
An Algorithm for Partitioning Community
Graph into Sub-community Graphs
Using Graph Mining Techniques

Bapuji Rao and Anirban Mitra

Abstract Using graph mining techniques, knowledge extraction is possible from
the community graph. In our work, we started with the discussion on related
definitions of graph partition both mathematical as well as computational aspects.
The derived knowledge can be extracted from a particular sub-graph by way of
partitioning a large community graph into smaller sub-community graphs. Thus, the
knowledge extraction from the sub-community graph becomes easier and faster.
The partition is aiming at the edges among the community members of different
communities. We have initiated our work by studying techniques followed by
different researchers, thus proposing a new and simple algorithm for partitioning the
community graph in a social network using graph techniques. An example verifies
about the strength and easiness of the proposed algorithm.

Keywords Adjacency matrix � Cluster � Community � Graph partition �
Sub-Graph

1 Introduction

We use graph theory’s some important techniques to solve the problem of parti-
tioning a community graph to minimize the number of edges or links that connect
different community [1]. The aim of partitioning a community graph to sub-graphs
is to detect similar vertices which form a graph and such sub-graphs can be
formed. For example, considering Facebook is a very large social graph. It can be

B. Rao (&) � A. Mitra
Department of CSE and IT, V.I.T.A.M., Berhampur, Odisha, India
e-mail: rao.bapuji@gmail.com

A. Mitra
e-mail: mitra.anirban@gmail.com

© Springer India 2016
A. Nagar et al. (eds.), Proceedings of 3rd International Conference
on Advanced Computing, Networking and Informatics, Smart Innovation,
Systems and Technologies 44, DOI 10.1007/978-81-322-2529-4_1

3

partitioned into sub-graphs, and each sub-group should belong to a particular
characteristics. Such cases we require graph partitions. In this partition, it is not
mandatory that each sub-group contain similar number of members. A partition of a
community graph is to divide into clusters, such that each similar vertex belongs to
one cluster. Here a cluster means a particular community. Based on this technique,
we partition a community graph into various sub-graphs after detecting various
vertices belonging to a particular community or cluster.

2 Basics in Graph Theory

Social network, its actors and the relationship between them can be represented
using vertices and edges [2]. The most important parameter of a network (i.e., a
digraph) is the number of vertices and arcs. Here we denote n for number of vertices
and m for number of arcs. When an arc is created by using two vertices u and v,
which is denoted by uv. Then the initial vertex is the u and the terminal vertex is the
v in the arc uv.

2.1 Digraph

A digraph or directed graph G = (V, A) with V ¼ V1; V2;:;Vnf g can be
represented as adjacency matrix A. The matrix A is of order nXn where Aij is 1 or 0
depending on ViVj is an edge or not. Note that Aii = 0 for all i.

2.2 Sub-digraph

A sub-digraph of G to be (V1, A1) where V1 � V ;A1 � A and if uv is an element of
A1 then u and v belong to V1.

2.3 Adjacency Matrix

Let a graph G with n nodes or vertices V1; V2; . . .:;Vn having one row and one
column for each node or vertex. Then the adjacency matrix Aij of graph G is an nXn
square matrix, which shows one (1) in Aij if there is an edge from Vi to Vj; otherwise
zero (0).

4 B. Rao and A. Mitra

2.4 Good Partition

When a graph is divided into two sets of nodes by removing the edges that connect
nodes in different sets should be minimized. While cutting the graph into two sets of
nodes so that both the sets contain approximately equal number of nodes or
vertices [1].

In Fig. 1 graph G1 has seven nodes V1; V2; V3; V4; V5; V6; V7f g. After cut-
ting into two parts approximately equal in size, the first partition has nodes
V1; V2; V3; V4f g and the second partition has nodes V5; V6; V7f g. The cut

consists of only the edge V3; V5ð Þ and the size of edge is 1.
In Fig. 2 graph G2 has eight nodes V1; V2; V3; V4; V5; V6; V7; V8f g. Here

two edges, V3; V7ð Þ and V2; V6ð Þ are used to cut the graph into two parts of equal
size rather than cutting at the edge V5; V8ð Þ. The partition at the edge V5; V8ð Þ is
too small. So we reject the cut and choose the best one for cut consisting of edges
V2; V6ð Þ and V3; V7ð Þ, which partitions the graph into two equal sets of nodes
V1; V2; V3; V4f g and V5; V6; V7; V8f g.

2.5 Normalized Cuts

A good cut always balance the size of cut itself against the sizes of the sets of
created cut [1]. For this normalized cut method is being used. First it has to define
the volume of set of nodes or vertices V which is denoted as Vol (V) is the number
of edges with at least one end in the set of nodes or vertices V.

Fig. 1 Graph G1 with seven nodes

Fig. 2 Graph G2 with eight nodes

An Algorithm for Partitioning Community Graph … 5

Let us partition the nodes of a graph into two disjoint sets say A and B. So the
Cut (A, B) is the number of edges from the disjoint set A to connect a node in the
disjoint set B. The formula for normalized cut values for disjoint sets A and
B = Cut (A, B)/Vol (A) + Cut (A, B)/Vol (B).

2.6 Graph Partitions

Partition of graph means a division in clusters, such that similar kinds of vertices
belong to a particular cluster [1]. In a real world vertices may share among different
communities. When a graph is divided into overlapping communities then it is
called a cover.

A graph with K-clusters and N-vertices, the possible number of Stirling number
of the second kind is denoted as S(N, K). So the total number of possible partitions
is said to be the Nth Bell number is given with the formula BN ¼ PN

K¼0 SðN;KÞ
[3]. When the value of N is large then Bn becomes asymptotic [4].

While partitioning a graph having different levels of structure at different scales
[5, 6], the partitions can be ordered hierarchically. So in this situation cluster plays
an important role. Each cluster displays the community structure independently,
which consists of set of smaller communities.

Partitioning of graph means dividing the vertices in a group of predefined size.
So that the frequently used vertices are often combined together to form a cluster by
using some techniques. Many algorithms perform a partition of graph by means of
bisecting the graph. Iterative bisection method is employed to partition a graph into
more than two clusters and this algorithm is called as Kernighan-Lin [7]. The
Kernighan-Lin algorithm was extended to extract partitions of graph in any number
of clusters [8].

Another popular bisection method is the spectral bisection method [9, 10], is
completely based on the properties of spectrum of the Laplacian matrix.
This algorithm is considered as quiet fast. According to Ford and Fulkerson [11]
theorem that the minimum cut between any two vertices U and V of a graph G, is
any minimum number of subset of edges whose deletion would separate U from V,
and carries maximum flow from U to V across the graph G. The algorithms of
Goldberg and Tarjan [12] and Flake et al. [13, 14] are used to compute maximum
flows in graphs during cut operation. Some other popular methods for graph
partition are level-structure partition, the geometric algorithm, and multilevel
algorithms [15].

6 B. Rao and A. Mitra

3 Proposed Algorithms and Analysis

Algorithm Community_Graph_Partition()
// Global Declarations
n : Number of Communities.
NCM [1:n,1:2]: Holds community number and number of
community members of each community.
tcm : To count total number of community members.
CMM [1:tcm+1, 1:tcm+1]: Adjacency matrix of Community
Members of order tcmXtcm.

i.[Read Community Data]
Call Read_Community_Data().

ii.[Generate and assign every members code]
CallAssign_Community_Member_Codes()

iii.[Creation of adjacency matrix of all the members]
Call Community_Member_Matrix()

iv. [Partition of Community Graph]
Call Graph_Partition()

v. (a) Set s:=0.
(b) Repeat For I:=1, 2,.........,n:

(1) s:= s+NCM[I][1].
[Show the 'I'th sub-community graph after partition]

(2) Call Sub_Community_Matrix_Display(s).
End For

vi. Exit.

Procedure-I.Read_Community_Data()
i. Set tcm:=0.
ii. Read Number of communities as 'n'.
iii.Read Community details such as community code and
number of members of each community, and assign to the
matrix NCM[][].
iv. Repeat For I:=1, 2,, n:

tcm := tcm + NCM[I][2].
End For

v. Return.

Procedure-II.Assign_Community_Member_Codes()
i. Set K := 1.
ii. Set Pro := 1.
iii. Repeat For I :=1, 2,......., n:

(1) If NCM[I][1]>=1 AND NCM[I][1]<=9,
Then (a) Pro := 10.
Else If NCM[I][1]>=10 AND NCM[I][1]<=99,
Then (b)Pro:= 100.

An Algorithm for Partitioning Community Graph … 7

Else If NCM[I][1]>=100 AND NCM[I][1]<=999,
Then(c)Pro:=1000.
Else

(d)Break.
End If

(2)Repeat For J := 1, 2,......, NCM[I][2]:
(a) Set CMM[1][K+1] := (NCM[I][1]*10) + J.
(b) Set CMM[K+1][1] := (NCM[I][1]*10) + J.
(c) K := K + 1.

End For
End For

iv. Return.

Procedure-III.Community_Member_Matrix()
i. Get the edge data of all the community members.
ii. Store the above data in the matrix CMM[][].
iii. Return.

Procedure-IV.Graph_Partition()
i. Repeat For I := 1, 2,, tcm+1:
ii. Repeat For J := 1, 2,, tcm+1:

If CMM[1][J+1]/Pro CMM[I+1][1]/Pro,
Then

[Cut off edge between communities of Different
group of communities]

Set CMM[I+1][J+1] := 0.
End If

End For
End For

iii. Return.

Procedure-V.Sub_Community_Matrix_Display(size)
size: Size of each community.
i. Set x:=0.
ii. Set count := x.
iii. Repeat For i:=count, count+1,....,size:
iv. Repeat For j:=count, count+1,....,size:

(a)If i=count And j=count, Then: Display "C".
Else If i=count Andj count,
Then: Display CMM[1][j].
Else If I countAnd j=count,
Then: Display CMM[i][1].
Else: Display CMM[i][j].
End If

End For
(b)x:=x+1.

End For
v. x:=x-1.
vi. Return.

8 B. Rao and A. Mitra

3.1 Explanation

The proposed algorithm consists of five procedures. Procedure-I allows to read the
details about number of communities and number of community members of all the
communities. In this example the output has been derived after implemented using
C++ programming language. The data related to community and their edges are
read from two data files namely “commun1.txt” and “graph.dat”. Procedure-II
which generates and assigns community member codes. Procedure-III creates the
community adjacency matrix. Procedure-IV allows us to partition the community
adjacency matrix by assigning ‘0’ over ‘1’ which indicates the edge between the
community members of dissimilar communities. Finally Procedure-V displays
every community’s adjacency matrix. From the adjacency matrices we can draw the
community sub-graphs.

3.2 Example

We propose a community graph [16, 17] with 22 individual communities from four
different communities C1;C2;C3;C4f g which is shown in Fig. 3. We try to partition

Fig. 3 Community graph of communities C11. . .C16; C21. . .C25; C31; . . .C34;C41. . .C48f g

An Algorithm for Partitioning Community Graph … 9

Fig. 5 Adjacency matrix of community graph after cut-off edges between community members of
dissimilar communities

Fig. 4 Adjacency matrix of community graph in Fig. 3

10 B. Rao and A. Mitra

this graph into four sub-graphs of communities C1;C2;C3;C4f g. We try to rep-
resent this graph in memory in an adjacency matrix form by following graph
techniques which is shown in Fig. 4. Then we try to locate edges between com-
munities members formed from two different communities.

The black filled boxes indicate the edge between the community members of
dissimilar communities which is indicated in Fig. 5. These edges are considered as
edges between dissimilar communities. So these edges must be cut. Once such
edges are cut, then the original graph can be partitioned into so many sub-graphs.
And we can say that the graph has been partitioned across edges of community

Fig. 6 Adjacency matrices of communities C1, C2, C3, and C4

An Algorithm for Partitioning Community Graph … 11

members of dissimilar communities. To do the edge cut operation, we assign 0 over
1 in the black filled boxes of adjacency matrix in Fig. 5. So that we can say there is
no physical edge between those community members across the different com-
munities. From the adjacency matrix of Fig. 5, we can construct four different
adjacency matrices for the communities C1, C2, C3, and C4 which is shown in
Fig. 6. For C1 the community members are 11; 12; 13; 14; 15; 16f g. Similarly for
C2, C3, and C4 the community members are 21; 22; 23; 24; 25f g; 31; 32; 33; 34f g;
and 41; 42; 43; 44; 45; 46; 47; 48f g respectively. From these four adjacency matri-
ces, now we can construct the sub-graphs which are shown in Fig. 7.

Fig. 7 Communities C1;C2;C3;C4f g’s sub-graphs

12 B. Rao and A. Mitra

3.3 Output

An Algorithm for Partitioning Community Graph … 13

14 B. Rao and A. Mitra

4 Conclusions

Wehave partitioned our large community graph into sub-community graphs using the
concepts of graph technique, especially by detecting an edge between the nodes of
different communities. Initial portion of the work is a brief review of the literature on
graph partition related to mathematical formulae as well as graph mining techniques.
A simple graph technique for partition of a large community graph has been proposed.
An appropriate example from social community network background has been rep-
resented using the graph theoretic concepts. The paper concludes with focusing on
process of partitioning a community graph. There after the various sub-community
graphs are to be shown in its adjacency matrix format. Hence extracting knowledge
from a particular sub-community graph becomes easier and faster.

References

1. Rajaraman, A., Leskovec, J., Ullman, J.D.: Mining of Massive Datasets. Copyright © 2010,
2011, 2012, 2013, 2014

2. Mitra, A., Satpathy, S.R., Paul, S.: Clustering analysis in social network using covering based
rough set. In: 2013 IEEE 3rd International Advance Computing Conference (IACC), India, 22
Feb 2013, pp. 476–481, 2013

3. Andrews, G.E.: The Theory of Partitions. Addison-Wesley, Boston, USA (1976)
4. Lovasz, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam, The

etherlands (1993)
5. Ravasz, E., Barabasi, A.L.: Phys. Rev. E 67(2), 026112 (2003)
6. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Science 297(5586),

1551 (2002)
7. Kernighan, B.W., Lin, S.: Bell Syst. Tech. J. 49, 291 (1970)
8. Suaris, P.R., Kedem, G.: IEEE Trans. Circuits Syst. 35, 294 (1988)
9. Barnes, E.R.: SIAM J. Alg. Discr. Meth. 3, 541 (1982)
10. Scholtz, R.A.: The spread spectrum concept. In: Abramson, N. (ed) Multiple Access,

Piscataway, NJ: IEEE Press, ch. 3, pp. 121–123 (1993)
11. Ford, L.R., Fulkerson, D.R.: Canadian J. Math. 8, 399 (1956)
12. Goldberg, A.V., Tarjan, R.E.: J. ACM 35, 921 (1988)
13. Flake, G.W., Lawrence, S., Giles, C.L.: In: Sixth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (ACM Press, Boston, USA), pp. 150–160 (2000)
14. Flake, G.W., Lawrence, S., Lee Giles, C., Coetzee, F.M.: IEEE Comput. 35, 66 (2002)
15. Pothen, A.: Graph Partitioning Algorithms with Applications to Scientific Computing.

Technical Report, Norfolk, VA, USA (1997)
16. Rao, B., Mitra, A.: A new approach for detection of common communities in a social network

using graph mining techniques. In: 2014 International Conference on High Performance
Computing and Applications (ICHPCA), pp. 1–6, 22–24 Dec 2014. doi: 10.1109/ICHPCA.
2014.7045335

17. Rao, B., Mitra, A.: An approach to merging of two community sub-graphs to form a
community graph using graph mining techniques. In: 2014 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC-2014), 978-1-4799-3972-5/14/
$31.00 @2014, pp. 460–466, Coimbatore, India, Dec 2014

An Algorithm for Partitioning Community Graph … 15

http://dx.doi.org/10.1109/ICHPCA.2014.7045335
http://dx.doi.org/10.1109/ICHPCA.2014.7045335

	1 An Algorithm for Partitioning Community Graph into Sub-community Graphs Using Graph Mining Techniques
	Abstract
	1 Introduction
	2 Basics in Graph Theory
	2.1 Digraph
	2.2 Sub-digraph
	2.3 Adjacency Matrix
	2.4 Good Partition
	2.5 Normalized Cuts
	2.6 Graph Partitions

	3 Proposed Algorithms and Analysis
	3.1 Explanation
	3.2 Example
	3.3 Output

	4 Conclusions
	References

