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Abstract Due to proliferating harmonic pollution in the power system, analysis
and monitoring of harmonic variation in real-time have become important. In this
paper, a novel approach for estimation of fundamental frequency in power system is
discussed. In this method, the fundamental frequency component of the signal is
extracted using Empirical Wavelet Transform. The extracted component is then
projected onto fourier basis, where the frequency is estimated to a resolution of
0.001 Hz. The proposed approach gives an accurate frequency estimate compared
with some existing methods.
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1 Introduction

The real-time measurement of frequency is now important for many applications in
the power system. Several methods have been proposed and adopted to compute
frequency for the power system applications. The Fast Fourier Transform is the
most widely used method for frequency estimation. Due to leakage effect, picket
fence effect, and aliasing effect, it cannot produce a better result [1]. Further
extensions and enhancements are done on this method by utilizing the original FFT
with different windowing and interpolation to produce an accurate estimate [2]. For
zero crossing technique, the signal is considered to be pure sinusoidal and the signal
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frequency is estimated from the time between two zero crossing. However, in
reality the measured signals are available in distorted form. The paper [3] explains
about the estimation of harmonic amplitudes and phases using several variants of
recursive least square (RLS) algorithms. When extended complex kalman filter is
used for estimation, the accuracy is reached around the nominal frequency due to
the shrinkage of Taylor series expansion of nonlinear terms [4]. In prony method
[5], using fourier technique algorithm, the distorted voltage signal is filtered and
filter coefficients are calculated assuming constant frequency. However, these filter
coefficients are not exact due to frequency deviation. Then a complex prony
analysis was proposed where the frequency is estimated by approximating the
cosine-filtered and sine-filtered signals simultaneously [6]. In the paper [7], using an
optimization method, frequency is estimated by comparing the filtered voltage with
a mathematical approach. Other approaches to compute frequency are by using
recursive DFT and phasor rotating method [8]. Artificial neural networks are also
one of the methods adopted for real-time frequency and harmonic evaluation [9].
Harmonics were also estimated using linear least squares method and by singular
value decomposition (SVD) [10].

In this paper, a new approach for frequency estimation is discussed. The paper is
divided into five sections including the introduction. Section 2 discusses the
Empirical Wavelet Transform and linear algebra concept of basis approach used for
the proposed method and Sect. 3 explains the proposed algorithm. Section 4 dis-
cusses the results and inferences obtained from the proposed method and the
conclusions are given in Sect. 5.

2 Background

2.1 Empirical Wavelet Transform

In Empirical Wavelet Transform [11], a bank of N wavelet filters, one low pass and
N � 1 bandpass filters are made by adapting from the processed signal. A similar
approach is used in the fourier method, by building bandpass filters. For the
adaption process, the location of information in the spectrum is identified with
frequency, x2½0;P�. This is used as filter support.

First, the fourier transformed signal is partitioned into N segments. The boundary
limits for each segment is denoted using xn. Each partition is denoted as
^n ¼ ½xn�1; xn�;

SN
n¼1 ^n. Around each xn, a small area of width 2sn is defined.

The empirical wavelets are defined on each of the ^n. It is a bandpass filter con-
structed using Littlewood-Paley and Mayer’s wavelets. The subbands are extracted
using this filtering operations.

Each partition in the spectrum is considered as modes which contain a central
frequency with certain support. Since 0 andP are used as the limits to the spectrum,
the number of boundary limits required will be N � 1. Therefore the partition

802 L. Prakash et al.



boundaries, xn, comprise of 0, selected maxima, and P. The expression for scaling
function /̂nðxÞ is defined as

/̂nðxÞ ¼
1 if xj j �xn � sn
cos p

2 b xj j � xn þ snð Þ� �
if xn � sn � xj j �xn þ sn

0 otherwise

8>><
>>:

ð1Þ

The expression for empirical wavelet function ŵnðxÞ is defined as

ŵnðxÞ ¼

1 if xn þ sn � xj j �xnþ1 � snþ1

cos p
2 b

1
2snþ1

xj j � xnþ1 þ snþ1ð Þ
� �h i

if xnþ1 � snþ1 � xj j �xnþ1 þ snþ1

sin p
2 b

1
2sn

xj j � xn þ snð Þ
� �h i
if xn � sn � xj j �xn þ sn

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð2Þ

The function bðxÞ is an arbitrary function, the expressions can be referred in
[11]. The width around each xn is decided using sn and it is defined as
xn : sn ¼ cxn; 0\c\1; 8 n[ 0. Now for function f, the detail coefficients is
obtained by taking the inverse of convolution operation between f and wn (wavelet
function).

W e
f ðn; tÞ ¼ ððf̂ ðxÞÞŵnðxÞÞ�1

The approximate coefficients are obtained by taking the inverse of convolution
operation between f and /n (scaling function).

W e
f ð0; tÞ ¼ ððf̂ ðxÞÞ/̂1ðxÞÞ�1 ð3Þ

The empirical mode function, denoted by fk, is given as

f0ðtÞ ¼ W e
f ð0; tÞ � /1ðtÞ ð4Þ

fkðtÞ ¼ W e
f ðk; tÞ � /kðtÞ ð5Þ

2.2 Concept of Basis

Any N point signal can be considered as a point in CN (C denotes the complex
space) and the operation of taking its FFT can be considered as a mapping from
CN ! CN . There are infinite number of choices for a probable basis set in CN space
[12].Construction of fourier basis in CN space requires N orthogonal
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vectors of the form e
j2pkn
N , k 2 Z. Consider the signal ejh, h ¼ 2pnk

N , and
n ¼ 0; 1; . . .:N � 1f g, we can observe that, irrespective of value of k, h is varied
from 0; 2p½ Þ. We need to take only the samples from the signal corresponding to
one period which will constitute the N tuple in CN space, and n is such that it covers
one period. The matrix shown (the Twiddle Matrix) has N Fourier basis arranged
column wise.

3 Signal Model and Proposed Method

Consider a continuous-time signal, x tð Þ with amplitude, frequency, and phase
denoted as A, f, and h, respectively. The signal x tð Þ ¼ A: cos 2pft þ hð Þ can be
discretized as

x n½ � ¼ A: cos 2p
f
f0

n
N0

þ h

� �
¼ A: cos 2pf :nDt þ hð Þ ð6Þ

where f0 is the nominal fundamental frequency, N0 is the number of samples per
cycle at f0, and Dt is the sampling period. In the proposed method, a synthetic signal
is created and then discretized. Using EWT, the signal is decomposed into various
modes. From these modes, fundamental frequency component is extracted. To get
the frequency with high resolution, the extracted fundamental frequency component
is projected on to a basis matrix. Figure 1 gives the flowchart of the proposed
method.

4 Results and Discussions

In this section, the performance of the proposed algorithm is discussed. To dem-
onstrate the effectiveness of this method an input signal is synthesized with fun-
damental frequency of 50.218 Hz. It contains 20 % third harmonic component and

804 L. Prakash et al.



10 % fifth harmonic component. The synthesized signal was sampled at the rate of
1024 samples/cycle. As a prefiltering process, the harmonic contents present in the
signal are removed or fundamental frequency component is extracted by using
EWT. The Fig. 2 gives the processing stages of signal. Generally in a power
system, the third and fifth harmonic components causes the main impact. When
signal is decomposed using EWT, the first mode always gives a decaying DC
component. The second mode gives the fundamental frequency component and rest
of the other modes gives the harmonics.

When FFT of this second component is computed, it estimates the frequency as
51 Hz. Since the given input signal is generated at 50.218 Hz the difference in
estimated frequency arose due to spectral leakage phenomena. The Fig. 3 gives the
frequency spectrum of the extracted component and the effect of spectral leakage is
visible.

Now to estimate it most accurately the method proposed in Sect. 2.2 is used. The
power system signal has to be maintained within a permissible range of 48–52 Hz.
Otherwise, it could result in the grid collapsing. So the extracted fundamental
frequency component is projected on to a basis matrix, created for a resolution of
0.001 between the range of 48–52 Hz. By using this approach, estimated frequency
is 50.218, which is same as the given input frequency. Figure 4 gives the EWT
decomposition of three modes.

From Fig. 5, we can infer that when the number of mode increases, the fun-
damental frequency component and harmonics get splitted into several modes. By
the split of these components, information about fundamental frequency will be
less.

Fig. 1 Flowchart of proposed method of frequency estimation
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Fig. 2 Processing stages of
signal
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Fig. 3 FFT of the extracted
fundamental frequency
component
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Fig. 4 Signal decomposition
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Fig. 5 Signal decomposition
using EWT when the mode
given is 4
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The basis approach is applied for different frequencies and modes, the results are
shown in Table 1. From Table 1, we infer that mainly the second mode of the input
signal after decomposing gives the accurate frequency estimate the same as the
given input frequency of the synthesized signal. The other splitted component also
estimates the frequency near to the given input frequency, but it does not give the
resolution of 0.001 Hz as expected. Therefore, for accurate estimation, the number
of modes in EWT can be fixed as three or four.

Also, the proposed method is compared with many conventional frequency
estimation algorithms such as FFT, zero crossing technique, prony method,
recursive DFT, and phasor rotation method. Table 2 shows the estimated fre-
quencies obtained from these methods.

Table 1 Frequency estimation using basis approach for different frequencies and modes

S. no. Input frequency
(Hz)

Total number of
modes taken in
EWT

Mode considered
for proposed
algorithm

Estimated frequency
using proposed
algorithm (Hz)

1 50.2180 3 2 50.2180

4 2 50.2180

5 2 50.2180

3 50.2750

6 2 50.2180

3 50.2530

7 2 50.2140

3 50.2830

4 50.2530

2 50.149 3 2 50.1490

4 2 50.1490

5 2 50.1440

3 50.1490

6 2 50.1550

3 50.1330

7 2 50.1550

3 50.1330

4 50.7750

3 50.6730 3 2 50.6730

4 2 50.6730

5 2 50.6670

3 50.6730

6 2 50.6580

3 50.6760

7 2 50.7480

3 50.6570

4 50.7760
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When sliding window recursive DFT with dyadic downsampling is applied for
mode decomposition to find out the fundamental frequency component. The basis
approach estimation gives frequency estimate of 50.2300 Hz. From this, it can be
inferred that EWT decomposition gives more information about fundamental fre-
quency component when compared to sliding window recursive DFT with dyadic
downsampling decomposition method.

5 Conclusion

The paper proposes a new fundamental frequency estimation approach using the
concept of basis. The proposed method use EWT to find the fundamental frequency
component present in the signal. The frequency is estimated to a resolution of
0.001 Hz by projecting the fundamental frequency component to a basis matrix.
This method is compared with many other conventional methods.
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