication since data
exchange takes place in different network sections in parallel. To identify messages,
every message is marked with a message identification number. Requests, answers
and acknowledgements carry the same identification number as corresponding
messages.

As shown in Fig. 4 every phase is initiated with a beacon-broadcast by the
master. The beacon is marked with a phase number, so if any node misses a beacon
it will catch up with the next one and the communication has not to be reset
completely. In the first phase, the Master-phase, the master node (see Fig. 4, left
side) can send information to his slaves. Sent messages are saved for potentially
resends.

The second phase is the Token-phase. The master node sends a token to the
slaves which received a message in the first phase. This is a short message which
indicates some free time for the slave node to talk. The token is addressed to a
specific slave node, it is not possible to use broadcasts here. If a message is
enqueued the slave node responds to the received identification number with a
corresponding message. If the queue for answers contains no message, the queue
for incoming messages is investigated. In case there is no unprocessed message
with corresponding identification number an error is sent back which initiates a
resend of the master message in the next appropriate phase.

In the last part, the Slave-phase there is a time slot for status messages from slave
nodes. Messages are accepted by master and an acknowledgement is sent in the
Master-phase.

Acknowledgements and beacons as well as the error messages to invoke a resend
on Token-phase are internal messages and are not noticed in any protocol layer
above the transport layer. This is comparable to three-way-handshake or message
acknowledgements in TCP/IP [12].

A message broadcast from NCAP, is possible, whereat broadcasts from NCAP ¢
are not reasonable because of different node types (STM,, STMs). A good solution
to save network time would be to send to groups consisting of one type by mul-
ticast. This has to be realized in the future.

5 Evaluation of MTS by Network Model Simulations

The described MTS-protocol is implemented in the model as TrueTime code
functions. Several processes have to be started to run the protocol. Most of the time
the processes sleep or wait to execute new communications. Interface functions can
be used to send and receive messages from the main code function of a node.

Deterministic Transport Protocol Verified by a Real-Time ... 35

The behavior can be analyzed by Simulink scopes which record datasets from
the TrueTime kernel blocks. For evaluation and analysis of timing and behavior an
example has been implemented using the MTS-protocol in TrueTime. The deter-
ministic simulation working on application layer is structured as follows:

1. NCAP; sends 16 messages to each connected NCAP.

2. NCAP; waits for answers

3. NCAP¢; and NCAP, answer to every message

4. NCAP(, sends one status messages for every incoming message

The network model used is shown in a Simulink chart in Fig. 1. The messages
are sent from and to MTS-layer by predefined interfaces. In this experiment there
are no additional disturbances like interrupts, dying nodes or lost packages intro-
duced. The message size is in general 1400 Byte which is below the maximum
transfer unit of Ethernet at about 1500 Byte. Beacons and token have the size of
Ethernet minimum frame size of 64 Byte. The timing windows for the communi-
cation phases are equally spaced by 13@ ms. The experiment takes 0.3 s which equals
three full MTS-cycles.

Figure 5 shows the result of this experiment. The network events are initiated by
the transport layer protocol in the simulated Ethernet layer. The events are indicated
by a peak on the scope-output. Also the limitation in time for the different com-
munication states occurs in the right moment.

T T T T T T T T T
master: token : slave ' master: token : slave @ master: token ' slave
NCAPC2
NCAPC1
——NCAP,
AT ans 1 status T ans 1 status
I msg ‘l token Lack ltoken | ack
beacon
“—
i

0 33.3 66.6 100 1333 1666 200 233.3 266.6 300
time [ms]

Fig. 5 The result of an experiment for communication between one master (NCAP;) and two slave
nodes (NCAPc;, NCAP;) shows a full communication which is initiated once by enqueueing
some messages on master node and then waiting for reactions on slave nodes

36 M. Dueck et al.

The master permanently controls all slaves. At the start a beacon is sent to
indicate the start of Master-timeslot. 16 messages are enqueued by NCAP;. The
messages are broadcasted to both NCAP-; and NCAP, (see Fig. 5) within the
Master-phase. An answer is enqueued by the controller nodes after receiving a
message. Then the Token-phase is initiated by a second beacon. Tokens are sent to
all nodes which should have received a message in the first timeslot. The corre-
sponding answer is read from the queue and sent directly. The end of the Token-
phase is indicated by another beacon. The following Slave-phase is open for status
messages by the slave nodes. It is proposed to be used for registration to the
network at start of a slave node or for error notifications to the master node. The
detailed behavior of the previous described communication is depicted in Fig. 6.

In this example the whole communication was not finished during the first cycle
and it is continued within the next cycle. Hereby the master starts with acknowl-
edging the status messages from NCAP,, then the token is sent to both slaves and
requested answers are received. Again status messages are sent by NCAPc; and
acknowledged by the master. After no further messages occur, the flow is just
continued by sending beacons for every new phase.

The result of this experiment proofs the correctness of the deterministic transport
layer protocol embedded in the network model. The reaction time in the Token-
phase from token send until the message is fully received is 1.25 ms. The time of

‘ master ‘ token Y slave
| ans { status
NCAP
c1
- NCAF’I
1 msg 1 token
B
Il Il Il
0 33.3 66.6 100
time [ms]

Fig. 6 One communication cycle consisting of three different communication phases is shown.
The detailed communication between NCAP; and NCAP ¢ highlights the token answer mechanism
and the status message part

Deterministic Transport Protocol Verified by a Real-Time ... 37

network occupation and buffer time by beacon, token and acknowledgements is
below 1 ms. Messages with the size of 1400 Byte like master messages or token
answers need a propagation time of 1.14 ms.

6 Conclusion and Outlook

In this paper we presented a deterministic transport protocol for a real-time actuator
and sensor network based on a three layer network architecture. The Master-Token-
Slave (MTS) protocol is implemented between the application layer defined by
IEEE 1451.1 smart transducer interface standards and the Ethernet medium access
protocol delivered by the TrueTime toolbox. Real-time capability of the protocol is
checked using a reduced network model where the response time depends on the
length of the three different communication windows. The in-house development
allows to adapt the phase-lengths to the sample rate of the flow control.

Error influences like packet loss, node malfunction, restart or blackout have to be
covered in a future version of the model. Also collisions which can occur in the last
phase of a communication cycle only have to be investigated. To cover e.g. a
NCAP blackout the network has to be changed from heterogeneous to a full-mesh
topology. Multicasts from NCAP to STM, and STMg for Master-phase should be
considered to save time supplying the same data to a specific node type.

To summarize a flexible real-time transport protocol has been developed which
can now be used to investigate model in the loop simulations to develop distributed
real-time actuator and sensor networks for turbulent flow control.

Acknowledgments The authors would like to thank all partners in the research group FOR1779
and acknowledge the funding by the DFG (German Research Foundation).

References

1. DFG. GEPRIS. [12.06.2014]. http://gepris.dfg.de/gepris/projekt/202175528

2. Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Arzén, K.-E.: How does control timing affect
performance? Analysis and simulation of timing using Jitterbug and TrueTime. IEEE Control
Syst. Mag. 23(3), 16-30 (2003)

3. Dueck, M., Kaparaki, M., Srivastava, S., van Waasen, S., Schiek ,M.: Development of a real
time actuation control in a network-simulation framework for active drag reduction in
turbulent flow. In: Automatic Control Conference (CACS), 2013 CACS International,
pp. 256-261, Dec 2013

4. IEEE std 1451.1-1999, standard for a smart transducer interface for sensors and actuators—
network capable application processor (ncap) information model, June 1999. The Institute of
Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

5. Dueck, M., Schloesser, M., Kaparaki, M., Srivastava, S., van Waasen, S., Schiek ,M.:
Raspberry pi based testbed verifying truetime network model parameters for application in
distributed active turbulent flow control. In: Proceedings of the SICE Annual Conference
(SICE), pp. 1970-1975, Sept 2014

http://gepris.dfg.de/gepris/projekt/202175528

38

10.
11.

12.

M. Dueck et al.

. Day, J.D., Zimmermann, H.: The OSI reference model. Proc. IEEE 71(12), 13341340 (1983)
. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RFC 3550: RTP: A Transport

Protocol for Real-Time Applications. Technical report, IETF, 2003

. Carvajal, G., Wu, C.W., Fischmeister, S.: Evaluation of communication architectures for

switched real-time ethernet. IEEE Trans. Comput. 63(1), 218-229 (2014)

. Tovar, E., Vasques, F.: Real-time fieldbus communications using profibus networks. IEEE

Trans. Ind. Electron. 46(6), 1241-1251 (1999)

Deleuze, C.: Content networks. Internet Protoc. J. 7(2), 2—11 (2004)

Verissimom P.: Real-time communication. In: Mullender, S. (ed.) Distributed Systems,
pp. 447-490. Addison-Wesley (1993)

Cerf, V., Dalal, Y., Sunshine, C.: Specification of Internet Transmission Control Program.
RFC 675, December 1974

	3 Deterministic Transport Protocol Verified by a Real-Time Actuator and Sensor Network Simulation for Distributed Active Turbulent Flow Control
	Abstract
	1 Introduction
	2 Model
	3 Three Layer Communication Concept
	4 Real-Time Master-Token-Slave Protocol
	5 Evaluation of MTS by Network Model Simulations
	6 Conclusion and Outlook
	Acknowledgments
	References

