
Traceback: A Forensic Tool
for Distributed Systems

Sushant Dinesh, Sriram Rao and K. Chandrasekaran

Abstract In spite of stringent security measures on the components of a distributed
system and well-defined communication procedures between the nodes of the
system, an exploit may be found that compromises a node, and may be propagated
to other nodes. This paper describes an incident-response method to analyse an
attack. The analysis is required to patch the vulnerabilities and may be helpful in
finding and removing backdoors installed by the attacker. This analysis is done by
logging all relevant information of each node in the system at regular intervals at a
centralised store. The logs are compressed and sent in order to reduce network
traffic and use lesser storage space. The state of the system is also stored at regular
intervals. This information is presented by a replay tool in a lucid, comprehensible
manner using a timeline. The timeline shows the saved system states (of each node
in the distributed system) as something similar to checkpoints. The events and
actions stored in the logs act on these states and this shows a replay of the events to
the analyser. A time interval during which an attack that took place is suspected to
have occurred can be analysed thoroughly using this tool.

Keywords Forensics � Incident response � Distributed system

S. Dinesh (&) � S. Rao � K. Chandrasekaran
Department of Computer Science and Engineering, National Institute of Technology
Karnataka, Surathkal, Mangalore, India
e-mail: sushantdinesh94@gmail.com

S. Rao
e-mail: sriram.rao@ieee.org

K. Chandrasekaran
e-mail: kchnitk@ieee.org

© Springer India 2016
A. Nagar et al. (eds.), Proceedings of 3rd International Conference
on Advanced Computing, Networking and Informatics, Smart Innovation,
Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_2

17



1 Introduction

Computer Forensics refers to the field involving inspection and analysis of digital
storage to extract information about the computer system and any changes that it
may have undergone through processes running on the system. Forensic methods
are largely used to gather information about a system after it suffers an illegal attack
that may have resulted in compromised data or denial of service, or both, among
other consequences. While this information is helpful as legal evidence, it can also
be used to study the loopholes in the network and find methods to fix them.

In a distributed system, communication between components is secured using
cryptographic methods. A client node (that is making the request) needs to be
authenticated by the receiver node before processing the request. On a node, un-
trusted code from an external source that has to be executed is run with limitations,
prohibiting access to most resources without authorisation. In spite of these mea-
sures, the system may be attacked by a malicious agent. In such cases, forensic tools
are useful in analysing the method and extent of exploitation, and the information
accumulated can be used to patch the system. Any backdoors included in the
network by the attacker can also be found and removed. When regular system
checkpoints are made, these can be used to restore the compromised system to a
known uncompromised state. Currently, analysis involves going through millions
of lines of logs from different components of the system manually. This is tedious,
time-consuming and there are chances that investigators might miss a crucial part of
the attack. A clever attacker might also delete the logs during his attack thereby
making them useless in the analysis. With several missing pieces of information,
analysing the attack and estimating damage would be very difficult. Due to lack of
information about the type of attack, developers must manually go through the
whole code to find the vulnerability used. All this suggests that we must have a
more robust forensic analysis tool designed to operate on distributed system.

In this paper we conceptualise a forensic tool, Traceback, that helps analyse
attacks by simulating events that occur starting from a chosen system state. This
makes use of the logs that are kept by various processes that run on each system,
and by the systems themselves. These logs are retrieved from storage and a timeline
of events is constructed to understand the sequence of events. This timeline also
includes regular system states that are stored as checkpoints. When an analyser
wants to check a particular time interval for suspicious behaviour, he can choose an
initial state and have the logged events perform transitions to this state up to a
required point of time.

The paper has been categorised as follows. Section 2 describes related work.
Section 3 gives an overview and a brief description of the proposed work. Section 4
details the work and responsibilities of the logging agent. Section 5 discusses the
choices available for the central store. Section 6 outlines the tool and useful fea-
tures. Section 7 concludes the paper.

18 S. Dinesh et al.



2 Related Work

Topics relevant to this paper that are well-studied include efficient compression of
files, specifically log files, and good forensic tools to inspect networks. Effective
and thorough tools have been made which monitor the network packets at a par-
ticular computer system. In a distributed system, a more suited tool would allow
detailed monitoring of packets exchanged within the system and with external
sources. With respect to log files, there are papers which detail methods proposed to
compress log files generated by particular tasks and discuss their compression ratio
and speed.

2.1 Compression of Logs

Compression of logs a very well studied topic. Here we consider two papers which
talk about two different compression mechanisms to improve the compression ratio
and compression speed when dealing with logs. In “Lossless compression for large
scale cluster logs” [1], Balakrishnan and Sahoo develop a compression algorithm to
compress logs generated by Blue Gene/L supercomputer. Their compression
algorithm has limited scope and produces best results only on logs generated by this
supercomputer. In “Fast and efficient log file compression” [2], Skibiski and
Swacha develop a generic compression scheme for logs with five different variants
of it, each varying in degree and speed of compression. Both the papers have a
significant improvement in compression ratio and compression speed as compared
to general purpose compression schemes like gzip, bzip etc.

2.2 Forensic Tools Used in Network Security

Extensive work has been done in making effective methods to provide network
security. Many of these methods, such as those outlined in “Distributed agent-based
real time network intrusion forensics system architecture design” [3] are for
intrusion detection at the time of attack—to detect real-time attacks. “Achieving
Critical Infrastructure Protection through the Interaction of Computer Security and
Network Forensics” [4] also concentrates on acquisition of forensic data for
real-time security purposes. The Incident Response Support System outlined in [5]
is a tool for automatic response to attacks on a system. The attack being made is
compared to an information base of known exploits and the response used in the
known case is adapted to respond to the current attack. All these procedures are
aimed at a general computer system connected to a network. Our paper concentrates
on analysis of the attack to gain complete knowledge of the vulnerability in the
environment of a distributed system.

Traceback: A Forensic Tool for Distributed Systems 19



3 System Overview

Figure 1 describes an overview of the final Traceback tool. The Traceback tool has
a timeline which allows forensic investigators to go back to the system state during
the time of the attack and analyse the actions of the attacker in detail. Different logs
from various components of the distributed system are put together by the tool to
simulate the situation during the time of attack. This helps the investigators
understand the exact vulnerability in the system and take the required measures to
patch it up. Additionally, as the alteration in the state of the system due to the attack
is logged, any backdoors, worms and residual files left behind by the attacker can be
cleaned up and also used as evidence for further forensic analysis.

Agents are used to “checkpoint” the system states, aggregate logs from the
component, compress and then send them to the central log storage. This allows us
to have a small local log storage and helps us maintain all logs in a central place.

A system state may include information like number of processes running, CPU
usage, Memory usage, network usage etc. Information regarding each process is
stored in the initial state. Each successive checkpoint only stores the changes from
this initial state, in a Git inspired “diff”-like manner. Similar process is followed for
important directories in the file-system. This allows us to think of logs as trans-
formations on a system state.

Logs and checkpoints collected by the agents are compressed before sending to
the central log storage. Compression is done by the agents to avoid excessive
network usage as log files tend to get very big. We can achieve a high compression
ratio as log files tend to have a lot of repeated information. The central log storage
collects logs from all the sources and stores it for future retrieval.

We proceed with a detailed description of the following points:

• Logging agent
• Compression of logs
• Central log storage
• Traceback application

Fig. 1 Overview

20 S. Dinesh et al.



4 The Logging Agent

Each component of a distributed system that is open to external communication has
an instance of the logging agent running. Briefly, the responsibilities of the logging
agent are to save the system state at regular intervals of time, and to log all relevant
local events at the system. If there is a centralised storage of all logs, this agent
compresses the logs and periodically sends them to the central storage.

4.1 Access to the Agent and Logs

The agent process must run at a higher privilege than other processes so that it is not
terminated by other (possibly user-level) processes. Also, the agent must have
enough access to collect all relevant logs from the system, and other system-related
information such as a list of running processes and their details. The log files
written by the agent should be accessible only by the agent and the root of the
system so that user-level processes do not interfere or contaminate the logging
process. Processes running untrusted code must also not have access to these logs.
These reasons point to elevating the agent process to a high privilege.

4.2 Description of a System State

To analyse an attack on the system, investigators must look at the state of the
system before the attack and analyse the changes made to this state during and after
the attack interval. The changes made to the system are studied to single out those
initiated by the attacker as part of the exploit and accurately define the attack
interval and method. To aid this procedure, it is beneficial to save the states of each
system in the distributed network at regular intervals. System snapshots have large
storage size, so it is not practical to intermittently take snapshots of each system.
Instead, specific data such as a list of the details of all running processes and the
general file system information can be stored. The information about the file system
tells us what files have been added or deleted, and when a file was last modified.
Process-relevant information that can be stored includes CPU usage, Memory
usage, Process ID and Parent Process ID, and Process running time.

After an initial system state containing complete information as outlined, newer
save states can be stored as a difference from this initial state. This again reduces the
storage space occupied. It also helps visualise the changes made to the initial system
state as state transitions, making the changes easier to understand. The differences
that need to be considered are changes in the file system, and changes in the
processes that are running. Every change in the details of running processes need
not be considered as the CPU and memory usage are not strictly constant, and the

Traceback: A Forensic Tool for Distributed Systems 21



process running time is different at different instants of time. Only a significant
difference in usage of resources (above a configurable threshold) can initiate noting
this in the system save state.

This information about system states and the logs made can be effectively
represented in the form of a timeline. The events in the log files can be simulated on
the saved system states to show a replay of events that makes it simpler for the
investigators to understand the sequence of developments during a suspected attack
interval.

4.3 Information Collection from Different Logs

To adequately represent the developments on a system state, all significant events
must be logged by the agent. These logs are then compressed before storage at the
central store. The information that needs to be collected for the logs includes:

Network Traffic When an attack is made on a node, traffic from external agents to
a node in the distributed system holds information about the attack. To capture
information about the traffic from and to a node, tools such as libpcap or snort can
be used. These tools also allow filtering based on protocol and IP addresses since all
packets are not required to be stored. Packets of some protocols may have low
chances of carrying malicious code.

Internal Communication Internal communication between nodes of the distrib-
uted system is generally logged by the middleware that specifies communication
procedures for the system. These logs can be used for forensic purposes, in cases
where a compromised node may communicate with other nodes of the system to try
and spread the attack.

Running Processes At regular intervals, the agent makes a check on the running
processes in order to log changes. The process-related information stored is elu-
cidated in Sect. 4.2. This information is needed as part of the system state.

System Logs and Authentication Logs The logs that are kept by the system can
be vital in the analysis and search of information about an attack that the system
suffered. The event logs of each node have information about all operations carried
out and events that occurred, among other useful information. These contain the
details of the malicious operations carried out, except in cases where a cautious
attacker erases relevant information from these logs.

Authentication logs contain information about the Authentication Provider and
the time of login of all users on a system. It follows that remote login procedures
used, such as SSH or Telnet, will also be logged in this file. Thus, the auth logs
collected from each node can reveal information about login by an unfamiliar user
or at an odd time.

22 S. Dinesh et al.



Database Logs Any change made to a database existing on the node is stored in
the database logs. These can hold information about back-doors installed in the
database by the intruder. When the distributed system uses a database to store
necessary information, it is necessary to ensure its security so as not to allow
unauthorised changes to the information, or a loss of database entries.

4.4 Compression of Logs

Compression of the logs generated is a very important responsibility of the agent.
Better compression ensures efficient storage of logs and better network utilisation as
the data to be transferred to the central store would be smaller.

Table 1 compares various general purpose compression mechanisms. It is clear
that gzip the fastest among the four and achieves a compression of 93.51 %. The
other algorithms are considerably slower and offer only a marginal difference in size
of the logs after compression.

Compression of logs is a well studied subject and several journals have been
released about the same. In [1] Balakrishnan and Sahoo talk about a specialized
lossless compression for large scale cluster logs. In the paper the authors talk about
exploiting the redundancy in the log files to allow a large amount of compression.
Compression is done in multiple stages to exploit redundancy in information at
various stages and maximize the compression. The authors were able to achieve a
28.3 % better compression ratio and 43.4 % of improvement in compression time as
compared to standalone compression utilities. However, the algorithm is very
specific to the logs their systems generate.

In [2] Skibiski and Swacha talk about a custom compression scheme and five
different variants of it. Using the faster variant, the log files were transformed to be
36.6 % shorter than the original files compressed with gzip. Using the slower
variant, the log files were transformed to be 62 % shorter than the original files
compressed with gzip, and 41 % shorter than the original files compressed with
bzip2. The advantage of this scheme is that there is no pre defined format for the log
and the compression will work for all generic logs.

We could also develop a custom compression method based on our logs to
achieve a better compression. However, this is not a subject of this paper and more
of a scope for future work. We will use a general purpose algorithm like gzip for
our application.

Table 1 Comparison of
popular compression
algorithms. Source [6]

Compression algorithm Compression ratio Bytes/s

GZIP 93.51 0.5191

BZIP 96.52 0.2785

7-Zip 97.50 0.2002

LZXQ 0.4 95.84 0.3325

Traceback: A Forensic Tool for Distributed Systems 23



5 Central Storage

The central store is responsible for aggregating logs from various components and
store it for further analysis. The central store should be highly secure as it stores all
vital information regarding the behaviour of the distributed system. An attack on the
central store could lead to loss of large amounts of information. Ideally, the central
store should not be a part of the distributed system and must not be accessible from
anywhere outside the organization’s network. The only means of communication
between the distributed system and the central store must be through the agents
monitoring them. Confidentiality and integrity of the data sent over the network by the
agents can be ensured by using a secure transfer mechanism such as SCP or
SFTP. SCP and SFTP rely on security provided by SSH to transfer. SSH is very secure
as long as we use non-trivial passwords or authentication is allowed only through SSH
keys. Hence we will use this in our application. There are two ways we can go about
storing the logs: a database likeMongoDB [7, 8] to store logs, or in the file-system like
normal files.

5.1 Using a Database—MongoDB

MongoDB is an open-source document database, and the leading No-SQL data-
base. Written in C++, MongoDB offers features like:

• Full indexing—Index any attribute
• Replication support—Mirror across LAN’s and WAN’s
• Auto sharding—Horizontal scaling
• Querying—Feature rich query support
• Map/Reduce—Flexible aggregation and data processing

Using a database like MongoDB to store the logs would be easier for using the
information in applications. MongoDB has adapters for various languages and hence
it would be convenient to use while building the Traceback application. MongoDB is
a full fledged database management system, this means the search and retrieval of
documents is highly optimized and can provide a better performance than a tradi-
tional file-system without any such optimizations. MongoDB is fast, secure and also
supports sharding which can be leveraged when the data set becomes very large.
Having built-in support for replication allows us to maintain multiple replicas of the
database. This would be useful in case of an attack on the central store.

5.2 Using a File-System

For a smaller system with a relatively smaller amount of logs a file-system maybe a
reasonable way to store these logs. File-system access is easier and can be used by

24 S. Dinesh et al.



anyone without having knowledge of a particular database. Hence if manual, reg-
ular checks of logs are needed, then a file-system would suit this need better.
A custom implementation for the specific application allows developers to have a
finer control over its performance and storage. As the number of request for ret-
rievals for logs is expected to be small (only in case of attack or suspected breach)
using a database might not be necessary. As the size of log store grows we may
have to consider a distributed file-system such as Hadoop to store the logs in a
distributed manner.

MongoDB ensures integrity of data and also has built-in security mechanisms
and fault tolerance. Additionally, it is easier to build applications to use MongoDB
rather than a normal file-system. Due to the advantages of storing logs in MongoDB
over a file-system we decided to go with using MongoDB to store logs for this
particular application.

6 Traceback Tool

Traceback can be used to obtain a replay of events that occurred in the distributed
system during some interval of time. It uses the information stored in the logs, along
with the system states that were saved, to provide an analytical visualisation of
events. The logs obtained from the store are decompressed and then used for replay
purposes.

6.1 Timeline Format

To make the visualisation easy, the tool presents the system states and changes on a
timeline. The system states are visualised as points on the timeline, and all events
that change the state of the system can be represented as transitions on this state.
The analyser can choose to view the state of the distributed system at a particular
point of time on the timeline, and simulate the events that occurred from this instant
to another chosen instant. Important instants of time can be bookmarked for easy
reference, and any comments that follow from analysis can be added to the timeline
to help future study.

6.2 Modules

Traceback also allows forensic investigators to write and include modules. Modules
are well known attack vectors which can be used by other investigators to quickly
search if a particular attack was used against the system. This will allow investi-
gators to fly through their analysis and know exactly what was exploited on the

Traceback: A Forensic Tool for Distributed Systems 25



system. The modules are stored centrally on Traceback’s repository which makes it
easy for analysers to download and include them for their analysis.

6.3 Playback Mechanism

When the starting state is chosen and the replay is begun, all events occurring are
shown to the analyser. All the information about events and system states is
obtained from the logs at the central store. The simulation details packets being sent
and received from a node in the distributed system to an external node, as well as
packets interchanged between nodes within the system. Processes changing the
states of each node are also shown. The simulation on all nodes in the system is
shown together. On finding suspicious action in any node, the analysers can con-
centrate on—or “zoom” into—the behaviour of that node.

Filters can be used to observe specific events at a time. If only network inter-
actions are to be analysed, or only events from a particular log (like the authori-
sation log) the appropriate filter is applied and the playback is observed.

7 Conclusion and Future Work

Avoiding attack is of first and foremost importance when we design a distributed
system. But as the system grows and becomes more complicated, security vul-
nerabilities may creep in. Malicious users may exploit these flaws in the system to
gain access to sensitive information or to cause damage. For such situations, we
need a robust tool to analyse the extent of damage caused by the attacker, remove
all back-doors and understand the actual vulnerability and the system state that
allowed such an attack. This tool helps investigators as manually sifting through
logs to find the source of attack is tedious and will lead to delay in patches. To
summarise, this paper discusses the implementation of a forensic analysis tool in a
distributed system to investigate the system post attack. It uses agents to collect
information about the status of various components of the system and stores it
centrally. This information is retrieved by the tool, decompressed and displayed to
the investigator in a convenient manner so as to make the analysis fast and effective.
We have also discussed about some of the issues which are faced during the design
of such a tool and presented a few ways to overcome these issues.

Future work that can improve this tool can involve the following details.
Sharding the central log and storing the primary log in a distributed manner is an
option to resolve the issue of efficient storage on large distributed systems. The tool
can be made more intuitive in the sense that it analyses the information provided
and marks suspicious locations on the timeline for the analysers to scrutinise. The
security of the central log store and the agent processes is also a matter that needs to
be looked into thoroughly.

26 S. Dinesh et al.



References

1. Balakrishnan, R., Sahoo, R.K.: Lossless compression for large scale cluster logs. In: 20th
International Parallel and Distributed Processing Symposium (IPDPS 2006), IEEE (2006)

2. Skibiski, P., Swacha, J.: Fast and efficient log file compression. In: CEUR Workshop
Proceedings of 11th East-European Conference on Advances in Databases and Information
Systems (ADBIS 2007) (2007)

3. Ren, W., Jin, H.: Distributed agent-based real time network intrusion forensics system
architecture design. In: 19th International Conference on Advanced Information Networking
and Applications (AINA 2005), vol. 1, IEEE (2005)

4. Hunt, R., Slay, J.: Achieving critical infrastructure protection through the interaction of
computer security and network forensics. In: 2010 Eighth Annual International Conference on
Privacy Security and Trust (PST), IEEE (2010)

5. Capuzzi, G., Spalazzi, L., Pagliarecci, F.: IRSS: Incident response support system. In:
International Symposium on Collaborative Technologies and Systems (CTS 2006), IEEE
(2006)

6. Benchmarks for popular compression algorithms. http://www.maximumcompression.com/data/
log.php

7. MongoDB Official Documentation. http://www.mongodb.org/
8. Using MongoDB to store logs. http://docs.mongodb.org/ecosystem/use-cases/storing-log-data/

Traceback: A Forensic Tool for Distributed Systems 27

http://www.maximumcompression.com/data/log.php
http://www.maximumcompression.com/data/log.php
http://www.mongodb.org/
http://docs.mongodb.org/ecosystem/use-cases/storing-log-data/

	2 Traceback: A Forensic Tool for Distributed Systems
	Abstract
	1 Introduction
	2 Related Work
	2.1 Compression of Logs
	2.2 Forensic Tools Used in Network Security

	3 System Overview
	4 The Logging Agent
	4.1 Access to the Agent and Logs
	4.2 Description of a System State
	4.3 Information Collection from Different Logs
	4.4 Compression of Logs

	5 Central Storage
	5.1 Using a Database---MongoDB
	5.2 Using a File-System

	6 Traceback Tool
	6.1 Timeline Format
	6.2 Modules
	6.3 Playback Mechanism

	7 Conclusion and Future Work
	References


